
ATL

TRANSFORMATION EXAMPLE

 KM3 to Problem

Date 04/08/2005

__

 Page 1/19

1. ATL Transformation Example

1.1. Example: KM3 ���� Problem

The KM3 to Problem example describes a transformation from a KM3 metamodel [1] into a Problem
model. The generated Problem model contains the list of non-structural errors (along with additional
warnings) that have been detected within the input KM3 metamodel. The transformation assumes the
input KM3 metamodel is structurally correct, as those that have passed a syntactic analysis (for
instance, a reference defined with cardinality [1-1] should not be undefined). It may therefore fails
when executed on a KM3 metamodel produced from a MOF metamodel that has not been checked.

The input metamodel is based on the KM3 metamodel. It is therefore a KM3 metamodel described by
means of the KM3 semantics. The output model is based on the Problem metamodel.

This ATL transformation is based on initial works dealing with model checking with the ATL
transformation language [2].

1.2. Metamodels

The KM3 to Problem transformation is based on two distinct metamodels, KM3 and Problem, that are
described in the following subsections.

1.2.1. The KM3 metamodel

The KM3 metamodel [1] provides semantics for metamodel descriptions. The KM3 metamodel
conforms to itself and can therefore be used to define KM3 metamodels. Figure 1 provides a
description of a subset of the KM3 metamodel. Its corresponding complete textual description in the
KM3 format is also provided in Appendix I.

A KM3 Metamodel is composed of Packages. A Package contains some abstract ModelElements
(TypedElements, Classifiers, EnumLiterals and Packages, since a Package is itself a ModelElement).
A ModelElement is characterized by its name. The ModelElement entity inherits from the abstract
LocatedElement entity. This last defines a location attribute that aims to encode, in a string format, the
location of the declaration of the corresponding element within its source file.

A Classifier can be either an Enumeration, a DataType or a Class. An Enumeration is composed of
EnumLiteral elements. The Class element defines the Boolean isAbstract attribute that enables to
declare abstract classes. A Class can have direct supertypes (Class elements).

A Class is composed of abstract StructuralFeatures. The StructuralFeature element inherits from the
abstract TypedElement entity. This entity defines the lower, upper, isOrdered and isUnique attributes.
The two first attributes defines the minimal and maximal cardinality of a TypedElement. The isOrdered
and isUnique Boolean attributes respectively encode the fact that the different instances of the
TypedElement are ordered and unique. A TypedElement obviously has a type, which corresponds to a
Classifier element.

A StructuralFeature is either a Reference or an Attribute. The Reference element defines the Boolean
isContainer attribute that encode the fact that the pointed elements are contained by the reference. A
Reference can also have an opposite reference. Finally, a StructuralFeature has an owner of the type
Class (the owner reference is the opposite of the Class structuralFeatures reference).

ATL

TRANSFORMATION EXAMPLE

 KM3 to Problem

Date 04/08/2005

__

 Page 2/19

Figure 1. The KM3 metamodel

1.2.1.1. Additional constraints

Figure 1 defines a number of structural constraints on KM3 metamodels. However, in the same way
additional constraints can be specified on a MOF metamodel [3] by means of the OCL language [4],
KM3 metamodels have to respect a set of non-structural additional constraints.

We describe here the non-structural constraints that have to be respected by KM3 metamodels:

• A Package name has to be universally unique.

• A Classifier has to belong to a Package.

• An EnumLiteral has to belong to a Package.

• A Classifier name has to be unique within the Package it belongs to.

• A Package can only contain Package and Classifier elements through its contents reference.

ATL

TRANSFORMATION EXAMPLE

 KM3 to Problem

Date 04/08/2005

__

 Page 3/19

• A Class is not allowed to be its own direct or indirect supertype.

• A StructuralFeature must be contained by a Class (through the structuralFeatures reference),
and not by a Package (through its contents reference).

• The name of a StructuralFeature has to be unique in the Class it belongs to, as well as in the
supertypes of this Class.

• The opposite of the opposite of a Reference has to be defined.

• The opposite of the opposite of a Reference has to be the Reference itself.

• The type of the opposite of a Reference has to be the owner of the Reference.

• The lower attribute of a TypedElement cannot be lower than 0.

• The upper attribute of a TypedElement has to be unbounded or greater or equal to than 1.

• The upper attribute of a TypedElement cannot be lower than its lower attribute.

• The isOrdered attribute of a TypedElement cannot be true if the upper value is 1.

• The type of a Reference must be a Class.

1.2.2. The Problem metamodel

The Problem metamodel provides semantics enabling to define, and describe, different kinds of
problems (“error”, “warning”, and “critic”). In the scope of the KM3 to Problem transformation, it is used
to encode the semantic errors, as well as some warnings and critics, that can be detected over the
input KM3 metamodel. Figure 2 provides a description of the Problem metamodel. Its corresponding
textual description in the KM3 format is also provided in Appendix II.

