Veronika Domova, Ettore Ferranti, Thijmen de Gooijer, Aneta Vulgarakis

A success story of increased maintainability and modularity

AL IDED
Mpm

Agenda

- Background and motivation

- Project idea

- Development approach

- Tools used for implementation
- Implementation logic

- End-user workflow

« Summary and conclusions

Background(1)

The Future Automation System Architecture (FASA)

Experimental distributed control system

framework

- Real-time middleware

- Loosely based on IEC61499 standard

- Based on components
» Implemented in C++

= Linear execution

CiL — C2

FASA

OS

core core

Background(2)
The Future Automation System Architecture (FASA)

- Execution transparency for control applications
across multiple controllers and CPU cores

- Dynamic changes to the control system
configuration without any disruption

core core core

AL ED ED
Vonih 0D, vear 4 pm»

Motivation

- FASA lacks an IDE to create, deploy and edit its
applications

- Large amount of C++ code and configuration files
have to be created and maintained manually

- Development and testing processes are noticeably
slowed down

Project Idea

What?
= Create applications in 4DIAC IDE
- Automatically generate FASA code
How?
- Implement 4DIAC IDE — FASA integration
- Make an extension to the 4DIAC IDE platform

- Implement the extension as an Eclipse plugin

Approach

- Implement an Eclipse plugin
- Rely on 4DIAC IDE model

« Generate FASA code using M2T transformation

[FASA integration j

4

[4DIAC IDE j

'y

{ Eclipse IDE w

Tools used for implementation

- Eclipse IDE, Java

- Model-to-text transformation tools:
« XSLT
- Acceleo
- Jet

Doesn't provide any transfromation logic.
Redirects the request to appropriate sub-plugin

fasa_fordiac_integration.plugin

———1 |

usubsystems

fordiac_to_fasa.jet.plugin I
usbsystems
fordiac_to_fasa.acceleo.plugin
asubsystems

fordiac_to_fasa.xslt.plugin

© ABB Group
Month DD, Year | Slide 8

Implementation logic

- Retrieving necessary objects using 4DIAC IDE
model and API

- Applying JET transformation templates

- Dynamically mapping data in the templates

- Generating output folders structure

- Generating output files into appropriate folders

End-user Workflow

Step 1: Create a system in 4DIAC IDE

Step 2: Right-click on the system in the browser

Step 3: In appeared menu select "Transform system to FASA”

Step 4: Wait a moment until all the transformation is done

Step 5: Observe the generated code in the workspace

&% System Man... &2~ O

SR =

> & test App
&% autom:

Go Into

Refresh

Open ’
New System

Transform system to FASA

New Application
Delete System

© ABB Group
Month DD, Year | Slide 10

E &’Java % 2system |y Resource|

5 Project Explorer &2 & ¥ =0

» = automation_system

* = applications
* = libraries
* (= modules

b = test_App

» = Tool Library

Summary and Conclusions

Contribution to FASA

- Graphical IDE for FASA applications

« Increased maintainability and modularity
Future work

- Improving integration logic

- Making the integration process entirely automatic
Contribution to 4DIAC

- Application in a new automation domain

- Extendibility and integration with other systems

AL DD
pm»

Power and productivity “ I. I.
for a better world™ " I. I.

