

Avoiding overwhelming external systems by events coming from IEC 61499 control applications

Petr Kadera

Email: petr.kadera@ciirc.cvut.cz

Czech Institute Informatics, Robotics, and Cybernetics

Agenda

- SmartEST Lab at AIT
- Why IEC 61499?
- Experienced Problems
- Provided Solution
- How to face complex problems

Use Case - SmartEST lab at AIT

- SmartEST lab
 - Laboratory forComponent Tests
 - Research, Design and Validation
 Environment

Hardware and Software Components

Why IEC 61499?

- Engineering Process
 - Applications and subapplications
 - Resources
 - Devices
- Generic Interfaces
 - Adapters
 - Communication
 - Process

6th 4DIAC Users' Workshop, Luxembourg, 09/08/2015

System Layers

- SCADA Layer
 - Superior control functions
 - Alterations straightforward
- Control Layer
 - Basic control functionality
 - Software alterations possible, but not necessary
- Hardware Layer
 - Proprietary hardware
 - No access to software

Identified Problem

• IEC 61499 – SCADA BR Connection

- IEC 61499 sends data
- SCADA BR receives data
- If (sending frequency > receiving frequency){
 - Data Type Mismatch Error;
 - }
- Explanation
 - SCADA BR input buffer is filled with new data before processed the previous ones

Solution

- What is the necessary Delta T?
 - Prerequisites
 - High-precise scheduler
 - New function blocks: E_AGGR, E_BUFFER

Event Aggregator

Event Buffer

Bool

String

Long Real – Burst of 4 Events

How to face a complex scenario?

- Be aware how the response time depends on utilization
- Identify the possible bottlenecks
- Manage the flow of events as close to their sources as possible

Simple Use Case

- Only one type of customers
- Only one resource
- Equivalent with the SmartEST Use Case
- Possible to solve locally as proposed above

Complex Use Case

Loading Matrix and Convex Hull

Resource	R1	R2	R3	R4	R5
Customer 1 [s]	R1 _{c1}	R2 _{c1}	R3 _{c1}	R4 _{c1}	R5 _{c1}
Customer 2 [s]	R1 _{c2}	R2 _{c2}	R3 _{c2}	R4 _{c2}	R5 _{c2}

- Possible bottlenecks lie on the Convex Hull (R1, R2, R3)
- Masked-Off (R4) and Dominated (R5) resource cannot become a bottleneck

- Be aware of the model of computation when interacting with external systems
- Identify non-functional characteristics of these systems
- Decide whether your problem can be solved locally or you need a complex management of the arriving tasks

Thank you.

