
1

Towards Certified Compilation for IEC 61499

2016-09-06

Per Lindgren and Marcus Lindner
Luleå University of Technology

David Pereira and Luís Miguel
Pinho 

CISTER / INESC TEC, ISEP

Goal: verified software

2

Correct programming is hard
Also tools may contain bugs

“Improving the robust operation of variable-frequency
drives in energy production plants in terms of software”

Provide means for programmers to
facilitate correct software development
in the context of industrial automation

Rationale

Our research

Project objective

INDIN 2016, Verification of IEC 61499 applications
(first ideas was presented at ETFA 2015)

3

Why3: deductive program verification

4

General principle Why3 structure

Example: formalized specifications

5

Formal specification for
component interfaces 
! the contract!

Example: system/FB composition

6

Verification of compositional
soundness (w.r.t. the defined
contracts)

What’s more

7

Future work towards verified implementations

• Currently: Why3 encoding of IEC 61499 programs made by hand (should be
largely automatized)

• suitable representations for the IEC 61499/IEC 61131-3 data types defined in
WhyML and deployed for automatic translation

• Language translation:

• Tool integration: Why3 platform directly accessible through Function Block IDE
4DIAC

8

Structured Text WhyML

ETFA 2016, WIP, Further Verification Possibilities

• Deductive verification approach in contrast to model checking approach

• Limited possibilities of IEC 61499 to express behavior at component level:
service sequences (no notions of timing, data, and state)

• design by contract approach is proof enabling and allows for the extraction of
verified implementations

9

ETFA 2016, WIP
Towards Certified Compilation of RTFM-core Applications

10

Towards Certified Compilation of RTFM-core Applications
Per Lindgren1 Marcus Lindner1 David Pereira2 Lúıs Miguel Pinho2

1Lule̊a University of Technology Email:{per.lindgren, marcus.lindner}@ltu.se

2CISTER / INESC TEC, ISEP Email: {dmrpe, lmp}@isep.ipp.pt

Abstract
Concurrent programming is dominated by thread based solutions with lock based critical sections. Careful

attention has to be paid to avoid race and deadlock conditions. Real-Time for The Masses (RTFM) takes an

alternative language approach, introducing tasks and named critical sections (via resources) natively in the

RTFM-core language. RTFM-core programs can be compiled to native C-code, and e�ciently executed onto

single-core platforms under the Stack Resource Policy (SRP) by the RTFM-kernel. In this paper we formally define

the well-formedness criteria for SRP based resource management, and develop a certified (formally proven)

implementation of the corresponding compilation from nested critical sections of the input RTFM-core program to

a resulting flat sequence of primitive operations and scheduling primitives. Moreover we formalise the properties

for resource ceilings under SRP and develop a certified algorithm for their computation.

RTFM-core Language and Model of Computation
The RTFM-core language [1] allows reactive real-time systems to be specified in terms of time constrained,
parametrised tasks with (potentially nested) critical sections protected by named resources. Whereas the
minimalistic RTFM-core language focus on concurrency, inlined C code is used to specify the functionality.

RTFM-core Grammar (Simplified)

Top ::= #> CCode <# | Task Int Id { Stmt } | Top Top

Stmt ::= #> CCode <# | claim Id {Stmt} | Stmt Stmt

Figure: Simplified grammar of the RTFM-core language.

RTFM-core Example
Task 2 T1 {

claim R1 { #> o=z.x-z.y <# }

}

Task 1 T2 {

#> v-- <#

claim R2 {

claim R1 { #> z.x=z.y=v <# }

}

}

Task 3 T3 {

claim R2 { #> v++ <# }

}

Listing 1: Tasks.core.

Listing 1 depicts a system with tree tasks T1, T2 and T3 with priorities 2, 1, 3 respectively. The resource R1
ensures race free access to z between tasks T1 and T2, while R2 ensures consistancy of the value v for the
update of z in T2. Accesses to v are race free under the assumption that v-- is atomic.

RTFM-kernel
Targeting lightweight micro-controllers, the RTFM-kernel implements the scheduling primitives in terms of
C-macros exploiting the underlying bare-metal interrupt hardware for single core, static priory, preemptive
scheduling under the Stack Resource Policy (SRP)[2]. SRP-based scheduling [3] brings benefits such as
deadlock free execution and single blocking for single core, fixed-priority preemptive scheduling. Alternative
implementations of the scheduling API are available for multi- and many-core systems through thread
bindings [4].