+severity : Severity

+location : string

+description : string

Problem

+error

+warning

+critic

«énumération»

Severity

Figure 2. The Problem metamodel

A Problem model corresponds to a set of Problem elements. Each Problem is characterized by a
severity, a location and a description. severity is of the Severity enumeration type, and can accept
“error”, “warning”, and “critic” as value. The location and the description are both string attributes. The
location attribute aims to encode the localisation of the Problem in the source file, whereas description
provides a textual and human-readable description of the Problem.

1.3. An example

The KM3 to Problem transformation is embedded in the KM3 plug-in of the ATL Development Tools
(ADT) [5]. It enables to ensure that KM3 non-structural constraints are verified on developed KM3
metamodels. Figure 3 provides an example of this KM3 metamodels development tool.

ATL

TRANSFORMATION EXAMPLE

 KM3 to Problem

Date 04/08/2005

__

 Page 4/19

Figure 3. KM3 Problem detection example

The developed metamodel (“test.km3”) is composed of a single Package (“Pa_1”) that contains 6
classes. This example makes it possible to illustrate different kinds of non-structural errors:

• Class Cl_A defines an attribute (“att_a”) that has the same name than an existing attribute of
Class Cl_C from which Cl_A indirectly inherits.

• There exists a cycling inheritance definition between Classes Cl_B, Cl_C, and Cl_D (this
implies that each one of the involved Classes is its indirect own supertype).

• Two Classes of Package Pa_1 have the same name (“Cl_E”).

Note that for each error, the information generated by the KM3 to Problem transformation is displayed
in the Problems tab of the windows. This information includes a graphical representation of the
Problem type (in this example, we only deal with errors), the description of the Problem, and its
location.

1.4. Rules Specification

The KM3 to Problem transformation defines a rule for each type of generated Problem.

Here are the Problems that are currently handled by the KM3 to Problem transformation:

• An error Problem is generated for each Package whose name is not unique.

• An error Problem is generated for each Classifier which is not defined within a Package.

• An error Problem is generated for each EnumLiteral which is not defined within a Package.

ATL

TRANSFORMATION EXAMPLE

 KM3 to Problem

Date 04/08/2005

__

 Page 5/19

• An error Problem is generated for each StructuralFeature which is not contained by the
structuralFeatures reference of the Class entity.

• An error Problem is generated for each Reference whose opposite of the opposite is not
defined.

• An error Problem is generated for each Reference whose opposite of the opposite is different
from itself.

• An error Problem is generated for each Reference whose type of the opposite is different from
the reference’s owner (i.e. the Class in which it is defined).

• An error Problem is generated for each Classifier whose name is not unique in its Package.

• An error Problem is generated for each Class which is its direct or indirect supertype.

• An error Problem is generated for each StructuralFeature whose name is not unique in its
Class and its supertypes.

• An error Problem is generated for each StructuralFeature whose lower value is lower than 0.

• An error Problem is generated for each StructuralFeature whose upper value is lower than 1.

• An error Problem is generated for each StructuralFeature whose upper value is lower than the
upper one.

• An error Problem is generated for each StructuralFeature with an upper value equal to 1 and
the isOrdered attribute set to true.

• An error Problem is generated for each Reference that points either to a DataType or an
Enumeration element.

• A warning Problem is generated for each Attribute of type Class. Class attributes are indeed
supported by the KM3 [1] and MOF 1.4 [3] metamodels, but not by Ecore [6].

• A warning Problem is generated for each abstract Class that has no child.

• A critic Problem is generated for each Classifier whose name does not start by an upper case
character.

1.5. ATL Code

The ATL code for the KM3 to Problem transformation consists of 6 helpers and 18 rules.

1.5.1. Helpers

The first two helpers are constant helpers, allPackages, and allClasses, are constant helpers. They
simply compute sequences of input model elements (respectively Packages and Classes) that are
referred to several times in the transformation. This step makes it possible to save calculations by
storing the content of these different sequences into constant helpers.

The remaining four helpers are function helpers. The
allStructuralFeaturesRec(Sequence(KM3!Class)) helper aims to compute the set of all the direct
and inherited StructuralFeatures of the contextual Class. It accepts a Sequence of Class as
parameter. This Sequence contains the list of Class elements that have already been visited by
previous recursive calls and that are not considered anymore (to avoid cycles). The helper first gets

ATL

TRANSFORMATION EXAMPLE

 KM3 to Problem

Date 04/08/2005

__

 Page 6/19

the direct StructuralFeatures of the contextual Class, and performs the union between these
StructuralFeatures and those of the supertypes of the contextual Class that have not been already
visited (i.e. that do not belong to the Sequence provided as parameter). The allStructuralFeatures()
helper aims to compute the set of all the direct and inherited StructuralFeatures of the contextual
Class. To this end, it simply calls the allStructuralFeaturesRec() helper, passing to it a Sequence
containing the contextual Class as the list of already visited elements.

