

ATL Transformation Examples

The KM3 to Metric
ATL transformation

- version 0.1 -

September 2005

by

ATLAS group

LINA & INRIA

Nantes

Content

1 Introduction ... 1

2 The KM3 to Metrics ATL transformation .. 1

2.1 Transformation overview ... 1

2.2 Metamodels .. 1
2.2.1 The KM3 metamodel .. 1
2.2.2 The Metrics metamodel... 2

2.3 Rules specification ... 3

2.4 ATL code .. 3
2.4.1 Helpers .. 3
2.4.2 Rules.. 5

3 References .. 5

Appendix A: The KM3 metamodel in KM3 format... 6

Appendix B: The Metrics metamodel in KM3 format... 8

Appendix C: The KM3 to Metrics ATL code ... 9

Figures

Figure 1. The KM3 metamodel .. 2

Figure 2. The Metrics metamodel .. 3

ATL Transformation Example

KM3 to Metrics Date 22/09/2005

Page 1

1 Introduction

Due to the even growing complexity of metamodels, the establishment of metamodel metrics now
requires the use of dedicated tools. This ATL transformation example aims to show how the ATL
language may be used to meet this objective by generating metrics models from metamodels.

The Kernel MetaMetaModel (KM3) is a simple textual notation enabling quick definition of metamodels
[1]. The KM3 to Metrics ATL example aims to demonstrate the feasibility of computing some
metamodel metrics by means of the ATL language. For this purpose, we have developed a basic
Metrics metamodel enabling to encode measures of different types.

The KM3 to Metrics ATL transformation defines different metamodel metrics that are relative either to
the whole model, or to specific model elements. The metrics provided in the scope of this
transformation include simple measurements as well as more complex computations.

2 The KM3 to Metrics ATL transformation

2.1 Transformation overview

The KM3 to Metrics transformation is a single step transformation that produces a Metrics model from
a KM3 model.

Users of the ATL Development Tools (ADT) [2] can easily produce their own KM3 input model by 1)
entering a textual KM3 metamodel and, 2) exporting the produced textual KM3 metamodel into a KM3
model by means of the Inject KM3 file to KM3 model contextual menu option.

2.2 Metamodels

The KM3 to Metrics transformation is based on both the KM3 and Metrics metamodel. The KM3
descriptions of these metamodels can respectively be found in Appendix A: and Appendix B:. They are
further described in the following subsections.

2.2.1 The KM3 metamodel

The KM3 metamodel [1] provides semantics for metamodel descriptions. The KM3 metamodel
conforms to itself and can therefore be used to define KM3 metamodels. Figure 1 provides a
description of a subset of the KM3 metamodel. Its corresponding complete textual description in the
KM3 format is also provided in Appendix A:.

A KM3 Metamodel is composed of Packages. A Package contains some abstract ModelElements
(TypedElements, Classifiers, EnumLiterals and Packages, since a Package is itself a ModelElement).
A ModelElement is characterized by its name. The ModelElement entity inherits from the abstract
LocatedElement entity. This last defines a location attribute that aims to encode, in a string format, the
location of the declaration of the corresponding element within its source file.

A Classifier can be either an Enumeration, a DataType or a Class. An Enumeration is composed of
EnumLiteral elements. The Class element defines the Boolean isAbstract attribute that enables to
declare abstract classes. A Class can have direct supertypes (Class elements).

A Class is composed of abstract StructuralFeatures. The StructuralFeature element inherits from the
abstract TypedElement entity. This entity defines the lower, upper, isOrdered and isUnique attributes.
The two first attributes defines the minimal and maximal cardinality of a TypedElement. The isOrdered
and isUnique Boolean attributes respectively encode the fact that the different instances of the

ATL Transformation Example

KM3 to Metrics Date 22/09/2005

Page 2

TypedElement are ordered and unique. A TypedElement obviously has a type, which corresponds to a
Classifier element.

Figure 1. The KM3 metamodel

A StructuralFeature is either a Reference or an Attribute. The Reference element defines the Boolean
isContainer attribute that encode the fact that the pointed elements are contained by the reference. A
Reference can also have an opposite reference. Finally, a StructuralFeature has an owner of the type
Class (the owner reference is the opposite of the Class structuralFeatures reference).

