

IEC 61499/4DIAC Applications for the Power and Energy Domain

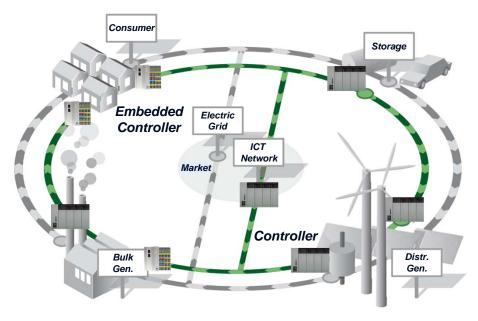
Successful Usage of the 4DIAC Environment

Thomas Strasser Electrical Energy Systems Energy Department

3rd 4DIAC User's Workshop (4DIAC)

17th IEEE International Conference on Emerging Technologies and Factory Automation (ETFA'2012) September 17-21, 2012, Kraków, Poland

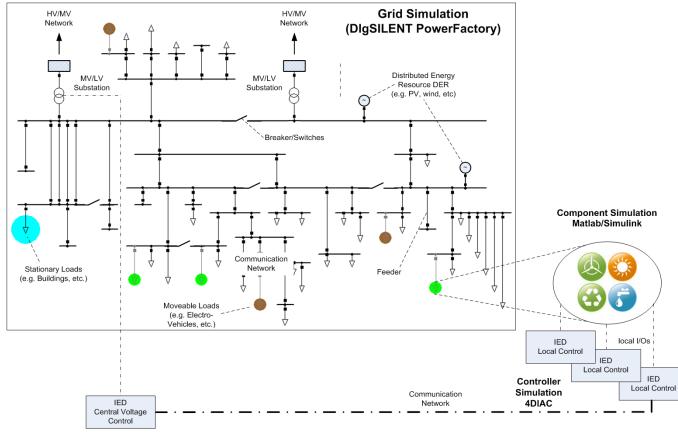
Content


- Introduction and Background
- Co-Simulation of Electrical Grids and ICT in Lectures
 - Motivation and goals
 - Architecture
 - 4DIAC implementation
 - Simulation results
- Reconfigurable Control Software for Smart Grids
 - Introduction example
 - Goals
 - Concept and architecture
 - Simulation results
- Summary and Future Activities

Introduction and Background

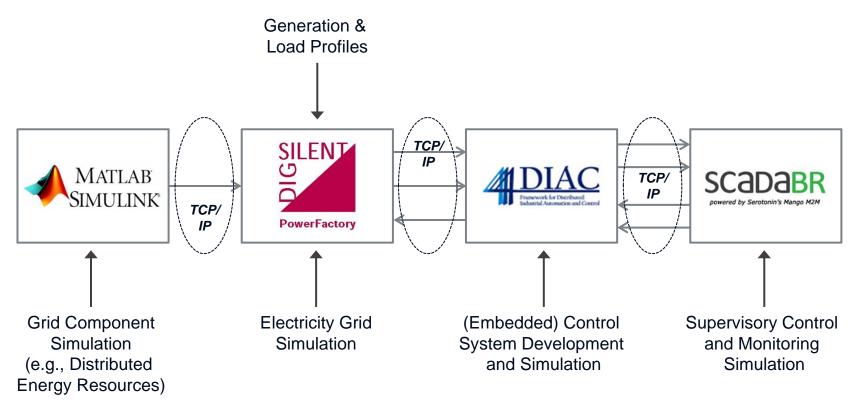
Usage of IEC 61499 / 4DIAC for Smart Grids Applications?

- Smart Grids: modernisation of energy and power distribution networks
- Internet of Energy
 - Energy Grids + ICT Network
 - Bi-directional energy and communication flow
- Management of Smart Energy Grids requires innovative ICT technologies
 - Advanced automation concepts and algorithms (IEC 61499)
 - Advanced communication concepts (IEC 61850)
 - Intelligent grid components (inverters, controllers, meters, etc.)
 - Interoperability of systems and components
 - Standard-based implementation as key requirement for future developments

