Tutorials
=========
All of our Jupyter Notebook tutorials are directly accessible via `Binder `__.
At Aidge, we're all about providing state-of-the-art, proven and reusable tools.
This Binder integration means you get a ready-to-use environment right in your browser, making our code immediately reproducible for everyone, everywhere.
To get started with Aidge, follow the Aidge demonstration tutorial.
This tutorial covers the basic features of the Aidge framework, including importing an ONNX model, transforming a neural network graph, running inference, and exporting to C++.
.. nbgallery::
101_first_step.nblink
aidge_ir.nblink
🛠 Aidge functionalities
------------------------
.. nbgallery::
database.nblink
graph_matching.nblink
scheduling.nblink
learning.nblink
ONNX.nblink
backend_cuda.nblink
🔍 Analysis tutorials
----------------------
.. nbgallery::
model_explorer.nblink
static_analysis.nblink
benchmark.nblink
⚙️ Optimization tutorials
-------------------------
.. nbgallery::
ptq.nblink
tiling.nblink
🚀 Export tutorials
--------------------
.. nbgallery::
export_cpp.nblink
export_cpp_quant.nblink
export_cpp_add_impl.nblink
export_trt.nblink
export_stm32.nblink
🔬📊 DNN uncertainty estimation
--------------------------------
.. nbgallery::
CIFAR-10_vs_GTSRB_DNN_uncertainty_estimation_using_Monte_Carlo_Dropout.nblink
Dropout_op_statistical_validation.nblink
Inference_with_a_real_CIFAR-10_input_image.nblink
👨💻 Developer tutorials
-----------------------------
.. nbgallery::
add_new_operator.nblink
If you encounter any difficulties with the tutorials, please create an issue `here `_.
For more information on contributing to Aidge, please refer to the `wiki `_.