2.2.2 The Metrics metamodel

The Metrics metamodel is a simple metamodel for metrics encoding. Figure 2 provides a description of
this metamodel. The main element of the Metrics metamodel is the abstract Metric entity. This entity
defines two string attributes that are common to the different types of encoded metrics: the context
and the label of the Metric. The context aims to identify, by means of a string value, the KM3 element
the metric relies to. The label, as for it, provides a textual description of the metric (e.g. what is
measured).

ATL Transformation Example

KM3 to Metrics Date 22/09/2005

Page 3

Metric

+context : string

+label : string

+data : int

IntegerMetric

+data : bool

BooleanMetric

+data : string

StringMetric

Figure 2. The Metrics metamodel

The Metrics metamodel defines three types of concrete metrics, which all inherit from the abstract
Metric entity: the IntegerMetric, the BooleanMetric and the StringMetric. They respectively encode
integral, boolean and string measurements. Each of them has a data attribute, of the type that
corresponds to the metric type, which encodes the metric value.

2.3 Rules specification

Here are the rules used to generate a Metrics model from a KM3 model:

• Five IntegerMetric elements, corresponding to the number of classes and associations of the
input KM3 model, as well as its maximal inheritance depth and its number of inheritance
trees and graphs, are generated from a KM3 Metamodel;

• Four IntegerMetrics elements, corresponding to the number of own attributes and own
references of the input Class element, as well as the total number (including inherited ones)
of attributes and references of the Class, are generated from a KM3 Class.

The maximal inheritance depth corresponds to the maximal length of the inheritance chains of the
input model.

An independent inheritance tree corresponds to a set of classes of the input model that have the same
root class. A class without any supertype forms a single element inheritance tree. Note that a given
class may belong to different inheritance trees if it has multiple inheritances.

An independent inheritance graph corresponds to a set of classes of the input model that are linked to
each other by means of an inheritance relationship (either supertype or subtype). A class with no
supertypes nor subtypes forms a single element inheritance graph. Note that, unlike the with an
inheritance tree, a given class belongs to a single inheritance graph. As a consequence, the number
of inheritance graphs associated with a given model is lower or equal to its number of inheritance
trees.

2.4 ATL code

The ATL code for the UML to MOF transformation is provided in Appendix C:. It consists of 15 helpers
and 2 rules.

2.4.1 Helpers

The allClasses helper computes the set of all Class elements of the input KM3 model. Since this set
is used several times, defining this constant helper enables to avoid multiple calculations of the set of
classes.

ATL Transformation Example

KM3 to Metrics Date 22/09/2005

Page 4

The allReferences helper computes the set of all Reference elements of the input KM3 model. Since
this set is used several times, defining this constant helper enables to avoid multiple calculations of the
set of references.

The inheritanceRoots helper computes the set of all Class elements that correspond to the root of an
inheritance tree. These Class elements are those that have no supertypes. Since this set is used
several times, defining this constant helper enables to avoid multiple calculations of the set of classes

The attributeNb helper computes the number of own attributes of its contextual Class. As a constant
helper, it calculates this value only once (at the time it is called for the first time) and stores it as a
cached value.

The referenceNb helper is similar to the attributeNb helper, except that it deals with the references of
its contextual Class.

The attributeNb2 helper computes the total number of attributes (including inherited ones) of its
contextual Class. This helper is a recursive helper which returns the number of attributes of its
contextual Class plus the values returned by its recursive calls on each supertype of this contextual
Class. As a constant helper, it calculates this value only once (at the time it is called for the first time)
and stores it as a cached value.

The referenceNb2 helper is similar to the attributeNb2 helper, except that it deals with the references
of its contextual Class.

The getInheritanceLenght() helper aims to compute the maximal length of the inheritance chains that
lead to the contextual Class. This helper is a recursive helper. If the contextual Class has no
supertypes, it returns 0. Otherwise, it returns the maximal value computed by its different recursive
calls on the supertypes of the contextual Class (the length of the inheritance chain is incremented by 1
at each successive recursive call).

