
LEADING

INNOVATIONS

5th 4DIAC Users' Workshop

Dynamically loadable Function Block types
to reduce application development time

Matthias Plasch

ETFA 2014, Barcelona, 12 September 2014

© PROFACTOR GmbH

Contents

 Introduction and Motivation

 Problem description

 Target

 Solution approach

 Dynamic Type Library

 Creation

 Configuration

 Benefits of LUA usage

 Performance evaluation

 Related work

 Future work

 Summary

© PROFACTOR GmbH

Introduction and Motivation

 Requirements of flexible production systems

 Modular and distributed architecture

 Fast adaptation, scalability, extensibility

 Challenge: Integration of heterogeneous modules / components

 IEC 61499 provides an open basis for component interoperability

 Function Block (FB) development for component interaction

 Time consuming runtime compilation required in many cases

 Interpretation of FBs during runtime scarcely supported

 Target: Speed-up development, system integration and ramp-up

© PROFACTOR GmbH

Approach to reduce FB development time

 Goal 1: Automatic interpretation of FB type functionality

 Based on FB definition files

 Interpretation and execution of algorithms based on scripting
languages

 Fast reconfiguration of FB behaviour

 Goal 2: Dynamically configured FB type library

 Enabling lightweight runtime configurations

 Type library extension does not require runtime re-compilation

 4DIAC – Framework for Distributed Industrial Automation and Control

 4DIAC-IDE – Development Environment

 FORTE – 4DIAC Runtime Environment

© PROFACTOR GmbH

Creation of a Dynamic Type Library

 Definition files are queried on runtime
startup

 XML parser to extract information

 Interface (event and data ports)

 Type specific data

 Basic FB-Types

 Internal Variable definitions

 Execution Control Chart (ECC)

 Composite FB-Types

 Internal FB instances,
parameterization

 Internal connections

Load FB Type
(Interface,

FB Internal Data)

Dynamic FB Library

XML-
Parser

CFB-
Entries

BFB-
Entries

FBTFBTFBT

uses

Internal Variables

ECC Data

Internal FBs

Internal Connections

© PROFACTOR GmbH

Dynamic Configuration of Execution Control Charts (ECCs)

 Behaviour of a Basic FB is determined through its ECC

 States, including Actions

 Transitions between States

 Dynamically configured ECCs imply

 Interpretation of
guard conditions and algorithms

 Configurable execution based
on extracted ECC information

 Online interpretation of algorithms and conditions

 Integration of the scripting language LUA into the FORTE

 Requires Structured Text (ST) expressions
to be transformed into LUA code

INIT

1 DO_INIT

START

INIT_ALG INITO

OPERATION

REQ

1
ALG_A CNF_A

ALG_B CNF_B

Algorithm Output-EventEC-State

EC-TransitionEC-Initial-State

EC-Action

© PROFACTOR GmbH

Dynamic Configuration of Execution Control Charts (ECCs)

Creation of BFB-

Type Entry

Allocate Memory &
Set Interface Specification

Set Internal Variables

Set ECC Information

Set ECC States

Load LUA Scripts
for ECC Algorithms

Load LUA Scripts
for ECC Transitions

ST-
EXPR

ST-TO-LUA-
Exporter

LUA-
SCRIPT

Initialize / Compile
Condition / Algorithm

Function Pointer

Throw Exception &
Abort

OK ?
Y

N

 Compilation of scripts for each
transition condition and
algorithm expression

 Function pointers refer to calling
functions of compiled scripts

© PROFACTOR GmbH

Benefits of using LUA

 Fast integration through C-API (Application Programming Interface)

 Lightweight, causing low memory consumption

 LuaJIT – Just-In-Time interpreter to speed up execution

 LUA can be used to force flexible usage of logic FBs

≡

© PROFACTOR GmbH

Performance Evaluation

 Execution of LUA-based FBs is significantly slower

 LuaJIT increases performance

 Small differences in memory consumption (range of 1 MB)

 Size of FORTE executable is increased

 Factor 2.4 for LUA

 Factor 3.4 for LuaJIT

 Use of LUA-based FB types reasonable during development

 In debugging and test phase, no re-compilation of FORTE required

 FB type definitions can be exported in C++ code, after development

 Suitable for testing complex basic FBs, instead of bulky networks

© PROFACTOR GmbH

Related work

 Function Block Development KIT (FBDK)

 Compilation of single FB types possible

 Generated Java source and class files are linked accordingly

 No full re-compilation of the runtime environment necessary

 nxtSTUDIO by NXT-Control

 Intermediate code is generated for newly developed or changed FBs

 Runtime environment nxtRT61499F interprets the intermediate code
during runtime

 Comparison to our solution

 Dynamic type library builds entirely on FB definition files

 No pre-compilation of FB types necessary

 Runtime compilation after FB development, to speed up execution

© PROFACTOR GmbH

Future Work

 Development of an approach to dynamically register a functional module
within a distributed control architecture, based on IEC 61499

IEC61499 compliant
runtime environment

(FORTE)

Functional
ModuleTime

FORTE listens for incoming
registration connection

„Hello, I‘m new here“

„OK, please register“

ServerClient

Interface
FB

„I will use this FB
to interact with you“

© PROFACTOR GmbH

Summary

 Dynamic FB type library

 Constructed during runtime start-up

 Extraction of FB type data from definition files

 Dynamic configuration of Basic FB types

 LUA scripting language to interpret condition and algorithm
expressions

 State chart logic is configured dynamically

 Suitable for development and debugging to reduce time effort

 Future work item

 This work is supported by the European funded
research project SMARTLAM (www.smartlam.eu)

© PROFACTOR GmbH

Thanks for your attention!

Contact Speaker

Matthias Plasch

PROFACTOR GmbH

Im Stadtgut A2

4407 Steyr-Gleink, AUSTRIA

matthias.plasch@profactor.at

www.profactor.at

