Integration of IEC 61131-3 and IEC 61499 control logic using FORTE and ProConOS

<u>Stefano Campanelli</u>, Pierfrancesco Foglia, Cosimo Antonio Prete Dipartimento di Ingegneria dell'Informazione, Università di Pisa Via Diotisalvi 2, 56126 Pisa, Italy {stefano.campanelli, foglia, prete}@iet.unipi.it

4DIAC Users' Workshop ETFA September 21, 2012, Krakow, Poland

Introduction

IEC 61131-3 widely adopted by PLC producers

- Used in many existing control systems
- Large base of software libraries, know-how and personnel competences
- IEC 61131-3 has very little support for distributed control
 - IEC 61131-5 communication function blocks
 - Engineering approach device centered
 - No support for distribution of control logic
- IEC 61499 is more suitable for designing distributed control applications

Proposed Architecture (1/2)

Problems

- realization of distributed control between existing IEC 61131-3 systems
- reuse of existing IEC 61131-3 software in an IEC 61499 system
- reuse of existing know-how and personnel competences about IEC 61131-3
- Proposed approach: Coexistence
 - IEC 61131-3 and IEC 61499 are complementary standards
 - Each device has both IEC 61131-3 and IEC 61499 execution environments
 - A communication interface is provided in order to allow data exchanges between the two standards

Proposed Architecture (2/2)

PI: PLC Interface PDE: PLC Data Exchange

PLC Interfaces

- PLC Data Exchange
 - Data Transfer PDE
 - Procedure Call PDE
- PLC Interface
 - A group of PDEs
- IEC 61499
 - PI as a SIFB
 - Each PDE has its own events and data in/outs
- IEC 61131-3
 - Each PDE as an IEC 61131-5 FB

September 21, 2012

Data Transfer PDEs

Data Transfer from IEC 61131-3 to IEC 61499

Data Transfer from IEC 61499 to IEC 61131-3

Tools Used for Implementation

Operating System Microsoft Windows IEC 61499 4DIAC IDE 1.0 FORTE 1.0 Custom SIFBs implemented as a C++ class IEC 61131-3 KW-Software MULTIPROG 4.8 ProConOS 4.0

Custom FBs implemented as a C function

A Simple Application (1/3)

- Sample application:
 - Periodically reads a digital input
 - Applies a logical not operation on the read value
 - Updates a digital output with the new value
- The IEC 61131-3 program reads the input value and updates the output value
- The IEC 61499 application implements the not logic
- Definition of the PLC interface:
 - 1 Data Transfer PDE from IEC 61131-3 to IEC 61499 to send the input boolean value
 - I Data Transfer PDE from IEC 61499 to IEC 61131-3 to send the output boolean value

A Simple Application (2/3)

A Simple Application (3/3)

Implementation of the PI (1/3)

- Communication via IPC
 - Shared memory
 - Semaphores

Implementation of the PI (2/3)

- PI implemented as an Event Source SIFB
 - executeEvent handles input events and the external event
- External Event Handler Thread
 - Waits on semaphores for events such as data reception
 - Sends the external event to the SIFB

September 21, 2012

Implementation of the PI (3/3)

IEC 61131-3

- IEC 6131-5 FBs implemented as C functions
 - Parameters: input/output variables and internal state
 - Realize state machines
 - Non-blocking waits

Implementation of Data Transfer PDEs IEC 61131-3 to IEC 61499

IEC 61131-5 USEND:

LOOP {

idle_until_req_detected copy_SD_to_shared_mem release_SendSem1 wait_RcvSem1 pulse_done

External Event Handler:
 LOOP {

 wait_SendSem1
 startEventChain

}

executeEvent:

CASE ExternalEvent: copy_shared_mem_to_RD release_RcvSem1 send_IND

Implementation of Data Transfer PDEs IEC 61499 to IEC 61131-3

IEC 61131-5 URCV:

LOOP {

wait_SendSem2 copy_shared_mem_to_RD pulse_NDR release_RcvSem2

}

External Event Handler:
 LOOP {

 wait_RcvSem2
 startEventChain

}

executeEvent:

CASE REQ:

copy_SD_to_shared_mem release_SendSem2

CASE ExternalEvent : send_CNF

September 21, 2012

Conclusion

- We proposed an architecture to integrate IEC 61499 and IEC 61131-3 control logic
- Architecture based on coexistence of both standards
- Future works:
 - Test the architecture with a reference case study derived from literature and industrial applications
 - Implement a tool for automatic generation of the PLC Interface code modules.

Thanks for the Attention

Contact:

Stefano Campanelli Università di Pisa stefano.campanelli@iet.unipi.it

This work is partially supported by ISAC srl, Italy

September 21, 2012