
LEADING

INNOVATIONS

Automatic Generation of IEC 61499
Applications based on Workflow Models

M. Plasch, G. Ebenhofer, M. Hofmann

ETFA 2012 – 4DIAC User’s Workshop

Overview

 Motivation and Aim of the Work

 Overall Concept

 Workflow Modeling

 Generation of the Supervisory Control Application (IEC 61499)

 Communication Concepts

 Resulting System Architecture

 Example Application

2

3

Motivation and Aim of the Work

 Rising need for flexible, modular
robotic systems in production industry

 Fast (re)-configuration;
preferably user-friendly programming
methods and tools

 Example: Bin-Picking application

 Aim: Simplified programming of a
supervisory control application (according to IEC 61499)
 Graphical Workflow Modeling

 Generation of the control application through a code generator

4

Overall Concept

Generation of an IEC 61499
Control Application

• Function Block (FB) Types
• Executable FB-Network

3D-Simulation Environment
• CAD-Modelling
• Component-Model

Workflow-Modelling
• Functional Application Flow
• Service-Functions

IEC 61499 - compliant
Runtime Environment

Target Systems
• 3D-Simulation Environment
• Hardware Target System

5

Background: Workflow Modeling

 Workflow Definition
 Activities in order to describe a process

 Workflow Management System coordinates execution

 Hardware/Software Resources

 Workflow Modeling Languages
 Business Process Execution Language BPEL – textual language

 Petri-Net based languages – graphical language

 Unified Modeling Language UML – Activity Diagrams

 Workflow Patterns
 Design guidelines for Workflow Modeling Languages

 Benchmark criteria

6

Development of a Workflow Modeling Language

 Language elements
 Service Activities

 Activity Connections

 Control-Flow Activities

 Language Characteristics
 Combined control- and data-flow modeled by Activity Connections

 Parameter Mapping-Tables to model data passing

 Embedded Exception Handling

Service
Activity

Input
Output

Fault

[IN_1, IN_2, …, IN_n]

[OUT_1, OUT_2, …, OUT_n]

&

IN 1

IN 2

R

OUT

≥

IN 1

IN 2

OUT
IF

IN 1

IN 2

THEN

COND

ELSE

AND OR IF-THEN-ELSE

7

Implementation of a Graphical Workflow Editor

 4DIAC Integrated Development Environment (www.fordiac.org)

8

Generation of the Supervisory Control Application (1)

 Step 1: Generation of a Function Block (FB) type library
 Represent Control-Flow- and Service-Activities

 Activity Interfaces  FB WITH-Constructs

 Behavior according to FB base types

Activity

IN OUT
Activity Parameters

· OUT_1 :: STRING
· OUT_2 :: REAL

Activity Parameters

· IN_1 :: BOOL
· IN_2 :: INT

ActivityFB_1

ActivityFB

EVENTOUTINEVENT

STRINGOUT_1

REALOUT_2IN_1_2INT

IN_1_1BOOL

9

Generation of the Supervisory Control Application (2)

 Step 2: Creation of FB instances
 Required instances according to Workflow Model

 Step 3: Creation of Event- and Data connections
 Modeled Activity Connections and Parameter-Mappings

 Data connection start- and end-points through WITH-Construct

 Execution of the control application
 IEC 61499 compliant runtime environment

 Alternatively combined with 3D-Simulation Environment

10

Interaction of Control Application and Service-Component

Communication
Function Block

(e.g., CLIENT type)
or local SC-Interface

Creation of Service-Function
invocation command

Service input
parameters

(e.g., IN_1_1)

Service
invocation

(e.g., serviceA)

Fixed
interface sides

Status evaluation based on Service-
Function return data

Service execution
confirmation

(e.g., serviceA_OK)

Service
output

parameters
(e.g., OUT_1)

Fixed
interface sides

CreateCommand StatusEvaluation

Service-Component
Implementation

Behaviour Implementation
(Service-Functions)

Communication Service

12

Resulting System Architecture

Workflow
Modelling Editor

Ecore Model
(Workflow Editor)

Ecore Model
(Code Generator)

Code
Generator

4DIAC-IDE
(FB-Application)

FORTE
(target system)

data model

based on
data model

workflow instance

control application

deployment

Graphical Editing
Framework
(view objects)

3D Simulation
(SC models)

behaviour information

GEF functions

org.fordiac.ide.gef
(Graphical Editor,

Connection Router)

test with simulation

FORTE
(target system)

FORTE
(target system)

Ecore Model
(4DIAC)

data model

Hardware
Target System

execution

13

Example Application (Video)

 5 Degrees-of-Freedom robotic arm
 IEC 61499 Service Component

 Ultrasonic sensor, touch sensor from Mindstorms NXT

 Robot arm follows predefined path continuously

 Adaption of speed with ultrasonic sensor

 Interruption of movement with touch sensor

 Link: http://www.locobot.eu/2012/09/12/model-based-
application-programming/

http://www.locobot.eu/2012/09/12/model-based-application-programming/
http://www.locobot.eu/2012/09/12/model-based-application-programming/
http://www.locobot.eu/2012/09/12/model-based-application-programming/
http://www.locobot.eu/2012/09/12/model-based-application-programming/
http://www.locobot.eu/2012/09/12/model-based-application-programming/
http://www.locobot.eu/2012/09/12/model-based-application-programming/
http://www.locobot.eu/2012/09/12/model-based-application-programming/
http://www.locobot.eu/2012/09/12/model-based-application-programming/

14

Results and Future Work

 Results
 Implemented graphical Workflow Editor

 Code Generator for IEC 61499 compliant control applications

 Appliance of the approach within the European funded research projects
LOCOBOT (www.locobot.eu)

 Future Steps
 Hierarchical Workflow Structures

 Improved exception handling concepts

 Improved integration of Service-Components into the simulation model

http://www.locobot.eu/

Thanks for your attention!

Contact Speaker

Gerhard Ebenhofer

PROFACTOR GmbH

Im Stadtgut A2

4407 Steyr-Gleink, AUSTRIA

gerhard.ebenhofer@profactor.at

www.profactor.at

