
An enhanced communication
scheme for 4DIAC

Georgios Sfiris, Researcher
Georgios Hassapis, Supervisor Professor

Laboratory of Computer System Architecture
Department of Electrical and Computer Engineering

Aristotle University of Thessaloniki

An enhanced communication scheme
for 4DIAC

In this presentation two subjects will be dealt:

• The implementation of the Modbus protocol
using IEC 61499 standard’s Communication
Function Blocks.

• An automated scheme for the insertion of
PUBLISH and SUBSCRIBE Function Blocks for
the FBDK – UDP/IP protocol.

IEC 61499 Communication Framework

Modbus protocol offers a Master/Slave
communication scheme giving the advantage
of deterministic operation and low bandwidth
usage.

But it is much more complex to implement than
other simpler communication protocols, such
as the UDP/IP protocol.

Modbus Protocol

Each Modbus Slave has a data table in its memory containing
data of four different data types.

Modbus
Slave

Discrete
Inputs

Coils Input
Registers

Holding
Registers

#1 0 1 25 15

#2 1 1 152 16

#3 1 1 56 17

#4 0 0

…

Modbus Protocol

Modbus
Master

Modbus
Slave #1

Modbus
Slave #2

Modbus
Slave #3

In each Modbus network only one Master can exist, but several
Slaves can be connected.

Discrete
Inputs

Coils Input
Registers

Holding
Registers

#1 0 1 25 15

#2 1 1 152 16

#3 1 1 56 17

#4 0 0

Discrete
Inputs

Coils Input
Registers

Holding
Registers

#1 1 12

#2 1 15

#3 0 256

#4 0

…

Discrete
Inputs

Coils Input
Registers

Holding
Registers

#1 0 10

#2 1 15

#3 255

#4 288

…

Modbus Protocol

Modbus
Master

Modbus
Slave #1

Modbus
Slave #2

Modbus
Slave #3

The Master will send requests to the Slaves …

Discrete
Inputs

Coils Input
Registers

Holding
Registers

#1 0 1 25 15

#2 1 1 152 16

#3 1 1 56 17

#4 0 0

Discrete
Inputs

Coils Input
Registers

Holding
Registers

#1 1 12

#2 1 15

#3 0 256

#4 0

…

Discrete
Inputs

Coils Input
Registers

Holding
Registers

#1 0 10

#2 1 15

#3 255

#4 288

…

Discrete
Inputs

Coils Input
Registers

Holding
Registers

#1 0 1 25 15

#2 1 1 152 16

#3 1 1 56 17

#4 0 0

Discrete
Inputs

Coils Input
Registers

Holding
Registers

#1 1 12

#2 1 15

#3 0 256

#4 0

…

Discrete
Inputs

Coils Input
Registers

Holding
Registers

#1 0 10

#2 1 15

#3 255

#4 288

…

Modbus Protocol

Modbus
Master

Modbus
Slave #1

Modbus
Slave #2

Modbus
Slave #3

The Master will send requests to the Slaves asking for some
particular data …

Discrete
Inputs

Coils Input
Registers

Holding
Registers

#1 0 1 25 15

#2 1 1 152 16

#3 1 1 56 17

#4 0 0

Discrete
Inputs

Coils Input
Registers

Holding
Registers

#1 1 12

#2 1 15

#3 0 256

#4 0

…

Discrete
Inputs

Coils Input
Registers

Holding
Registers

#1 0 10

#2 1 15

#3 255

#4 288

…

Modbus Protocol

Modbus
Master

Modbus
Slave #1

Modbus
Slave #2

Modbus
Slave #3

The Master will send requests to the Slaves asking for some
particular data and the Slaves will serve the request.

25

152

56

Discrete
Inputs

Coils Input
Registers

Holding
Registers

#1 0 1 25 15

#2 1 1 152 16

#3 1 1 56 17

#4 0 0

Discrete
Inputs

Coils Input
Registers

Holding
Registers

#1 1 12

#2 1 15

#3 0 256

#4 0

…

Discrete
Inputs

Coils Input
Registers

Holding
Registers

#1 0 10

#2 1 15

#3 255

#4 288

…

Modbus Protocol

Modbus
Master

Modbus
Slave #1

Modbus
Slave #2

Modbus
Slave #3

The Master will send requests to the Slaves asking for some
particular data and the Slaves will serve the request.