The getInheritanceMaxDepth() helper aims to compute the maximal length of an inheritance chain
within the input KM3 model. For this purpose, it iterates the classes of the input model, calculating for
their own inheritance length by calling the getInheritanceLenght helper. It then returns the maximal
value computed by this mean.

The getInheritanceTreeNb() helper calculates the number of inheritance trees in the input model.
This number corresponds to the number of Class elements that are roots of these trees. As a
consequence, the helper computes the number of tree root Class elements, that is the number of
Class that has no supertypes.

The subtypes helper aims to compute the set of direct subtypes of the contextual Class. For this
purpose, it iterates the Class elements of the input model, and selects those that have the contextual
Class as a supertype. As a constant helper, it calculates this value only once (at the time it is called for
the first time) and stores it as a cached value.

The getTree() helper calculates the set of Class elements composing the inheritance tree that has the
contextual Class as root element. This helper is a recursive helper. If the contextual Class has no
supertypes, it returns a set containing the only contextual Class. Otherwise, the helper iterates the
supertypes of the contextual Class and returns a set containing this contextual Class along with the
results of its recursive calls on the supertypes of the Class.

The existsHLink() helper returns a boolean value stating whether there exists any inheritance
relationships between the Class elements of the two set of classes it receives as parameters. For this
purpose, it iterates the Class elements of the first set and checks whether there exists an inheritance
link (either a supertype or a subtype relation) between this current Class and any Class of the second
set. The helper returns true if it finds out such an inheritance relation, false otherwise.

The computeGraphNb() helper aims to compute the number of inheritance graphs corresponding to
the sequence of inheritance trees passed as a parameter. This helper is a recursive helper. If the
provided sequence contains a single tree, the helper returns 1, otherwise, it calculates a new

ATL Transformation Example

KM3 to Metrics Date 22/09/2005

Page 5

sequence of inheritance trees by trying to merge the first tree of the sequence with the following ones
according to the inheritance links that may exist between the classes of these trees. Indeed, two
inheritance trees of a same model belong to the same inheritance graph if there exists at least an
inheritance relation between one Class of each tree. The helper therefore iterates the input tree
sequence and checks whether it exists an inheritance relation between the first tree and the currently
iterated one (by calling existsHLink the helper). If so, both trees are merged in order to form the new
first tree of the new sequence. If the newly computed sequence contains a single tree, the helper
returns 1. Otherwise, the helper returns 1 plus the value returned by its recursive call on a sequence
that corresponds to the newly computed sequence without its first tree. Indeed, after the successive
mergings, this last corresponds to an inheritance graph of the input model and has no inheritance links
with the remaining trees.

The getInheritanceGraphNb() helper aims to compute the number of inheritance graphs of the input
KM3 model. To this end, its first computes a sequence containing the inheritance trees of the input
model. This is simply achieved by iterating the tree root Class elements and calling the getTree helper
on each of them. The helper then returns the value returned by the computeGraphNb helper called
with the calculated sequence as a parameter.

2.4.2 Rules

The Model rule generates Metrics elements that are relative to the input KM3 model. This rule
generates 5 IntegerMetric elements. The first one corresponds to the number of Class of the input
KM3 model. The second one is associated with the number of associations in the model. This value
corresponds to the number of references without an opposite, plus the half of the number of
references that have an opposite (since two opposite references represent a same association). The
third generated metric corresponds to the maximal inheritance length in the input model, and is
computed by the getInheritanceMaxDepth() helper. The two last metrics correspond to the number of
inheritance trees and graphs within the KM3 model. They are respectively computed by the
getInheritanceTreeNb() and getInheritanceGraphNb() helpers.

The Class rule generates Metrics elements that are relative to Class elements of the input KM3
model. This rule generates 4 IntegerMetric elements: one devoted to the number of own attributes of
the current class, one to its number of own references, one to its total number of attribute and one to
its total number of references. The values of the data attribute of the generated Metrics are
respectively provided by the attributeNb, referenceNb, attributeNb2 and referenceNb2 helpers.

3 References

[1] KM3 User Manual. The Eclipse Generative Model Transformer (GMT) project, http://eclipse.org/gmt/.

