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Background(1) 

Experimental distributed control system 

framework 

 Real-time middleware 

 Loosely based on IEC61499 standard 

 Based on components 

 Implemented in C++ 

 Linear execution 

The Future Automation System Architecture (FASA) 
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Background(2) 

 Execution transparency for control applications 

across multiple controllers and CPU cores 

 Dynamic changes to the control system 

configuration without any disruption  
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Motivation 

 FASA lacks an IDE to create, deploy and edit its 

applications 

 Large amount of C++ code and configuration files 

have to be created and maintained manually 

 Development and testing processes are noticeably 

slowed down 
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Project Idea 

What? 

 Create applications in 4DIAC IDE 

 Automatically generate FASA code 

How? 

 Implement 4DIAC IDE – FASA integration 

 Make an extension to the 4DIAC IDE platform 

 Implement the extension as an Eclipse plugin 
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Approach 

 Implement an Eclipse plugin  

 Rely on 4DIAC IDE model 

 Generate FASA code using M2T transformation 
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Tools used for implementation 

 Eclipse IDE, Java 

 Model-to-text transformation tools: 

 XSLT 

 Acceleo 

 Jet 
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Implementation logic 

 Retrieving necessary objects using 4DIAC IDE 

model and API 

 Applying JET transformation templates 

 Dynamically mapping data in the templates  

 Generating output folders structure  

 Generating output files into appropriate folders 
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End-user Workflow 

Step 1: Create a system in 4DIAC IDE 

Step 2: Right-click on the system in the browser 

Step 3: In appeared menu select ”Transform system to FASA” 

Step 4: Wait a moment until all the transformation is done 

Step 5: Observe the generated code in the workspace 
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Summary and Conclusions 

Contribution to FASA 

 Graphical IDE for FASA applications  

 Increased maintainability and modularity 

Future work 

 Improving integration logic  

 Making the integration process entirely automatic 

Contribution to 4DIAC 

 Application in a new automation domain 

 Extendibility and integration with other systems 
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