The Aspect] " 5 Development Kit
Developer’s Notebook

Table of Contents

Join Point Signatures
Join Point Matching
Join Point Signatures
Method call join point signatures
Method execution join point signatures
Field get and set join point signatures
Join Point Modifiers
Summary of Join Point Matching
Annotations
Annotations in Java 5
Using Annotations
Retention Policies
Accessing Annotations at Runtime
Annotation Inheritance
Annotating Aspects
Join Point Matching based on Annotations
Annotation Patterns
Type Patterns
Signature Patterns
Field Patterns
Method and Constructor Patterns
Example Pointcuts

Runtime type matching and context exposure

Package and Parameter Annotations

Annotation Inheritance and pointcut matching

Matching based on annotation values

Using Annotations with declare statements
Declare error and declare warning
declare parents
declare precedence

Declare Annotation

Inter-type Declarations

Generics

Generics in Java 5
Declaring Generic Types
Using Generic and Parameterized Types
Subtypes, Supertypes, and Assignability
Generic Methods and Constructors

© ©O© 0 00 0 00 O O U1 b W DD DN DN

DN DN DN DN DN DN DN DN DN DN DNDN PR R 2R s =R R ===
Gl U1 W W W W NN B2 O O O O © O Ul b W W N = = O

Erasure
Generics in Aspect] 5
Matching generic and parameterized types in pointcut expressions
Restricting matching using parameterized types
Generic wildcards and signature matching
Treatment of bridge methods
Runtime type matching with this(), target() and args()
Binding return values in after returning advice
Declaring pointcuts inside generic types
Inter-type Declarations
Declare Parents
Declare Soft
Generic Aspects
Autoboxing and Unboxing
Autoboxing and Unboxing in Java 5
Autoboxing and Join Point matching in Aspect] 5
Inter-type method declarations and method dispatch
Covariance
Covariance in Java 5
Covariant methods and Join Point matching
Varargs
Variable-length Argument Lists in Java 5
Calling Methods and Constructors with variable-length arguments
Using Variable-length arguments in advice and pointcut expressions
Matching signatures based on variable length argument types
Exposing variable-length arguments as context in pointcuts and advice
Enumerated Types
Enumerated Types in Java 5
Enumerated Types in Aspect] 5
The pertypewithin Aspect Instantiation Model
An Annotation Based Development Style
Introduction
Aspect Declarations
Limitations
Pointcuts and Advice
Pointcuts
Type references inside @Aspect] annotations
if() pointcut expressions
Advice
Inter-type Declarations

@DeclareParents

26
26
26
27
28
29
30
33
34
34
35
35
36
41
41
41
42
43
43
43
45
45
45
45
46
46
48
48
48
49
51
51
51
52
52
52
53
53
35
58
59

@DeclareMiXiN. 61

Declare Statements 64
aspectOf() and hasAspect() methods 65
New Reflection Interfaces 66
Using AJTypeSystem. . .o 66
Other Changes In ASPeCt] 5 67
POINtCULS. . . . o 67
Declare SOt 67
Load-Time Weaving. 69
INtrodUCHiONo 69

A Grammar for the Aspect] 5 Language 70

by the Aspect] Team
Copyright (c) 2004, 2005 Contributors. All rights reserved.

This guide describes the changes to the Aspect] language in Aspect] 5. These include support for
Java 5 features, support for an annotation-based development style for aspects and new reflection
and tools APIs. If you are new to Aspect], we recommend you start by reading the programming
guide.

Join Point Signatures

Many of the extensions to the Aspect] language to address the new features of Java 5 are derived
from a simple set of principles for join point matching. In this section, we outline these principles as
a foundation for understanding the matching rules in the presence of annotations, generics,
covariance, varargs, and autoboxing.

Join Point Matching

Aspect] supports 11 different kinds of join points. These are the method call, method execution,
constructor call, constructor execution, field gqet, field set, pre-initialization,

initialization, static initialization, handler, and advice execution join points.

The kinded pointcut designators match based on the kind of a join point. These are the call,
execution, get, set, preinitialization, initialization, staticinitialization, handler, and
adviceexecution designators.

A kinded pointcut is written using patterns, some of which match based on signature, and some of
which match based on modifiers. For example, in the call pointcut designator:

call(ModifierPattern TypePattern TypePattern.IdPattern(TypePatternList) ThrowsPattern)

the modifiers matching patterns are ModifierPattern and ThrowsPattern, and the signature matching
patterns are TypePattern TypePattern.IdPattern(TypePatternList).

A join point has potentially multiple signatures, but only one set of modifiers. A kinded primitive
pointcut matches a particular join point if and only if:

1. They are of the same kind

2. The signature pattern (exactly) matches at least one signature of the join point

3. The modifiers pattern matches the modifiers of the subject of the join point
These rules make it very easily to quickly determine whether a given pointcut matches a given join

point. In the next two sections, we describe what the signature(s) of a join point are, and what the
subjects of join points are.

Join Point Signatures

Call, execution, get, and set join points may potentially have multiple signatures. All other join
points have exactly one signature. The following table summarizes the constituent parts of a join
point signature for the different kinds of join point.

Join Point Return Type Declaring Id Parameter Field Type Exception
Kind Type Types Type
Method call + + + +

Join Point Return Type Declaring Id Parameter Field Type Exception

Kind Type Types Type
Method + + + +

execution

Constructor + +

call

Constructor + +

execution

Field get + + +

Field set + + +

Pre- + +

initialization

Initialization + +

Static +

initialization

Handler +
Advice + +

execution

Note that whilst an advice execution join point has a signature comprising the declaring type of the
advice and the advice parameter types, the adviceexecution pointcut designator does not support
matching based on this signature.

The signatures for most of the join point kinds should be self-explanatory, except for field get and
set, and method call and execution join points, which can have multiple signatures. Each signature
of a method call or execution join point has the same id and parameter types, but the declaring type
and return type (with covariance) may vary. Each signature of a field get or set join point has the
same id and field type, but the declaring type may vary.

The following sections examine signatures for these join points in more detail.

Method call join point signatures

For a call join point where a call is made to a method m(parameter_types) on a target type T (where T
is the static type of the target):

Tt=newT();
t.m("hello"); // <= call join point occurs when this line is executed

Then the signature R(T) T.m(parameter_types) is a signature of the call join point, where R(T) is the
return type of min T, and parameter_types are the parameter types of m. If T itself does not declare a
definition of m(parameter_types), then R(T) is the return type in the definition of m that T inherits.
Given the call above, and the definition of T.m:

interface Q {
R m(String s);
+

class P implements Q {
R m(String s) {...}
}

class S extends P {
R' m(String s) {...}
}

class T extends S {}

ThenR' T.m(String) is a signature of the call join point for t.m("hello").

For each ancestor (super-type) A of T, if m(parameter_types) is defined for that super-type, then R(A)
A.m(parameter_types) is a signature of the call join point, where R(A) is the return type of °
m(parameter_types) as defined in A, or as inherited by A if A itself does not provide a definition of
m(parameter_types).

Continuing the example from above,we can deduce that

R'" S.m(String)
R P.m(String)
R Q.m(String)

are all additional signatures for the call join point arising from the call t.m("hello"). Thus this call
join point has four signatures in total. Every signature has the same id and parameter types, and a
different declaring type.

Method execution join point signatures

Join point signatures for execution join points are defined in a similar manner to signatures for call
join points. Given the hierarchy:

interface Q {
R m(String s);
}

class P implements Q {
R m(String s) {...}
}

class S extends P {
R' m(String s) {...}
}

class T extends S { }

class U extends T {
R" m(String s) {...}
}

Then the execution join point signatures arising as a result of the call to u.m("hello") are:

R'" U.m(String)
R'" S.m(String)
R P.m(String)
R Q.m(String)

Each signature has the same id and parameter types, and a different declaring type. There is one
signature for each type that provides its own declaration of the method. Hence in this example
there is no signature R' T.m(String) as T does not provide its own declaration of the method.

Field get and set join point signatures

For a field get join point where an access is made to a field f of type F on a object with declared type
T,then F T.f is a signature of the get join point.

If T does not directly declare a member f, then for each super type S of T, up to and including the
most specific super type of T that does declare the member f, F S.f is a signature of the join point.
For example, given the hierarchy:

class P {
F f;
}

class S extends P {
F f;
}

class T extends S { }

Then the join point signatures for a field get join point of the field f on an object with declared type
T are:

T T

— un
—+ —h

The signatures for a field set join point are derived in an identical manner.

Join Point Modifiers

Every join point has a single set of modifiers - these include the standard Java modifiers such as
public, private, static, abstract etc.,, any annotations, and the throws clauses of methods and
constructors. These modifiers are the modifiers of the subject of the join point.

The following table defines the join point subject for each kind of join point.

Join Point Kind
Method call

Method execution
Constructor call
Constructor execution
Field get

Field set

Pre-initialization

Initialization

Static initialization

Handler

Advice execution

For example, given the following types

public class X {

protected void dolIt() {...}
+

public class Y extends X {
public void doIt() {...}
}

Subject

The method picked out by Java as the static
target of the method call.

The method that is executing.
The constructor being called.
The constructor executing.
The field being accessed.

The field being set.

The first constructor executing in this
constructor chain.

The first constructor executing in this
constructor chain.

The type being initialized.

The declared type of the exception being
handled.

The advice being executed.

Then the modifiers for a call to (Y y) y.doIt() are simply { public }. The modifiers for a call to (X

x) x.doIt() are{ @Foo, protected }.

Summary of Join Point Matching

A join point has potentially multiple signatures, but only one set of modifiers. A kinded primitive
pointcut matches a particular join point if and only if:

1. They are of the same kind
2. The signature pattern (exactly) matches at least one signature of the join point

3. The modifiers pattern matches the modifiers of the subject of the join point

Given the hierarchy

interface Q {
R m(String s);
+

class P implements Q {

public R m(String s) {...}
}

class S extends P {

public R" m(String s) {...}
}

class T extends S {}

and the program fragment:

P p = new P();
S's =new S();
Tt=newT();

p.m("hello");
s.m("hello");
t.m("hello");

The the pointcut call(@Foo R P.m(String)) matches the call p.m("hello") since both the signature
and the modifiers match. It does not match the call s.m("hello") because even though the signature
pattern matches one of the signatures of the join point, the modifiers pattern does not match the
modifiers of the method m in S which is the static target of the call.

The pointcut call(R' m(String)) matches the calls t.m("hello") and s.m("hello"). It does not match
the call p.m("hello") since the signature pattern does not match any signature for the call join point
ofminP.

Annotations

Annotations in Java 5

This section provides the essential information about annotations in Java 5 needed to understand
how annotations are treated in Aspect] 5. For a full introduction to annotations in Java, please see
the documentation for the Java 5 SDK.

Using Annotations

Java 5 introduces annotation types which can be used to express metadata relating to program
members in the form of annotations. Annotations in Java 5 can be applied to package and type
declarations (classes, interfaces, enums, and annotations), constructors, methods, fields,
parameters, and variables. Annotations are specified in the program source by using the @ symbol.
For example, the following piece of code uses the @Deprecated annotation to indicate that the
obsoleteMethod() has been deprecated:

public void obsoleteMethod() { ... }

Annotations may be marker annotations, single-valued annotations, or multi-valued annotations.
Annotation types with no members or that provide default values for all members may be used
simply as marker annotations, as in the deprecation example above. Single-value annotation types
have a single member, and the annotation may be written in one of two equivalent forms:

({"unchecked"})
public void someMethod() {...}

or

(value={"unchecked"})
public void someMethod() {...}

Multi-value annotations must use the “member-name=value * syntax to specify annotation values.
For example:

(role="supervisor",clearancelLevel=5)
public void someMethod() {...}

Retention Policies

Annotations can have one of three retention policies:

Source-file retention

Annotations with source-file retention are read by the compiler during the compilation process,
but are not rendered in the generated .class files.

Class-file retention

This is the default retention policy. Annotations with class-file retention are read by the compiler
and also retained in the generated .class files.

Runtime retention

Annotations with runtime retention are read by the compiler, retained in the generated .class
files, and also made available at runtime.

Local variable annotations are not retained in class files (or at runtime) regardless of the retention
policy set on the annotation type. See JLS 9.6.1.2.

Accessing Annotations at Runtime

Java 5 supports a new interface, java.lang.reflect.AnnotatedElement, that is implemented by the
reflection classes in Java (Class, Constructor, Field, Method, and Package). This interface gives you
access to annotations that have runtime retention via the getAnnotation, getAnnotations, and
isAnnotationPresent. Because annotation types are just regular Java classes, the annotations
returned by these methods can be queried just like any regular Java object.

Annotation Inheritance

It is important to understand the rules relating to inheritance of annotations, as these have a
bearing on join point matching based on the presence or absence of annotations.

By default annotations are not inherited. Given the following program

class Super {
public void foo() {}

class Sub extends Super {
public void foo() {}
¥

Then Sub does not have the MyAnnotation annotation, and Sub. foo() is not an @0neway method, despite
the fact that it overrides Super.foo() which is.

If an annotation type has the meta-annotation @Inherited then an annotation of that type on a class
will cause the annotation to be inherited by sub-classes. So, in the example above, if the
MyAnnotation type had the @Inherited attribute, then Sub would have the MyAnnotation annotation.

@Inherited annotations are not inherited when used to annotate anything other than a type. A type
that implements one or more interfaces never inherits any annotations from the interfaces it

implements.

Annotating Aspects

Aspect] 5 supports annotations on aspects, and on method, field, constructor, advice, and inter-type
declarations within aspects. Method and advice parameters may also be annotated. Annotations are
not permitted on pointcut declarations or on declare statements.