[2] The ATL Development Tools (ADT). The Eclipse Generative Model Transformer (GMT) project,

http://eclipse.org/gmt/.

ATL Transformation Example

KM3 to Metrics Date 22/09/2005

Page 6

Appendix A: The KM3 metamodel in KM3
format

package KM3 { 1
 2
 abstract class LocatedElement { 3
 attribute location : String; 4
 attribute commentsBefore [*] ordered : String; 5
 attribute commentsAfter [*] ordered : String; 6
 } 7
 8
 abstract class ModelElement extends LocatedElement { 9
 attribute name : String; 10
 reference "package" : Package oppositeOf contents ; 11
 } 12
 13
 class Classifier extends ModelElement { 14
 } 15
 16
 class DataType extends Classifier { 17
 } 18
 19
 class Enumeration extends Classifier { 20
 reference literals [*] ordered container : EnumLiteral oppositeOf enum ; 21
 } 22
 23
 class EnumLiteral extends ModelElement { 24
 reference enum : Enumeration oppositeOf literals ; 25
 } 26
 27
 class TemplateParameter extends Classifier { 28
 } 29
 30
 class Class extends Classifier { 31
 reference parameters [*] ordered container : TemplateParameter ; 32
 attribute isAbstract : Boolean; 33
 reference supertypes [*] : Class ; 34
 reference structuralFeatures [*] ordered container : StructuralFeature 35
oppositeOf owner ; 36
 reference operations [*] ordered container : Operation oppositeOf owner ; 37
 } 38
 39
 class TypedElement extends ModelElement { 40
 attribute lower : Integer; 41
 attribute upper : Integer; 42
 attribute isOrdered : Boolean; 43
 attribute isUnique : Boolean; 44
 reference type : Classifier ; 45
 } 46
 47
 class StructuralFeature extends TypedElement { 48
 reference owner : Class oppositeOf structuralFeatures ; 49
 reference subsetOf [*] : StructuralFeature oppositeOf derivedFrom ; 50
 reference derivedFrom [*] : StructuralFeature oppositeOf subsetOf ; 51
 } 52
 53
 class Attribute extends StructuralFeature { 54
 } 55
 56
 class Reference extends StructuralFeature { 57
 attribute isContainer : Boolean; 58
 reference opposite [0- 1] : Reference ; 59

ATL Transformation Example

KM3 to Metrics Date 22/09/2005

Page 7

 } 60
 61
 class Operation extends TypedElement { 62
 reference owner : Class oppositeOf operations ; 63
 reference parameters [*] ordered container : Parameter oppositeOf owner ; 64
 } 65
 66
 class Parameter extends TypedElement { 67
 reference owner : Operation oppositeOf parameters ; 68
 } 69
 70
 class Package extends ModelElement { 71
 reference contents [*] ordered container : ModelElement oppositeOf "package" ; 72
 reference metamodel : Metamodel oppositeOf contents ; 73
 } 74
 75
 class Metamodel extends LocatedElement { 76
 reference contents [*] ordered container : Package oppositeOf metamodel ; 77
 } 78
} 79
 80
package PrimitiveTypes { 81
 datatype Boolean; 82
 datatype Integer; 83
 datatype String; 84
} 85

ATL Transformation Example

KM3 to Metrics Date 22/09/2005

Page 8

Appendix B: The Metrics metamodel in KM3
format

package Metrics { 1
 2
 abstract class Metric { 3
 attribute context : String; 4
 attribute label : String; 5
 } 6
 7
 class StringMetric extends Metric { 8
 attribute data : String; 9
 } 10
 11
 class BooleanMetric extends Metric { 12
 attribute data : Boolean; 13
 } 14
 15
 class IntegerMetric extends Metric { 16
 attribute data : Integer; 17
 } 18
} 19
 20
package PrimitiveTypes { 21
 datatype Boolean; 22
 datatype Integer; 23
 datatype String; 24
} 25

