Tutorials ========= All of our Jupyter Notebook tutorials are directly accessible via `Binder `__. At Aidge, we're all about providing state-of-the-art, proven and reusable tools. This Binder integration means you get a ready-to-use environment right in your browser, making our code immediately reproducible for everyone, everywhere. To get started with Aidge, follow the Aidge demonstration tutorial. This tutorial covers the basic features of the Aidge framework, including importing an ONNX model, transforming a neural network graph, running inference, and exporting to C++. .. nbgallery:: 101_first_step.nblink aidge_ir.nblink 🛠 Aidge functionalities ------------------------ .. nbgallery:: database.nblink graph_matching.nblink scheduling.nblink learning.nblink ONNX.nblink backend_cuda.nblink 🔍 Analysis tutorials ---------------------- .. nbgallery:: model_explorer.nblink static_analysis.nblink benchmark.nblink ⚙️ Optimization tutorials ------------------------- .. nbgallery:: ptq.nblink tiling.nblink 🚀 Export tutorials -------------------- .. nbgallery:: export_cpp.nblink export_cpp_quant.nblink export_cpp_add_impl.nblink export_trt.nblink export_stm32.nblink 🔬📊 DNN uncertainty estimation -------------------------------- .. nbgallery:: CIFAR-10_vs_GTSRB_DNN_uncertainty_estimation_using_Monte_Carlo_Dropout.nblink Dropout_op_statistical_validation.nblink Inference_with_a_real_CIFAR-10_input_image.nblink 👨‍💻 Developer tutorials ----------------------------- .. nbgallery:: add_new_operator.nblink If you encounter any difficulties with the tutorials, please create an issue `here `_. For more information on contributing to Aidge, please refer to the `wiki `_.