The following example illustrates the use of annotations in aspects:

@AspectAnnotation
public abstract aspect ObserverProtocol {

@InterfaceAnnotation
interface Observer {}

@InterfaceAnnotation
interface Subject {}

@ITDFieldAnnotation
private List<Observer> Subject.observers;

@ITDMethodAnnotation
public void Subject.addObserver(Observer o) {
observers.add(o);

}

@ITDMethodAnnotation
public void Subject.removeObserver(Observer o) {
observers.remove(o);

}

@MethodAnnotation
private void notifyObservers(Subject subject) {
for(Observer o : subject.observers)
notifyObserver(o,subject);

/**

* Delegate to concrete sub-aspect the actual form of

* notification for a given type of Observer.

*/

@MethodAnnotation

protected abstract void notifyObserver(Observer o, Subject s);

/* no annotations on pointcuts */
protected abstract pointcut observedEvent(Subject subject);

@AdviceAnnotation
after(Subject subject) returning : observedEvent(subject) {

notifyObservers(subject);

An annotation on an aspect will be inherited by sub-aspects, iff it has the @Inherited meta-
annotation.

Aspect] 5 supports a new XLint warning, "the pointcut associated with this advice does not match
any join points". The warning is enabled by default and will be emitted by the compiler if the
pointcut expression associated with an advice statement can be statically determined to not match
any join points. The warning can be suppressed for an individual advice statement by using the
@SuppressAjWarnings({"adviceDidNotMatch"}) annotation. This works in the same way as the Java 5
SuppressWarnings annotation (See JLS 9.6.1.5), but has class file retention.

import org.aspectj.lang.annotation.SuppressAjWarnings;
public aspect AnAspect {
pointcut anInterfaceOperation() : execution(* AnInterface.*(..));

// may not match if there are no implementers of the
interface...
before() : anInterfaceOperation() {
// do something...
}

("adviceDidNotMatch") // alternate form
after() returning : anInterfaceOperation() {
// do something...
}
}

Join Point Matching based on Annotations

This section discusses changes to type pattern and signature pattern matching in Aspect] 5 that
support matching join points based on the presence or absence of annotations. We then discuss
means of exposing annotation values within the body of advice.

Annotation Patterns

For any kind of annotated element (type, method, constructor, package, etc.), an annotation pattern
can be used to match against the set of annotations on the annotated element.An annotation
pattern element has one of two basic forms:

* @<qualified-name>, for example, @Foo, or @org.xyz.Foo.

* @(<type-pattern>), for example, @(org.xyz..*), or @(Foo || Boo)

These simple elements may be negated using !, and combined by simple concatentation. The
pattern @Foo @Boo matches an annotated element that has both an annotation of type Foo and an
annotation of type Boo.

Some examples of annotation patterns follow:

@Immutable

Matches any annotated element which has an annotation of type Immutable.

l@Persistent

Matches any annotated element which does not have an annotation of type Persistent.

@Foo @Goo

Matches any annotated element which has both an annotation of type Foo and an annotation of
type Goo.

@(Foo || Goo)
Matches any annotated element which has either an annotation of a type matching the type

pattern (Foo || Goo). In other words, an annotated element with either an annotation of type
Foo or an annotation of type Goo (or both). (The parenthesis are required in this example).

@(org.xyz..*)
Matches any annotated element which has either an annotation of a type matching the type

pattern (org.xyz..*). In other words, an annotated element with an annotation that is declared
in the org.xyz package or a sub-package. (The parenthesis are required in this example).

Type Patterns

Aspect] 1.5 extends type patterns to allow an optional AnnotationPattern prefix.

TypePattern := SimpleTypePattern |
"I'' TypePattern |
"(" AnnotationPattern? TypePattern ")’
TypePattern '&&' TypePattern |

TypePattern '||"' TypePattern
SimpleTypePattern := DottedNamePattern '+'? '[]'*
DottedNamePattern := FullyQualifiedName RestOfNamePattern? |

"*' NotStarNamePattern?
RestOfNamePattern := '..' DottedNamePattern |

"*' NotStarNamePattern?
NotStarNamePattern := FullyQualifiedName RestOfNamePattern? |

".." DottedNamePattern

FullyQualifiedName := JavaldentifierCharacter+ ('.' JavaldentifierCharacter+)*

Note that in most cases when annotations are used as part of a type pattern, the parenthesis are
required (as in (@Foo Hello+)). In some cases (such as a type pattern used within a within or handler
pointcut expression), the parenthesis are optional:

OptionalParensTypePattern := AnnotationPattern? TypePattern

The following examples illustrate the use of annotations in type patterns:

(@Immutable *)

Matches any type with an @Immutable annotation.

('@Immutable *)

Matches any type which does not have an @Immutable annotation.

(@Immutable (org.xyz.* || org.abc.*))

Matches any type in the org.xyz or org.abc packages with the @Immutable annotation.

((@Immutable Foo+) || Goo)

Matches a type Foo or any of its subtypes, which have the @Immutable annotation, or a type Goo.

((@(Immutable || NonPersistent) org.xyz..*)

Matches any type in a package beginning with the prefix org.xyz, which has either the
@Immutable annotation or the @NonPersistent annotation.

(@Immutable @NonPersistent org.xyz..*)

Matches any type in a package beginning with the prefix org.xyz, which has both an @Immutable
annotation and an @NonPersistent annotation.

(e(eInherited) org.xyz..)

Matches any type in a package beginning with the prefix org.xyz, which has an inheritable
annotation. The annotation pattern @(@Inherited *) matches any annotation of a type matching
the type pattern @Inherited *, which in turn matches any type with the @Inherited annotation.

Signature Patterns

Field Patterns

A FieldPattern can optionally specify an annotation-matching pattern as the first element:

FieldPattern :=
AnnotationPattern? FieldModifiersPattern?
TypePattern (TypePattern DotOrDotDot)? SimpleNamePattern

FieldModifiersPattern := '!'? FieldModifier FieldModifiersPattern*

FieldModifier := 'public' | 'private' | 'protected' | 'static' |
"transient' | 'final’

DotOrDotDot := "." | '..'

SimpleNamePattern := JavaldentifierChar+ ('*' SimpleNamePattern)?

If present, the AnnotationPattern restricts matches to fields with annotations that match the pattern.
For example:

@SensitiveData * *

Matches a field of any type and any name, that has an annotation of type @SensitiveData

@SensitiveData List org.xyz...

Matches a member field of a type in a package with prefix org.xzy, where the field is of type
List, and has an annotation of type @SensitiveData

(@SensitiveData) org.xyz...*

Matches a member field of a type in a package with prefix org.xzy, where the field is of a type
which has a @SensitiveData annotation.

@Foo (@Goo) (@Hoo *).

Matches a field with an annotation @Foo, of a type with an annotation @Goo, declared in a type
with annotation @Hoo.

@Persisted @Classified * *

Matches a field with an annotation @Persisted and an annotation @Classified.

Method and Constructor Patterns

A MethodPattern can optionally specify an annotation-matching pattern as the first element.

MethodPattern :=
AnnotationPattern? MethodModifiersPattern? TypePattern
(TypePattern DotOrDotDot)? SimpleNamePattern
"(" FormalsPattern ')'ThrowsPattern?

MethodModifiersPattern := '!'? MethodModifier MethodModifiersPattern*

MethodModifier := 'public' | 'private' | 'protected' | 'static' |

"synchronized' | 'final’

FormalsPattern := ".." (',"' FormalsPatternAfterDotDot)* |
OptionalParensTypePattern (',' FormalsPattern)* |
TypePattern '..."

FormalsPatternAfterDotDot :=
OptionalParensTypePattern (',' FormalsPatternAfterDotDot)* |
TypePattern '...'

ThrowsPattern := "throws' TypePatternList

TypePatternList := TypePattern (',' TypePattern)*

A ConstructorPattern has the form

ConstructorPattern :=
AnnotationPattern? ConstructorModifiersPattern?
(TypePattern DotOrDotDot)? 'new' '(' FormalsPattern ')’

ThrowsPattern?
ConstructorModifiersPattern := '"!'? ConstructorModifier ConstructorModifiersPattern®
ConstructorModifier := 'public' | 'private' | 'protected'

The optional AnnotationPattern at the beginning of a method or constructor pattern restricts
matches to methods/constructors with annotations that match the pattern. For example:

@neway * *(..)

Matches a method with any return type and any name, that has an annotation of type @0neway.

@Transaction * (@Persistent org.xyz..).(..)

Matches a method with the @Transaction annotation, declared in a type with the @Persistent
annotation, and in a package beginning with the org.xyz prefix.

* (@Immutable *,..)

Matches any method taking at least one parameter, where the parameter type has an annotation
@Immutable.

Example Pointcuts

within(@Secure *)

Matches any join point where the code executing is declared in a type with an @Secure
annotation. The format of the within pointcut designator in Aspect] 5 is ‘within' ('
OptionalParensTypePattern ')'.

staticinitialization(@Persistent *)

Matches the staticinitialization join point of any type with the @Persistent annotation. The
format of the staticinitialization pointcut designator in Aspect] 5 is 'staticinitialization’
"(" OptionalParensTypePattern ')'.

call(@Oneway * *(..))

Matches a call to a method with a @0neway annotation.

execution(public (@Immutable) org.xyz...*(..))

The execution of any public method in a package with prefix org.xyz, where the method returns
an immutable result.

set(@Cachable * *)
Matches the set of any cachable field.

handler(!@Catastrophic *)

Matches the handler join point for the handling of any exception that is not Catastrophic. The
format of the handler pointcut designator in Aspect] 5 is 'handler' (!
OptionalParensTypePattern ')'.

Runtime type matching and context exposure

Aspect] 5 supports a set of "@" pointcut designators which can be used both to match based on the
presence of an annotation at runtime, and to expose the annotation value as context in a pointcut

or advice definition. These designators are @args, @this, @target, @within, @withincode, and
@annotation

It is a compilation error to attempt to match on an annotation type that does not have runtime
retention using @this, @target or @args. It is a compilation error to attempt to use any of these
designators to expose an annotation value that does not have runtime retention.

The this(), target(), and args() pointcut designators allow matching based on the runtime type of
an object, as opposed to the statically declared type. In Aspect] 5, these designators are
supplemented with three new designators : @this() (read, "this annotation"), @target(), and @args().

Like their counterparts, these pointcut designators can be used both for join point matching, and to
expose context. The format of these new designators is:

AtThis := '@this' '(' AnnotationOrIdentifer ")'
AtTarget := '@target' '(' AnnotationOrIdentifier ')’
AnnotationOrIdentifier := FullyQualifiedName | Identifier
AtArgs := '@args' '(' AnnotationsOrlIdentifiersPattern ')’
AnnotationsOrIdentifiersPattern :=
".." (', AnnotationsOrIdentifiersPatternAfterDotDot)? |
AnnotationOrIdentifier (',' AnnotationsOrIdentifiersPattern)* |

"*'" ('," AnnotationsOrIdentifiersPattern)*

AnnotationsOrIdentifiersPatternAfterDotDot :=
AnnotationOrIdentifier (',' AnnotationsOrIdentifiersPatternAfterDotDot)*

"' ("," AnnotationsOrIdentifiersPatternAfterDotDot)*

The forms of ethis() and @target() that take a single annotation name are analogous to their
counterparts that take a single type name. They match at join points where the object bound to this
(or target, respectively) has an annotation of the specified type. For example:

@this(Foo)

Matches any join point where the object currently bound to 'this' has an annotation of type Foo.

call(* *(..)) && etarget(Classified)

Matches a call to any object where the target of the call has a @Classified annotation.

Annotations can be exposed as context in the body of advice by using the forms of @this(),
@target() and @args() that use bound variables in the place of annotation names. For example:

pointcut callToClassifiedObject(Classified classificationInfo) :
call(* *(..)) && (classificationInfo);

pointcut txRequiredMethod(Tx transactionAnnotation) :
execution(* *(..)) && (transactionAnnotation)
&% if(transactionAnnotation.policy() == TxPolicy.REQUIRED);

The @args pointcut designator behaves as its args counterpart, matching join points based on
number and position of arguments, and supporting the * wildcard and at most one .. wildcard. An
annotation at a given position in an @args expression indicates that the runtime type of the
argument in that position at a join point must have an annotation of the indicated type. For
example:

/**

* matches any join point with at least one argument, and where the
* type of the first argument has the @Classified annotation

*/

pointcut classifiedArgument() : (Classified,..);

/**

* matches any join point with three arguments, where the third
* argument has an annotation of type @Untrusted.
*/
pointcut untrustedData(Untrusted untrustedDataSource) :
, untrustedDataSource);

In addition to accessing annotation information at runtime through context binding, access to
AnnotatedElement information is also available reflectively with the body of advice through the
thisJoinPoint, thisJoinPointStaticPart, and thisEnclosingJoinPointStaticPart variables. To access
annotations on the arguments, or object bound to this or target at a join point you can use the
following code fragments:

Annotation[] thisAnnotations = thisJoinPoint.getThis().getClass().getAnnotations();
Annotation[] targetAnnotations = thisJoinPoint.getTarget().getClass().getAnnotations(
)i

Annotation[] firstParamAnnotations = thisJoinPoint.getArgs()[0].getClass()
.getAnnotations();

The @within and @withincode pointcut designators match any join point where the executing code is
defined within a type (@within), or a method/constructor (ewithincode) that has an annotation of the
specified type. The form of these designators is:

AtWithin := "ewithin"' "(' AnnotationOrIdentifier ')'
AtWithinCode := '@withincode' '(' AnnotationOrIdentifier ')'

Some examples of using these designators follow:

@within(Foo)

Matches any join point where the executing code is defined within a type which has an
annotation of type Foo.

pointcut insideCriticalMethod(Critical c) : @withincode(c);

Matches any join point where the executing code is defined in a method or constructor which
has an annotation of type @Critical, and exposes the value of the annotation in the parameter c.