ATL Transformation Example

KM3 to Metrics Date 22/09/2005

Page 9

Appendix C: The KM3 to Metrics ATL code

module KM32Metrics; 1
create OUT : Metrics from IN : KM3; 2
 3
--- ---------------------------- 4
-- HELPERS -- ---------------------------- 5
--- ---------------------------- 6
 7
-- This helper computes the set of all the Class el ements of the input model. 8
-- CONTEXT: thisModule 9
-- RETURN: Set(KM3!Class) 10
helper def: allClasses : Set (KM3!Class) = KM3!Class.allInstances(); 11
 12
-- This helper computes the set of all the Referenc e elements of the input 13
-- model. 14
-- CONTEXT: thisModule 15
-- RETURN: Set(KM3!Reference) 16
helper def: allReferences : Set (KM3!Reference) = KM3!Reference.allInstances(); 17
 18
-- This helper computes the set of all the Class el ements of the input model 19
-- that correspond to the root of the different inh eritance trees. 20
-- CONTEXT: thisModule 21
-- RETURN: Set(KM3!Class) 22
helper def: inheritanceRoots : Set (KM3!Class) = 23
 thisModule.allClasses 24
 ->select(e | e.supertypes->isEmpty()); 25
 26
-- This helper returns the number of own attributes of the contextual Class. 27
-- CONTEXT: KM3!Class 28
-- RETURN: Integer 29
helper context KM3!Class def: attributeNb : Integer = 30
 self.structuralFeatures 31
 ->select(e | e.oclIsTypeOf(KM3!Attribute)) 32
 ->size(); 33
 34
-- This helper returns the total number of attribut es (including inherited 35
-- ones) of the contextual Class. 36
-- CONTEXT: KM3!Class 37
-- RETURN: Integer 38
helper context KM3!Class def: attributeNb2 : Integer = 39
 self.attributeNb + 40
 self.supertypes 41
 ->iterate(e; sum : Integer = 0 | 42
 sum + e.attributeNb 43
); 44
 45
-- This helper returns the number of own references of the contextual Class. 46
-- CONTEXT: KM3!Class 47
-- RETURN: Integer 48
helper context KM3!Class def: referenceNb : Integer = 49
 self.structuralFeatures 50
 ->select(e | e.oclIsTypeOf(KM3!Reference)) 51
 ->size(); 52
 53
-- This helper returns the total number of referenc es (including inherited 54
-- ones) of the contextual Class. 55
-- CONTEXT: KM3!Class 56
-- RETURN: Integer 57
helper context KM3!Class def: referenceNb2 : Integer = 58
 self.referenceNb + 59
 self.supertypes 60
 ->iterate(e; sum : Integer = 0 | 61
 sum + e.referenceNb 62
); 63

ATL Transformation Example

KM3 to Metrics Date 22/09/2005

Page 10

 64
-- This helper returns the size of the maximum leng ht of the inheritance trees 65
-- that lead to the contextual Class. 66
-- If the class has no supertype, the helper return s 0. Otherwise, it iterates 67
-- through the set of supertypes of the contextual Class in order to find out 68
-- the maximum lenght of inheritance trees (from ro ots to the contextual 69
-- Class). 70
-- CONTEXT: KM3!Class 71
-- RETURN: Integer 72
helper context KM3!Class def: getInheritanceLenght() : Integer = 73
 if self.supertypes->size() = 0 74
 then 75
 0 76
 else 77
 self.supertypes->iterate(e; max : Integer = 0 | 78
 if e.getInheritanceLenght() + 1 > max 79
 then 80
 e.getInheritanceLenght() + 1 81
 else 82
 max 83
 endif 84
) 85
 endif; 86
 87
-- This helper returns the maximal depth of an inhe ritance tree in the input 88
-- metamodel. For this purpose, it calls the getInh eritanceLenght() helper on 89
-- each Class of the input model and returns the ma ximum value. 90
-- CONTEXT: thisModule 91
-- RETURN: Integer 92
helper def: getInheritanceMaxDepth() : Integer = 93
 thisModule.allClasses 94
 ->iterate(e; max : Integer = 0 | 95
 if e.getInheritanceLenght() > max 96
 then 97
 e.getInheritanceLenght() 98
 else 99
 max 100
 endif 101
); 102
 103
-- This helper returns the number of inheritance tr ees in the input model. 104
-- For this purpose, it computes the number of "roo t" classes, that is the 105
-- classes that donot have any supertype. 106
-- CONTEXT: thisModule 107
-- RETURN: Integer 108
helper def: getInheritanceTreeNb() : Integer = 109
 thisModule.inheritanceRoots->size(); 110
 111
-- This helper returns the set of subtypes of its c ontextual Class. 112
-- For this purpose, it selects among all existing Class elements, those that 113
-- have the contextual Class as a supertype. 114
-- CONTEXT: KM3!Class 115
-- RETURN: Set(KM3!Class) 116
helper context KM3!Class def: subTypes : Set (KM3!Class) = 117
 thisModule.allClasses 118
 ->select(e | e.supertypes->includes(self)) 119
 ->asSet(); 120
 121
-- This helper computes the inheritance subtree of the contextual Class. 122
-- For this purpose, the helper recursively calls i tself for each subtype of 123
-- the contextual Class, adding this contextual Cla ss to the computed result. 124
-- CONTEXT: KM3!Class 125
-- RETURN: Set(KM3!Class) 126
helper context KM3!Class def: getTree() : Set (KM3!Class) = 127
 self.subTypes->iterate(e; tree : Set (KM3!Class) = Set {self} | 128
 tree->union(e.getTree()) 129
); 130
 131
-- This helper computes a boolean value stating whe ther its exists an (or more) 132

