
Background
Well-Formed Execution Control Charts

Coq Formalization
Conclusion / Future Work

A Formal Perspective on IEC 61499 Execution
Control Chart Semantics

Per Lindgren1 Marcus Lindner1 David Pereira2 Luís
Miguel Pinho2

1Luleå University of Technology
Email:{per.lindgren, marcus.lindner}@ltu.se

2CISTER / INESC TEC, ISEP
Email: {dmrpe, lmp}@isep.ipp.pt

Presentation at ETFA 4DIAC workshop September 9th 2015

Per Lindgren, Marcus Lindner, David Pereira, Luís Miguel Pinho A Formal Perspective on IEC 61499 Execution Control Chart Semantics

Background
Well-Formed Execution Control Charts

Coq Formalization
Conclusion / Future Work

IEC 61499
Formal methods

Table of Contents
Formalized

1 Background
IEC 61499
Formal methods

2 Well-Formed Execution Control Charts
Notation
ECC Execution Semantics
ECC liveness conditions

3 Coq Formalization
Coq
Definitions
Extraction
Integration

4 Conclusion / Future Work
Conclusion
Future Work

Per Lindgren, Marcus Lindner, David Pereira, Luís Miguel Pinho A Formal Perspective on IEC 61499 Execution Control Chart Semantics

Background
Well-Formed Execution Control Charts

Coq Formalization
Conclusion / Future Work

IEC 61499
Formal methods

IEC 61499 Models
Formalized

What is IEC 61499?
A model for loosely coupled distributed systems.
Component Based (Function Blocks)
Asynchronous Events with Event/Data association.
Function Block networks mapped to resources.
Resources mapped to devices.

International Standard IEC 61499: Function Blocks - Part 1,
Architecture, Geneva, Switzerland: Int. Electrotech. Commission,
2012.

Per Lindgren, Marcus Lindner, David Pereira, Luís Miguel Pinho A Formal Perspective on IEC 61499 Execution Control Chart Semantics

Background
Well-Formed Execution Control Charts

Coq Formalization
Conclusion / Future Work

IEC 61499
Formal methods

Does your model implement the intended behavior?
Formalized

Two sides of the problem:
1 Model-level verification

Well-formedness (soundness)
Intended behavior

2 Tool-chain verification
Analysis, e.g. well-formedness check
Compilation & Deployment
Run-time systems & Networking

Verification needs a formal underpinning!

Per Lindgren, Marcus Lindner, David Pereira, Luís Miguel Pinho A Formal Perspective on IEC 61499 Execution Control Chart Semantics

Background
Well-Formed Execution Control Charts

Coq Formalization
Conclusion / Future Work

IEC 61499
Formal methods

Contributions
Formalized

Our contributions in short:
Semantics of IEC 61499 (sub-set) formalized in Coq
Well-formedness criterion for scheduling progression
Graph-based methods for static (compile-time) analysis
Methods implemented in Coq (not yet proven)
A prototype implementation based on extracted code

Per Lindgren, Marcus Lindner, David Pereira, Luís Miguel Pinho A Formal Perspective on IEC 61499 Execution Control Chart Semantics

Background
Well-Formed Execution Control Charts

Coq Formalization
Conclusion / Future Work

IEC 61499
Formal methods

Does your model implement the intended behavior?
Formalized

Related to the original problem:
1 Model-level verification

Well-formedness (w.r.t scheduling progression)
Intended behavior

2 Tool-chain verification
Analysis (w.r.t scheduling progression)
Compilation & Deployment
Run-time systems & Networking

We provide a formal underpinning for verification

Per Lindgren, Marcus Lindner, David Pereira, Luís Miguel Pinho A Formal Perspective on IEC 61499 Execution Control Chart Semantics

Background
Well-Formed Execution Control Charts

Coq Formalization
Conclusion / Future Work

IEC 61499
Formal methods

Design Elements, Function Block Interface
Formalized

Function Block Interface:
Events Input and output events,

Variables Input, output, and local variables, and
With Association between events and data.