RTFM-core Compiler
The RTMF-core compiler translates the RTFM-core model into plain C code, with inlined references to the
scheduling primitives. In the compilation, the nested critical sections are transformed to flat code sequences.
Targeting the RTFM-kernel static priorities are derived for the time constrained tasks, and static resource
ceilings are derived for the critical sections according to the requirements of SRP.

Why3 - a Platform for Deductive Program Verification
Why3 is a program verification platform that follows along the principles of deductive program verification
established by Floyd [5] and Hoare [6]. It provides the language WhyML, designed with the purpose of serving as
an intermediate verification language providing a rich many-sorted First Order Logic for specifying logical
properties of the target developments, which are definable either via theories or via contracts that are coupled with
function and type signatures. Among its several features, we can find in WhyML support for polymorphic records
& (co)-inductive data types and predicates, and ghost code. WhyML therefore allows to logically specify and
implement programs. When specifications and implementations are given as input to Why3, the platform
generates the set of proof obligations, i.e., the logical assertions that need to be proved correct in order to ensure
that the implementations comply to their specifications. Furthermore, Why3 interfaces with a set of external
theorem provers, both assisted and automatic, with the goal of automating the most possible the discharging of
the generated proof obligations.

Why3 Data Types, for the RTFM-core compiler
type core_t =

| O c_stmt_t

| Claim res_t (list core_t)

type instr_t =

| Op c_stmt_t

| Lock res_t

| Unlock res_t

type i_t = core_t list

type o_t = instr_t list

Listing 2: coreast.why.

Listing 2 depicts the AST for the task bodies of the input language core_t (RTFMspec) and the flattened
sequence of instructions instr_t (RTFMprim).

Certified Compilation
In the following we will detail the contributions towards a certified RTFM-core compiler. We focus on two key
aspects of the compilation process, namely the flattening of critical sections in the source program and the
derivation of resource ceilings for scheduling by the SRP-based RTFM-kernel.

Correct compilation of RTFMspec
We now introduce the conditions that determine the logical correctness of the compilation process from
RTFMspec programs into RTFMprim programs. Let � represent and RTFMprim program, and let r be a
resource identifier. The predicate well_res is inductively defined by the following rules:

(WRnil)

well_res([])
(WRop)

well_res(�)

well_res(Op :: �)

(WRlock)

well_res(�1) well_res(�2)

well_res(Lock r :: (�1++(Unlock r :: �2)))

The well-formedness condition for RTFMprim programs intuitively states that a Lock r statement must be
followed by a well-formed critical section, followed by an Unlock r statement. Our definition of
well-formedness can be seen as a formalisation of the SRP requirements as stated in [3].
The well-formedness serves as the correctness condition for the compilation as follows:

(Cnil)

comp([], [])
(Cop)

comp(�,)

comp(Op :: �, O ::)

(Cclaim)

comp(�1, 1) comp(�2, 2)

comp(Claim r �1 :: �2, Lock r :: 1++Unlock r :: 2)

We have implemented a compilation algorithm in Why3, that is verified correct to comp.

Correct compilation of Resource Ceilings
Tasks are captured in WhyML by the type task_t presented in Listing 3. The type chosen to capture the
static priorities, prio_t, can be any type as long as it has an associated strict order. The type task_set_t
denotes a finite setsof tasks; the type rc_t denotes a mapping from resources to ceiling values; finally, the
type rs_t denotes the finite set of resources. Resources themselves are captured by the type res_t.

With these definitions at hand we can define a set of predicates that are necessary to address the correctness
criteria for building the resource ceiling for the given set of tasks of the program at hand. These conditions
are: (i) resource claims are present in the code of the program i↵ they exist in the assumed resource set; (ii)
given a local minimum ceiling n, the ceiling of each of the resources considered must be at least that n; (iii)
if all the tasks in the task set satisfy property 1), then property 2) must also hold; (iv) finally, for each
resource r with an associated ceiling dre, there exists a task t with priority dre claiming r . Together, these
four properties serve as a formal description of ceilings according to [3].

