Towards Certified Compilation for IEC 61499

Per Lindgren and Marcus Lindner David Pereira and Luis Miguel

Lulea University of Technology Pinho
CISTER / INESC TEC, ISEP

2016-09-06

Goal: verified software ny

UNIVERSITY
OF TECHNOLOGY

Rationale Correct programming is hard
Also tools may contain bugs

Provide means for programmers to
Our research facilitate correct software development
in the context of industrial automation

“Improving the robust operation of variable-frequency

PrOJECt objectlve drives in energy production plants in terms of software”

INDIN 2016, Verification of IEC 61499 applications L

(first ideas was presented at ETFA 2015)

~ Sensorl ' ~ Controller '
rINIT INITO =|NIT INITO=
X OE_Data- IE_Sensorl DE_Control%
‘ FB_Sensor | , =|E_Sensor2
) 0.0 5 ‘ FB_Controller ‘
CelsiusmDataType O _Data - 0.0 L,
DEMin OmMin Q0=
10=Max) 10=Max
ID_Sensorl
_ Sensord _ ' Conviervice ‘ =|D_Sensord
=|NIT INITOs —DE IE_to_Celsius OE_to_Celsius T—
r CUIE_Dal::l.l—“l =lE_to_Fahrenheit OE_to_Fahrenheits
‘ FB_Sensor ’ ‘ FB_ConvService ‘
_ 0.0 |) 0.0 3
FahrenheitmDataType O_Data m|D Fahrenheit OD_CeIsiusT—’
32 EMin =|D_Celsius OD_Fahrenheit=
50mMax) Informal specification:
- 2 sensors
Sy 0°C < ¢ < 10°C

Sy 32°F < f < 50°F
- 1 bang-bang controller (output: S; < S,)
- Celsius-Fahrenheit conversion service

Why3: deductive program verification

program
+
specification

General principle

verification
conditions

—> proof

Why3 structure

file. mlw

l WhyML
file.why VCgen

/-

transform/translate
\ 4
print/run

— 7 \'\

Coqg Alt-Ergo CVC3 Z3 etc.

Example: formalized specifications

LULEA
UNIVERSITY

OF TECHNOLOGY

Sensorl Controller
r-INIT lNlTOI ‘i-i“‘T INITO
. OE_Data=» IE_Sensorl OE Control%
FB_Sensor ‘ IE_Sensor2
‘ 0.0 : ‘ FB_Controller ‘
Celsnus DamType O_| Dam , 0.0
OEMin Qo0
Max 10=Max
ID_Sensorl
_____Sensor2 ConvService ID_Sensor2
rINIT INITOmlE to_Celsius OE_to Celsnusr—J
OE_Data |IE_to_Fahrenheit OE_to_Fahrenheit
‘ FB_ Sensor FB_ConvService ‘
\ 0.0
Fahrenheu DamType 0O_Data ID Fahrenheit o _Tolnine
Mm =|D_Celsius OD_| Fahrenheits
Max

Formal specification for
component interfaces
- the contract!

module SensorGen
use export Data

constant min int
constant max int
constant metric metric_t
type val_t

predicate 1n_range (v

min <=

val read () : val_ t

ensures
function range_of ()

end

val t) =

int

fst v < max /\ metric =

{ in_range result }

max

snd v

— min

Sensorl Controller
rINIT lNlTOI E.mT INITO
. OE_Data=» IE_Sensorl OE Control%
FB_ Sensor IE_Sensor2
‘ ‘ ‘ FB_Controller ‘
Celsnus DamType O_Data , 0.0
OEMin Qo0
1 Max 10=Max
ID_Sensorl
_____Sensor2 ConvService =|D_Sensor2
rINIT INITO= 13 _to_Celsius OE_to_Celsius
OE_Data= =|E_to_Fahrenheit OE_to_Fahrenheit

‘ FB_ Sensor ‘ ‘ FB_ConvService ‘

0.0
Fahrenheit DamType 0O_Data ID Fahrenheit OD_Celsius
32 Min =|D_Celsius OD_Fahrenheit
50 Max

Verification of compositional
soundness (w.r.t. the defined
contracts)