Per Lindgren, Marcus Lindner, David Pereira, Luís Miguel Pinho A Formal Perspective on IEC 61499 Execution Control Chart Semantics

Background
Well-Formed Execution Control Charts

Coq Formalization
Conclusion / Future Work

IEC 61499
Formal methods

Design Elements, Function Block Type
Formalized

Function Block Types:
BFB Basic Function Blocks

used to specify general behavior,
SIFB Service Interface Function Blocks

used to interface the environment of a FB network,
CFB Composite Function Blocks

composition of BFBs/SIFBs and (inner) CFBs
mapped as a single element for deployment, and

SUB Sub-application
composition of BFBs/SIFBs/CFBs and (inner) SUBs
each inner element mapped separately.

Per Lindgren, Marcus Lindner, David Pereira, Luís Miguel Pinho A Formal Perspective on IEC 61499 Execution Control Chart Semantics

Background
Well-Formed Execution Control Charts

Coq Formalization
Conclusion / Future Work

IEC 61499
Formal methods

Design Elements, Basic Function Block
Formalized

Execution Control Chart (ECC) for Basic Function Block
Used to specify stateful behaviour,
Each state may be associated to a sequence of actions.
An action is defined by:

An (optional) algorithm
An (optional) output event

Per Lindgren, Marcus Lindner, David Pereira, Luís Miguel Pinho A Formal Perspective on IEC 61499 Execution Control Chart Semantics

Background
Well-Formed Execution Control Charts

Coq Formalization
Conclusion / Future Work

IEC 61499
Formal methods

Formalization
Formalized

The standard gives an informal specification of the IEC 61499
semantics. In literature we find numerous approaches to
formalization, including:

V. Vyatkin, Execution Semantic of Function Blocks based on
the Model of Net Condition/Event System, in Industrial
Informatics, 2006 IEEE International Conference on, Aug
2006)
V. Dubinin and V. Vyatkin, On Definition of a Formal Model
for IEC 61499 Function Blocks, EURASIP J. Embedded Syst.,
vol. Apr. 2008.
G. Cengic and K. Akesson, On Formal Analysis of IEC 61499
Applications, Part A: Modeling, IEEE Transactions on
Industrial Informatics, vol. 6, no. 2, 2010.

Per Lindgren, Marcus Lindner, David Pereira, Luís Miguel Pinho A Formal Perspective on IEC 61499 Execution Control Chart Semantics

Background
Well-Formed Execution Control Charts

Coq Formalization
Conclusion / Future Work

IEC 61499
Formal methods

Formal methods
Formalized

Different methods to verification:
Model checking

Define (some) property of the model
(+) Automatic checking
(-) May lead to state explosion
(-) May need to re-check whole model, even on subtle change

Deductive reasoning
Define (some) property of the model &
prove obligation(s)/goal(s)
(-) Manual or Semi-automatic
(+) Once proven, holds forever!
(+) Re-use of lemmas
(+) Tools may allow for extraction of certified code

Per Lindgren, Marcus Lindner, David Pereira, Luís Miguel Pinho A Formal Perspective on IEC 61499 Execution Control Chart Semantics

Background
Well-Formed Execution Control Charts

Coq Formalization
Conclusion / Future Work

IEC 61499
Formal methods

Tools for Deductive reasoning
Formalized

Coq (INRIA) is a theorem-based proof assistant:
Definitions are given in a typed λ-calculus that features:

polymorphism,
dependent types and
very expressive (co-)inductive types

Proofs are done semi-automatic (through applying tactics)
Proofs are automatically checked

why3 (INRIA) is an extension to Hoare logic:
derives proof obligations from pre- and post-conditions
interfaces to (1st order logic) automatic provers, e.g.
Alt-Ergo, CVC3/CVC4, Spass, Z3, etc.
can also export definitions and goals to Coq
(in case automatic methods does not succeed)

Per Lindgren, Marcus Lindner, David Pereira, Luís Miguel Pinho A Formal Perspective on IEC 61499 Execution Control Chart Semantics

Background
Well-Formed Execution Control Charts

Coq Formalization
Conclusion / Future Work

Notation
ECC Execution Semantics
ECC liveness conditions

Table of Contents
Formalized

1 Background
IEC 61499
Formal methods

2 Well-Formed Execution Control Charts
Notation
ECC Execution Semantics
ECC liveness conditions

3 Coq Formalization
Coq
Definitions
Extraction
Integration

4 Conclusion / Future Work
Conclusion
Future Work

Per Lindgren, Marcus Lindner, David Pereira, Luís Miguel Pinho A Formal Perspective on IEC 61499 Execution Control Chart Semantics

