Towards using Formal Behavioral
Specifications in IEC 61499 for
Remote Software Health Monitoring

Jan Olaf Blech

with figures from Monika Wenger and Alois Zoitl

® RMIT

UNIVERSITY

Overview

IEC 61499 installation

Monitor in the
“Cloud”

~——_

&

$J

service center

further
processing

[Monika Wenger, Alois Zoitl, Jan Olaf Blech, lan Peake,
Lasith Fernando. Cloud Based Monitoring of Timed Events
for Industrial Automation. Automated Testing of
Cyber-Physical Systems in the Cloud, IEEE, 2015.]

Ingredients: behavioral types as monitor specification, IEC 61499, demonstrator setup

Motivation: “Business Case”

. IEC 61499 code + monitor controls a remote

machine

2. IEC 61499 based monitoring detects deviation
3. Information is send to a service center

. Service center works on new code version /
resolving the issue

. Remote machine is updated

6. Normal operations continue

No technical staff required at remote machine

Behavioral Types

* Behavioral Types are: Type compatibility
— Formal specification * Type conformance
mechanism

* Type coercion
— Here: based on state ¥YP

machine / regular
expressions Here: ensuring type
— Protocol for component conformance at runtime

Interactions - Runtime monitoring
e Extended Service

Interaction =2
Behavioral types

Behavioral Types

Interface automata [de Alfaro, Henzinger 2001]
Behavioral types in Ptolemy(2) [Lee & al.]
Behavior for UML

e E.g., a Fully Abstract Semantics for UML Components [de Boer
& al. 2005]

Abstract Behavior Types: A Foundation Model for Components and
Objects [Arbab 2003]

Our work: Behavioral Types for OSGi
 Framework proposition: [Blech, Falcone, Ruess, Schaetz 2012]
 Theorem prover connection: [Blech, Schaetz 2012]

* Compatibility checking: [Blech 2013: Towards a Framework for
Behavioral Specifications of OSGi Components.]

* Ensuring behavioral types at runtime: this talk

Behavior Description of IEC 61499

PressureController

Sensor

Read_sensor_fails

ReadSensor+

SEQUENCE Read_sensor_fails
PressureController.ReadSensor+ - Sensor.Read+;
Read+ Sensor.CNFread- = PressureController.CNFsensor-;
I I Sensor.ERROR- = PressureController.CNFsensor-;

CNFsensor- _.\._ END_SEQUENCE
CNFread-

Limits of IEC 61499 service sequence description:

No statement about completeness of event combination
No additional properties

No specific timing constraints

No compatibility check of two service sequences

Limited expressibility

Behavior Description of IEC 61499

SEQUENCE Read_sensor_fails
PressureController.ReadSensor+

— Sensor.Read+;

PressureController Sensor

Read_sensor_fails

ReadSensor+
Sensor.CNFread- (STATUS="read failed")
____________ > }TS_ 1 _Rfa_dt o — PressureController.CNFsensor- (STATUS="read failed");
STATY S_,,fgg';;g;:gfj Sensor.ERROR- (STATUS="read failed")
- CNFread- —> PressureController.CNFsensor- (STATUS="read

STATUS="read failed” failed");
END_SEQUENCE

e Extensions: expressiveness (alternatives,
repetition, values)

Behavioral Type-based
ETFA 2015 Monitoring for IEC 61499 /

Behavioral Type Based Monitoring

Static Checking

* FB type = software component

e unit testing with service
sequences

* No compatibility check

FRECTU 2
Y 4 [Initial Count-up
1 4 JF Service Transaction
Test-Results for: E_.CTU 17.02.2015 10:18:31 = - CU (PV:=5;)
,‘1’ CUO (Q:=FALSE;CV:=1;)
Eventlnputs - . .
cu©) ,1: Service Transaction
R(1) U+ Service Transaction
Datalnputs JF Service Transaction
PV (0) - UINT JF Service Transaction
EventOutputs JF Service Transaction
Eg%go) oy = C?unt up and reset with PV=0
DataOutputs W Service Transaction
Q(0)-BOOL JF Service Transaction
CV(1)- UINT 4 & Service Transaction
Test-Sequence "Initial Count-up” successful ; 20 (Q:=TRUECV:=0;)
TestTransaction 1 success 4 4" Service Transaction
Sent Event: CU - - CU (PV:=1;)

m

Blnterface e ServiceSequence | :=| FBTester J FBTest

Runtime Monitoring

 Compliance of code and
specification during runtime

int FORTE_FBx::update_monitor_pc(int eilD){
switch(this_monitor_state->protocol_state){
case(0) :
if(INITsensor == eilD && true == QO && val[0] >=0)
&& val[0]) <= 1024){
this_monitor_state->protocol_state = 1;
return true;
Jif(INITsensor == eilD && false == Q0 && val[0] >=0
&& val[0] <= 1024){
this_monitor_state->protocol_state = 2;
return true;
lif(ReadSensor == eilD && true == QO){
this_monitor_state_pc->protocol_state = 3;
return true;
lif(ReadSensorID == eilD && false == QO){
this_monitor_state->protocol_state = 4;
return true;
}break; ...
}return 0;}

Service Sequence Specification

Monitoring Results

of the PressureController

Successfully_read_sensor_data

ReadSensor+

CNFsensor+
STATUS="ready™
Value=[0..1024]
Confidence=[0..1]

Read

Read+

CNFread+

Value=[0..1024]

sensor_fails

ReadSensor+

CNFsensor-
STATUS="read
failed™

Read Press
ReadSensor-

CNFsensor-
STATUS="read
farled”

Read+

CNFread-
STATUS="read
farled”

ureController_fails

Read-

CNFread-
STATUS="read
failed™

START |FStartTest=] INITsensorFail
T

STATUS="ready"

Confidence=[0..1] CNFsensor

INITOsensor

‘ ReadSensorFail

T
CNFsensor

|INITsensorsuc
T

INITOsensor

Ir 1 1 1

‘ ReadSensorSuc

T
CNFsensor

| ReadSensorSucRange)—

CNFsensor

ReadSensorSucRange)—
T

INITOsensor

ReadSensorRangeMulti)—

Test Cases Executed by the
PressureController

INITsensor-
INITsensor+

ReadSensor+

INITSensor+

ReadSensor+

Error Log Produced During
Test Case Execution

TRACE: TH#012484ms: OutputEvent: FB
PressureController_v1 sending event:
ReadSensor

TRACE: TH012484ms: InputEvent: FB
PressureSensor_v1 got event: Read
ERROR: T#012484ms: FB
PressureSensor_v1 send wrong
output event CNFread in state 0!
TRACE: TH012484ms: OutputEvent: FB
PressureSensor_v1 sending event:
CNFread

TRACE: TH012484ms: InputEvent: FB
PressureController_v1 got event:
CNFsensor

ERROR: T#012484ms: FB
PressureController_v1 received

wrong input event CNFsensor in state 0!

Conclusion

Results

Extension of service
sequences

Timing information
Runtime monitoring of FBs

Monitoring of multiple
devices using a cloud-based
service

Several experiments have
been conducted

Ongoing Extensions

Reaction to deviation from
an expected behavior
— Reaction at runtime
— System halt and user defined
reactions

Remote debugging and
maintenance as a reaction

to unwanted behavioral
derivations

Detailed evaluation

Thank you very much for your attention

® RMIT

UNIVERSITY