The @annotation pointcut designator matches any join point where the subject of the join point has
an annotation of the given type. Like the other @pcds, it can also be used for context exposure.

AtAnnotation := '@annotation' '(' AnnotationOrIdentifier ')'

The subject of a join point is defined in the table in chapter one of this guide.

Access to annotation information on members at a matched join point is also available through the
getSignature method of the JoinPoint and JoinPoint.StaticPart interfaces. The Signature interfaces
are extended with additional operations that provide access to the java.lang.reflect Method, Field
and Constructor objects on which annnotations can be queried. The following fragment illustrates
an example use of this interface to access annotation information.

Signature sig = thisJoinPointStaticPart.getSignature();
AnnotatedElement declaringTypeAnnotationInfo = sig.getDeclaringType();
if (sig instanceof MethodSignature) {

// this must be a call or execution join point

Method method = ((MethodSignature)sig).getMethod();
}

Note again that it would be nicer to add the method getAnnotationInfo directly to MemberSignature,
but this would once more couple the runtime library to Java 5.

The @this,@target and @args pointcut designators can only be used to match against annotations
that have runtime retention. The @within, @withincode and @annotation pointcut designators can
only be used to match against annotations that have at least class-file retention, and if used in the
binding form the annotation must have runtime retention.

Package and Parameter Annotations

Matching on package annotations is not supported in Aspect]. Support for this capability may be
considered in a future release.

Parameter annotation matching is being added in Aspect]1.6. Initially only matching is supported
but binding will be implemented at some point. Whether the annotation specified in a pointcut
should be considered to be an annotation on the parameter type or an annotation on the parameter
itself is determined through the use of parentheses around the parameter type. Consider the
following:

class AnnotatedType {}

class C {

public void foo(AnnotatedType a) {}

public void goo(String s) {}
}

The method foo has a parameter of an annotated type, and can be matched by this pointcut:
pointcut p(): execution(* *(*));

When there is a single annotation specified like this, it is considered to be part of the type pattern in
the match against the parameter: 'a parameter of any type that has the annotation
@SomeAnnotation'.

To match the parameter annotation case, the method goo, this is the pointcut:
pointcut p(): execution(* *((*)));

The use of parentheses around the wildcard is effectively indicating that the annotation should be
considered separately to the type pattern for the parameter type: 'a parameter of any type that has
a parameter annotation of @SomeAnnotation'.

To match when there is a parameter annotation and an annotation on the type as well:
pointcut p(): execution(* *((*)));

The parentheses are grouping @SomeOtherAnnotation with the * to form the type pattern for the
parameter, then the type @SomeAnnotation will be treated as a parameter annotation pattern.

Annotation Inheritance and pointcut matching

According to the Java 5 specification, non-type annotations are not inherited, and annotations on
types are only inherited if they have the @Inherited meta-annotation. Given the following program:

class C1 {

public void aMethod() {...}
}

class (2 extends C1 {
public void aMethod() {...}
+

class Main {
public static void main(String[] args) {
C1 ¢1 = new C1();
€2 c2 = new C2();
c1.aMethod();
c2.aMethod();

}
}
aspect X {
pointcut annotated(2MethodCall() :
call(* (2.aMethod());

pointcut annotatedMethodCall() :
call(* aMethod());

The pointcut annotatedC2MethodCall will not match anything since the definition of aMethod in (2
does not have the annotation.

The pointcut annotatedMethodCall matches c1.aMethod() but not c2.aMethod(). The call to c2.aMethod
is not matched because join point matching for modifiers (the visibility modifiers, annotations, and
throws clause) is based on the subject of the join point (the method actually being called).

Matching based on annotation values

The if pointcut designator can be used to write pointcuts that match based on the values
annotation members. For example:

pointcut txRequiredMethod(Tx transactionAnnotation) :
execution(* *(..)) && (transactionAnnotation)
&& if(transactionAnnotation.policy() == TxPolicy.REQUIRED);

Using Annotations with declare statements

Declare error and declare warning

Since pointcut expressions in Aspect] 5 support join point matching based on annotations, this

facility can be exploited when writing declare warning and declare error statements. For example:

declare warning : withincode(* *(,.)) &&
call(R (())
: "Expensive operation called from within performance critical
section";

declare error : call(* org.xyz.model.*.*(..)) &&
! (Trusted)
: "Untrusted code should not call the model classes directly";

declare parents
The general form of a declare parents statement is:

declare parents : TypePattern extends Type;
declare parents : TypePattern implements Typelist;

Since Aspect] 5 supports annotations as part of a type pattern specification, it is now possible to
match types based on the presence of annotations with either class-file or runtime retention. For
example:

declare parents : (@Secured *) implements SecuredObject;

All types with the @Secured annotation implement the SecuredObject inteface.

declare parents : (@Secured BankAccount+) implements SecuredObject;

The subset of types drawn from the BankAccount type and any subtype of BankAccount, where the
@Secured annotation is present, implement the SecuredObject interface.

An annotation type may not be used as the target of a declare parents statement. If an annotation
type is named explicitly as the target of a declare parents statement, a compilation error will result.
If an annotation type is matched by a non-explicit type pattern used in a declare parents statement
it will be ignored (and an XLint warning issued).

declare precedence

The general form of a declare precedence statement is:
declare precedence : TypePatlList;

Aspect] 5 allows the type patterns in the list to include annotation information as part of the
pattern specification. For example:

declare precedence : (@Security),;

All aspects with the @Security annotation take precedence over any other aspects in the system.

(Or, more informally, all security-related aspects take precedence).

Declare Annotation

Aspect] 5 supports a new kind of declare statement, declare annotation. This takes different forms
according to the recipient of the annotation: declare @type for types, declare @method for methods,
declare @constructor for constructors, and declare @field for fields. declare @package may be
supported in a future release.

The general form is:
declare @<kind> : ElementPattern : Annotation ;

Where annotation is a regular annotation expression as defined in the Java 5 language. If the
annotation has the @Target meta-annotation, then the elements matched by ElementPattern must be
of the kind specified by the @Target annotation.

ElementPattern is defined as follows:

ElementPattern := TypePattern |
MethodPattern |
ConstructorPattern |
FieldPattern

The following examples illustrate the use of declare annotation.

declare @type : org.xyz.model..* : @BusinessDomain ;

All types defined in a package with the prefix org.xyz.model have the @BusinessDomain
annotation. declare @method : public * BankAccount+.*(..) :

@Secured(role="supervisor")

All public methods in BankAccount and its subtypes have the annotation
@Secured(role="supervisor"). declare @constructor : BankAccount+.new(..) :

@Secured(role="supervisor")

All constructors in BankAccount ~and its subtypes have the annotation
@Secured(role="supervisor").

declare @field : * DAO+.* : @Persisted;
All fields defined in DAO or its subtypes have the @Persisted annotation.

Inter-type Declarations

An annotation type may not be the target of an inter-type declaration.

Generics

Generics in Java 5

This section provides the essential information about generics in Java 5 needed to understand how
generics are treated in Aspect] 5. For a full introduction to generics in Java, please see the
documentation for the Java 5 SDK.

Declaring Generic Types

A generic type is declared with one or more type parameters following the type name. By
convention formal type parameters are named using a single letter, though this is not required. A
simple generic list type (that can contain elements of any type E) could be declared:

interface List<E> {
Iterator<E> iterator();
void add(E anItem);
E remove(E anItem);

It is important to understand that unlike template mechanisms there will only be one type, and one
class file, corresponding to the List interface, regardless of how many different instantiations of the
List interface a program has (each potentially providing a different value for the type parameter E).
A consequence of this is that you cannot refer to the type parameters of a type declaration in a
static method or initializer, or in the declaration or initializer of a static variable.

A parameterized type is an invocation of a generic type with concrete values supplied for all of its
type parameters (for example, List<String> or List<Food>).

A generic type may be declared with multiple type parameters. In addition to simple type
parameter names, type parameter declarations can also constrain the set of types allowed by using
the extends keyword. Some examples follow:

class Foo<T> {--}

A class Foo with one type parameter, T.

class Foo<T,S> {--'}

A class Foo with two type parameters, T and S.

class Foo<T extends Number> {:--}

A class Foo with one type parameter T, where T must be instantiated as the type Number or a
subtype of Number.

class Foo<T, S extends T> {---}

A class Foo with two type parameters, T and S. Foo must be instantiated with a type S that is a
subtype of the type specified for parameter T.

class Foo<T extends Number & Comparable> {:--}

A class Foo with one type parameter, T. Foo must be instantiated with a type that is a subtype of
Number and that implements Comparable.

Using Generic and Parameterized Types

You declare a variable (or a method/constructor argument) of a parameterized type by specifying a
concrete type specfication for each type parameter in the generic type. The following example
declares a list of strings and a list of numbers:

List<String> strings;
List<Number> numbers;

It is also possible to declare a variable of a generic type without specifying any values for the type
parameters (a raw type). For example, List strings. In this case, unchecked warnings may be
issued by the compiler when the referenced object is passed as a parameter to a method expecting
a parameterized type such as a List<String>. New code written in the Java 5 language would not be
expected to use raw types.

Parameterized types are instantiated by specifying type parameter values in the constructor call
expression as in the following examples:

List<String> strings = new MyListImpl<String>();
List<Number> numbers = new MyListImpl<Number>();

When declaring parameterized types, the ? wildcard may be used, which stands for "some type".
The extends and super keywords may be used in conjunction with the wildcard to provide upper
and lower bounds on the types that may satisfy the type constraints. For example:

List<?>

A list containing elements of some type, the type of the elements in the list is unknown.

List<? extends Number>

A list containing elements of some type that extends Number, the exact type of the elements in
the list is unknown.

List<? super Double>

A list containing elements of some type that is a super-type of Double, the exact type of the
elements in the list is unknown.

A generic type may be extended as any other type. Given a generic type Foo<T> then a subtype Goo
may be declared in one of the following ways:

class Goo extends Foo

Here Foo is used as a raw type, and the appropriate warning messages will be issued by the
compiler on attempting to invoke methods in Foo.

class Goo<E> extends Foo

Goo is a generic type, but the super-type Foo is used as a raw type and the appropriate warning
messages will be issued by the compiler on attempting to invoke methods defined by Foo.

class Goo<E> extends Foo<E>

This is the most usual form. Goo is a generic type with one parameter that extends the generic
type Foo with that same parameter. So Goo<String< is a subclass of Foo<String>.

class Goo<E,F> extends Foo<E>

Goo is a generic type with two parameters that extends the generic type Foo with the first type
parameter of Goo being used to parameterize Foo. So Goo<String,Integer< is a subclass of
Foo<String>.

class Goo extends Foo<String>

Goo is a type that extends the parameterized type Foo<String>.

A generic type may implement one or more generic interfaces, following the type binding rules
given above. A type may also implement one or more parameterized interfaces (for example, class
X implements List<String>, however a type may not at the same time be a subtype of two interface
types which are different parameterizations of the same interface.

Subtypes, Supertypes, and Assignability

The supertype of a generic type C is the type given in the extends clause of C, or Object if no extends
clause is present. Given the type declaration

public interface List<E> extends Collection<E> {... }

then the supertype of List<E> is Collection<E>.

The supertype of a parameterized type P is the type given in the extends clause of P, or Object if no
extends clause is present. Any type parameters in the supertype are substituted in accordance with
the parameterization of P. An example will make this much clearer: Given the type List<Double>
and the definition of the List given above, the direct supertype is Collection<Double>. List<Double>
is not considered to be a subtype of List<Number>.

An instance of a parameterized type P<T1,T2,::-Tn>'may be assigned to a variable of the same type
or a supertype without casting. In addition it may be assigned to a variable ‘R<S1,S2,:+-Sm>
where R is a supertype of P (the supertype relationship is reflexive), m < n, and for all type
parameters S1..m, Tm equals Sm or Sm is a wildcard type specification and Tm falls within the bounds
of the wildcard. For example, List<String> can be assigned to a variable of type Collection<?>, and
List<Double> can be assigned to a variable of type List<? extends Number>.

Generic Methods and Constructors

A static method may be declared with one or more type parameters as in the following declaration:

static <T> T first(List<T> ts) { ... }

Such a definition can appear in any type, the type parameter T does not need to be declared as a
type parameter of the enclosing type.

Non-static methods may also be declared with one or more type parameters in a similar fashion:
<T extends Number> T max(T t1, T t2) { ... }

The same technique can be used to declare a generic constructor.

Erasure

Generics in Java are implemented using a technique called erasure. All type parameter information
is erased from the run-time type system. Asking an object of a parameterized type for its class will
return the class object for the raw type (eg. List for an object declared to be of type List<String>. A
consequence of this is that you cannot at runtime ask if an object is an instanceof a parameterized

type.

Generics in Aspect] 5

Aspect] 5 provides full support for all of the Java 5 language features, including generics. Any legal
Java 5 program is a legal Aspect] 5 progam. In addition, Aspect] 5 provides support for generic and
parameterized types in pointcuts, inter-type declarations, and declare statements. Parameterized
types may freely be used within aspect members, and support is also provided for generic abstract
aspects.