Background
Well-Formed Execution Control Charts

Coq Formalization
Conclusion / Future Work

Notation
ECC Execution Semantics
ECC liveness conditions

Execution Control Chart
Formalized

The ECC specification is defined as a graph:

ECC , 〈Q,T 〉,

where Q is a finite set of ECC states q ∈ Q, and T is the finite set
of arcs or transitions t ∈ T
A transition t ∈ T is defined as the triple

t = 〈qs , c, qd〉,

where qs and qd , the source/destination state, and c a Boolean
guard condition encoded via the functional signature,

c : ei × Di × Do × Dl → Bool ,

where ei ∈ Ei
Per Lindgren, Marcus Lindner, David Pereira, Luís Miguel Pinho A Formal Perspective on IEC 61499 Execution Control Chart Semantics

Background
Well-Formed Execution Control Charts

Coq Formalization
Conclusion / Future Work

Notation
ECC Execution Semantics
ECC liveness conditions

Execution Control Chart
Formalized

BFB-states s ∈ S are quadruples of the form 〈di , do, dl , q〉.
The initial state in more detail,

S0 , 〈d0i , d0o , d0l , q0〉,

where d0i ∈ Di , d0o ∈ Do, and d0l ∈ Dl are input, output, and local
data variables, respectively, and q0 defines the initial ECC state

Per Lindgren, Marcus Lindner, David Pereira, Luís Miguel Pinho A Formal Perspective on IEC 61499 Execution Control Chart Semantics

Background
Well-Formed Execution Control Charts

Coq Formalization
Conclusion / Future Work

Notation
ECC Execution Semantics
ECC liveness conditions

ECC Execution Semantics
Formalized

The standard defines the
"ECC operation state machine":

s0 Idle (initial) state,
s1 evaluate transisitons,
s2 execute actions,
t1 on event sample data,
t3 on guard expression true

cross transition,
t4 on all actions executed, and
t2 on all guard expressions false

��

��

�� ��

��

�� ��

Figure: ECCex state
machine behavior

Per Lindgren, Marcus Lindner, David Pereira, Luís Miguel Pinho A Formal Perspective on IEC 61499 Execution Control Chart Semantics

Background
Well-Formed Execution Control Charts

Coq Formalization
Conclusion / Future Work

Notation
ECC Execution Semantics
ECC liveness conditions

ECC Execution Semantics
Formalized

Quoting the standard:
1 . . . the resource shall ensure that no more

than one input event occurs at any given
instant in time . . . ;

2 . . . Algorithm execution in a basic function
block shall consist of the execution of a
finite sequence of operations . . . ;

3 . . . If state s1 was entered via t1, only
transition conditions associated with the
current input event, or transition conditions
with no event associations, shall be
evaluated. If state s1 was entered via t4,
only transition conditions with no event
associations shall be evaluated

��

��

�� ��

��

�� ��

Figure: ECCex state
machine behavior

Per Lindgren, Marcus Lindner, David Pereira, Luís Miguel Pinho A Formal Perspective on IEC 61499 Execution Control Chart Semantics

Background
Well-Formed Execution Control Charts

Coq Formalization
Conclusion / Future Work

Notation
ECC Execution Semantics
ECC liveness conditions

ECC liveness conditions
Formalized

Liveness is a common property to all well-formed models, and
specifies that at some point progression is ensured

In our case we define liveness by scheduling progression

We discriminate between:
well-formed models that ensures scheduling progression
ill-formed models that do not ensure scheduling progression

Key observation:

Only on transition t1 (from s0) new events are received

Per Lindgren, Marcus Lindner, David Pereira, Luís Miguel Pinho A Formal Perspective on IEC 61499 Execution Control Chart Semantics

Background
Well-Formed Execution Control Charts

Coq Formalization
Conclusion / Future Work

Notation
ECC Execution Semantics
ECC liveness conditions

How to ensure progression?
Formalized

ECCex must (eventually) reach state s0 to accept a new event:

On ECCex invocation s0 t1→ s1 is taken.
The transition conditions s1 of ECC state qn lead either to:

transition s1 t2→ s0 and consequent liveness, or
transition s1 t3→ s2 and action execution
statement 2 (finite sequence of operations), ensures
termination of s2, thus:
checking that s1 t2→ s0 is eventually taken is a
sufficient and necessary liveness criterion, seen as a function:

∀qn, e,ECCex (ECC , qn, e) ?→ s0,

where ECC is the ECC graph, qn any state and e any event

Per Lindgren, Marcus Lindner, David Pereira, Luís Miguel Pinho A Formal Perspective on IEC 61499 Execution Control Chart Semantics

Background
Well-Formed Execution Control Charts

Coq Formalization
Conclusion / Future Work

Notation
ECC Execution Semantics
ECC liveness conditions

Necessary and Sufficient Liveness Condition
Formalized

Theorem (Necessary and Sufficient Liveness Condition)
If each edge in the ECC is crossed a bound number of times,
then s1 t2→ s0 will eventually be taken.

Ensuring this is en general hard! It involves proving termination
condition t2 under arbitrary algorithms (and their side effects to
local variables dl and output variables do)

Per Lindgren, Marcus Lindner, David Pereira, Luís Miguel Pinho A Formal Perspective on IEC 61499 Execution Control Chart Semantics

Background
Well-Formed Execution Control Charts

Coq Formalization
Conclusion / Future Work

Notation
ECC Execution Semantics
ECC liveness conditions

Sufficient Liveness Condition
Formalized

Theorem (Sufficient Liveness Condition)
If each edge in the ECC is crossed at most one time,
then s1 t2→ s0 will eventually be taken.

Limits expressivity, (we do not allow arbitrary loops in the ECC)
However:
The IEC 61499 standard stipulates, statement 3:
. . .) If state s1 was entered via t1, only transition conditions
associated with the current input event, or transition conditions
with no event associations, shall be evaluated. If state s1 was
entered via t4, only transition conditions with no event
associations shall be evaluated (. . .).

Per Lindgren, Marcus Lindner, David Pereira, Luís Miguel Pinho A Formal Perspective on IEC 61499 Execution Control Chart Semantics

Background
Well-Formed Execution Control Charts

Coq Formalization
Conclusion / Future Work

Notation
ECC Execution Semantics
ECC liveness conditions

Sufficient Liveness Condition
Formalized

We can now formulate a sufficient (safe) condition:
Let ev(t) : T → Bool be a mapping from a transition t to
true if the corresponding guard condition from the respective
ECC holds an event dependency
Let the function SCC(ECC) result in the set of strongly
connected components (sub-graphs) of the ECC
The following generalization is possible:

∀scc ∈ SCC(ECC),∃t ∈ scc, ev(t) = true,

i.e., each cyclic path must have at least one edge for which the
guard involves an event (i.e., ev(t) holds)

Per Lindgren, Marcus Lindner, David Pereira, Luís Miguel Pinho A Formal Perspective on IEC 61499 Execution Control Chart Semantics

Background
Well-Formed Execution Control Charts

Coq Formalization
Conclusion / Future Work

Notation
ECC Execution Semantics
ECC liveness conditions

Example: Well-formed ECC (1/2)
Formalized

Well-formed ECC (ECCwf):
Green arrow indicate a transition t, where ev(t) = true.

�

�

������

�

������

�

�

������ ������ �

������

Figure: ECCwf .
Per Lindgren, Marcus Lindner, David Pereira, Luís Miguel Pinho A Formal Perspective on IEC 61499 Execution Control Chart Semantics

Background
Well-Formed Execution Control Charts

Coq Formalization
Conclusion / Future Work

Notation
ECC Execution Semantics
ECC liveness conditions

Example: Well-formed ECC (2/2)
Formalized

Well-formed ECC (ECCwf):
Green arrow indicate a transition t, where ev(t) = true.

�

�

������

�

������

�

�

������ ������ �

������

Figure: ECCwf .

�

�

�

�

(a)

�

�

�
�

(b)

�

�

�

(c)

Figure: Sub-graph paths of ECCwf

Per Lindgren, Marcus Lindner, David Pereira, Luís Miguel Pinho A Formal Perspective on IEC 61499 Execution Control Chart Semantics

Background
Well-Formed Execution Control Charts

Coq Formalization
Conclusion / Future Work

Notation
ECC Execution Semantics
ECC liveness conditions

Example: Ill-formed ECC
Formalized

Ill-formed ECC (ECCill):
Red cycles indicate an ill-formed transition chain.

�

�

������

�

������

�

�

������ �

������

Figure: ECCill .