ATL Transformation Example

KM3 to Metrics Date 22/09/2005

Page 11

-- inheritance relation between classes of trees t1 and t2. 133
-- The helper checks whether such a relation (super type/subtype) exists between 134
-- each class of the tree t1 and the classes of the tree t2. 135
-- Comment sur les asSet()... 136
-- CONTEXT: thisModule 137
-- IN: Set(KM3!Class), Set(KM3!Class) 138
-- RETURN: Boolean 139
helper def: existsHLink(t1 : Set (KM3!Class), t2 : Set (KM3!Class)) : Boolean = 140
 t1->iterate(e; res : Boolean = false | 141
 if (e.supertypes->asSet()->intersection(t2)->isEmpty() and 142
 e.subTypes->asSet()->intersection(t2)->isEmpty()) 143
 then 144
 res 145
 else 146
 true 147
 endif 148
); 149
 150
-- This recursive helper computes the number of ind ependant inheritance graphs 151
-- corresponding to the sequence of inheritance tre es passed as a parameter. 152
-- If the input sequence contains a single tree, th e helper returns 1. 153
-- Otherwise, the helper checks whether there exist s inheritance relationships 154
-- (super/subtype) between classes of the first tre e of the input sequence (the 155
-- reference tree), and the following ones. If so, it merges the linked trees 156
-- into the reference tree. 157
-- If the new tree sequence built this way contains a single tree, the helper 158
-- returns 1. Otherwise, the helper returns 1 + the value provideed by a 159
-- recursive call of itself on the newly calculated tree sequence without its 160
-- first reference tree. 161
-- CONTEXT: thisModule 162
-- IN: Sequence(Set(KM3!Class)) 163
-- RETURN: Integer 164
helper def: computeGraphNb(tree_seq : Sequence (Set (KM3!Class))) : Integer = 165
 if tree_seq->size() = 1 166
 then 167
 1 168
 else 169
 let first_t : Set (KM3!Class) = tree_seq->first() in 170
 let new_seq : Sequence (Set (KM3!Class)) = 171
 tree_seq 172
 ->subSequence(2, tree_seq->size()) 173
 ->iterate(e;t_seq : Sequence (Set (KM3!Class)) = Sequence {first_t} | 174
 if thisModule.existsHLink(first_t, e) 175
 then 176
 t_seq 177
 ->subSequence(2, t_seq->size()) 178
 ->prepend(t_seq->first()->including(e)) 179
 else 180
 t_seq.append(e) 181
 endif 182
) 183
 in 184
 if new_seq->size() = 1 185
 then 186
 1 187
 else 188
 thisModule.computeGraphNb(189
 new_seq->subSequence(2, new_seq->size()) 190
) + 1 191
 endif 192
 endif; 193
 194
-- This helper returns the number of inheritage gra phs in the input model. 195
-- For this purpose, it first computes a sequence c ontaining the set of classes 196
-- representing the different inheritance trees of the input model. The helper 197
-- then calls the recursive computeGraphNb with the calculated sequence as a 198
-- parameter. 199
-- CONTEXT: thisModule 200
-- RETURN: Integer 201