LULEA
UNIVERSITY
OF TECHNOLOGY

module System
clone import Sensorl as Sl
clone import Sensor2 as S2

(» should work in Celsius range 0 <= c < 10 %)
predicate range (c:int) = 0 <= ¢ < 10
clone import ControlGen with predicate in_range = range

let orchestration () =
(» take readings from the sensors x)
let sl_v = Sl.read () in
let s2_v = S2.read () in

(present readings to the controller «)
let bang = control sl_v s2_v in

(» make sure the controller meets our expectations x)

assert {
match bang with
| True —-> to_Celsius sl_v < to_Celsius s2_v
| False -> to_Celsius sl_v >= to_Celsius s2_v
end
}

end

Sensorl) Controller)
rIN[T INITO ———————®=INIT IN[TO?
L OE_Data IE_Sensorl OE_Control
FB Sensor —PmIE_Sensor2
‘ 0.0 ‘ FB_Controller
CelsiusmDataType O_Data 0.0
OEMin ORMin Qo Corlvady
10m=Max lgFMax ~——eer
ID_Sensorl Ny
v Sensor2 _ ConvService ' =|D_Sensor »\,\v~,(
INIT INITOS - IE_to_Celsius OE_to_Celsius
r OE_Datal—J_.EIE:m:Fahrenhei(OE_to__FaErenheit y ~)
‘ FB_Sensor ’ FB_ConvService IE_Sensorl
v 0.0 _ v 0.0
FahrenheitmDataType O_Data ID_Fahrenheit 0D_Celsius 1
32EMin tlD_Celsius 0D_Fahrenheite <_ 1 ——
S50mMax | .\ -
2 IE_Sensor2

Reclose point

// detect the risir ¢
ST_Reclose_Detect (All Reclosed):
ST_tmp := ST_Reclose_Detect.(;

IF ST_tmp = TRUE THEN

ST_Recloses := ST_Recloses + 1; N~——
END IF; A

- AN (
’/set lockout

IF ST_Recloses >= ALL Max Recloses THEN
ST_Lockout := TRUE;
END IF;
=

ECHNOLOGY

Future work towards verified implementations

Currently: Why3 encoding of IEC 61499 programs made by hand (should be
largely automatized)

* suitable representations for the IEC 61499/IEC 61131-3 data types defined in
WhyML and deployed for automatic translation

- Language translation: m

Structured Text WhyML

S

 Tool integration: Why3 platform directly accessible through Function Block IDE
4DIAC

* Deductive verification approach in contrast to model checking approach

» Limited possibilities of IEC 61499 to express behavior at component level:
service sequences (no notions of timing, data, and state) equest tak

CLIENT SERVER

startT ask
taskCompleted
CHF+ 4—f

 design by contract approach is proof enabling and allows for the extraction of
verified implementations

ETFA 2016, WIP

Towards Certified Compilation of RTFM-core Applications

RTFM-core : Concurrent tasks with nested critical sections

ritical sections protected by named resources
eadlock free execution onto single core MCUs under the
tack Resource Policy

apping from IEC 61499 to RTFM-core possible

(C/C++ for algorithms

- C

10

oreCert Certified Compiler that

flattens nested structure into flat sequence of instructions
generates ceilings for named resources

proven correct to semantic model(s) in Why3

 extracted to OCaml to generate executable

LULEA
UNIVERSITY
OF TECHNOLOGY

Towards Certified Compilation of RTFM-core Applications

Per Lindgren!

Luled Univ

Marcus Lindner"
sity of Technology

2CISTER / INESC TEC, ISEP

Abstract

Concurrent programming is dominated by threa based solutions withlock based criial sections. Cacful
t0 avoid race and deadlock conditions. Real-Time for The Masses (RTFM) takes an

approach, introducing tasks and named criical sections (via resources) natvely n the

RTFM.core language. RTFM.core programs can be compled to native C-code, and effcently executed onto

single.core pistforms under th Stack Resource Polcy (SRF) by the RTFM-kerel. Inthis paper we formaly define

altemative langusge

implementatian of the co
2 resuling flat sequence of primitive aperations and scheduling primitves. Moreover we formalise the properties
for resource ceiings under SRP and develop 2 crtified algorithm fo their computation.

