

Martin-Luther-Universität Halle-Wittenberg Institute of Computer Science Chair of Automation Technology Prof. Dr.-Ing. Hans-Michael Hanisch

Scientific work of Dipl.-Ing. Christian Gerber

IMPLEMENTATION OF CONTROL SYSTEMS AND FUTURE TRENDS AT THE MARTIN-LUTHER-UNIVERSITY USING 4DIAC

Workpiece Controller

3DSIMUlation

Instant Start-

IMPLEMENTATION OF DISTRIBUTED CONTROL SYSTEMS

- Using several testbeds
 - Festo Manufacturing System
 - EnAS-Demonstrator
 - Simulation of a Servo-Control-System
- Using different Engineering Environments and Hardware
 - Function Block Development Kid (FBDK)
 - Framework for Distributed Industrial Automation and Control (4DIAC)
 - FBench
 - Corfu ESS
 - ISAGraph
- Usability test of several control implementation approaches
 - Central-Controller
 - Master-Task-Controller
 - Parametrised Master-Task-Cont
 - Workpiece-Controller

Workpiece Controller

3DSIMULATION

Instant Start-

ENERGY AUTARKIC ACTUATOR SENSOR SYSTEM DEMONSTRATOR

- testbed, equipped with a wireless actuator/sensor system (2007-09)
 → new SIFB
- Base Station + Sensor-Actuator Modules
 - ¹ 2,4 GHz with frequency adaptation to the gaps of WLAN
 - ¹ 1st phase initialisation, get all Sensor-Actuator Modules
 - ¹ 2nd phase real time wireless communication – time sliced
- Control and Base Station exchange messages as follow: 76 00 03 52 FF 00 FF 00 FF 00
 - Byte Identifier the following data is an array (76)
 - 2. & 3. Byte Length of the array (data values)
 - 4. Byte datatype of the contained values (52)
 - ¹ 5. & 6. Byte Low and HighByte SAM0 (FF 00)
 - 7. & 8. Byte Low and HighByte SAM1 (FF 00)
 - 9. & 10. Byte Low and HighByte SAM2 (FF 00)

Workpiece Controller

3DSIMULATION

Instant Start-

CENTRAL-CONTROLLER APPROACH

- Central-Controller of the left plant part
 - No reconfiguration possibility or reusability (one monolithic FB)
 - Load Workpiece into tin- green
 - Unload Workpiece from tin red
 - Close a tin blue
 - Move conveyor brown

Control Approaches workpiece Controller Un Vorification

3DSIMULATION INSTANT START-

PARAMETERIZED MASTER-TASK-CONTROLLER

- Task-Controller of the Jack Station
 - Reuseable, if the component is used again
 - Load Workpiece into tin green

Control Approaches workpiece Controller Un Vorification

3DSIMULATION INSTANT START-

PARAMETERIZED MASTER-TASK-CONTROLLER

- Function Block Network of the Master and Task-Controller controlling the Jack-Station
 - Using Adapter Interfaces as Sockets

Workpiece Controller

3DSIMULALION

Instant Start-

PARAMETERIZED MASTER-TASK-CONTROLLER

Master-Controller

- Reconfiguration by implementing all production possibilities and parameterize the production scenario
- Actions Array (sequence) of actions to perform
- Length amount of sequenced actions

action	decreiption
0 - load	load a workpiece into the tin
$1 - load_{pos1}$	load a workpiece into the tin from the first
2 - load_pos2	load a workpiece into the tin from the second sledge position
3 - unload	unload a workpiece from the tin
4 - unload_pos1	unload a workpiece from the tin to the first sledge position
5 - unload_pos2	unload a workpiece from the tin to the second sledge position

Workpiece Controller

3DSIMULATION

Instant Start-

PARAMETERIZED MASTER-TASK-CONTROLLER - RESOURCE MAPPING

- ^I Without Adapter Interfaces
 - Reconfiguration is missing due to a better visualisation of the FBN
 - Subapplication encapsulates the Master and Task-Controller
 - ^I SIFB to the right and left
 - Everytime a FB is changed, update data connections
- E_REND 0.3
- ^I With Adapter Interfaces
 - Each FB provides an adapter corresponding to the one of the I/O-Adapter FB (Process Interface)