type prog_t = o_t

type task_t = { prio : prio_t; prog : prog_t; }

type task_set_t = list task_t

type rc_t = map res_t prio_t

type rs_t = set res_t

(* (i) Relation over lock statements and set of resources *)

predicate pred_prog_rs (p: prog_t) (rs: rs_t) =

forall r. mem r rs <-> Mem.mem (Lock r) p

(* (ii) Relation over a set of (locked) resources and their ceilings *)

predicate pred_prio_rs_rc (n: prio_t) (rs: rs_t) (rc: rc_t) =

forall r. mem r rs -> rc[r] >= n

(* (ii) Relation over the task set and resource ceilings. *)

predicate pred_ts_rc (ts: task_set_t) (rc: rc_t) =

forall t. Mem.mem t ts ->

forall rs. pred_prog_rs t.prog rs ->

pred_prio_rs_rc t.prio rs rc

(* (iv) Relation over resource ceilings and task priorities *)

predicate pred_exist_ts_rc (ts: task_set_t) (rc: rc_t) =

forall r. rc[r] > min_prio -> exists t rs.

Mem.mem t ts /\ pred_prog_rs t.prog rs /\ mem r rs /\ rc[r] = t.prio

Listing 3: module TaskRes.

Listing 3 depicts the correctness criteria. We have developed an implementation in Why3 verified to the
specification.

Conclusions
From the verified development, certified OCaml code has been extracted. Based on the extracted code an
executable prototype compiler has been developed. Ongoing work includes extending the RTFM-core language and
certified compiler with an imperative layer (subset of C).

References
P. Lindgren, M. Lindner, A. Lindner, D. Pereira, and L. M. Pinho, “RTFM-core: Language and
Implementation,” in 10th IEEE Conference on Industrial Electronics and Applications (ICIEA 2015), 2015.

J. Eriksson, F. Haggstrom, S. Aittamaa, A. Kruglyak, and P. Lindgren, “Real-time for the masses, step 1:
Programming API and static priority SRP kernel primitives.” in SIES. IEEE, 2013, pp. 110–113.

T. Baker, “A stack-based resource allocation policy for realtime processes,” in Real-Time Systems Symposium,

1990. Proceedings., 11th, Dec. 1990, pp. 191 –200.

A. Lindner, M. Lindner, and P. Lindgren, RTFM-RT: a threaded runtime for RTFM-core towards execution of

IEC 61499, ser. I E E E International Conference on Emerging Technologies and Factory Automation.
Proceedings. IEEE, 2015.

R. W. Floyd, “Assigning meanings to programs,” Proc. Symp. Appl. Math, vol. 19, pp. 19–31, 1967.

C. A. R. Hoare, “An axiomatic basis for computer programming,” Commun. ACM, vol. 12, no. 10, pp. 576–580,
Oct. 1969. [Online]. Available: http://doi.acm.org/10.1145/363235.363259

Per Lindgren, Marcus Lindner, David Pereira, Lúıs Miguel Pinho Towards Certified Compilation of RTFM-core Applications

• RTFM-core : Concurrent tasks with nested critical sections
• Critical sections protected by named resources
• Deadlock free execution onto single core MCUs under the  

Stack Resource Policy
• Mapping from IEC 61499 to RTFM-core possible  

(C/C++ for algorithms) 

• CoreCert Certified Compiler that
• flattens nested structure into flat sequence of instructions
• generates ceilings for named resources
• proven correct to semantic model(s) in Why3
• extracted to OCaml to generate executable

Current Work
Extending RTFM-core (CoreCert) with “imp” language

11

• Subset of the IEC 61499 Structured Text 

• variables, expressions
• statements

• assignments
• conditionals
• loops 

• proven Byte code generation
• proven VM (stack machine) for Byte code 

• generates MIPS assembler
• optimal register assignment
• proofs on the way

// Example
// 1+2+3..6 = 21 

WHILE a <= 5 DO
 a := a + 1;
 sum := sum + a
DONE

Future Work

12

• Extending front-end to larger subset of Structured Text
• Extending backend to ARM assembly
• Adopting the RTFM-4-FUN to generate RTFM-core-imp

• May be proven as well, (formalising semantics of ST)
• Integration to 4DIAC

• Certified toolchain, provably correct implementation 
 

Huge effort. Is it worth it?
• CompCert (C compiler) > 10 years in the making
• Commercial licence available
• We can already use CompCert with RTFM-4FUN
• Formalised semantics of C is difficult, “core-imp” simpler

Thank you for your attention! 
 

Questions or comments?