�

�

�

(a)

�

�

�

(b)

�

�

�

(c)

Figure: Sub-graph paths of ECCill

Per Lindgren, Marcus Lindner, David Pereira, Luís Miguel Pinho A Formal Perspective on IEC 61499 Execution Control Chart Semantics

Background
Well-Formed Execution Control Charts

Coq Formalization
Conclusion / Future Work

Notation
ECC Execution Semantics
ECC liveness conditions

ECC scheduling progression, alternative formulation
Formalized

From graph theory, is known that for any directed graph, the
set of maximal SCC can be derived in linear time.
A maximal SCC may have inner SCCs, thus we need to
enumerate and check vi

?→ vj and vj
?→ vi , (vi , vj ∈ scc).

However (related) the enumeration of minimal SCCs, is
known to be NP complete.
We can turn the problem into a pre-processing alternate by
applying ev(t) to the ECC prior to deriving the corresponding
SCCs. Let us define, as follows:

ECCpre = ECC \ {t ∈ ECC | ev(t) = true}
Well-formedness can now be formulated as the following set
emptyness check:

SCC(ECCpre) = {∅}
Per Lindgren, Marcus Lindner, David Pereira, Luís Miguel Pinho A Formal Perspective on IEC 61499 Execution Control Chart Semantics

Background
Well-Formed Execution Control Charts

Coq Formalization
Conclusion / Future Work

Notation
ECC Execution Semantics
ECC liveness conditions

Example: Pre-processing of well-formed ECC
Formalized

The example SCC(ECCpre
wf) = {∅}, i.e., ECCpre has no strongly

connected components (cycles).

�

�

������

�

������

�

�

������ ������ �

������

(a) ECCwf

� �

�

�

�

�

(b) ECCpre
wf (c)

SCC(ECCpre
wf) = ∅

Per Lindgren, Marcus Lindner, David Pereira, Luís Miguel Pinho A Formal Perspective on IEC 61499 Execution Control Chart Semantics

Background
Well-Formed Execution Control Charts

Coq Formalization
Conclusion / Future Work

Notation
ECC Execution Semantics
ECC liveness conditions

Example: Pre-processing of ill-formed ECC
Formalized

The example SCC(ECCpre
ill) 6= {∅}, i.e., ECC ill has a strongly

connected component (cycle).

�

�

������

�

������

�

�

������ �

������

(d) ECCill

� �

�

�

�

�

(e) ECCpre
ill

�

�

�

(f)
SCC(ECCpre

ill)

Per Lindgren, Marcus Lindner, David Pereira, Luís Miguel Pinho A Formal Perspective on IEC 61499 Execution Control Chart Semantics

Background
Well-Formed Execution Control Charts

Coq Formalization
Conclusion / Future Work

Coq
Definitions
Extraction
Integration

Table of Contents
Formalized

1 Background
IEC 61499
Formal methods

2 Well-Formed Execution Control Charts
Notation
ECC Execution Semantics
ECC liveness conditions

3 Coq Formalization
Coq
Definitions
Extraction
Integration

4 Conclusion / Future Work
Conclusion
Future Work

Per Lindgren, Marcus Lindner, David Pereira, Luís Miguel Pinho A Formal Perspective on IEC 61499 Execution Control Chart Semantics

Background
Well-Formed Execution Control Charts

Coq Formalization
Conclusion / Future Work

Coq
Definitions
Extraction
Integration

Coq Formalization
Formalized

Formalized

Computational definitions can be proven and extracted
to certified functional code
Realistic sized programs: CompCert C
However it is not easy (CompCert C > 10 years)
Our work, just a proof of concept

Per Lindgren, Marcus Lindner, David Pereira, Luís Miguel Pinho A Formal Perspective on IEC 61499 Execution Control Chart Semantics

Background
Well-Formed Execution Control Charts

Coq Formalization
Conclusion / Future Work

Coq
Definitions
Extraction
Integration

Coq Definitions : guard
Formalized

The Basic Function Block (BFB) notations can be captured by
record types and plain definitions in Coq.

As an example, the definition of the transition guard expression.
1 Definition nodeId_t := nat.
2 Definition eventId_t := nat.
3
4 Record guard_t := mkGuard {
5 onEvent : option eventId_t;
6 onExp : bool
7 }.

Listing 1: Coq definitions (excerpt).