RTFM-core Language and Model of Computation

The RTFM e aguag 1]l restive resims ytems o bsspeced i temao tie o,

e e e
e

RTFM-core Grammar (Simplified)

minimalistic RTFM-core = on concurrency, inlined C code i used to specify the functionaity.

Top = #> COode <# | Task ntd { Stmt } | Top Top
Stmt = #> COode <# | clain d {Stmt} | Stme Stmt

Figure: Simpiied grammar o he RTFM-core anguage

RTFM-core Example

Task 2 T1 T
Claim R1 { #> omz.x-z.y <# }

Taak 172 €
P
Satn w g
clais RL { #> z.x=z.y=v <4 }
)
3
Task 3 T3 {
Claim B2 { #> ver <8 }
b

Lsting 1. Tasks._core.

Listing 1 depicts a system with tre tasks T1, T2 and T with pririties 2, 1, 3 respectively. The resource B
ensures rac fee acces to 2 between tasks T1and T2, while B2 enures consistancy of the value v for the
update of 2 in T2. Accesses to v are race free under the assumption that v=
RTFM-kernel

Targeting ightueight micro-controllers, the RTFh-kernel implements the schecling primitives i terms of
Cmacros exploitng the underlying bare-metal ntrrupt hardware for sinle core, stati prioy, preemptive
scheduling under the Stack Resource Policy (SRP)[). SRP-based scheding 3] brings benefits such as
deadlock free execution and single blocking for sngle core,fxe-pricity preempive scheduling. Alterative
implementation of the scheduling API are availabe for multi- and many-core systems through thead
bincings (4]

is atomic

RTFM-core Compiler

The RTMFre conpc graraas the RT-<es oo i C o, with e s o the
scheduling primitive. In the compilation, the nested critca sections re transformed to flat cade sequences.
Targeting the RTFM-kernel staic priorties are derved for the time constrained tasks, and static esource
calings are derived for the critcal sections according to the requirements of SRP.

Wh 3 - a Platform for Deductive Program Verification

at follows along the principles of deductive program veriication
oy Fiogd 5] 3 Howe], prvides he aung iyl degrd i e o of i 35
an intermedite verifcaton langusge providing

rogram verfcation pltform th

3 rch many-sorted First Order Logic for specifying logical
propertis of the target developments, which are definable either via theories or via contracts that are coupled vith
function and type signatures. Amon ts severl feature, we can find in WhyML support for polymorphic records
& (co)inductive data types and predicates, and ghost code. WhyML therefore alows to logically specify and
implement programs. When specificaions and implementations are given as input to Why3, the platform
enerates the st of proof abligations, . the logical assertons that need to be proved correct n order to ensure
that the implementations comply to their specfications. Furthermore, Why3 interfaces with a set of external
theorem provers, both assisted and automati, with the gol of automating the most possibl the discharging of
the generated proof oblgations.

Why3 Data Types, for the RTFM-core compiler
e core =

| Guain rons st core.0)
o instr_c =
ettt
18- 22

| Unlock res_t

type it
type ot

sing 2 coreast why.

Listing 2 depicts the AST for the task bodies of the input langusge core_t (RTFMspec) and the fiattened
sequence of instructions instx_t (RTFMprim).

David Pereir: Luis Miguel Pinho?

Email: {per.lindgren, marcus.lindner} @ltu.se

Email: {dmrpe, Imp}@isep.ipp.pt

ertified Compwlatlon
In the e cwards 2 cetfied RTFY on two key
e e e L e B e e
dervation ofresource celng for schedulng by the SRP-based RTFM-kernel

Correct compilation of RTFMspec

We now introduce the conditions that determine the logical corectaess of the comilation process from
RTFMspec programs into RTFMprim programs. Let ¢ represent and RTFMprim program, and let
resource identifer. The predicate wel1_res is inductively defined by the following ruls:

(P ————

v o)
we11._res(ey) s(62)

oK) e ea(ock 7 & (Pre+(Unlock : 32)))

“The wellformedness condition for RTFMprim programs intitively states that a Lock
followed by a wel-ormed critca section, folowed by an Unloc}
welformedness can be seen 35 3

= statement mst be
X x statement. Our defnition of
formalisation of the SRP requirements as stated i [3]

“The well-formedness serves as the correctness conditon for the compilaton as follows:

omp(c,)

