
4DIAC integration into the FASA
project
A success story of increased maintainability and modularity

Veronika Domova, Ettore Ferranti, Thijmen de Gooijer, Aneta Vulgarakis

Agenda

 Background and motivation

 Project idea

 Development approach

 Tools used for implementation

 Implementation logic

 End-user workflow

 Summary and conclusions

Month DD, Year | Slide 2

© ABB Group

Background(1)

Experimental distributed control system

framework

 Real-time middleware

 Loosely based on IEC61499 standard

 Based on components

 Implemented in C++

 Linear execution

The Future Automation System Architecture (FASA)

Month DD, Year | Slide 3

© ABB Group

core core

C1 C2

FASA

OS

Background(2)

 Execution transparency for control applications

across multiple controllers and CPU cores

 Dynamic changes to the control system

configuration without any disruption

The Future Automation System Architecture (FASA)

Month DD, Year | Slide 4

© ABB Group

core core

C1 C2

C3 C4

core core

C5 C6

C7 C8

core core

C9

core

C2

FASA FASA FASA

C3

C4 C7

OS OS OS

C1

Motivation

 FASA lacks an IDE to create, deploy and edit its

applications

 Large amount of C++ code and configuration files

have to be created and maintained manually

 Development and testing processes are noticeably

slowed down

Month DD, Year | Slide 5

© ABB Group

Project Idea

What?

 Create applications in 4DIAC IDE

 Automatically generate FASA code

How?

 Implement 4DIAC IDE – FASA integration

 Make an extension to the 4DIAC IDE platform

 Implement the extension as an Eclipse plugin

Month DD, Year | Slide 6

© ABB Group

Approach

 Implement an Eclipse plugin

 Rely on 4DIAC IDE model

 Generate FASA code using M2T transformation

Month DD, Year | Slide 7

© ABB Group

Tools used for implementation

 Eclipse IDE, Java

 Model-to-text transformation tools:

 XSLT

 Acceleo

 Jet

Month DD, Year | Slide 8

© ABB Group

Implementation logic

 Retrieving necessary objects using 4DIAC IDE

model and API

 Applying JET transformation templates

 Dynamically mapping data in the templates

 Generating output folders structure

 Generating output files into appropriate folders

Month DD, Year | Slide 9

© ABB Group

End-user Workflow

Step 1: Create a system in 4DIAC IDE

Step 2: Right-click on the system in the browser

Step 3: In appeared menu select ”Transform system to FASA”

Step 4: Wait a moment until all the transformation is done

Step 5: Observe the generated code in the workspace

Month DD, Year | Slide 10

© ABB Group

Summary and Conclusions

Contribution to FASA

 Graphical IDE for FASA applications

 Increased maintainability and modularity

Future work

 Improving integration logic

 Making the integration process entirely automatic

Contribution to 4DIAC

 Application in a new automation domain

 Extendibility and integration with other systems

Month DD, Year | Slide 11

© ABB Group