Discrete
Inputs

Coils Input
Registers

Holding
Registers

#1 0 1 25 15

#2 1 1 152 16

#3 1 1 56 17

#4 0 0

Discrete
Inputs

Coils Input
Registers

Holding
Registers

#1 1 12

#2 1 15

#3 0 256

#4 0

…

Discrete
Inputs

Coils Input
Registers

Holding
Registers

#1 0 10

#2 1 15

#3 255

#4 288

…

Modbus Protocol

Modbus
Master

Modbus
Slave #1

Modbus
Slave #2

Modbus
Slave #3

The Master will send requests to the Slaves asking for some
particular data and the Slaves will serve the request.

255

288

Discrete
Inputs

Coils Input
Registers

Holding
Registers

#1 0 1 25 15

#2 1 1 152 16

#3 1 1 56 17

#4 0 0

Discrete
Inputs

Coils Input
Registers

Holding
Registers

#1 1 12

#2 1 15

#3 0 256

#4 0

…

Discrete
Inputs

Coils Input
Registers

Holding
Registers

#1 0 10

#2 1 15

#3 255

#4 288

…

Modbus Protocol

Modbus
Master

Modbus
Slave #1

Modbus
Slave #2

Modbus
Slave #3

0

1

1

0

The Master will send requests to the Slaves asking for some
particular data and the Slaves will serve the request.

Discrete
Inputs

Coils Input
Registers

Holding
Registers

#1 0 1 25 15

#2 1 1 152 16

#3 1 1 56 17

#4 0 0

Discrete
Inputs

Coils Input
Registers

Holding
Registers

#1 1 0 12

#2 1 1 15

#3 0 1 256

#4 0 0

…

Discrete
Inputs

Coils Input
Registers

Holding
Registers

#1 0 10

#2 1 15

#3 255

#4 288

…

Modbus Protocol

Modbus
Master

Modbus
Slave #1

Modbus
Slave #2

Modbus
Slave #3

0

1

1

0

O. K.

The Master will send requests to the Slaves asking for some
particular data and the Slaves will serve the request.

Modbus Protocol

Modbus
Master

Modbus
Slave #1

Modbus
Slave #2

Modbus
Slave #3

Modbus Slaves can only send messages to the network if they
are asked by the Master.

Discrete
Inputs

Coils Input
Registers

Holding
Registers

#1 0 1 25 15

#2 1 1 152 16

#3 1 1 56 17

#4 0 0

Discrete
Inputs

Coils Input
Registers

Holding
Registers

#1 1 0 12

#2 1 1 15

#3 0 1 256

#4 0 0

…

Discrete
Inputs

Coils Input
Registers

Holding
Registers

#1 0 10

#2 1 15

#3 255

#4 288

…

Modbus Protocol

Modbus
Master

Modbus
Slave #1

Modbus
Slave #2

Modbus
Slave #3

Thus usually Modbus Masters are implemented as Clients
making requests to Modbus Slaves implemented as Servers.

Discrete
Inputs

Coils Input
Registers

Holding
Registers

#1 0 1 25 15

#2 1 1 152 16

#3 1 1 56 17

#4 0 0

Discrete
Inputs

Coils Input
Registers

Holding
Registers

#1 1 0 12

#2 1 1 15

#3 0 1 256

#4 0 0

…

Discrete
Inputs

Coils Input
Registers

Holding
Registers

#1 0 10

#2 1 15

#3 255

#4 288

…

Servers
Client

Modbus Protocol

Modbus
Master

Modbus
Slave #1

Modbus
Slave #2

Modbus
Slave #3

However the Modbus Master can only send a Read/Write
request for Holding Register data.

