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Background(1) 

Experimental distributed control system 

framework 

 Real-time middleware 

 Loosely based on IEC61499 standard 

 Based on components 

 Implemented in C++ 

 Linear execution 

The Future Automation System Architecture (FASA) 
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Background(2) 

 Execution transparency for control applications 

across multiple controllers and CPU cores 

 Dynamic changes to the control system 

configuration without any disruption  

 

 

The Future Automation System Architecture (FASA) 
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Motivation 

 FASA lacks an IDE to create, deploy and edit its 

applications 

 Large amount of C++ code and configuration files 

have to be created and maintained manually 

 Development and testing processes are noticeably 

slowed down 
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Project Idea 

What? 

 Create applications in 4DIAC IDE 

 Automatically generate FASA code 

How? 

 Implement 4DIAC IDE – FASA integration 

 Make an extension to the 4DIAC IDE platform 

 Implement the extension as an Eclipse plugin 
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Approach 

 Implement an Eclipse plugin  

 Rely on 4DIAC IDE model 

 Generate FASA code using M2T transformation 
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Tools used for implementation 

 Eclipse IDE, Java 

 Model-to-text transformation tools: 

 XSLT 

 Acceleo 

 Jet 
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Implementation logic 

 Retrieving necessary objects using 4DIAC IDE 

model and API 

 Applying JET transformation templates 

 Dynamically mapping data in the templates  

 Generating output folders structure  

 Generating output files into appropriate folders 
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End-user Workflow 

Step 1: Create a system in 4DIAC IDE 

Step 2: Right-click on the system in the browser 

Step 3: In appeared menu select ”Transform system to FASA” 

Step 4: Wait a moment until all the transformation is done 

Step 5: Observe the generated code in the workspace 
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Summary and Conclusions 

Contribution to FASA 

 Graphical IDE for FASA applications  

 Increased maintainability and modularity 

Future work 

 Improving integration logic  

 Making the integration process entirely automatic 

Contribution to 4DIAC 

 Application in a new automation domain 

 Extendibility and integration with other systems 
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