Matching generic and parameterized types in pointcut expressions

The simplest way to work with generic and parameterized types in pointcut expressions and type
patterns is simply to use the raw type name. For example, the type pattern List will match the
generic type List<E> and any parameterization of that type (List<String>, List<?>, List<? extends
Number> and so on. This ensures that pointcuts written in existing code that is not generics-aware
will continue to work as expected in Aspect] 5. It is also the recommended way to match against
generic and parameterized types in Aspect] 5 unless you explicitly wish to narrow matches to
certain parameterizations of a generic type.

Generic methods and constructors, and members defined in generic types, may use type variables
as part of their signature. For example:

public class Utils {

/** static generic method */
static <T> T first(List<T> ts) { ... }

/** instance generic method */

<T extends Number> T max(T t1, T t2) { ... }

}

public class G<T> {

// field with parameterized type
T myData;

// method with parameterized return type
public List<T> getAllDataltems() {...}

Aspect] 5 does not allow the use of type variables in pointcut expressions and type patterns.
Instead, members that use type parameters as part of their signature are matched by their erasure.
Java 5 defines the rules for determing the erasure of a type as follows.

Let |T| represent the erasure of some type T. Then:
* The erasure of a parameterized type T<T1,::-,Tn>is | T|. For example, the erasure of List<String>
is List.
» The erasure of a nested type T.C is | T|.C. For example, the erasure of the nested type Foo<T>.Bar
is Foo.Bar.

* The erasure of an array type T[] is | T|[]. For example, the erasure of List<String>[]is List[].

» The erasure of a type variable is its leftmost bound. For example, the erasure of a type variable
Pis Object, and the erasure of a type variable N extends Number is Number.

* The erasure of every other type is the type itself.

Applying these rules to the earlier examples, we find that the methods defined in Utils can be
matched by a signature pattern matching static Object Utils.first(List) and Number
Utils.max(Number, Number) respectively. The members of the generic type G can be matched by a
signature pattern matching Object G.myData and public List G.getAllDataltems() respectively.

Restricting matching using parameterized types

Pointcut matching can be further restricted to match only given parameterizations of parameter
types (methods and constructors), return types (methods) and field types (fields). This is achieved
by specifying a parameterized type pattern at the appropriate point in the signature pattern. For
example, given the class Foo:

public class Foo {

List<String> myStrings;
List<Float> myFloats;

public List<String> getStrings() { return myStrings; }
public List<Float> getFloats() { return myFloats; }

public void addStrings(List<String> evenMoreStrings) {
myStrings.addAll(evenMoreStrings);
}

Then a get join point for the field myStrings can be matched by the pointcut get(List Foo.myStrings)
and by the pointcut get(List<String> Foo.myStrings), but not by the pointcut get(List<Number> *).

A get join point for the field myFloats can be matched by the pointcut get(List Foo.myFloats), the
pointcut get(List<Float> *), and the pointcut get(List<Number+> *). This last example shows how
Aspect] type patterns can be used to match type parameters types just like any other type. The
pointcut get(List<Double> *) does not match.

The execution of the methods getStrings and getFloats can be matched by the pointcut expression
execution(List get*(..)), and the pointcut expression execution(List<*> get*(..)), but only

getStrings is matched by execution(List<String> get*(..)) and only getFloats is matched by
execution(List<Number+> get*(..))

A call to the method addStrings can be matched by the pointcut expression call(*
addStrings(List)) and by the expression call(* addStrings(List<String>)), but not by the
expression call(* addStrings(List<Number>)).

Remember that any type variable reference in a generic member is always matched by its erasure.
Thus given the following example:

class G<T> {
List<T> foo(List<String> 1s) { return null; }
+

The execution of foo can be matched by execution(List foo(List)), execution(List
foo(List<String>>)), and execution(* foo(List<String<))‘but not by ‘execution(List<Object>
foo(List<String>>) since the erasure of List<T>is List and not List<Object>.

Generic wildcards and signature matching

When it comes to signature matching, a type parameterized using a generic wildcard is a distinct
type. For example, List<?> is a very different type to List<String>, even though a variable of type
List<String> can be assigned to a variable of type List<?>. Given the methods:

class C {
public void foo(List<? extends Number> 1istOfSomeNumberType) {}
public void bar(List<?> 1istOfSomeType) {}
public void goo(List<Double> 1istOfDoubles) {}

}

execution(* C.*(List))

Matches an execution join point for any of the three methods.

execution(* C.*(List<? extends Number>))

matches only the execution of foo, and not the execution of goo since List<? extends Number> and
List<Double> are distinct types.

execution(* C.*(List<?>))

matches only the execution of bar.

execution(* C.*(List<? extends Object+>))

matches both the execution of foo and the execution of bar since the upper bound of List<?> is
implicitly Object.

Treatment of bridge methods

Under certain circumstances a Java 5 compiler is required to create bridge methods that support the
compilation of programs using raw types. Consider the types

class Generic<T> {
public T foo(T someObject) {
return someObject;
}
}

class SubGeneric<N extends Number> extends Generic<N> {
public N foo(N someNumber) {
return someNumber;

}
}

The class SubGeneric extends Generic and overrides the method foo. Since the upper bound of the
type variable N in SubGeneric is different to the upper bound of the type variable T in Generic, the
method foo in SubGeneric has a different erasure to the method foo in Generic. This is an example of
a case where a Java 5 compiler will create a bridge method in SubGeneric. Although you never see it,
the bridge method will look something like this:

public Object foo(Object arg) {
Number n = (Number) arg; // "bridge" to the signature defined in this type
return foo(n);

}

Bridge methods are synthetic artefacts generated as a result of a particular compilation strategy
and have no execution join points in Aspect] 5. So the pointcut execution(Object
SubGeneric.foo(Object)) does not match anything. (The pointcut execution(Object
Generic.foo(Object)) matches the execution of foo in both Generic and SubGeneric since both are
implementations of Generic.foo).

It is possible to call a bridge method as the following short code snippet demonstrates. Such a call
does result in a call join point for the call to the method.

SubGeneric rawType = new SubGeneric();

rawType.foo("hi"); // call to bridge method (will result in a runtime failure in this
case)

Object n = new Integer(5);

rawType.foo(n); // call to bridge method that would succeed at runtime

Runtime type matching with this(), target() and args()

The this(), target(), and args() pointcut expressions all match based on the runtime type of their
arguments. Because Java 5 implements generics using erasure, it is not possible to ask at runtime
whether an object is an instance of a given parameterization of a type (only whether or not it is an
instance of the erasure of that parameterized type). Therefore Aspect] 5 does not support the use of
parameterized types with the this() and target() pointcuts. Parameterized types may however be
used in conjunction with args(). Consider the following class

public class C {
public void foo(List<String> 1istOfStrings) {}

public void bar(List<Double> listOfDoubles) {}

public void goo(List<? extends Number> 1istOfSomeNumberType) {}
¥

args(List)

will match an execution or call join point for any of these methods

args(List<String>)

will match an execution or call join point for foo.

args(List<Double>)

matches an execution or call join point for bar, and may match at an execution or call join point
for goo since it is legitimate to pass an object of type List<Double> to a method expecting a List<?
extends Number>.

In this situation, a runtime test would normally be applied to ascertain whether or not the
argument was indeed an instance of the required type. However, in the case of parameterized
types such a test is not possible and therefore Aspect] 5 considers this a match, but issues an
unchecked warning. For example, compiling the aspect A below with the class C produces the

compilation warning: unchecked match of List<Double> with List<? extends Number> when
argument 1is an instance of List at join point method-execution(void C.goo(List<? extends

Number>)) [Xlint:uncheckedArgument];

public aspect A {
before(List<Double> 1istOfDoubles) : execution(* C.*(..)) && args(listOfDoubles) {

for (Double d : 1istOfDoubles) {
// do something
}

Like all Lint messages, the uncheckedArgument warning can be configured in severity from the
default warning level to error or even ignore if preferred. In addition, Aspect] 5 offers the
annotation @SuppressAjWarnings which is the Aspect] equivalent of Java’s @SuppressWarnings
annotation. If the advice is annotated with @SuppressWarnings then all lint warnings issued during
matching of pointcut associated with the advice will be suppressed. To suppress just an
uncheckedArgument warning, use the annotation @SuppressWarnings("uncheckedArgument") as in the
following examples:

import org.aspectj.lang.annotation.SuppressAjWarnings
public aspect A {
// will not see *any* lint warnings for this advice
before(List<Double> 1istOfDoubles) : execution(* C.*(..)) && args(listOfDoubles) {
for (Double d : 1istOfDoubles) {
// do something

}

("uncheckedArgument") // will not see *any* lint warnings for
this advice
before(List<Double> 1istOfDoubles) : execution(* C.*(..)) && args(listOfDoubles) {
for (Double d : 1istOfDoubles) {
// do something
}

The safest way to deal with uncheckedArgument warnings however is to restrict the pointcut to match
only at those join points where the argument is guaranteed to match. This is achieved by combining
args with a call or execution signature matching pointcut. In the following example the advice will
match the execution of bar but not of goo since the signature of goo is not matched by the execution
pointcut expression.

public aspect A {
before(List<Double> 1istOfDoubles) : execution(* C.*(List<Double>)) && args
(1istOfDoubles) {
for (Double d : 1listOfDoubles) {
// do something

}

Generic wildcards can be used in args type patterns, and matching follows regular Java 5
assignability rules. For example, args(List<?>) will match a list argument of any type, and
args(List<? extends Number>) will match an argument of type List<Number>, List<Double>,
List<Float> and so on. Where a match cannot be fully statically determined, the compiler will once
more issue an uncheckedArgument warning.

Consider the following program:

public class C {
public static void main(String[] args) {
Cc=new CO);
List<String> 1s = new ArraylList<String>();
List<Double> 1d = new ArrayList<Double>();

c.foo("hi");
c.foo(ls);
c.foo(1ld);
}
public void foo(Object anObject) {}
}
aspect A {
before(List<? extends Number> alListOfSomeNumberType)
: call(* foo(..)) && args(alistOfSomeNumberType) {
// process list...
}
}

From the signature of foo all we know is that the runtime argument will be an instance of

Object.Compiling this program gives the unchecked argument warning: unchecked match of List<?
extends Number> with List when argument is an instance of List at join point method-

execution(void C.foo(Object)) [Xlint:uncheckedArgument]. The advice will not execute at the call
join point for c.foo("hi") since String is not an instance of List. The advice will execute at the call
join points for c.foo(1s) and c.foo(1d) since in both cases the argument is an instance of List.

Combine a wildcard argument type with a signature pattern to avoid unchecked argument
matches. In the example below we use the signature pattern List<Number+> to match a call to any
method taking a List<Number>, List<Double>, List<Float> and so on. In addition the signature
pattern List<? extends Number+> can be used to match a call to a method declared to take a List<?
extends Number>, List<? extends Double> and so on. Taken together, these restrict matching to only
those join points at which the argument is guaranteed to be an instance of List<? extends Number>.

aspect A {
before(List<? extends Number> alistOfSomeNumberType)
: (call(* foo(List<Number+>)) || call(* foo(List<? extends Number+>)))
&& args(alist0fSomeNumberType) {
// process list...

Binding return values in after returning advice

After returning advice can be used to bind the return value from a matched join point. Aspect] 5
supports the use of a parameterized type in the returning clause, with matching following the same
rules as described for args. For example, the following aspect matches the execution of any method
returning a List, and makes the returned list available to the body of the advice.

public aspect A {
pointcut executionOfAnyMethodReturningAList() : execution(List *(..));

after() returning(List<?> listOfSomeType) : executionOfAnyMethodReturningAList() {
for (Object element : 1listOfSomeType) {
// process element...

}
}
}

The pointcut uses the raw type pattern List, and hence it matches methods returning any kind of
list (List<String>, List<Double>, and so on). We’ve chosen to bind the returned list as the
parameterized type List<?> in the advice since Java’s type checking will now ensure that we only
perform safe operations on the list.

Given the class

public class C {
public List<String> foo(List<String> 1istOfStrings) {...}
public List<Double> bar(List<Double> listOfDoubles) {...}
public List<? extends Number> goo(List<? extends Number> 1listOfSomeNumberType) {...}

}

The advice in the aspect below will run after the execution of bar and bind the return value. It will
also run after the execution of goo and bind the return value, but gives an uncheckedArgument
warning during compilation. It does not run after the execution of foo.

public aspect Returning {
after() returning(List<Double> 1istOfDoubles) : execution(* C.*(..)) {
for(Double d : listOfDoubles) {
// process double...

}

As with args you can guarantee that after returning advice only executes on lists statically
determinable to be of the right type by specifying a return type pattern in the associated pointcut.

The @SuppressAjWarnings annotation can also be used if desired.

Declaring pointcuts inside generic types

Pointcuts can be declared in both classes and aspects. A pointcut declared in a generic type may use
the type variables of the type in which it is declared. All references to a pointcut declared in a
generic type from outside of that type must be via a parameterized type reference, and not a raw
type reference.

Consider the generic type Generic with a pointcut foo:

public class Generic<T> {

/**

* matches the execution of any implementation of a method defined for T
*/

public pointcut foo() : execution(* T.*(..));

Such a pointcut must be refered to using a parameterized reference as shown below.

public aspect A {
// runs before the execution of any implementation of a method defined for My(Class
before() : Generic<MyClass>.foo() {
/] ...
Iy

// runs before the execution of any implementation of a method defined for YourClass
before() : Generic<YourClass>.foo() {
/] ...