Discrete
Inputs

Coils Input
Registers

Holding
Registers

#1 0 1 25 15

#2 1 1 152 16

#3 1 1 56 25

#4 0 0 48

Discrete
Inputs

Coils Input
Registers

Holding
Registers

#1 1 0 12

#2 1 1 15

#3 0 1 256

#4 0 0

…

Discrete
Inputs

Coils Input
Registers

Holding
Registers

#1 0 10

#2 1 15

#3 255

#4 288

…

25

48 READ

WRITE

15

Modbus Protocol

Modbus
Master

Modbus
Slave #1

Modbus
Slave #2

Modbus
Slave #3

However the Modbus Master can only send a Read/Write
request for Holding Register data.

Discrete
Inputs

Coils Input
Registers

Holding
Registers

#1 0 1 25 15

#2 1 1 152 16

#3 1 1 56 25

#4 0 0 48

Discrete
Inputs

Coils Input
Registers

Holding
Registers

#1 1 0 12

#2 1 1 15

#3 0 1 256

#4 0 0

…

Discrete
Inputs

Coils Input
Registers

Holding
Registers

#1 0 10

#2 1 15

#3 255

#4 288

…

0

1 READ

WRITE

Modbus Protocol in 4DIAC

Trying to implement a Modbus Slave in IEC 61499 comes to the
obvious solution of a single SERVER Function Block.

Modbus Protocol in 4DIAC

But having a single SERVER FB means that all Modbus input and
output of the device is done by that single SERVER FB.

Modbus Protocol in 4DIAC

So we would like to add to that single SERVER FB all the inputs
and outputs of our application.

Modbus Protocol in 4DIAC

But then we would expect that device to receive only mixed
Read/Write requests. This limits the Modbus data type to
Holding Registers.

Modbus Protocol in 4DIAC

Moreover in such implementation the Modbus data table
would be implemented inside the IEC 61499 Application’s
Function Block network as a special Function Block.

Discrete
Inputs

Coils Input
Registers

Holding
Registers

#1 0 1 25 15

#2 1 1 152 16

#3 1 1 56 25

#4 0 0 48

Modbus Protocol in 4DIAC

Modbus messages would enter the Function Block network as
parameters in some string format.

Modbus Protocol in 4DIAC

And finally the Application would interpret the parameters and
connect the MODBUS_SERVER with the MODBUS_DATA_TABLE
using a complex Function Block network.

Modbus Protocol in 4DIAC

Not to mention that another complex Function Block network
would connect the MODBUS_DATA_TABLE back to the
MODBUS_SERVER to take care of the MODBUS_SERVER
responses.

Modbus Protocol in 4DIAC

All these add to the complexity of the implementation.

So trying to implement a Modbus Slave in IEC 61499 using a
single SERVER Function Block is very cumbersome and limiting.
Instead PUBLISH and SUBSCRIBE Function Blocks can be used.

Modbus Protocol in 4DIAC

Modbus Protocol in 4DIAC

In such case the Modbus Slave is implemented as a Service
inside the Device.

Modbus Protocol in 4DIAC

The Service will set a listening port for incoming Modbus
requests …

Modbus Protocol in 4DIAC

The Service will set a listening port for incoming Modbus
requests and allocate some memory for the Modbus data table.

Discrete
Inputs

Coils Input
Register
s

Holding
Register
s

#1 0 1 25 15

#2 1 1 152 16

#3 1 1 56 25

#4 0 0 48

Modbus Protocol in 4DIAC

PUBLISH Function Blocks will “send” requests to the Modbus
Slave Service to change some variables in the Modbus data
table.

Discrete
Inputs

Coils Input
Register
s

Holding
Register
s

#1 0 1 25 15

#2 1 1 152 16

#3 1 1 56 25

#4 0 0 48

Modbus Protocol in 4DIAC

SUBSCRIBE Function Blocks will “listen” to changes in the
Modbus data table and will be informed by the Modbus Slave
Service about such changes.

Discrete
Inputs

Coils Input
Register
s

Holding
Register
s

#1 0 1 25 15

#2 1 1 152 16

#3 1 1 56 25

#4 0 0 48

Modbus Protocol in 4DIAC

Many PUBLISH and SUBSCRIBE Function Blocks can be
associated to a single Modbus Slave Service and function
simultaneously.