➔ only one Adapter Connection if a FB is changed

workpiece Controller Un Vorification

3DSIMULATION

Instant Start-

AUTOMATIC GENERATION OF THE I/O-ADAPTER

- **Eclipse-PlugIn for 4DIAC**
- Apdapter inserted from th pallet as new group (grey) headline)
 - Inputs and Outputs Ц
 - Comment
 - DataType
- General
 - Define used SIFB Ш
 - Publnputs Ш
 - PubOutputs
 - Time to ReRead the inputs
- **Define Adress**

Name		Тур	Verwendung	Beschreibung	Adresse	Anfangsw	
🖃 General							
10	W2K1_	_DI	VAR_GLOBAL				
11	W2K1_	_DI	VAR_GLOBAL				
Q0	W2K1_	_DO	VAR_GLOBAL				
Q1	W2K1_	_DO	VAR_GLOBAL				
Publnputs	BOOL		VAR_GLOBAL			true	
PubOutput	BOOL		VAR_GLOBAL			true	
ReRead	TIME		VAR_GLOBAL			t#5ms	
Colour_Detection							
Workpiece_Not_Black	BOOL		VAR_GLOBAL	work piece not black (3B1)	%IX0.7		
🗆 Control_Panel_Socket							
StartButton	BOOL		VAR_GLOBAL	start button (S1)	%IX1.0		
StopButton	BOOL		VAR_GLOBAL	stop button (S2)	%IX1.1		
Auto_Man_Button	BOOL		VAR_GLOBAL	auto/manual switch (S3)	%IX1.2		
Reset_Button	BOOL		VAR_GLOBAL	reset button (S4)	%IX1.3		
Start_LED	BOOL		VAR_GLOBAL	start LED (P1)	%QX1.0		
Reset_LED	BOOL		VAR_GLOBAL	reset LED (P4)	%QX1.3		
🖃 Gripper_Socket							
Pos_Down	BOOL		VAR_GLOBAL	position gripper down (2B1)	%IX0.4		
Pos_Up	BOOL		VAR_GLOBAL	position gripper up (2B2)	%IX0.5		
Workpiece_available	BOOL		VAR_GLOBAL	work piece available (Part_AV)	%IX0.6		
Descend_Gripper	BOOL		VAR_GLOBAL	descent gripper (2Y1)	%QX0.2		
Open_Gripper	BOOL	& Visualisiation	3 Dallots			al	
🖃 Rail_Socket	L	Restart	5_r dilees				
Pos_Previous_Station	BOOL	HML Right Co	onfid eff Visu Inn	uts Left ConfigRight Visu Inputs Right			
Pos_Colour_Detection	BOOL	StartPage	I O Visualisatio	n self sufficient Actuator Real Vie	w HMI Left	1	
Pos_left_Slide	BOOL						
Pos_right_Slide	BOOL		-				
Move_Left	BOOL	57			5.7		
Move_Right	BOOL						
1-2-1 11 11				· · · · · · · · · · · · · · · · · · ·			
			OF				
S							
		L					

General Control Approaches workpiece Controller

AUTOMATIC GENERATION OF THE I/O-ADAPTER

Generated I/O-Adapter

- Textual representation eases maintenance (data connection results from adress)
- Reconnection by providing a new adress Ш
- Export to LaTex \rightarrow PDF generation for documentation

workpiece Controller IIn Varification

3DSIMULATION INSTANT START-

DEVELOPING A PRODUCTION SCENARIO

- SysML Activity Diagram
 - Partition for each control of a mechanical component
 - Pallet 1 blue
 - Pallet 2- red
 - Pallet 3 green
- Note the actions to be performed
- Array of Actions
 - From top to down
 - Translate to numbers according to the tables
- Parameterize new productoin scenario via HMI
- Complexity shifted from the development of the Master-Controller to the production scenario