) T) comnton 4,059
(Ceram)
comp(én, 1) comp(¢a, va)
omplClatn dy ¢ g Lock r = vy -+Unkack = v7)

We have implemented a compiltion algorithm in Why3, that s verifed corrct to comp.

orrect compilation of Resource Ceilings

Tasks are captured in WhyML by the type task_t presented in Listing 3. The type chosen to capture the

R e T G e e

e e e
" e ol s R i e copare o s

e e T e

o Bl st < ot v oo o e g s o e o

minimom ceilng n, the celling of each of the resources considered
if al the tasks in the task set saisfy property 1), then property 2) must also hold; (i) finaly, fo each
resource r with an associated ceiing [], there exists a task ¢ with priorty] claiming r . Together, these
four properties serve as 3 formal description of celings according to 3]

B =
type prio : prio_t; prog : prog_t; }
type = list task_t

type p res.t prio_t

type rest

* (2) Relati

o tatenents and set of resourcs
predicate pred_prog.rs (p: rog.i =
forall r. men r re <> Mem.mex (Lock ©) p

(+ (14) Relation over a set of (locksd) resources and their coilings *)
predicate pred_prio_rs_rc (n: prio_v) (rs: rs_t) (rc: rc.t) =
rall . men £ s > relr) >= o
(i) Relation over the task set and resource ceilings. *)
i us Jtasksen.t) Ges ren =
forall t. Mem.men © to
forall rs

red.prog_rs ¢.prog z2 >
pred_prio_rs.re t.prio 18

urce ceilings and task priori
task_set_t) (xc: re.t)

Mem.mem ¢ ts /\ pred_prog rs t.prog rs /\ mem r s /\ relr] = t.prio

Usting 3 nodule Taskfs.

Listing 3 depicts the correctness criteia, We have developed an implementation in Why3 verifed to the
specifcation

m the verified cevelopment, certfed OCa code
e e L o e e i T Ee |
certfed compier with an imperative layer (subset of C).

ml code has been extracted. Based on the extracted

References
1 P Lindgren, M. Lindner, A. Lindrer, D. Perir, and L. M. Piho,
in 0th IEEE Conferece on Incustri Elect

RTFM-core: Language and
< and Applications (ICIEA 201
Reaktime for the masses, step 1
IEEE, 2013, pp. 110-113,

Implementation

B J. Erksson, F. Haggstrom, S. Aittamaa, A. Kruglyak, and P. Li
Programming in SIES.

AP and static piorty SRP kernel primitives.

8 T ke, “Asaccbased resource allcation ol o reskime procss in st T St Symposar,
1990, ings. 1th, Dec. 1990, pp. 191 -
8 A Lindner, M. Lindner, and P. Lindgren, RTFM-RT: a threaded runtime for RTFM-core towards execution
1499, EE E teratons Confrnc an Eaging Technolgies and Factory Aot
Procesdings IEEE,
8 R W. Floyd Awml meanings to programs,” Proc. Symp. Appl. Math, vol. 19, pp. 19-31, 1961

R Hosre, "An axiomatic bass for
Oct. 1969. [Online]. Available: http:

puter programming,” Commun. ACK
do.acm.org/10.1145/363235 363259

vol. 12, no. 10, pp 576-580,

Current Work

Extending RTFM-core (CoreCert) with “imp” language

 Subset of the IEC 61499 Structured Text

e variables, expressions

- statements // Example
e assignments // 1+2+3..6 = 21
 conditionals
* loops WHILE a <= 5 DO
a :=a + 1;
* proven Byte code generation SUm = sum + a

* proven VM (stack machine) for Byte code poNE

» generates MIPS assembler
 optimal register assignment
* proofs on the way

Future Work

* Extending front-end to larger subset of Structured Text
* Extending backend to ARM assembly
* Adopting the RTFM-4-FUN to generate RTFM-core-imp
* May be proven as well, (formalising semantics of ST)
* Integration to 4DIAC
* Certified toolchain, provably correct implementation

Huge effort. Is it worth it?

* CompCert (C compiler) > 10 years in the making
 Commercial licence available

* We can already use CompCert with RTFM-4FUN

* Formalised semantics of C is difficult, “core-imp” simpler

12

Thank you for your attention!

Questions or comments