// results in a compilation error - raw type reference
before() : Generic.foo() { }

Inter-type Declarations

Aspect] 5 supports the inter-type declaration of generic methods, and of members on generic types.
For generic methods, the syntax is exactly as for a regular method declaration, with the addition of
the target type specification:

<T extends Number> T Utils.max(T first, T second) {:--}

Declares a generic instance method max on the class Util. The max method takes two arguments,
first and second which must both be of the same type (and that type must be Number or a subtype
of Number) and returns an instance of that type.

static <E> E Utils.first(List<E> elements) {:-'}

Declares a static generic method first on the class Util. The first method takes a list of

elements of some type, and returns an instance of that type.

<T> Sorter.new(List<T> elements,Comparator<? super T> comparator) {---}

Declares a constructor on the class Sorter. The constructor takes a list of elements of some type,
and a comparator that can compare instances of the element type.

A generic type may be the target of an inter-type declaration, used either in its raw form or with
type parameters specified. If type parameters are specified, then the number of type parameters
given must match the number of type parameters in the generic type declaration. Type parameter
names do not have to match. For example, given the generic type Foo<T,S extends Number> then:

String Foo.getName() {---}

Declares a getName method on behalf of the type Foo. It is not possible to refer to the type
parameters of Foo in such a declaration.

public R Foo<Q, R>.getMagnitude() {---}

Declares a method getMagnitude on the generic class Foo. The method returns an instance of the
type substituted for the second type parameter in an invocation of Foo If Foo is declared as
Foo<T,N extends Number> {:--} then this inter-type declaration is equivalent to the declaration of
a method public N getMagnitude() within the body of Foo.

R Foo<Q, R extends Number>.getMagnitude() {---}

Results in a compilation error since a bounds specification is not allowed in this form of an
inter-type declaration (the bounds are determined from the declaration of the target type).

A parameterized type may not be the target of an inter-type declaration. This is because there is
only one type (the generic type) regardless of how many different invocations (parameterizations)
of that generic type are made in a program. Therefore it does not make sense to try and declare a
member on behalf of (say) Bar<String>, you can only declare members on the generic type Bar<T>.

Declare Parents

Both generic and parameterized types can be used as the parent type in a declare parents
statement (as long as the resulting type hierarchy would be well-formed in accordance with Java’s
sub-typing rules). Generic types may also be used as the target type of a declare parents statement.

declare parents: Foo implements List<String>
The Foo type implements the List<String> interface. If Foo already implements some other
parameterization of the List interface (for example, List<Integer> then a compilation error will
result since a type cannot implement multiple parameterizations of the same generic interface
type.

Declare Soft

It is an error to use a generic or parameterized type as the softened exception type in a declare soft
statement. Java 5 does not permit a generic class to be a direct or indirect subtype of Throwable (JLS
8.1.2).

Generic Aspects

Aspect] 5 allows an abstract aspect to be declared as a generic type. Any concrete aspect extending
a generic abstract aspect must extend a parameterized version of the abstract aspect. Wildcards are
not permitted in this parameterization.

Given the aspect declaration:

public abstract aspect ParentChildRelationship<P,(> {
/] ...
}

then

public aspect FilesInFolders extends ParentChildRelationship<Folder,File> {-:

declares a concrete sub-aspect, FilesInFolders which extends the parameterized abstract aspect
ParentChildRelationship<Folder,File>

public aspect FilesInFolders extends ParentChildRelationship {:--

results in a compilation error since the ParentChildRelationship aspect must be fully
parameterized.

public aspect ThingsInFolders<T> extends ParentChildRelationship<Folder,T>

results in a compilation error since concrete aspects may not have type parameters.

public abstract aspect ThingsInFolders<T> extends ParentChildRelationship<Folder,T>

declares a sub-aspect of ParentChildRelationship in which Folder plays the role of parent (is
bound to the type variable P).

The type parameter variables from a generic aspect declaration may be used in place of a type
within any member of the aspect, except for within inter-type declarations. For example, we can
declare a ParentChildRelationship aspect to manage the bi-directional relationship between parent
and child nodes as follows:

/**

* 3 generic aspect, we've used descriptive role names for the type variables
* (Parent and Child) but you could use anything of course

*/

public abstract aspect ParentChildRelationship<Parent,Child> {

/** generic interface implemented by parents */
interface ParentHasChildren<C extends ChildHasParent>{
List<C> getChildren();
void addChild(C child);
void removeChild(C child);
}

/** generic interface implemented by children */

interface ChildHasParent<P extends ParentHasChildren>{
P getParent();
void setParent(P parent);

}

/** ensure the parent type implements ParentHasChildren<child type> */
declare parents: Parent implements ParentHasChildren<Child>;

/** ensure the child type implements ChildHasParent<parent type> */
declare parents: Child implements ChildHasParent<Parent>;

// Inter-type declarations made on the *generic* interface types to provide
// default implementations.

/** list of children maintained by parent */
private List<(C> ParentHasChildren<C>.children = new ArraylList<C>();

/** reference to parent maintained by child */
private P ChildHasParent<P>.parent;

/** Default implementation of getChildren for the generic type ParentHasChildren */
public List<C> ParentHasChildren<C>.getChildren() {
return Collections.unmodifiablelist(children);

}

/** Default implementation of getParent for the generic type ChildHasParent */
public P ChildHasParent<P>.getParent() {
return parent;

}

/**

* Default implementation of addChild, ensures that parent of child is
* also updated.
*/
public void ParentHasChildren<C>.addChild(C child) {
if (child.parent != null) {
child.parent.removeChild(child);
}
children.add(child);
child.parent = this;
}

/**
* Default implementation of removeChild, ensures that parent of
* child is also updated.
*/
public void ParentHasChildren<C>.removeChild(C child) {
if (children.remove(child)) {
child.parent = null;
}

/**
* Default implementation of setParent for the generic type ChildHasParent.
* Ensures that this child is added to the children of the parent too.
*/
public void ChildHasParent<P>.setParent(P parent) {
parent.addChild(this);
}

/**
* Matches at an addChild join point for the parent type P and child type C
*
/
public pointcut addingChild(Parent p, Child c) :
execution(* ParentHasChildren.addChild(ChildHasParent)) && this(p) && args(c);

/**
* Matches at a removeChild join point for the parent type P and child type C
*/
public pointcut removingChild(Parent p, Child c) :
execution(* ParentHasChildren.removeChild(ChildHasParent)) && this(p) && args(c

The example aspect captures the protocol for managing a bi-directional parent-child relationship
between any two types playing the role of parent and child. In a compiler implementation
managing an abstract syntax tree (AST) in which AST nodes may contain other AST nodes we could

declare the concrete aspect:

public aspect ASTNodeContainment extends ParentChildRelationship<ASTNode,ASTNode> {

before(ASTNode parent, ASTNode child) : addingChild(parent, child) {
/] ...
}

As a result of this declaration, ASTNode gains members:

e List<ASTNode> children

* ASTNode parent

* List<ASTNode>getChildren()

» ASTNode getParent()

e void addChild(ASTNode child)

e void removeChild(ASTNode child)

* void setParent(ASTNode parent)

In a system managing orders, we could declare the concrete aspect:

public aspect OrderItemsInOrders extends ParentChildRelationship<Order, OrderItem> {}

As a result of this declaration, Order gains members:

* List<OrderItem> children

o List<OrderItem> getChildren()

* void addChild(OrderItem child)

e void removeChild(OrderItem child)

and OrderItem gains members:

* Order parent
* Order getParent()

* void setParent(Order parent)

A second example of an abstract aspect, this time for handling exceptions in a uniform manner, is
shown below:

abstract aspect ExceptionHandling<T extends Throwable> {

/**

* method to be implemented by sub-aspects to handle thrown exceptions
*/

protected abstract void onException(T anException);

/**

* to be defined by sub-aspects to specify the scope of exception handling
*/

protected abstract pointcut inExceptionHandlingScope();

/**
* soften T within the scope of the aspect
*
/
declare soft: T : inExceptionHandlingScope();

/**
* bind an exception thrown in scope and pass it to the handler
*
/
after() throwing (T anException) : inExceptionHandlingScope() {
onException(anException);

}

Notice how the type variable T extends Throwable allows the components of the aspect to be
designed to work together in a type-safe manner. The following concrete sub-aspect shows how the

abstract aspect might be extended to handle I0Exceptions.

public aspect IOExceptionHandling extends ExceptionHandling<IOException>{

protected pointcut inExceptionHandlingScope() :
call(* doI0*(..)) && within(org.xyz..*);

/**

* called whenever an IOException is thrown in scope.
*/
protected void onException(IOException ex) {
System.err.println("handled exception: " + ex.getMessage());
throw new MyDomainException(ex);
}
}

Autoboxing and Unboxing

Autoboxing and Unboxing in Java 5

Java 5 (and hence Aspect] 1.5) supports automatic conversion of primitive types (int, float, double
etc.) to their object equivalents (Integer, Float, Double etc.) in assignments and method and
constructor invocations. This conversion is know as autoboxing.

Java 5 also supports automatic unboxing, where wrapper types are automatically converted into
their primitive equivalents if needed for assignments or method or constructor invocations.

For example:

int i = 0;
i = new Integer(5); // auto-unboxing
Integer i2 = 5; // autoboxing

Autoboxing and Join Point matching in Aspect] 5

Most of the pointcut designators match based on signatures, and hence are unaffected by
autoboxing. For example, a call to a method

public void foo(Integer i);

is not matched by a pointcut call(void foo(int)) since the signature declares a single Integer
parameter, not an int.

The args pointcut designator is affected by autoboxing since it matches based on the runtime type
of the arguments. Aspect] 5 applies autoboxing and unboxing in determining argument matching.
In other words, args(Integer) will match any join point at which there is a single argument of type
Integer or of type int.

* args(Integer) and args(int) are equivalent

» args(Float) and args(float) are equivalent

» args(Double) and args(double) are equivalent

* args(Short) and args(short) are equivalent

* args(Byte) and args(byte) are equivalent

* args(Long) and args(long) are equivalent

* args(Boolean) and args(boolean) are equivalent

Autoboxing and unboxing are also applied when binding pointcut or advice parameters, for
example:

pointcut foo(int i) : args(i);

before(Integer i) : foo(i) {
/] ...
}

Inter-type method declarations and method dispatch

Autoboxing, unboxing, and also varargs all affect the method dispatch algorithm used in Java 5. In
Aspect] 5, the target method of a call is selected according to the following algorithm:

1. Attempt to locate a matching method or inter-type declared method without considering
autoboxing, unboxing, or vararg invocations.

2. If no match is found, try again considering autoboxing and unboxing.

3. Finally try again considering both autoboxing, unboxing, and varargs.

One consequence is that a directly matching inter-type declared method will take precedence over
a method declared locally in the target class but that only matches via autoboxing.

Covariance

Covariance in Java 5

Java 5 (and hence Aspect] 5) allows you to narrow the return type in an overriding method. For
example:

class A {
public A whoAreYou() {...}
+

class B extends A {
// override A.whoAreYou *and* narrow the return type.
public B whoAreYou() {...}

}

Covariant methods and Join Point matching

The join point matching rules for call and execution pointcut designators are extended to match
against covariant methods.

Given the classes A and B as defined in the previous section, and the program fragment
a = new AQ);
b = new B();

whoAreYou();

A
B
a.
b.whoAreYou();

The signatures for the call join point a.whoAreYou() are simply:

A A.whoAreYou()

The signatures for the call join point b.whoAreYou() are:

A A.whoAreYou()
B B.whoAreYou()
Following the join point matching rules given in Join Point Signatures.

call(* whoAreYou())

Matches both calls, (since each call join point has at least one matching signature).

call(* A.whoAreYou())

Matches both calls, (since each call join point has at least one matching signature).

call(A whoAreYou())

Matches both calls, (since each call join point has at least one matching signature).

call(A B.whoAreYou())

Does not match anything - neither of the call join points has a signature matched by this pattern.
A lint warning is given for the call a.whoAreYou() ("does not match because declaring type is A, if
match required use target(B)").

call(A+ B.whoAreYou())

Matches the call to b.whoAreYou() since the signature pattern matches the signature B
B.whoAreYou(). A lint warning is given for the call a.whoAreYou() ("does not match because
declaring type is A, if match required use target(B)").

call(B A.whoAreYou())

Does not match anything since neither join point has a signature matched by this pattern.

call(B whoAreYou())
Matches the call to b.whoAreYou() only.

call(B B.whoAreYou())
Matches the call to b.whoAreYou() only.

The rule for signature matching at call and execution join points is unchanged from Aspect] 1.2: a
call or execution pointcut matches if the signature pattern matches at least one of the signatures of
the join point, and if the modifiers of the method or constructor are matched by any modifier
pattern or annotation pattern that may be present.

Varargs

Variable-length Argument Lists in Java 5

Java 5 (and hence Aspect] 5) allows you to specify methods that take a variable number of
arguments of a specified type. This is achieved using an ellipsis (:-) in the method signature as
shown:

public void foo(int i, String... strings) {}

A method or constructor may take at most one variable length argument, and this must always be
the last declared argument in the signature.

Calling Methods and Constructors with variable-length arguments

A varargs method may be called with zero or more arguments in the variable argument position.
For example, given the definition of foo above, the following calls are all legal:

foo(5);
foo(5,"One String");
foo(7,"One String","Two Strings");

nn

foo(3,"One String","Two Strings","Three Strings");

A varargs parameter is treated as an array within the defining member. So in the body of foo we
could write for example:

public void foo(int i, String... strings) {
String[] someStrings = strings;
// rest of method body

}

One consequence of this treatment of a varargs parameter as an array is that you can also call a
varargs method with an array:

foo(7,new String[] {"One String","Two Strings"});

Using Variable-length arguments in advice and
pointcut expressions

Aspect] 5 allows variable-length arguments to be used for methods declared within aspects, and for
inter-type declared methods and constructors, in accordance with the rules outlined in the previous
section.