This is a simplification, considering boolean guard expression:
onExp : d_i → d_l → d_o → bool

Per Lindgren, Marcus Lindner, David Pereira, Luís Miguel Pinho A Formal Perspective on IEC 61499 Execution Control Chart Semantics

Background
Well-Formed Execution Control Charts

Coq Formalization
Conclusion / Future Work

Coq
Definitions
Extraction
Integration

Coq Definitions : clear
Formalized

The computational evaluation function clear takes an event eid
and a guard expression guard and evaluates to (true|false).
1 Definition guard_target_t := prod guard_t nodeId_t.
2 Definition edge_t := prod nodeId_t guard_target_t.
3 Definition node_t := list action_t.
4 Definition nodes_t := list (prod nodeId_t node_t).
5 Definition edges_t := list edge_t.
6
7 (* Checks if guard expression is true *)
8 Definition clear (eid:eventId_t) (guard:guard_t) :=
9 let cEvent :=

10 match onEvent guard with
11 | None ⇒ true
12 | Some eid’ ⇒ beq_nat eid eid’ (* beq_nat is equality on nat *)
13 end in
14 cEvent && (onExp guard).

Listing 2: Coq definitions (excerpt).
Per Lindgren, Marcus Lindner, David Pereira, Luís Miguel Pinho A Formal Perspective on IEC 61499 Execution Control Chart Semantics

Background
Well-Formed Execution Control Charts

Coq Formalization
Conclusion / Future Work

Coq
Definitions
Extraction
Integration

Coq Definitions : well
Formalized

And the complete well-formedness check...
1 Definition well (edges:edges_t) (n:nat) :=
2 (* remove edges with event conditions *)
3 let pre_edges := filter no_edge edges in
4
5 (* get the set of edge sources (nodes) *)
6 let (pre_ids,_) := split pre_edges in
7
8 (* compute cycles, None is no cycle *)
9 let pre_cycle :=

10 map (ecc_cyclic pre_edges n nil) pre_ids in
11
12 (* check so all sources are free of cycles *)
13 forallb (isNone (list nat)) pre_cycle.

Listing 3: Well formedness check

Per Lindgren, Marcus Lindner, David Pereira, Luís Miguel Pinho A Formal Perspective on IEC 61499 Execution Control Chart Semantics

Background
Well-Formed Execution Control Charts

Coq Formalization
Conclusion / Future Work

Coq
Definitions
Extraction
Integration

Extraction
Formalized

The process of extracting executable code from Coq
definitions consists in discarding all the logical contents and
translating the computational definitions into the language of
OCaml.
In order to facilitate integration, the Coq types
bool,list,prod are set to syntactically match the
corresponding OCaml counterparts.

1 Extract Inductive bool ⇒ "bool" ["true" "false"].
2 Extract Inductive list ⇒ "list" ["[]" "(::)"].
3 Extract Inductive prod ⇒ "(*)" ["(,)"].
4 Extraction "Well.ml" well.

Per Lindgren, Marcus Lindner, David Pereira, Luís Miguel Pinho A Formal Perspective on IEC 61499 Execution Control Chart Semantics

Background
Well-Formed Execution Control Charts

Coq Formalization
Conclusion / Future Work

Coq
Definitions
Extraction
Integration

Extraction
Formalized

A (prototype) IEC 61499 tool was developed, re-using OCaml code
from our earlier work on the RTFM-core compiler.
Conversions between OCaml types and Coq generated types are
easily defined as sketched below:
1 (* to nat (Coq represenation) *)
2 let rec int_to_nat = function
3 | 0 -> Well.O
4 | n -> Well.S (int_to_nat (n -1))
5
6 (* to int (OCaml representation) *)
7 let rec nat_to_int = function
8 | Well.O -> 0
9 | Well.S n -> 1 + (nat_to_int n)

10
11 (* to nat (Coq represenation) *)
12 let ecc_to_nat ec =
13 ...
14 (* to int (OCaml representation) *)
15 let ecc_to_int ecc =
16 ...