Discrete
Inputs

Coils Input
Register
s

Holding
Register
s

#1 0 1 25 15

#2 1 1 152 16

#3 1 1 56 25

#4 0 0 48

Modbus Protocol in 4DIAC

On the other hand the Modbus Slave Service will serve
requests from the Modbus Master independently of the IEC
61499 Application.

Discrete
Inputs

Coils Input
Register
s

Holding
Register
s

#1 0 1 25 15

#2 1 1 152 16

#3 1 1 56 25

#4 0 0 48

Modbus Protocol in 4DIAC

The advantages of the PUBLISH/SUBSCRIBE scheme are:

• A much simpler implementation within the IEC 61499 Application.
• Support of all Modbus data types.
• Devices capable of serving both read and write Modbus requests.
• Ability to have many CFBs to interact with the Modbus Slave Service

from many points within a IEC 61499 Application.
• Separation of IEC 61499 Application’s and network’s access of the

Modbus data table.
• Elimination of IEC 61499 Application’s interfere with the Modbus

communication.

Modbus Protocol in 4DIAC

On the other hand an IEC 61499 Application
implementing a Modbus Master must be
aware of the Modbus Slaves’ responses either
because they contain data or to have
knowledge of the write request’s progress.

So CLIENT Communication Function Blocks
would fit perfect for the Modbus Master
implementation.

Modbus Protocol in 4DIAC

But implementing the Modbus Master with a single CLIENT FB
comes to the same deadlock as the implementation of the
Modbus Slave with a single SERVER FB.

Modbus Protocol in 4DIAC

Instead multiple CLIENT FBs interacting with a single Modbus
Master Service can be used.

Modbus Protocol in 4DIAC

So the Modbus Master is implemented as a Service inside the
Device.

Modbus Protocol in 4DIAC

The Service will open a port for sending Modbus requests …

Modbus Protocol in 4DIAC

The Service will open a port for sending Modbus requests and
create a queue to store requests registered by CLIENT Function
Blocks.

Request queue

#1

#2

#3

#4

Request queue

#1 CLIENT_0

#2

#3

#4

Modbus Protocol in 4DIAC

Each time a CLIENT Function Block receives a REQ event its
request is appended to the Request queue of the Modbus
Client Service.

Request queue

#1 CLIENT_0

#2 CLIENT_3

#3

#4

Modbus Protocol in 4DIAC

Each time a CLIENT Function Block receives a REQ event its
request is appended to the Request queue of the Modbus
Client Service.

Request queue

#1 CLIENT_0

#2 CLIENT_3

#3 CLIENT_2

#4

Modbus Protocol in 4DIAC

Each time a CLIENT Function Block receives a REQ event its
request is appended to the Request queue of the Modbus
Client Service.

Request queue

#1 CLIENT_0

#2 CLIENT_3

#3 CLIENT_2

#4 CLIENT_1

Modbus Protocol in 4DIAC

Each time a CLIENT Function Block receives a REQ event its
request is appended to the Request queue of the Modbus
Client Service.

Modbus Protocol in 4DIAC

The Modbus Master can send only one request at a time so it
picks the top of the Request queue and serves it.

Request queue

#1 CLIENT_0

#2 CLIENT_3

#3 CLIENT_2

#4 CLIENT_1

Request queue

#1 CLIENT_0

#2 CLIENT_3

#3 CLIENT_2

#4 CLIENT_1

Modbus Protocol in 4DIAC

The top of the Request queue is picked.

Request queue

#1 CLIENT_0

#2 CLIENT_3

#3 CLIENT_2

#4 CLIENT_1

Modbus Protocol in 4DIAC

The top of the Request queue is picked. The request is sent.

Request queue

#1 CLIENT_0

#2 CLIENT_3

#3 CLIENT_2

#4 CLIENT_1

Modbus Protocol in 4DIAC

The top of the Request queue is picked. The request is sent.
A response is received.

Request queue

#1 CLIENT_0

#2 CLIENT_3

#3 CLIENT_2

#4 CLIENT_1

Modbus Protocol in 4DIAC

The top of the Request queue is picked. The request is sent.
A response is received. The corresponding CLIENT FB is informed.