Aspect] 5 also allows variable length arguments to be matched by pointcut expressions and bound
as formals in advice.

Matching signatures based on variable length argument types

Recall from the definition of signature patterns given in the chapter on annotations (Signature
Patterns), that MethodPattern and ConstructorPattern are extended to allow a varargs pattern in the
last argument position of a method or constructor signature.

FormalsPattern :=
“.." ('," FormalsPatternAfterDotDot)? |
OptionalParensTypePattern (',' FormalsPattern)* |
TypePattern '..."

FormalsPatternAfterDotDot :
OptionalParensTypePattern (',' FormalsPatternAfterDotDot)* |
TypePattern '...'

Method and constructor patterns are used in the call, execution, initialization, preinitialization,
and withincode pointcut designators. Some examples of usage follow:

call(* org.xyz..(int, String--))

Matches a call join point for a call to a method defined in the org.xyz package, taking an int and
a String vararg.

execution(* org.xyz..(Integer-:+))

Matches an execution join point for the execution of a method defined in the org.xyz package,
taking an Integer vararg.

initialization(org.xyz.*.newFoo || Goo)---

Matches the initialization join point for the construction of an object in the org.xyz package via a
constructor taking either a variable number of Foo parameters or a variable number of Goo
parameters. (This example illustrating the use of a type pattern with ---).

A variable argument parameter and an array parameter are treated as distinct signature elements,

so given the method definitions:

void foo(String...);
void bar(String[]);

The pointcut execution(* .(String:--)) matches the execution join point for foo, but not bar. The
pointcut execution(* .(String[])) matches the execution join point for bar but not foo.

Exposing variable-length arguments as context in pointcuts and advice

When a varargs parameter is used within the body of a method, it has an array type, as discussed in
the introduction to this section. We follow the same convention when binding a varargs parameter

via the args pointcut designator. Given a method

public void foo(int i, String... strings) {}

The call or execution join points for foo will be matched by the pointcut args(int,String[]). It is not
permitted to use the varargs syntax within an args pointcut designator - so you cannot write
args(int,String--).

Binding of a varargs parameter in an advice statement is straightforward:

before(int i, String[] ss) : call(* foo(int,String...)) && args(i,ss) {
// varargs String... argument is accessible in advice body through ss
/] ...

Since you cannot use the varargs syntax in the args pointcut designator, you also cannot use the
varargs syntax to declare advice parameters.

Note: the proposal in this section does not allow you to distinguish between a join point with a
signature (int, String:--) and a join point with a signature (int, String[]) based solely on the use
of the args pointcut designator. If this distinction is required, args can always be coupled with call
or execution.

Enumerated Types

Enumerated Types in Java 5

Java 5 (and hence Aspect] 5) provides explicit support for enumerated types. In the simplest case,
you can declare an enumerated type as follows:

public enum Programminglanguages {
COBOL, C, JAVA, ASPECT]

}

Enumerated types are just classes, and they can contain method and field declarations, and may
implement interfaces. Enums may only have private constructors, and may not be extended.

Enumerated types in Java 5 all implicitly extend the type java.lang.Enum. It is illegal to explicitly
declare a subtype of this class.

Enumerated Types in Aspect] 5

Aspect] 5 supports the declaration of enumerated types just as Java 5 does. Because of the special
restrictions Java 5 places around enumerated types, Aspect] makes the following additional
restrictions:

* You cannot use declare parents to change the super type of an enum.

* You cannot use declare parents to declare java.lang.Enum as the parent of any type.

* You cannot make inter-type constructor declarations on an enum.

* You cannot extend the set of values in an enum via any ITD-like construct.

* You cannot make inter-type method or field declarations on an enum.

* You cannot use declare parents to make an enum type implement an interface.
In theory, the last of these two items could be supported. However, Aspect] 5 follows the simple rule

that an enum type cannot be the target of an inter-type declaration or declare parents statement. This
position may be relaxed in a future version of Aspect].

If an enum is named explicitly as the target of a declare parents statement, a compilation error will
result. If an enumerated type is matched by a non-explicit type pattern used in a declare parents
statement it will be ignored (and an XLint warning issued).

The pertypewithin Aspect Instantiation Model

Aspect] 5 defines a new per-clause type for aspect instantiation: pertypewithin. Unlike the other per-
clauses, pertypewithin takes a type pattern:

PerTypeWithin := 'pertypewithin' '(' OptionalParensTypePattern ')’

When an aspect is declared using the pertypewithin instantiation model, one new aspect instance
will be created for each type matched by the associated type pattern.

Pertypewithin aspects have aspectOf and hasAspect methods with the following signatures:

/**

* return true if this aspect has an instance associated with
* the given type.

*/

public static boolean hasAspect(Class clazz)

/**

* return the instance associated with the given type.
* Throws NoAspectBoundException if there is no such
* aspect.

*/

public static P aspectOf(Class clazz)

Where P is the type of the pertypewithin aspect.

In addition, pertypewithin aspects have a getWithinTypeName method that can be called to return the
package qualified name of the type for which the aspect instance has been created.

/**

* return the package qualified name (eg. com.foo.MyClass) of the type
* for which the aspect instance has been instantiated.

*/

public String getWithinTypeName()

In common with the other per-clause instantiation models, the execution of any advice declared
within a pertypewithin aspect is conditional upon an implicit pointcut condition. In this case, that
any join point be within the type that the executing aspect is an aspect0f. For example, given the
aspect definition

import java.util.*;
public aspect InstanceTracking pertypewithin(org.xyz..*) {

// use WeakHashMap for auto-garbage collection of keys

private Map<Object,Boolean> instances = new WeakHashMap<Object,Boolean>();

after(Object o) returning() : execution(new(..)) && this(o) {
instances.put(o,true);

}

public Set<?> getInstances() {
return instances.keySet();

}

Then one aspect instance will be created for each type within org.xyz... For each aspect instance,
the after returning advice will match only the execution of constructors within the matched
per-type-within type. The net result is that the aspect tracks all known instances of each type

within org.xyz... To get access to the instances, a programmer can simply write
InstanceTracking.aspectOf(org.xyz.SomeType.class).getInstances().

The pertypewithin aspect instantiation model should be used when the implementation of a
crosscutting concern requires that some state be maintained for each type in a set of types. To
maintain state for a single type, it is easier to use a static inter-type declared field. Examples of
usage include instance tracking, profiling, and the implementation of a common tracing idiom that
uses one Logger per traced class.

An Annotation Based Development Style

Introduction

In addition to the familiar Aspect] code-based style of aspect declaration, Aspect] 5 also supports an
annotation-based style of aspect declaration. We informally call the set of annotations that support
this development style the "@Aspect]" annotations.

Aspect] 5 allows aspects and their members to be specified using either the code style or the
annotation style. Whichever style you use, the Aspect] weaver ensures that your program has
exactly the same semantics. It is, to quote a famous advertising campaign, "a choice, not a
compromise”. The two styles can be mixed within a single application, and even within a single
source file, though we doubt this latter mix will be recommended in practice.

The use of the @Aspect] annotations means that there are large classes of Aspect] applications that
can be compiled by a regular Java 5 compiler, and subsequently woven by the Aspect] weaver (for
example, as an additional build stage, or as late as class load-time). In this chapter we introduce the
@Aspect] annotations and show how they can be used to declare aspects and aspect members.

Aspect Declarations

Aspect declarations are supported by the org.aspectj.lang.annotation.Aspect annotation. The
declaration:

public class Foo {}
Is equivalent to:
public aspect Foo {}

To specify an aspect an aspect instantiation model (the default is singleton), provide the perclause
as the @Aspect value. For example:

("perthis(execution(* abc..*(..)))")
public class Foo {}

is equivalent to...

public aspect Foo perthis(execution(* abc..*(..))) {}

Limitations

Privileged aspects are not supported by the annotation style.

Pointcuts and Advice

Pointcut and advice declarations can be made using the Pointcut, Before, After, AfterReturning,
AfterThrowing, and Around annotations.

Pointcuts

Pointcuts are specified using the org.aspectj.lang.annotation.Pointcut annotation on a method
declaration. The method should have a void return type. The parameters of the method correspond
to the parameters of the pointcut. The modifiers of the method correspond to the modifiers of the
pointcut.

As a general rule, the @Pointcut annotated method must have an empty method body and must not
have any throws clause. If formal are bound (using args(), target(), this(), @args(), @target(),
@this(), @annotation()) in the pointcut, then they must appear in the method signature.

The if() pointcut is treated specially and is discussed in a later section.

Here is a simple example of a pointcut declaration in both code and @Aspect] styles:

("call(* *.*(..))")
void anyCall() {}

is equivalent to...
pointcut anyCall() : call(* *.*(..));
When binding arguments, simply declare the arguments as normal in the annotated method:

("call(* *.*(int)) && args(i) && target(callee)")
void anyCall(int i, Foo callee) {}

is equivalent to...
pointcut anyCall(int i, Foo callee) : call(* *.*(int)) && args(i) && target(callee);

An example with modifiers (Remember that Java 5 annotations are not inherited, so the @Pointcut
annotation must be present on the extending aspect’s pointcut declaration too):

"")

protected abstract void anyCall();

is equivalent to...

protected abstract pointcut anyCall();

Type references inside @Aspect] annotations

Using the code style, types referenced in pointcut expressions are resolved with respect to the
imported types in the compilation unit. When using the annotation style, types referenced in
pointcut expressions are resolved in the absence of any imports and so have to be fully qualified if
they are not by default visible to the declaring type (outside of the declaring package and java.lang
). This does not apply to type patterns with wildcards, which are always resolved in a global scope.

Consider the following compilation unit:

package org.aspectprogrammer.examples;
import java.util.list;

public aspect Foo {
pointcut listOperation() : call(* List.*(..));
pointcut anyUtilityCall() : call(* java.util..*(..));

}

Using the annotation style this would be written as:

package org.aspectprogrammer.examples;

import java.util.list; // redundant but harmless

public class Foo {
("call(* java.util.List.*(..))") // must qualify
void listOperation() {}

("call(* java.util..*(..))")
void anyUtilityCall() {}
}

if() pointcut expressions

In code style, it is possible to use the if(::-) poincut to define a conditional pointcut expression
which will be evaluated at runtime for each candidate join point. The if(::-) body can be any valid
Java boolean expression, and can use any exposed formal, as well as the join point forms
thisJoinPoint, thisJoinPointStaticPart and thisJoinPointEnclosingStaticPart.

When using the annotation style, it is not possible to write a full Java expression within the
annotation value so the syntax differs slightly, whilst providing the very same semantics and
runtime behaviour. An if() pointcut expression can be declared in an @Pointcut , but must have
either an empty body (if(), or be one of the expression forms if(true) or if(false) . The annotated
method must be public, static, and return a boolean. The body of the method contains the condition
to be evaluated. For example:

@Pointcut("call(* *.*(int)) && args(i) && if()")
public static boolean someCallWithIfTest(int i) {
return 1 > 0;

}

is equivalent to...

pointcut someCallWithIfTest(int i) :
call(* *.*(int)) && args(i) && if(i > 0);

and the following is also a valid form:

static int COUNT = 0;

@Pointcut("call(* *.*(int)) && args(i) && if()")
public static boolean someCallWithIfTest(int i, JoinPoint jp, JoinPoint
.EnclosingStaticPart esjp) {
// any legal Java expression...
return i > 0
&& jp.getSignature().getName.startsWith("doo")
&& esjp.getSignature().getName().startsWith("test")
&& COUNT++ < 10;
}

@Before("someCallWithIfTest(anInt, jp, enc)")
public void beforeAdviceWithRuntimeTest(int anInt, JoinPoint jp, JoinPoint
.EnclosingStaticPart enc) {
//...
}

// Note that the following is NOT valid
/*
@Before("call(* *.*(int)) && args(i) && if()")
public void advice(int i) {

// so you were writing an advice or an if body ?
}
*/

It is thus possible with the annotation style to use the if() pointcut only within an @Pointcut
expression. The if() must not contain any body. The annotated @Pointcut method must then be of

the form public static boolean and can use formal bindings as usual. Extra implicit arguments of
type JoinPoint, JoinPoint.StaticPart and JoinPoint.EnclosingStaticPart can also be used (this is not
permitted for regular annotated pointcuts not using the if() form).

The special forms if(true) and if(false) can be used in a more general way and don’t imply that
the pointcut method must have a body. You can thus write @Before("somePoincut() && if(false)").

Advice

In this section we first discuss the use of annotations for simple advice declarations. Then we show
how thisJoinPoint and its siblings are handled in the body of advice and discuss the treatment of
proceed in around advice.

Using the annotation style, an advice declaration is written as a regular Java method with one of
the Before, After, AfterReturning, AfterThrowing, or Around annotations. Except in the case of
around advice, the method should return void. The method should be declared public.

A method that has an advice annotation is treated exactly as an advice declaration by Aspect]’s
weaver. This includes the join points that arise when the advice is executed (an adviceexecution
join point, not a method execution join point).