ATL Transformation Example

KM3 to Metrics Date 22/09/2005

Page 12

helper def: getInheritanceGraphNb() : Integer = 202
 let tree_seq : Sequence (Set (KM3!Class)) = 203
 thisModule.inheritanceRoots 204
 ->collect(e | e.getTree()) 205
 ->asSequence() 206
 in thisModule.computeGraphNb(tree_seq); 207
 208
 209
--- ---------------------------- 210
-- RULES -- ---------------------------- 211
--- ---------------------------- 212
 213
-- Rule 'Model' 214
-- This rule generates metrics elements that are re lative to the input model: 215
-- * the number of classes of the model; 216
-- * the number of associations of the model (this number corresponds to the 217
-- number of references without an opposite, plus the half of the number of 218
-- references that has an opposite); 219
-- * the maximal depth of an inheritance tree (comp uted by the 220
-- getInheritanceMaxDepth helper); 221
-- * the number of inheritance trees (computed by t he getInheritanceTreeNb 222
-- helper); 223
-- * the number of inheritance graphs (computed by the getInheritanceGraphNb 224
-- helper). 225
rule Model { 226
 from 227
 i : KM3!Metamodel 228
 to 229
 o1 : Metrics!IntegerMetric (230
 " context" <- 'Model' , 231
 label <- 'Number of classes' , 232
 data <- thisModule.allClasses->size() 233
), 234
 235
 o2 : Metrics!IntegerMetric (236
 " context" <- 'Model' , 237
 label <- 'Number of associations' , 238
 data <- 239
 (thisModule.allReferences 240
 ->select(e | e.opposite = OclUndefined) 241
 ->size()) 242
 + 243
 ((thisModule.allReferences 244
 ->select(e | e.opposite <> OclUndefined) 245
 ->size()) div 2) 246
), 247
 248
 o3 : Metrics!IntegerMetric (249
 " context" <- 'Model' , 250
 label <- 'Maximal depth of heritance' , 251
 data <- thisModule.getInheritanceMaxDepth() 252
), 253
 254
 o4 : Metrics!IntegerMetric (255
 " context" <- 'Model' , 256
 label <- 'Number of inheritance trees' , 257
 data <- thisModule.getInheritanceTreeNb() 258
), 259
 260
 o5 : Metrics!IntegerMetric (261
 " context" <- 'Model' , 262
 label <- 'Number of inheritance graphs' , 263
 data <- thisModule.getInheritanceGraphNb() 264
) 265
} 266
 267
-- Rule 'Class' 268
-- This rule generates metrics elements taht are re lative to a Class of the 269
-- input model. The context of the generated metric s elements therefore 270

ATL Transformation Example

KM3 to Metrics Date 22/09/2005

Page 13

-- includes the name of the class theyr refer to. 271
-- Generated metrics are: 272
-- * the number of own attributes of the class; 273
-- * the number of own references of the class; 274
-- * the total number of attributes of the class (i ncluding inherited ones); 275
-- * the total number of references of the class (i ncluding inherited ones); 276
rule Class { 277
 from 278
 i : KM3!Class 279
 to 280
 o1 : Metrics!IntegerMetric (281
 " context" <- 'Class ' + i.name, 282
 label <- 'Number of own attributes' , 283
 data <- i.attributeNb 284
), 285
 286
 o2 : Metrics!IntegerMetric (287
 " context" <- 'Class ' + i.name, 288
 label <- 'Number of own references' , 289
 data <- i.referenceNb 290
), 291
 292
 o3 : Metrics!IntegerMetric (293
 " context" <- 'Class ' + i.name, 294
 label <- 'Total number of attributes' , 295
 data <- i.attributeNb2 296
), 297
 298
 o4 : Metrics!IntegerMetric (299
 " context" <- 'Class ' + i.name, 300
 label <- 'Total number of references' , 301
 data <- i.referenceNb2 302
) 303
} 304