Modbus Protocol in 4DIAC

The top of the Request queue is picked. The request is sent.
A response is received. The corresponding CLIENT FB is informed.
The request is removed from the queue.

Request queue

#1 CLIENT_3

#2 CLIENT_2

#3 CLIENT_1

#4

Modbus Protocol in 4DIAC

The IEC 61499 Application must take care to avoid long delays or
the endless increase of the queue by using either a freewheel
cascading scheme …

Request queue

#1 CLIENT_3

#2 CLIENT_2

#3 CLIENT_1

#4

Modbus Protocol in 4DIAC

The IEC 61499 Application must take care to avoid long delays or
the endless increase of the queue by using either a freewheel
cascading scheme or the most common cyclic polling scheme.

Request queue

#1 CLIENT_3

#2 CLIENT_2

#3 CLIENT_1

#4

Modbus Protocol in 4DIAC

The advantages of this multiple CLIENT scheme are:

• A more flexible implementation within the IEC 61499

Application.
• Support of all Modbus data types.
• Devices capable of sending both read and write Modbus

requests.
• Ability to have many CFBs to send Modbus requests from

many places within a IEC 61499 Application.
• Time management of the Modbus Master from within the

IEC 61499 Application using a freewheel, cyclic polling or
other schedule scheme.

Modbus Protocol in 4DIAC

Modbus Protocol in 4DIAC

Modbus Protocol in 4DIAC

Discrete
Inputs

Coils Input
Registers

Holding
Registers

#1 0 1 25 15

#2 1 1 152 16

#3 1 1 56 25

#4 0 0 48

Modbus Protocol in 4DIAC

Discrete
Inputs

Coils Input
Registers

Holding
Registers

#1 0 1 25 15

#2 1 1 152 16

#3 1 1 56 25

#4 0 0 48

Modbus Protocol in 4DIAC

Discrete
Inputs

Coils Input
Registers

Holding
Registers

#1 0 1 25 15

#2 1 1 152 16

#3 1 1 56 25

#4 0 0 48

Modbus Protocol in 4DIAC

Discrete
Inputs

Coils Input
Registers

Holding
Registers

#1 0 1 25 15

#2 1 1 152 16

#3 1 1 56 25

#4 0 0 48

Modbus Protocol in 4DIAC

The application of the Modbus protocol with IEC
61499 Function Blocks in the proposed way:

• is straightforward.
• allows multiple interaction points within the IEC

61499 Application.
• allows full exploitation of the Modbus’s

Master/Slave scheme.
• hides the exact details of communication

protecting the inexperienced user.

Modbus Protocol in 4DIAC

The proposed method of implementation can be
used in other Master/Slave communication
protocols as well giving a universal solution to
their IEC 61499 or 4DIAC’s integration.

The increased complexity however calls for an
automation option in the usage of communication
protocols within the IEC 61499 Applications,
something rather suggested by the standard itself.

Automated Communication Scheme

Assume that we want two Function Blocks from different
devices to communicate with each other.

Automated Communication Scheme

Comm. protocol: FBDK – UDP/IP
Properties
 Multicast IP: 225.0.0.1
 Port: 499

The IEC 61499 Application programmer should be able to just
set some properties of the preferred communication protocol.

225.0.0.1:499
1

225.0.0.1:499
1

Automated Communication Scheme

Comm. protocol: FBDK – UDP/IP
Properties
 Multicast IP: 225.0.0.1
 Port: 499

The development environment should offer an option to add
and set the Communication Function Blocks automatically
utilizing the programmers options.

Automated Communication Scheme

To implement such feature for the FBDK – UDP/IP
protocol we would have to automatically add a
pair of PUBLISH/SUBSCRIBE FBs for every device
interconnection.

Automated Communication Scheme

Automated Communication Scheme

For each incoming data we trace back the
related outcoming event …

Automated Communication Scheme

PROCESS_1.EO

For each incoming data we trace back the
related outcoming event and append the
outcoming data to that event’s list.

Automated Communication Scheme

PROCESS_1.EO

ADD.OUT

For each incoming data we trace back the
related outcoming event and append the
outcoming data to that event’s list.