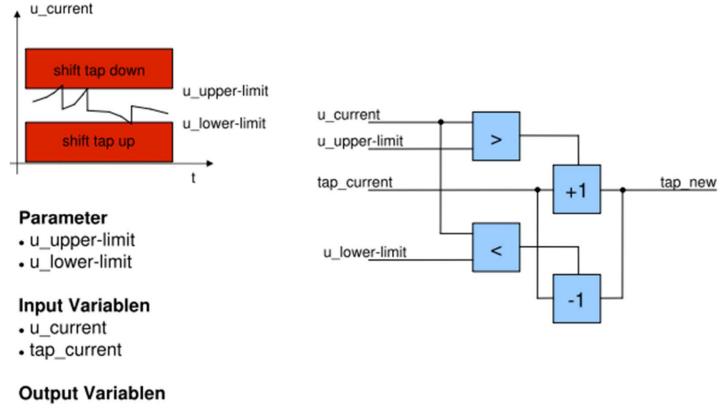

Control Simulation with 4DIAC

- Motivation and goals
 - Teaching of the basic principles for the co-simulation of electrical grids and control systems at University of Applied Sciences Technikum Vienna
 - Introduction of a co-simulation environment
 - Modeling of electricity grid and its components
 - Development of control algorithms with IEC 61499 function blocks
 - Monitoring and visualization with a supervisory control system (i.e., SCADA)

Control Simulation with 4DIAC


Co-simulation concept

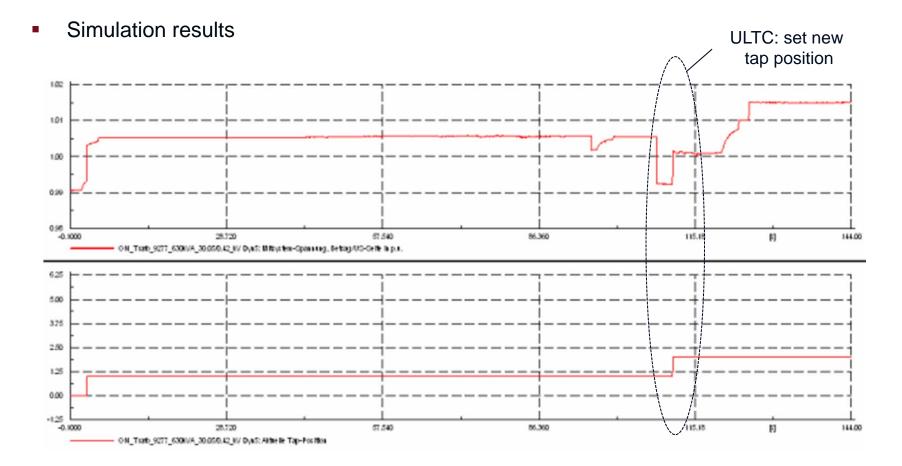
Control Simulation with 4DIAC


Communication architecture

Control Simulation with 4DIAC

Under-Load-Tap-Changer (ULTC) algorithm

tap_new

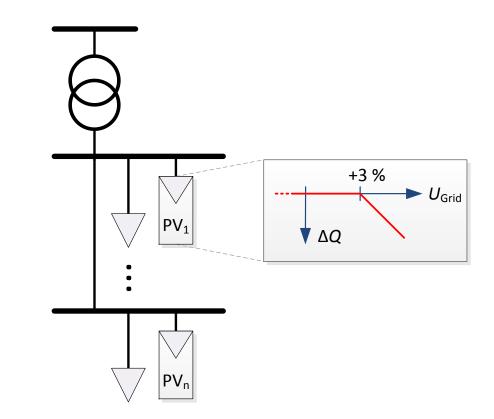


Control Simulation with 4DIAC

- ♦ E PERMI PB ADD INT B ACO INT UREAL ZUREA F BUT TO LDF RVER 1.2 IFAI TO BEAL INT TO LREA + LREAL ZLREAL O A E PERMET NEAL & REAL P_GT E. FERMET FB ADD INT 0 1.0 0.1 10 10 TH, ADD, INT 120 REA: 281 • Only usage of the 4DIAC standard function block library (no additional FB SERVER 2 **REA: 205A** was implemented) 127.0.0.1;2500 Communication via Client/Server SIFBs ٠
- ULTC 4DIAC implementation