Workpiece Controller

3DSIMULATION

<u>Instant Start-</u>

FUTURE WORK - WORKPIECE-CONTROLLER

- Improvement of the Parameterized Master-Task Controller approach with an additional coordination layer → The Workpiece-Controller
- Workpiece Controller allocates /deallocates Master controller
- Master-Controller is a kind of event multiplexer (see ECC)
- Additional Inputs
 - Actions [INT] \rightarrow Action INT
 - Assign INT
- Additional Outputs
 - Available BOOL
 - AssignedTo INT
- Additional Algorithms

```
Allocate
```

```
Available := False;
AssignedTo := Assign;
```

Deallocate

```
Available := True;
AssignedTo := 0;
```


Workpiece Controller

3DSimulation

Instant Start-

FUTURE WORK - WORKPIECE-CONTROLLER

- Digi-Connect-Wi-Me
 - Workpiece-Controller at the pallet
 - Energy supply ?
- Beckhoff CX8000
 - Jack, Slide and Gripper Station through the wireless auctuator sensor system
- ^I Wago IPC 750-860
 - Jack and Slide Station
- Auvis.pro
 - All 3 left conveyors
- Auvis.box
 - ¹ 1 conveyor each as well as the Gripper Station
- WebServer at all of them
 - Linked websites between all

workpiece Controller Un Vorificatio

3DSIMULATION INSTANT START-

FUTURE WORK - CLOSED-LOOP 3D SIMULATION

- Export CAD Data of non-moving and moving parts as 3D Models
 - 3ds files- AutoCAD, Autodesk
 - VRML files Solid Edge, Solid Works
- Simulation Tool Enterprise Dynamics
 - Modelling of process flows (Sources, Servers, Sinks) L
 - Based on atoms and subatoms
 - e.g. Pallet is a subatom of the conveyor
 - Communication between atoms via channels (listen to events, exchange subatoms)
 - 2D and 3D models
 - Extendable by external libraries e.g. communication via Profibus to a Siemens PLC → new library to communicate with a distributed control system
 - e.g. TCP-Socket encoding and decoding messages according to the compliance profile

workpiece Controller

3DSIMULATION INSTANT START-

Un Vorification

FUTURE WORK - INSTANT START-UP AFTER POWER DOWN

INIT -

QI 🔶

ID 🚽

File 🔶

- Extension of the management resource with the FB StartUp of the type DEV StartUp
- Initialized after the MGR FB
- Checks if the File exists
 - If true while EOF Π
 - read xml-element 1
 - encode it to a destination and 2 request
 - wait for response 3.
 - Check response 4.
- publish INITO+ \rightarrow initialize the SVR
- REQ_Server(DST, RQST)
 - Store DST and RQST at the File 1.
 - CNF(DSTO, RQSTO) 2.
- Device still has the management interface as well as a Start-Up configuration up to the last change

Workpiece Controller

3DSIMulation

Instant Start-

FORMAL CONTROLLER MODELLING

- Definition of several rules to transform
 - simple and basic FBs
 - Function networks and composite FBs as well as application
- Modelling of Process and Communication Interface (SIFB)
 - Service primitives (ISO-IEC 10731)
- Modelling of resources
 - Include the different schedulings of FBs (Scheduling Function)
- Modelling of devices

Control Approaches workpiece Controller 3DSImulation Instant Start-Un Vorification

FORMAL PLANT AND CLOSED-LOOP MODELLING

- Modelling of the mechanical components
- Modelling of the workpiece behaviour

Establishing the Closed-Loop

. . .

Workpiece Controller

3DSIMUlation

Instant Start-

fired Steps

45

VERIFICATION OF THE CLOSED-LOOP SYSTEM

- SWI-Prolog based
 TNCES-Workbench
 - Model-Checker
 - FB Transformator
 - Search for trajectories and Gantt-Chart Visualisation
- Analysis of different FB schedules
 - Analysis of counter examples and modifying the control

Martin-Luther-Universität Halle-Wittenberg Institute of Computer Science Chair of Automation Technology Prof. Dr.-Ing. Hans-Michael Hanisch

- Supported by:
- German Ministry for Commerce and Industry (BMWI)
- Deutsche Forschungsgemeinschaft (DFG)
- Festo AG & Co. KG)

THANKS FOR YOUR ATTENTION!

Christian Gerber Chair of Automation Technology 30.08.2010