Per Lindgren, Marcus Lindner, David Pereira, Luís Miguel Pinho A Formal Perspective on IEC 61499 Execution Control Chart Semantics

Background
Well-Formed Execution Control Charts

Coq Formalization
Conclusion / Future Work

Conclusion
Future Work

Table of Contents
Formalized

1 Background
IEC 61499
Formal methods

2 Well-Formed Execution Control Charts
Notation
ECC Execution Semantics
ECC liveness conditions

3 Coq Formalization
Coq
Definitions
Extraction
Integration

4 Conclusion / Future Work
Conclusion
Future Work

Per Lindgren, Marcus Lindner, David Pereira, Luís Miguel Pinho A Formal Perspective on IEC 61499 Execution Control Chart Semantics

Background
Well-Formed Execution Control Charts

Coq Formalization
Conclusion / Future Work

Conclusion
Future Work

Conclusion
Formalized

A formalization of IEC 61499 (subset) in Coq
Liveness defined in terms of ECC scheduling progress
A necessary and sufficient condition is defined

Complex (and may not be what you want)
A sufficient (stronger) condition is a defined

Simple and useful
Graph theoretical solution (SCC)

Requires inner SCC enumeration (NP complete)
Addressed by pre-processing

Linear complexity (DFS)
Encoded in Coq and extracted to OCaml, integrated in the
RTFM-4FUN, proof of concept tool

Per Lindgren, Marcus Lindner, David Pereira, Luís Miguel Pinho A Formal Perspective on IEC 61499 Execution Control Chart Semantics

Background
Well-Formed Execution Control Charts

Coq Formalization
Conclusion / Future Work

Conclusion
Future Work

Future Work
Formalized

Proof of semantics, rendering fully certified code
(for now only proof of algorithm termination)
We are looking into why3 as a (simpler) alternative to Coq
Extend well-formedness conditions to FB networks
Formalize a real-time semantics for IEC 61499
Ultimately certified

compilers and tools for IEC 61499
run-time systems for IEC 61499
... your code here ...

Per Lindgren, Marcus Lindner, David Pereira, Luís Miguel Pinho A Formal Perspective on IEC 61499 Execution Control Chart Semantics

Background
Well-Formed Execution Control Charts

Coq Formalization
Conclusion / Future Work

Conclusion
Future Work

Coq, Basics
Formalized

Grounded in Calculus of Inductive Constructions (CIC)
a typed λ-calculus that features:

polymorphism,
dependent types and
very expressive (co-)inductive types.

Curry-Horward’s isomorphism programs-as-proofs (CHi)
In CHi, any typing relation t : A can either be seen as a value
t of type A, or as t being a proof of the proposition A.
Any type in Coq is in the set of sorts
S = {Prop} ∪ {Type(i) | i ∈ N}. The Type(0) sort represents
computational types, while the Prop type represents logical
propositions.
Computational types can be extracted to functional programs
→ certified programs.

Per Lindgren, Marcus Lindner, David Pereira, Luís Miguel Pinho A Formal Perspective on IEC 61499 Execution Control Chart Semantics

Background
Well-Formed Execution Control Charts

Coq Formalization
Conclusion / Future Work

Conclusion
Future Work

Inductive Types in Coq 1(2)
Formalized

An inductive type is introduced by a collection of
constructors, each with its own arity.
A value of an inductive type is a composition of such
constructors.
As an example, natural numbers are encoded as follows:

Example (nat: inductive definition of natural numbers)

Inductive nat : Type :=
| O : nat
| S : nat → nat.

Per Lindgren, Marcus Lindner, David Pereira, Luís Miguel Pinho A Formal Perspective on IEC 61499 Execution Control Chart Semantics

Background
Well-Formed Execution Control Charts

Coq Formalization
Conclusion / Future Work

Conclusion
Future Work

Inductive Types in Coq 2(2)
Formalized

Coq automatically generates induction and recursion principles
for each new inductive type.
In Coq, functions must be provably terminating, e.g.,
recursive calls on structurally smaller arguments.
As an example, consider the function plus that adds two
natural numbers.

Example (plus: adds two natural numbers)

Fixpoint plus(n m:nat){struct n}:nat :=
match n with
| O ⇒ m
| S p ⇒ S (plus p m)

end.

Per Lindgren, Marcus Lindner, David Pereira, Luís Miguel Pinho A Formal Perspective on IEC 61499 Execution Control Chart Semantics

	Background
	IEC 61499
	Formal methods

	Well-Formed Execution Control Charts
	Notation
	ECC Execution Semantics
	ECC liveness conditions

	Coq Formalization
	Coq
	Definitions
	Extraction
	Integration

	Conclusion / Future Work
	Conclusion
	Future Work