The following example shows a simple before advice declaration in both styles:

("call(* org.aspectprogrammer..*(..)) && this(Foo)")
public void callFromFoo() {
System.out.println("Call from Foo");
ks

is equivalent to...

before() : call(* org.aspectprogrammer..*(..)) && this(Foo) {
System.out.println("Call from Foo");
}

If the advice body needs to know which particular Foo instance is making the call, just add a
parameter to the advice declaration.

before(Foo foo) : call(* org.aspectprogrammer..*(..)) && this(foo) {
System.out.println("Call from Foo: " + foo);
}

can be written as:

("call(* org.aspectprogrammer..*(..)) && this(foo)")
public void callFromFoo(Foo foo) {
System.out.println("Call from Foo:

+ foo);

If the advice body needs access to thisJoinPoint , thisJoinPointStaticPart
thisEnclosingJoinPointStaticPart then these need to be declared as additional method parameters
when using the annotation style.

("call(* org.aspectprogrammer..*(..)) && this(foo)")
public void callFromFoo(JoinPoint thisJoinPoint, Foo foo) {
System.out.println("Call from Foo: " + foo + " at " + thisJoinPoint);

}

is equivalent to...

before(Foo foo) : call(* org.aspectprogrammer..*(..)) && this(foo) {
System.out.println("Call from Foo: " + foo + " at " + thisloinPoint);

}

Advice that needs all three variables would be declared:

("call(* org.aspectprogrammer..*(..)) && this(Foo)")
public void callFromFoo(
JoinPoint thisJoinPoint,
JoinPoint.StaticPart thisJoinPointStaticPart,
JoinPoint.EnclosingStaticPart thisEnclosingloinPointStaticPart

) {
/] ...

}

JoinPoint.EnclosingStaticPart is a new (empty) sub-interface of JoinPoint.StaticPart which allows
the Aspect] weaver to distinguish based on type which of thisJoinPointStaticPart and
thisEnclosingJoinPointStaticPart should be passed in a given parameter position.

After advice declarations take exactly the same form as Before , as do the forms of AfterReturning
and AfterThrowing that do not expose the return type or thrown exception respectively.

To expose a return value with after returning advice simply declare the returning parameter as a
parameter in the method body and bind it with the "returning" attribute:

("criticalOperation()")
public void phew() {
System.out.println("phew");
}

(pointcut="call(Foo+.new(..))", returning="f")
public void itsAFoo(Foo f) {
System.out.println("It's a Foo: " + f);

is equivalent to...

after() returning : criticalOperation() {
System.out.println("phew");
}

after() returning(Foo f) : call(Foo+.new(..)) {
System.out.println("It's a Foo: " + f);
}

(Note the use of the pointcut= prefix in front of the pointcut expression in the returning case).

After throwing advice works in a similar fashion, using the throwing attribute when needing to
expose a thrown exception.

For around advice, we have to tackle the problem of proceed . One of the design goals for the
annotation style is that a large class of Aspect] applications should be compilable with a standard
Java 5 compiler. A straight call to proceed inside a method body:

("call(* org.aspectprogrammer..*(..))")
public Object doNothing() {
return proceed(); // CE on this line

}

will result in a "No such method" compilation error. For this reason Aspect] 5 defines a new sub-
interface of JoinPoint, ProceedingloinPoint .

public interface ProceedingJoinPoint extends JoinPoint {
public Object proceed(Object[] args);
}

The around advice given above can now be written as:

("call(* org.aspectprogrammer..*(..))")
public Object doNothing(ProceedingloinPoint thisJoinPoint) {
return thisJoinPoint.proceed();

}

Here’s an example that uses parameters for the proceed call:

public class ProceedAspect {

("call(* setAge(..)) && args(i)")
void setAge(int i) {}

("setAge(i)")
public Object twiceAsOld(ProceedingloinPoint thisJoinPoint, int i) {
return thisJoinPoint.proceed(new Object[]{i*2}); //using Java 5 autoboxing

}

is equivalent to:

public aspect ProceedAspect {
pointcut setAge(int i): call(* setAge(..)) && args(i);

Object around(int i): setAge(i) {
return proceed(i*2);
}
+

Note that the ProceedingJoinPoint does not need to be passed to the proceed(..) arguments.

In code style, the proceed method has the same signature as the advice, any reordering of actual
arguments to the joinpoint that is done in the advice signature must be respected. Annotation style
is different. The proceed(..) call takes, in this order:

 If this() was used in the pointcut for binding, it must be passed first in proceed(..).

o If target() was used in the pointcut for binding, it must be passed next in proceed(..) - it will be
the first argument to proceed(..) if this() was not used for binding.

 Finally come all the arguments expected at the join point, in the order they are supplied at the
join point. Effectively the advice signature is ignored - it doesn’t matter if a subset of arguments
were bound or the ordering was changed in the advice signature, the proceed(..) calls takes all
of them in the right order for the join point.

Since proceed(..) in this case takes an Object array, Aspect] cannot do as much compile time
checking as it can for code style. If the rules above aren’t obeyed, then it will unfortunately
manifest as a runtime error.

Inter-type Declarations

Inter-type declarations are challenging to support using an annotation style. For code style aspects
compiled with the ajc compiler, the entire type system can be made aware of inter-type
declarations (new supertypes, new methods, new fields) and the completeness and correctness of it
can be guaranteed. Achieving this with an annotation style is hard because the source code may
simply be compiled with javac where the type system cannot be influenced and what is compiled
must be 'pure Java'.

Aspect] 1.5.0 introduced @DeclareParents, an attempt to offer something like that which is
achievable with code style declare parents and the other intertype declarations (fields, methods,
constructors). However, it has proved too challenging to get close to the expressiveness and
capabilities of code style in this area and effectively @DeclareParents is offering just a mixin strategy.
The definition of mixin I am using here is that when some interface I is mixed into some target
type T then this means that all the methods from I are created in T and their implementations are
simple forwarding methods that call a delegate which that provides an implementation of I.

The next section covers @DeclareParents but Aspect] 1.6.4 introduces @DeclareMixin - an improved
approach to defining a mixin and the choice of a different name for the annotation will hopefully
alleviate some of the confusion about why @DeclareParents just doesn’t offer the same semantics as
the code style variant. Offering @DeclareMixin also gives code style developers a new tool for a
simple mixin whereas previously they would have avoided @DeclareParents, thinking what it could
only do was already achievable with code style syntax.

The defaultImpl attribute of @DeclareParents may become deprecated if @DeclareMixin proves
popular, leaving @DeclareParents purely as a way to introduce a marker interface.

@DeclareParents

Consider the following aspect:

public aspect MoodIndicator {
public interface Moody {};
private Mood Moody.mood = Mood.HAPPY;

public Mood Moody.getMood() {
return mood;

}

declare parents : org.xyz..* implements Moody;

before(Moody m) : execution(* *.*(..)) && this(m) {
System.out.println("I'm feeling " + m.getMood());
}

This declares an interface Moody , and then makes two inter-type declarations on the interface - a
field that is private to the aspect, and a method that returns the mood. Within the body of the inter-
type declared method getMoody , the type of this is Moody (the target type of the inter-type
declaration).

Using the annotation style this aspect can be written:

public class MoodIndicator {

// this interface can be outside of the aspect
public interface Moody {

Mood getMood();

¥

// this implementation can be outside of the aspect
public static class MoodyImpl implements Moody {
private Mood mood = Mood.HAPPY;

public Mood getMood() {
return mood;

}
}

// the field type must be the introduced interface. It can't be a class.
@DeclareParents(value="org.xzy..*",defaultImpl=MoodyImpl.class)
private Moody implementedInterface;

@Before("execution(* *.*(..)) && this(m)")
void feelingMoody(Moody m) {
System.out.println("I'm feeling " + m.getMood());

}

This is very similar to the mixin mechanism supported by AspectWerkz. The effect of the
@DeclareParents annotation is equivalent to a declare parents statement that all types matching the
type pattern implement the given interface (in this case Moody). Each method declared in the
interface is treated as an inter-type declaration. Note how this scheme operates within the
constraints of Java type checking and ensures that this has access to the exact same set of members
as in the code style example.

Note that it is illegal to use the @DeclareParents annotation on an aspect' field of a non-interface
type. The interface type is the inter-type declaration contract that dictates which methods are
declared on the target type.

// this type will be affected by the inter-type declaration as the type pattern
matches

package org.xyz;

public class MoodTest {

public void test() {

// see here the cast to the introduced interface (required)
Mood mood = ((Moody)this).getMood();

The @DeclareParents annotation can also be used without specifying a defaultImpl value (for

example, @DeclareParents("org.xyz..*")). This is equivalent to a declare parents -+ implements
clause, and does not make any inter-type declarations for default implementation of the interface
methods.

Consider the following aspect:

public aspect SerializableMarker {
declare parents : org.xyz..* implements Serializable;

}

Using the annotation style this aspect can be written:

public class SerializableMarker {
("org.xyz..*")
Serializable implementedInterface;

If the interface defines one or more operations, and these are not implemented by the target type,
an error will be issued during weaving.

@DeclareMixin

Consider the following aspect:

public aspect MoodIndicator {
public interface Moody {};
private Mood Moody.mood = Mood.HAPPY;

public Mood Moody.getMood() {
return mood;

}

declare parents : org.xyz..* implements Moody;

before(Moody m) : execution(* *.*(..)) && this(m) {
System.out.println("I'm feeling " + m.getMood());
}

This declares an interface Moody, and then makes two inter-type declarations on the interface - a
field that is private to the aspect, and a method that returns the mood. Within the body of the inter-
type declared method getMoody, the type of this is Moody (the target type of the inter-type
declaration).

Using the annotation style, this aspect can be written:

@Aspect
public class MoodIndicator {

// this interface can be outside of the aspect
public interface Moody {

Mood getMood();

¥

// this implementation can be outside of the aspect
public static class MoodyImpl implements Moody {
private Mood mood = Mood.HAPPY;

public Mood getMood() {
return mood;
}
}

// The DeclareMixin annotation is attached to a factory method that can return
instances of the delegate

// which offers an implementation of the mixin interface. The interface that is
mixed in is the

// return type of the method.

@DeclareMixin("org.xyz..*")

public static Moody createMoodyImplementation() {

return new MoodyImpl();
}

@Before("execution(* *.*(..)) && this(m)")
void feelingMoody(Moody m) {
System.out.println("I'm feeling " + m.getMood());

}

Basically, the @DeclareMixin annotation is attached to a factory method. The factory method
specifies the interface to mixin as its return type, and calling the method should create an instance
of a delegate that implements the interface. This is the interface which will be delegated to from
any target matching the specified type pattern.

Exploiting this syntax requires the user to obey the rules of pure Java. So references to any targeted
type as if it were affected by the Mixin must be made through a cast, like this:

// this type will be affected by the inter-type declaration as the type pattern
matches

package org.xyz;

public class MoodTest {

public void test() {

// see here the cast to the introduced interface (required)
Mood mood = ((Moody)this).getMood();

Sometimes the delegate instance may want to perform differently depending upon the
type/instance for which it is behaving as a delegate. To support this it is possible for the factory
method to specify a parameter. If it does, then when the factory method is called the parameter will
be the object instance for which a delegate should be created:

public class Foo {

("org.xyz..*")
public static SomeInterface createDelegate(Object instance) {
return new SomeImplementation(instance);

}
}

It is also possible to make the factory method non-static - and in this case it can then exploit the
local state in the surrounding aspect instance, but this is only supported for singleton aspects:

public class Foo {
public int maxLimit=35;

("org.xyz..*")
public SomeInterface createDelegate(Object instance) {
return new SomeImplementation(instance,maxLimit);

}
}

Although the interface type is usually determined purely from the return type of the factory
method, it can be specified in the annotation if necessary. In this example the return type of the
method extends multiple other interfaces and only a couple of them (I and J) should be mixed into
any matching targets:

// interfaces is an array of interface classes that should be mixed in
(value="org.xyz..*",interfaces={I.class,J.class})
public static InterfaceExtendinglLotsOfInterfaces createMoodyImplementation() {
return new MoodyImpl();

}

There are clearly similarities between @DeclareMixin and @DeclareParents but @DeclareMixin is not
pretending to offer more than a simple mixin strategy. The flexibility in being able to provide the

factory method instead of requiring a no-arg constructor for the implementation also enables
delegate instances to make decisions based upon the type for which they are the delegate.

Any annotations defined on the interface methods are also put upon the delegate forwarding
methods created in the matched target type.

Declare statements

The previous section on inter-type declarations covered the case of declare parents - implements.
The 1.5.0 release of Aspect] 5 does not support annotation style declarations for declare parents -

extends and declare soft (programs with these declarations would not in general be compilable
by a regular Java 5 compiler, reducing the priority of their implementation). These may be
supported in a future release.

Declare annotation is also not supported in the 1.5.0 release of Aspect] 5.

Declare precedence is supported. For declare precedence, use the @DeclarePrecedence annotation as
in the following example:

public aspect SystemArchitecture {
declare precedence : Security*, TransactionSupport, Persistence;
/] ...

}

can be written as:

("Security*,org.xyz.TransactionSupport,org.xyz.Persistence")
public class SystemArchitecture {
/] ...
}

We also support annotation style declarations for declare warning and declare error - any
corresponding warnings and errors will be emitted at weave time, not when the aspects containing
the declarations are compiled. (This is the same behaviour as when using declare warning or error
with the code style). Declare warning and error declarations are made by annotating a string
constant whose value is the message to be issued.

Note that the String must be a literal and not the result of the invocation of a static method for
example.

declare warning : call(* javax.sql..*(..)) && !within(org.xyz.daos..¥)
: "Only DAOs should be calling JDBC.";

declare error : execution(* IFoo+.*(..)) && !within(org.foo..*)
: "Only foo types can implement IFoo";

can be written as...

