
LEADING

INNOVATIONS

5th 4DIAC Users' Workshop

Dynamically loadable Function Block types
to reduce application development time

Matthias Plasch

ETFA 2014, Barcelona, 12 September 2014

© PROFACTOR GmbH

Contents

 Introduction and Motivation

 Problem description

 Target

 Solution approach

 Dynamic Type Library

 Creation

 Configuration

 Benefits of LUA usage

 Performance evaluation

 Related work

 Future work

 Summary

© PROFACTOR GmbH

Introduction and Motivation

 Requirements of flexible production systems

 Modular and distributed architecture

 Fast adaptation, scalability, extensibility

 Challenge: Integration of heterogeneous modules / components

 IEC 61499 provides an open basis for component interoperability

 Function Block (FB) development for component interaction

 Time consuming runtime compilation required in many cases

 Interpretation of FBs during runtime scarcely supported

 Target: Speed-up development, system integration and ramp-up

© PROFACTOR GmbH

Approach to reduce FB development time

 Goal 1: Automatic interpretation of FB type functionality

 Based on FB definition files

 Interpretation and execution of algorithms based on scripting
languages

 Fast reconfiguration of FB behaviour

 Goal 2: Dynamically configured FB type library

 Enabling lightweight runtime configurations

 Type library extension does not require runtime re-compilation

 4DIAC – Framework for Distributed Industrial Automation and Control

 4DIAC-IDE – Development Environment

 FORTE – 4DIAC Runtime Environment

© PROFACTOR GmbH

Creation of a Dynamic Type Library

 Definition files are queried on runtime
startup

 XML parser to extract information

 Interface (event and data ports)

 Type specific data

 Basic FB-Types

 Internal Variable definitions

 Execution Control Chart (ECC)

 Composite FB-Types

 Internal FB instances,
parameterization

 Internal connections

Load FB Type
(Interface,

FB Internal Data)

Dynamic FB Library

XML-
Parser

CFB-
Entries

BFB-
Entries

FBTFBTFBT

uses

Internal Variables

ECC Data

Internal FBs

Internal Connections

© PROFACTOR GmbH

Dynamic Configuration of Execution Control Charts (ECCs)

 Behaviour of a Basic FB is determined through its ECC

 States, including Actions

 Transitions between States

 Dynamically configured ECCs imply

 Interpretation of
guard conditions and algorithms

 Configurable execution based
on extracted ECC information

 Online interpretation of algorithms and conditions

 Integration of the scripting language LUA into the FORTE

 Requires Structured Text (ST) expressions
to be transformed into LUA code

INIT

1 DO_INIT

START

INIT_ALG INITO

OPERATION

REQ

1
ALG_A CNF_A

ALG_B CNF_B

Algorithm Output-EventEC-State

EC-TransitionEC-Initial-State

EC-Action

© PROFACTOR GmbH

Dynamic Configuration of Execution Control Charts (ECCs)

Creation of BFB-

Type Entry

Allocate Memory &
Set Interface Specification

Set Internal Variables

Set ECC Information

Set ECC States

Load LUA Scripts
for ECC Algorithms

Load LUA Scripts
for ECC Transitions

ST-
EXPR

ST-TO-LUA-
Exporter

LUA-
SCRIPT

Initialize / Compile
Condition / Algorithm

Function Pointer

Throw Exception &
Abort

OK ?
Y

N

 Compilation of scripts for each
transition condition and
algorithm expression

 Function pointers refer to calling
functions of compiled scripts

© PROFACTOR GmbH

Benefits of using LUA

 Fast integration through C-API (Application Programming Interface)

 Lightweight, causing low memory consumption

 LuaJIT – Just-In-Time interpreter to speed up execution

 LUA can be used to force flexible usage of logic FBs

≡

© PROFACTOR GmbH

Performance Evaluation

 Execution of LUA-based FBs is significantly slower

 LuaJIT increases performance

 Small differences in memory consumption (range of 1 MB)

 Size of FORTE executable is increased

 Factor 2.4 for LUA

 Factor 3.4 for LuaJIT

 Use of LUA-based FB types reasonable during development

 In debugging and test phase, no re-compilation of FORTE required

 FB type definitions can be exported in C++ code, after development

 Suitable for testing complex basic FBs, instead of bulky networks

© PROFACTOR GmbH

Related work

 Function Block Development KIT (FBDK)

 Compilation of single FB types possible

 Generated Java source and class files are linked accordingly

 No full re-compilation of the runtime environment necessary

 nxtSTUDIO by NXT-Control

 Intermediate code is generated for newly developed or changed FBs

 Runtime environment nxtRT61499F interprets the intermediate code
during runtime

 Comparison to our solution

 Dynamic type library builds entirely on FB definition files

 No pre-compilation of FB types necessary

 Runtime compilation after FB development, to speed up execution

© PROFACTOR GmbH

Future Work

 Development of an approach to dynamically register a functional module
within a distributed control architecture, based on IEC 61499

IEC61499 compliant
runtime environment

(FORTE)

Functional
ModuleTime

FORTE listens for incoming
registration connection

„Hello, I‘m new here“

„OK, please register“

ServerClient

Interface
FB

„I will use this FB
to interact with you“

© PROFACTOR GmbH

Summary

 Dynamic FB type library

 Constructed during runtime start-up

 Extraction of FB type data from definition files

 Dynamic configuration of Basic FB types

 LUA scripting language to interpret condition and algorithm
expressions

 State chart logic is configured dynamically

 Suitable for development and debugging to reduce time effort

 Future work item

 This work is supported by the European funded
research project SMARTLAM (www.smartlam.eu)

© PROFACTOR GmbH

Thanks for your attention!

Contact Speaker

Matthias Plasch

PROFACTOR GmbH

Im Stadtgut A2

4407 Steyr-Gleink, AUSTRIA

matthias.plasch@profactor.at

www.profactor.at

