

AIT Austrian Institute of Technology

4DIAC for Smart Grids Applications

Thomas Strasser Electrical Energy Systems Energy Department

W3 Second 4DIAC User's Workshop (4DIAC)

16th IEEE International Conference on Emerging Technologies and Factory Automation (ETFA'2011) September 5th-9th, 2011, Toulouse, France

Content

- Introduction / Motivation
- IEC 61850 Integration into IEC 61499 FBs
- Co-Simulation Electrical Networks and Control Applications
- AIT Laboratory Automation
- Controller-Hardware-in-the-Loop (CHIL) Tests
- Future Activities

Introduction / Motivation

Usage of IEC 61499 / 4DIAC for Smart Grids Applications?

- High efforts are spent to modernize the electrical grids → transformation into "Smart Grids"
- According to the IEC Smart Grids roadmap intelligent devices are necessary for realizing Smart Grids
- Standard-based implementation is a key requirement for future developments
- Usage of distributed automation concepts for controlling electrical power systems
- Open source strategy and open standards as driver to push new developments for power & energy systems
- Well supported open source tools available (4DIAC, PSAT, etc.)

Smart Grid conceptual model - adding intelligence to various parts of the network (Source: IEC Strategic Group 3 (SG3))

IEC 61850 Integration into IEC 61499 FBs

Standard Compliant Representation of Intelligent Electronic Devices (IED)

- IEC 61850 Power Utility Automation
 - Interoperability standard for communication networks and systems for power utility automation
 - Standardization of the information model and how the information should be transferred between devices
 - Covers modeling, configuration and communication
 - Object-oriented approach
 - Definition of logical devices and logical nodes
 - XML-based system configuration language (SCL)

Implementation of device functions not covered

IEC 61850 Integration into IEC 61499 FBs

Standard Compliant Representation of Intelligent Electronic Devices (IED)

- As IEC 61499 service interface function block
- Usage of the SystemCorp IEC 61850 stack
 - Industrial PC implementation
 - Beck IPC@Chip implementation
- Windows-based implementation (DLL)

IEC 61850 Integration into IEC 61499 FBs

Standard Compliant Representation of Intelligent Electronic Devices (IED)

- Necessary Tools/Software
 - IED Configuration Tool (e.g. IEDScout)
 - IEC 61850 Stack (e.g. SystemCorp)
 - 4DIAC-IDE
 - FORTE

OMICRON IEDScout

Power Systems Simulation and Control with GNU Octave/PSAT and 4DIAC

- GNU Octave
 - Environment for numerical computations
 - High-level language (mostly compatible with Matlab)
 - Provided under the GNU General Public License (GPL)
- Power System Analysis Toolbox (PSAT)
 - Analysis of electric power systems
 - Power, continuation power and optimal power flow calculations
 - Signal stability analysis
 - Provided under the GNU General Public License (GPL) for Matlab/Simulink and GNU Octave

Power Systems Simulation and Control with GNU Octave/PSAT and 4DIAC

Architecture

Source: T. Strasser, M. Stifter, F. Andren, D. Burnier de Castro, and W. Hribernik, Applying Open Standards and Open Source Software for Smart Grid Applications Simulation of Distributed Intelligent Control of Power Systems," in 2011 IEEE Power & Engineering Society (PES) General Meeting, July 24-29, Detroit, Michigan, USA, 2011.

Power Systems Simulation and Control with GNU Octave/PSAT and 4DIAC

Implemented Case Study: Under-Load Tap Changer (ULTC)

Power Systems Simulation and Control with GNU Octave/PSAT and 4DIAC

- Automatic Tap Changer Controller (ATCC) Implementation
 - As IEC 61499 basic function block
 - Algorithm implemented in Structured Text (ST)

Power Systems Simulation and Control with GNU Octave/PSAT and 4DIAC

System Configuration

Power Systems Simulation and Control with GNU Octave/PSAT and 4DIAC

Demo: IEC 61850 Client (IEDScout) + Control (4DIAC) + Simulation (PSAT)

Load profile on Bus 9

Time [15min]

AIT Laboratory Automation

Open Source-based SCADA and Control Approach

- Validation Environment for
 - IEDs
 - Automation and control strategies
 - Communication protocols and interfaces, etc.
- Free and open source tools
 - 4DIAC
 - openPOWERLINK
 - Mango M2M

Source: T. Strasser, F. Andren, and M. Stifter, "A Test and Validation Approach for the Standard-based Implementation of Intelligent Electronic Devices in Smart Grids," 5th International Conference on Industrial Applications of Holonic and Multi-Agent Systems, August 29-31, Toulouse, France, 2011.

Hardware (e.g. IED)

AIT Laboratory Automation

Open Source-based SCADA and Control Approach

- Implemented Case Study: Control of AIT PV-inverter Test Stand
 - RLC tuning for PV-inverter islanding test (VDE 0126)

AIT Laboratory Automation

Open Source-based SCADA and Control Approach

- Implemented Case Study: Control of AIT PV-inverter Test Stand
 - Demo: SCADA-Application (Mango M2M) + Control (4DIAC) + Simulation (Simulink)

Controller-Hardware-in-the-Loop (CHIL) Tests

Standard-compliant Open Source-based Real-Time Validation Environment

- Tool Chain
 - SCADA-Application (Mango M2M)
 - Control (4DIAC) + I/O Access (openPOWERLINK)
 - Real-time Simulation (Opal-RT)

09.09.2011

Future Activities

Plans for the upcoming months

- Development of an IEC 61499 function block library for Smart Grids applications
 - User documentation
 - Provision as 4DIAC open source module under the EPL
- Implementation of the open source-based SCADA and control approach in the AIT power distribution laboratory
- Various laboratory tests (incl. performance tests, etc.)
- Implementation of a Controller-Hardware-in-the-Loop test environment using 4DIAC
- Setup of an open-source co-simulation environment for power distribution networks, communication and automation/control applications
- Coupling of the IEC 61499/4DIAC-based control approach with a Multi-Agent Control system for reconfigurable power distribution networks

ACKNOWLEDGEMENTS: This work is funded by the Austrian Climate and Energy Fund with the support of the Austrian Research Promotion Agency (FFG) under the project "DG-EV-HIL".

AIT Austrian Institute of Technology

your ingenious partner

Dr. Thomas Strasser Electrical Energy Systems Energy Department AIT Austrian Institute of Technology Österreichisches Forschungs- und Prüfzentrum Arsenal Ges.m.b.H. Giefinggasse 2 | 1210 Vienna | Austria P +43(0) 50550-6279 | M +43(0) 664 2351934 | F +43(0) 50550-6390 thomas.strasser@ait.ac.at | http://www.ait.ac.at