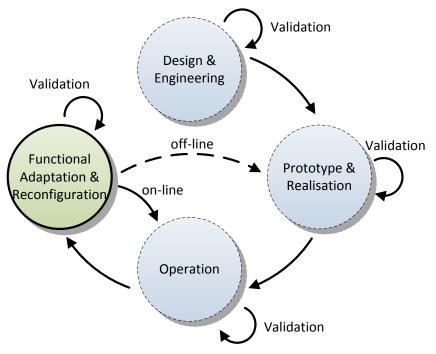
Control Simulation with 4DIAC

Control Simulation with 4DIAC

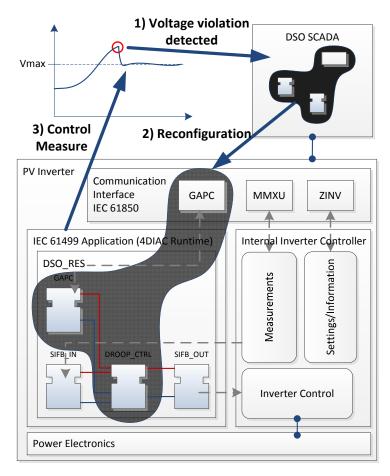

- Lessons learned (4DIAC)
 - Good engineering tool (4DIAC-IDE) and very stable runtime (FORTE) available
 - Existing 4DIAC function block library was a great help for the implementation of the ULTC algorithm
 - Monitoring feature was a great help during the implementation and improvement of the ULTC algorithm
 - Usability of 4DIAC-IDE should be improved
 - Library handling
 - Copying of whole projects or project parts
 - Sub-application handling
 - Extensions of the documentation

\rightarrow 4DIAC is an appropriate environment for the modeling of control algorithms

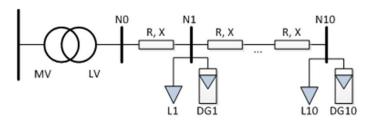
Reconfiguration with 4DIAC

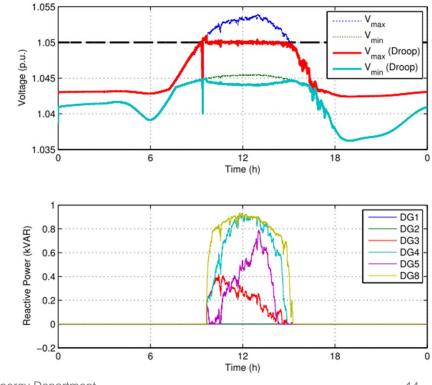

- Introduction example
 - Today its impossible to address all future (ICT) requirements in Smart Grid applications (e.g., distribution automation, demand side management)
 - Necessity to maintain control software in ICT devices for Smart Grids during operation

Reconfiguration with 4DIAC


- Goals
 - Provision of an ICT-based life-cycle support for power utility automation systems
 - Based on IEC 61850/IEC 61499

Reconfiguration with 4DIAC


- Concept and architecture
 - IEC 61850 communication interface
 - IEC 61499 implementation of control algorithms
 - Usage of IEC 61850 and IEC 61499 configuration interfaces for on-line update/adaptation of control functions



Reconfiguration with 4DIAC

- Simulation results with 4DIAC and PowerFactory
 - Simple test network

Results (voltages) at node DG5

Thomas Strasser, Energy Department

Summary and Future Activities

Plans for the upcoming months

- Development of an IEC 61499 function block library for Smart Grids applications
 - User documentation
 - Provision as 4DIAC open source module under the EPL
- Integration of IEC 61850 interoperability and communication approach with IEC 61499/4DIAC
 - Proper mapping of IEC 61850 elements to IEC 61499
 - Development of IEC 61499 Service Interface Function Blocks supporting IEC 61850
- Development of an IEC 61499 Compliance Profile for Smart Grids and implementation of it in 4DIAC
- Enhancement of the proposed IEC 61850/IEC 61499 reconfiguration support for Smart Grid applications

ACKNOWLEDGEMENTS: This work is funded by the Austrian Climate and Energy Fund with the support of the Austrian Research Promotion Agency (FFG) under the project "DG-EV-HIL".

AIT Austrian Institute of Technology

your ingenious partner

Dr. Thomas Strasser

Senior Scientist Electrical Energy Systems Energy Department AIT Austrian Institute of Technology Österreichisches Forschungs- und Prüfzentrum Arsenal Ges.m.b.H. Giefinggasse 2 | 1210 Vienna | Austria P +43(0) 50550-6279 | M +43(0) 664 2351934 | F +43(0) 50550-6390 thomas.strasser@ait.ac.at | http://www.ait.ac.at