5th 4ADIAC Users' Workshop

Dynamically loadable Function Block types
to reduce application development time

Matthias Plasch
ETFA 2014, Barcelona, 12 September 2014

LEADING
INNOVATIONS

WWW.PROFACTOR.AT

Contents

Y

N N N N

Introduction and Motivation
72 Problem description
72 Target

Solution approach

Dynamic Type Library

72 Creation

72 Configuration

72 Benefits of LUA usage

Performance evaluation
Related work

Future work

Summary

© PROFACTOR GmbH

Introduction and Motivation

7 Requirements of flexible production systems
72 Modular and distributed architecture
7 Fast adaptation, scalability, extensibility

7 Challenge: Integration of heterogeneous modules / components

Y

IEC 61499 provides an open basis for component interoperability

A

Function Block (FB) development for component interaction
72 Time consuming runtime compilation required in many cases
7 Interpretation of FBs during runtime scarcely supported

72 Target: Speed-up development, system integration and ramp-up

© PROFACTOR GmbH

Approach to reduce FB development time

7 Goal 1: Automatic interpretation of FB type functionality
7 Based on FB definition files

7 Interpretation and execution of algorithms based on scripting
languages

72 Fast reconfiguration of FB behaviour

72 Goal 2: Dynamically configured FB type library
72 Enabling lightweight runtime configurations
72 Type library extension does not require runtime re-compilation

7 ADIAC — Framework for Distributed Industrial Automation and Control
72 ADIAC-IDE — Development Environment
72 FORTE — 4DIAC Runtime Environment

© PROFACTOR GmbH

Creation of a Dynamic Type Library

7 Definition files are queried on runtime Dynamic FB Library
startup =

72 XML parser to extract information J/
7 Interface (event and data ports)

72 Type specific data Uses Load FB Type
----- (Interface,
FB Internal Data)

7 Basic FB-Types

7 Internal Variable definitions
72 Execution Control Chart (ECC)
BFB- CFB-
r——- Entries Entries -
2 :

Composite FB-Types

- o

_ Y Y
7 Internal FB instances, Internal Variables Internal FBs
parameterization ECC Data Internal Connections

7 Internal connections

© PROFACTOR GmbH

Dynamic Configuration of Execution Control Charts (ECCs)

7 Behaviour of a Basic FB is determined through its ECC
7 StateS, iﬂClUding Actions EC-State Algorithm Output-Event

72 Transitions between States \\ \\ /
DO_INIT INIT_ALG INITO

Y
EC-Action

7 Dynamically configured ECCs imply

7 Interpretation of _
guard conditions and algorithms

72 Configurable execution based
on extracted ECC information

ALG_A |CNF_A

ALG B |CNF B

EC-Initial-State EC-Transition

7 Online interpretation of algorithms and conditions
7 Integration of the scripting language LUA into the FORTE

72 Requires Structured Text (ST) expressions
to be transformed into LUA code

© PROFACTOR GmbH

Dynamic Configuration of Execution Control Charts (ECCs)

Type Entry transition condition and
algorithm expression

7 Function pointers refer to calling
functions of compiled scripts

(Creation ofBFB> 7 Compilation of scripts for each

Allocate Memory &
Set Interface Specification

Set Internal Variables

: AN
Set ECC Information ST- ST-TO-LUA- — \ LUA-
EXPR Exporter —— \SCRIPT
Set ECC States
Load LUA Scripts S v

for ECC Algorithms Initialize / Compile

Condition / Algorithm
Load LUA Scripts Y Function Pointer
for ECC Transitions $@ Throw Exception &

N Abort

© PROFACTOR GmbH

LUA can be used to force flexible usage of logic FBs

LuaJdIT — Just-In-Time interpreter to speed up execution

Fast integration through C-API (Application Programming Interface)

Benefits of using LUA
7
7 Lightweight, causing low memory consumption
7
7
IF_2
1} EVALUATE THEN
ELSE-
IF 2 E
TRUE [QI QO-| TRUE

#IN_1/2 >IN_2 | COND RET_CODE-| O
STRING#HelloWorld IN_1 RESULT-| FALSE

REAL#5.4 -\IN_Z)

© PROFACTOR GmbH

STRING2STRING 0 F LEN F INT TO REAL
(REQ CNF- REQ CNF- [REQ CNF-
STRING2STRING F_LEN F_INT_TO_REAL
j 1.0 0.0 0.0
Helloworldf IN ouT- IN ouT- FIN ouT-
L REAL2REAL F GT E_SWITCH
REQ CNF- —H-REQ CNF- CEr EOO
j REAL2REAL FGT EO1-
1.0 1.0 E_SWITCH
54tIN OUT: IN1 ouT- 0.1 E
)

IN2

J

\G

Performance Evaluation

7 Execution of LUA-based FBs is significantly slower
7 LualdIT increases performance

Y

Small differences in memory consumption (range of 1 MB)

Y

Size of FORTE executable is increased
7 Factor 2.4 for LUA
72 Factor 3.4 for LuaJIT

7 Use of LUA-based FB types reasonable during development
7 In debugging and test phase, no re-compilation of FORTE required
7 FB type definitions can be exported in C++ code, after development
72 Suitable for testing complex basic FBs, instead of bulky networks

© PROFACTOR GmbH

Related work

7 Function Block Development KIT (FBDK)
72 Compilation of single FB types possible
72 Generated Java source and class files are linked accordingly
72 No full re-compilation of the runtime environment necessary

72 nxtSTUDIO by NXT-Control
7 Intermediate code is generated for newly developed or changed FBs

7 Runtime environment nxtRT61499F interprets the intermediate code
during runtime

72 Comparison to our solution
72 Dynamic type library builds entirely on FB definition files
72 No pre-compilation of FB types necessary
7 Runtime compilation after FB development, to speed up execution

© PROFACTOR GmbH

Future Work

72 Development of an approach to dynamically register a functional module
within a distributed control architecture, based on IEC 61499

Client Server

4) FORTE listens for incoming
registration connection

,Hello, I'm new here“—p

€4—, 0K, please register”

IEC61499 compliant

Functional . .
Time Module :r:': runtime environment
(FORTE)
Interfacef >
4 FB F
| will use this FB
to interact with you“
\ J

\4

© PROFACTOR GmbH

Summary

72 Dynamic FB type library
72 Constructed during runtime start-up
72 Extraction of FB type data from definition files

7 Dynamic configuration of Basic FB types

72 LUA scripting language to interpret condition and algorithm
expressions

72 State chart logic is configured dynamically

N

Suitable for development and debugging to reduce time effort

N

Future work item

7 This work is supported by the European funded
research project SMARTLAM (www.smartlam.eu)

© PROFACTOR GmbH

© PROFACTOR GmbH

Thanks for your attention!

Contact Speaker

Matthias Plasch
PROFACTOR GmbH

Im Stadtgut A2

4407 Steyr-Gleink, AUSTRIA
matthias.plasch@profactor.at
www.profactor.at