Automated Communication Scheme

PROCESS_1.EO

ADD.OUT

For each incoming data we trace back the
related outcoming event and append the
outcoming data to that event’s list.

Automated Communication Scheme

PROCESS_1.EO

ADD.OUT

SUB.OUT

For each incoming data we trace back the
related outcoming event and append the
outcoming data to that event’s list.

Automated Communication Scheme

The event list corresponds to a point of device
interconnection in the Function Block
network.

PROCESS_1.EO

ADD.OUT

SUB.OUT

Automated Communication Scheme

We use this list to add a PUBLISH/SUBSCRIBE
pair.

PROCESS_1.EO

ADD.OUT

SUB.OUT

Automated Communication Scheme

PROCESS_1.EO

ADD.OUT

SUB.OUT

We use this list to add a PUBLISH/SUBSCRIBE
pair.

Automated Communication Scheme

PROCESS_1.EO

ADD.OUT

SUB.OUT

We use this list to add a PUBLISH/SUBSCRIBE
pair.

Automated Communication Scheme

PROCESS_1.EO

ADD.OUT

SUB.OUT

Thus a single PUBLISH/SUBSCRIBE pair handles
all transferred data related to the same event.

Automated Communication Scheme

Overcoming some peculiarities the insertion of
PUBLISH/SUBSCRIBE FBs can be automated for
the FBDK – UDP/IP protocol in a way that:

• allows all possible Function Block configurations
• guarantees data is received before related events
• merges all data transactions related to a single

event to a single UDP transmission
• exploits the UDP advantage of having a single

PUBLISH and multiple SUBSCRIBE FBs

Automated Communication Scheme

However it is impossible for an IEC 61499
Application to exploit the multiple PUBLISH –
single SUBSCRIBE option of the UDP protocol
in an automated manner.

Automated Communication Scheme

This configuration is legitimate according to IEC 61499 standard
and allows a single SUBSCRIBE FB to receive data from two
different PUBLISH FBs.

Automated Communication Scheme

However to allow such configuration to result automatically the
original design wouldn’t be a legitimate IEC 61499 configuration.

Automated Communication Scheme

However to allow such configuration to result automatically the
original design wouldn’t be a legitimate IEC 61499 configuration.

Automated Communication Scheme

4DIAC’s Integrated Development Environment
gives a convenient way to support the
proposed automated scheme.

4DIAC IDE provides two views of Function Block
networks, one of the Application’s network
and one of each Device’s network.

Automated Communication Scheme

Automated Communication Scheme

Another view shows our system of devices. Here the user
should be able to add a network segment and the properties of
his preferred communication protocol.

Automated Communication Scheme

Another view shows our system of devices. Here the user
should be able to add a network segment and the properties of
his preferred communication protocol. e.g. FBDK – UDP/IP.

Comm. protocol: FBDK – UDP/IP
Properties
 Multicast IP: 225.0.0.1
 Port: 499-1000

Automated Communication Scheme

Another view shows our system of devices. Here the user
should be able to add a network segment and the properties of
his preferred communication protocol. e.g. FBDK – UDP/IP.
The CFBs would be added automatically to each device.

Comm. protocol: FBDK – UDP/IP
Properties
 Multicast IP: 225.0.0.1
 Port: 499-1000

Automated Communication Scheme

Automated Communication Scheme

Automated Communication Scheme

The proposed automated scheme for the FBDK –
UDP/IP protocol is fairly simple and poses few
limitations.

However this shouldn’t be expected of other
protocols that have a more complicated
implementation.

In particular an attempt to create such a scheme for
the Modbus protocol would have to resolve the
issue of having a single Master device to handle
all communication between Slave devices.

Conclusions

The resolution of the implementation of the
Modbus protocol and the automated FBDK –
UDP/IP scheme comes to the conclusion that
the IEC 61499 standard requires a new
perspective to be acquired.

Then more sophisticated solutions can arise to
deal with the IEC 61499 implementation’s
particular problems.

Conclusions

4DIAC project on the other hand introduces a
very efficient model for implementing,
applying and using the IEC 61499 standard.

Getting improved with each new feature it has
the potential of becoming a powerful, easy to
use tool for microcontroller programming.