@DeclareWarning("call(* javax.sql..*(..)) && !within(org.xyz.daos..*)")
static final String aMessage = "Only DAOs should be calling JDBC.";

@DeclareError("execution(* IFoo+.*(..)) && !within(org.foo..*)")
static final String badIFooImplementors = "Only foo types can implement IFoo";

// the following is not valid since the message is not a String literal
@DeclareError("execution(* IFoo+.*(..)) && !within(org.foo..*)")
static final String badIFooImplementorsCorrupted = getMessage();
static String getMessage() {
return "Only foo types can implement IFoo

+ System.currentTimeMillis();

}

aspectOf() and hasAspect() methods

A central part of Aspect]’s programming model is that aspects written using the code style and
compiled using ajc support aspectOf and hasAspect static methods. When developing an aspect
using the annotation style and compiling using a regular Java 5 compiler, these methods will not be
visible to the compiler and will result in a compilation error if another part of the program tries to
call them.

To provide equivalent support for Aspect] applications compiled with a standard Java 5 compiler,
Aspect] 5 defines the Aspects utility class:

public class Aspects {

/* variation used for singleton, percflow, percflowbelow */
static<T> public static T aspectOf(T aspectType) {...}

/* variation used for perthis, pertarget */
static<T> public static T aspectOf(T aspectType, Object forObject) {...}

/* variation used for pertypewithin */
static<T> public static T aspectOf(T aspectType, Class forType) {...}

/* variation used for singleton, percflow, percflowbelow */
public static boolean hasAspect(Object anAspect) {...}

/* variation used for perthis, pertarget */
public static boolean hasAspect(Object anAspect, Object forObject) {...}

/* variation used for pertypewithin */
public static boolean hasAspect(Object anAspect, Class forType) {...}

New Reflection Interfaces

Aspect] 5 provides a full set of reflection APIs analogous to the java.lang.reflect package, but fully
aware of the Aspect] type system. See the javadoc for the runtime and tools APIs for the full details.
The reflection APIs are only supported when running under Java 5 and for code compiled by the
Aspect] 5 compiler at target level 1.5.

Using AjTypeSystem

The starting point for using the reflection apis is org.aspectj.lang.reflect.AjTypeSystem which
provides the method getAjType(Class) which will return the AjType corresponding to a given Java
class. The AjType interface corresponds to java.lang.(Class and gives you access to all of the method,
field, constructor, and also pointcut, advice, declare statement and inter-type declaration members
in the type.

Other Changes in Aspect] 5

Pointcuts

Aspect] 5 is more liberal than Aspect] 1.2.1 in accepting pointcut expressions that bind context
variables in more than one location. For example, Aspect] 1.2.1 does not allow:

pointcut foo(Foo foo) :
(execution(* *(..)) && this(foo)) ||
(set(* *) && target(foo));

whereas this expression is permitted in Aspect] 5. Each context variable must be bound exactly
once in each branch of a disjunction, and the disjunctive branches must be mutually exclusive. In
the above example for instance, no join point can be both an execution join point and a set join
point so the two branches are mutually exclusive.

Declare Soft

The semantics of the declare soft statement have been refined in Aspect] 5 to only soften
exceptions that are not already runtime exceptions. If the exception type specified in a declare soft
statement is RuntimeException or a subtype of RuntimeException then a new XLint warning will be
issued:

declare soft : SomeRuntimeException : execution(* *(..));

// "SomeRuntimeException will not be softened as it is already a
// RuntimeException" [XLint:runtimeExceptionNotSoftened]

This XLint message can be controlled by setting the runtimeExceptionNotSoftened XLint parameter.

If the exception type specified in a declare soft statement is a super type of RuntimeException (such
as Exception for example) then any checked exception thrown at a matched join point, where the
exception is an instance of the softened exception, will be softened to an
org.aspectj.lang.SoftException.

public aspect SoftenExample {
declare soft : Exception : execution(* Foo.*(..));

}

class Foo {
public static void main(String[] args) {
Foo foo = new Foo();
foo.foo();
foo.bar();
}

void foo() throws Exception {
throw new Exception(); // this will be converted to a SoftException

}

void bar() throws Exception {
throw new RuntimeException(); // this will remain a RuntimeException

}

Load-Time Weaving

Introduction

See Developer’s Guide for information on load-time weaving support in Aspect] 5.

../devguide/ltw.pdf#ltw

A Grammar for the Aspect] S Language

== type patterns ===
TypePattern :=
SimpleTypePattern |
"I''" TypePattern |
"(" AnnotationPattern? TypePattern ")’
TypePattern '&&' TypePattern |
TypePattern '||' TypePattern
SimpleTypePattern := DottedNamePattern '+'? '[]'*
DottedNamePattern :=
FullyQualifiedName RestOfNamePattern? |
'"*' NotStarNamePattern?
RestOfNamePattern := '.."' DottedNamePattern | '*' NotStarNamePattern?
NotStarNamePattern :=
FullyQualifiedName RestOfNamePattern? |
".."' DottedNamePattern
FullyQualifiedName := JavaldentifierCharacter+ ('.' JavaldentifierCharacter+)*
== annotation patterns ===
AnnotationPattern := '!'? '@' AnnotationTypePattern AnnotationPattern*
AnnotationTypePattern := FullyQualifiedName | '(' TypePattern ")’
== signature patterns ===
-- field --
FieldPattern :=

AnnotationPattern? FieldModifiersPattern?
TypePattern (TypePattern DotOrDotDot)? SimpleNamePattern

FieldModifiersPattern := "!I'? FieldModifier FieldModifiersPattern*®
FieldModifier :=

'public' | 'private' | 'protected' | 'static' |

"transient' | 'final'
DotOrDotDot := "." | '..'

SimpleNamePattern := JavaldentifierChar+ ('*' SimpleNamePattern)?

-- method --

MethodPattern :=
AnnotationPattern? MethodModifiersPattern? TypePattern
(TypePattern DotOrDotDot)? SimpleNamePattern
"(' FormalsPattern ')' ThrowsPattern?

MethodModifiersPattern := '!'? MethodModifier MethodModifiersPattern*
MethodModifier :=

'public' | 'private' | 'protected' | 'static' |

"synchronized' | 'final'
FormalsPattern :=

".." ("," FormalsPatternAfterDotDot)? |
OptionalParensTypePattern ('," FormalsPattern)* |
TypePattern '..."

FormalsPatternAfterDotDot :
OptionalParensTypePattern (',' FormalsPatternAfterDotDot)* |
TypePattern '..."

ThrowsPattern := "throws' TypePatternList

TypePatternList := TypePattern (',"' TypePattern)*
-- constructor --

ConstructorPattern :=
AnnotationPattern? ConstructorModifiersPattern?
(TypePattern DotOrDotDot)? 'new' '(' FormalsPattern ')’
ThrowsPattern?

ConstructorModifiersPattern :=
"I''? ConstructorModifier ConstructorModifiersPattern®

ConstructorModifier := 'public' | 'private' | 'protected'
== Pointcuts ===

PointcutPrimitive :=
Call | Execution | Get | Set | Handler |
Initialization | Prelnitialization |
StaticInitialization | AdviceExecution |
This | Target | Args | CFlow | CFlowBelow |
Within | WithinCode | If |
AnnotationPointcut

AnnotationPointcut :=
AtAnnotation | AtThis | AtTarget |
AtWithin | AtWithinCode | AtArgs

Call := 'call' '"(' MethodOrConstructorPattern ')'
MethodOrConstructorPattern := MethodPattern | ConstructorPattern
Execution := 'execution' '(' MethodOrConstructorPattern ')'

Get := 'get' '(' FieldPattern ')’

Set := 'set' '(' FieldPattern ')'
Handler := 'handler' '(' OptionalParensTypePattern ')’

Initialization := 'initialization' '(' ConstructorPattern ')'

PreInitialization := 'preinitialization' '(' ConstructorPattern ')’
StaticInitialization := 'staticinitialization' '(' OptionalParensTypePattern ')’
AdviceExecution := 'adviceexecution' '(' ')'

This := "this' "(' TypeOrldentifier ")’

Target := 'target' '(' TypeOrIdentifier ')’

Args := 'args' '(' FormalsOrldentifiersPattern ')’

CFlow := 'cflow' '(' Pointcut ')’

CFlowBelow := 'cflowbelow' '(' Pointcut ')’

Within := 'within' '(' OptionalParensTypePattern ')’
WithinCode := 'withincode' '(' OptionalParensTypePattern ")’
If := "if" "(' BooleanJavaExpression ')’

TypeOrIdentifier := FullyQualifiedName ('[' ']')* | Identifier
Identifier := JavaldentifierChar+

FormalsOrIdentifiersPattern :=
".." ('," FormalsOrIdentifiersPatternAfterDotDot)? |
TypeOrIdentifier (',' FormalsOrIdentifiersPattern)* |
"*' ('," FormalsOrIdentifiersPattern)*

FormalsOrIdentifiersPatternAfterDotDot :=
TypeOrIdentifier (',' FormalsOrIdentifiersPatternAfterDotDot)* |
"*' ('," FormalsOrIdentifiersPatternAfterDotDot)*

AtAnnotation := '@annotation' '(' AnnotationOrIdentifier ')'
AtThis := '@this' '(' AnnotationOrIdentifer ')'

AtTarget := '@target' '(' AnnotationOrIdentifier ')’
AtWithin := 'ewithin' '(' AnnotationOrIdentifier ")’
AtWithinCode := '@withincode' '(' AnnotationOrIdentifier ')'

AnnotationOrIdentifier := FullyQualifiedName | Identifier
AtArgs := '@args' '(' AnnotationsOrlIdentifiersPattern ')’
AnnotationsOrIdentifiersPattern :=
".." ("," AnnotationsOrIdentifiersPatternAfterDotDot)? |
AnnotationOrIdentifier (',' AnnotationsOrIdentifiersPattern)* |

"*' ('," AnnotationsOrIdentifiersPattern)*

AnnotationsOrIdentifiersPatternAfterDotDot :=

AnnotationOrIdentifier (',' AnnotationsOrIdentifiersPatternAfterDotDot)* |
"' ('," AnnotationsOrIdentifiersPatternAfterDotDot)*

PointcutDeclaration :=
PointcutModifiers? 'pointcut' Identifier Formals ':' PointcutExpression

PointcutModifiers := PointcutModifier*
PointcutModifier := 'public' | 'private' | 'protected' | 'abstract'

Formals := '(' ParamList? ')'
ParamList := FullyQualifiedName Identifier (',' ParamList)*

ReferencePointcut := (FullyQualifiedName '.')? Identifier Formals

PointcutExpression :=
(PointcutPrimitive | ReferencePointcut) |
"I''" PointcutExpression |

"(" PointcutExpression ")" |
PointcutExpression '&&' PointcutExpression |
PointcutExpression '||' PointcutExpression

== Advice ===

to be written...

== Inter-type Declarations ===

to be written...

== Declare Statements ===

to be written...

== Aspects ===

to be written...

	The AspectJTM 5 Development Kit Developer’s Notebook
	Table of Contents
	Join Point Signatures
	Join Point Matching
	Join Point Signatures
	Method call join point signatures
	Method execution join point signatures
	Field get and set join point signatures

	Join Point Modifiers
	Summary of Join Point Matching

	Annotations
	Annotations in Java 5
	Using Annotations
	Retention Policies
	Accessing Annotations at Runtime
	Annotation Inheritance

	Annotating Aspects
	Join Point Matching based on Annotations
	Annotation Patterns
	Type Patterns
	Signature Patterns
	Field Patterns
	Method and Constructor Patterns

	Example Pointcuts
	Runtime type matching and context exposure
	Package and Parameter Annotations
	Annotation Inheritance and pointcut matching
	Matching based on annotation values

	Using Annotations with declare statements
	Declare error and declare warning
	declare parents
	declare precedence

	Declare Annotation
	Inter-type Declarations

	Generics
	Generics in Java 5
	Declaring Generic Types
	Using Generic and Parameterized Types
	Subtypes, Supertypes, and Assignability
	Generic Methods and Constructors
	Erasure

	Generics in AspectJ 5
	Matching generic and parameterized types in pointcut expressions
	Restricting matching using parameterized types
	Generic wildcards and signature matching
	Treatment of bridge methods
	Runtime type matching with this(), target() and args()
	Binding return values in after returning advice
	Declaring pointcuts inside generic types

	Inter-type Declarations
	Declare Parents
	Declare Soft
	Generic Aspects

	Autoboxing and Unboxing
	Autoboxing and Unboxing in Java 5
	Autoboxing and Join Point matching in AspectJ 5
	Inter-type method declarations and method dispatch

	Covariance
	Covariance in Java 5
	Covariant methods and Join Point matching

	Varargs
	Variable-length Argument Lists in Java 5
	Calling Methods and Constructors with variable-length arguments

	Using Variable-length arguments in advice and pointcut expressions
	Matching signatures based on variable length argument types
	Exposing variable-length arguments as context in pointcuts and advice

	Enumerated Types
	Enumerated Types in Java 5
	Enumerated Types in AspectJ 5

	The pertypewithin Aspect Instantiation Model
	An Annotation Based Development Style
	Introduction
	Aspect Declarations
	Limitations

	Pointcuts and Advice
	Pointcuts
	Type references inside @AspectJ annotations
	if() pointcut expressions

	Advice

	Inter-type Declarations
	@DeclareParents
	@DeclareMixin

	Declare statements
	aspectOf() and hasAspect() methods

	New Reflection Interfaces
	Using AjTypeSystem

	Other Changes in AspectJ 5
	Pointcuts
	Declare Soft

	Load-Time Weaving
	Introduction

	A Grammar for the AspectJ 5 Language

