
4DIAC integration into the FASA
project
A success story of increased maintainability and modularity

Veronika Domova, Ettore Ferranti, Thijmen de Gooijer, Aneta Vulgarakis

Agenda

 Background and motivation

 Project idea

 Development approach

 Tools used for implementation

 Implementation logic

 End-user workflow

 Summary and conclusions

Month DD, Year | Slide 2

© ABB Group

Background(1)

Experimental distributed control system

framework

 Real-time middleware

 Loosely based on IEC61499 standard

 Based on components

 Implemented in C++

 Linear execution

The Future Automation System Architecture (FASA)

Month DD, Year | Slide 3

© ABB Group

core core

C1 C2

FASA

OS

Background(2)

 Execution transparency for control applications

across multiple controllers and CPU cores

 Dynamic changes to the control system

configuration without any disruption

The Future Automation System Architecture (FASA)

Month DD, Year | Slide 4

© ABB Group

core core

C1 C2

C3 C4

core core

C5 C6

C7 C8

core core

C9

core

C2

FASA FASA FASA

C3

C4 C7

OS OS OS

C1

Motivation

 FASA lacks an IDE to create, deploy and edit its

applications

 Large amount of C++ code and configuration files

have to be created and maintained manually

 Development and testing processes are noticeably

slowed down

Month DD, Year | Slide 5

© ABB Group

Project Idea

What?

 Create applications in 4DIAC IDE

 Automatically generate FASA code

How?

 Implement 4DIAC IDE – FASA integration

 Make an extension to the 4DIAC IDE platform

 Implement the extension as an Eclipse plugin

Month DD, Year | Slide 6

© ABB Group

Approach

 Implement an Eclipse plugin

 Rely on 4DIAC IDE model

 Generate FASA code using M2T transformation

Month DD, Year | Slide 7

© ABB Group

Tools used for implementation

 Eclipse IDE, Java

 Model-to-text transformation tools:

 XSLT

 Acceleo

 Jet

Month DD, Year | Slide 8

© ABB Group

Implementation logic

 Retrieving necessary objects using 4DIAC IDE

model and API

 Applying JET transformation templates

 Dynamically mapping data in the templates

 Generating output folders structure

 Generating output files into appropriate folders

Month DD, Year | Slide 9

© ABB Group

End-user Workflow

Step 1: Create a system in 4DIAC IDE

Step 2: Right-click on the system in the browser

Step 3: In appeared menu select ”Transform system to FASA”

Step 4: Wait a moment until all the transformation is done

Step 5: Observe the generated code in the workspace

Month DD, Year | Slide 10

© ABB Group

Summary and Conclusions

Contribution to FASA

 Graphical IDE for FASA applications

 Increased maintainability and modularity

Future work

 Improving integration logic

 Making the integration process entirely automatic

Contribution to 4DIAC

 Application in a new automation domain

 Extendibility and integration with other systems

Month DD, Year | Slide 11

© ABB Group