The recursiveInheritanceRec(KM3!Class, Sequence(KM3!Class)) helper aims to compute a
Boolean stating whether a recursive inheritance exists for the contextual Class. The helper accepts
two parameters: a Class that corresponds to the initial Class, the one for which an inheritance cycle is
sought, and a Sequence of Classes that contains the Class elements that have been already visited
by previous recursive calls. Note that the helper only looks for inheritance cycles in which the initial
Class is involved, but not those that may exist for its supertypes. The helper first checks whether the
contextual Class has supertypes. If it does not, it returns false. It the contextual Class has some
supertypes, and that the initial Class belongs to them, it returns true. Otherwise, it visits all the
supertypes of the contextual Class that have not been yet visited (those that do not belong to the
Sequence passed as parameter), and checks whether a recursive inheritance exists between each of
them and the reference initial Class. Finally, the recursiveInheritance() helper aims to compute a
Boolean value stating whether a direct or indirect recursive inheritance is defined for the contextual
Class. For this purpose, the helper calls the recursiveInheritanceRec() helper, passing to it the
contextual Class as the reference Class (for inheritance cycle definition) and an empty Sequence as
the list of already visited elements.

1.5.2. Rules

Besides helpers, the Monitor to Semaphore transformation is composed of 17 rules.

The rule PackageNameUnique generates an error Problem for each Package whose name is not
unique. For this purpose, it matches a Package when there exists another Package, distinct from the
input one, that has the same name that the input one.

The rule ClassifierInPackage generates an error Problem for each Classifier that is not contained by
a Package. Thus, it matches a Classifier when its package reference is undefined.

The rule EnumLiteralInPackage generates an error Problem for each EnumLiteral that is not
contained by a Package. Thus, it matches an EnumLiteral when its package reference is undefined.

The rule StructuralFeatureInClass generates an error Problem for each StructuralFeature that is not
contained by a Class. To this end, it matches a StructuralFeature if its package reference is not
undefined (which means that the StructuralFeature is contained by the Package instead of being
contained by a Class).

The rule OppositeOfOppositeExists generates an error Problem for each Reference whose opposite
of the opposite is undefined. For this purpose, the rule matches each Reference:

• That has an opposite Reference.

• For which the opposite of this opposite is not defined (this test is performed by the OCL
function oclUndefined()).

The rule OppositeOfOppositeIsSelf generates an error Problem for each Reference whose opposite
of the opposite exists and is different from itself. For this purpose, the rule matches each Reference:

• That has an opposite Reference.

• For which an opposite of this opposite is defined.

ATL

TRANSFORMATION EXAMPLE

 KM3 to Problem

Date 04/08/2005

__

 Page 7/19

• For which the opposite of this opposite does not point to itself.

The rule TypeOfOppositeIsOwner generates an error Problem for each Reference whose type of the
opposite does not point to the Class that contains the Reference (it may, for instance, point to a
supertype of this Class). The rule matches each Reference:

• That has an opposite Reference.

• For which the type of this opposite is different from the owner of the Reference.

The rule ClassifierNameUniqueInPackage generates an error Problem for each Classifier whose
name is not unique in the Package it belongs to. To this end, the rule matches a Classifier if there
exists another Classifier in its Package that has the same name.

The rule ClassIsNotItsOwnSuperType generates an error Problem for each Class which is its direct
or indirect supertype. To this end, the rule matches each Class for which the recursiveInheritance()
helper returns true.

The rule StructuralFeatureNameUniqueInClass generates an error Problem for each
StructuralFeature whose name is not unique in its Class and its supertypes. For this purpose, the rule
matches a StructuralFeature when there exists, in the StructuralFeatures sequence returned by the
allStructuralfeatures() helper, another StructuralFeature that has the same name.

The rule StructuralFeatureLower generates an error Problem for each StructuralFeature whose
lower attribute is lower than 0.

The rule StructuralFeatureUpper generates an error Problem for each StructuralFeature whose
upper attribute is lower than 1 or different from 1 (which is used to encode an unbounded value).

The rule StructuralFeatureLowerUpper generates an error Problem for each StructuralFeature
whose upper attribute is lower than its lower attribute.

The rule StructuralFeatureUniqueOrdered generates an error Problem for each StructuralFeature
whose upper value is 1 and whose isOrdered attribute is true.

The rule DataTypeReferenceProhibited generates an error Problem for each Reference that does
not point to a Class element. To this end, the rule matches each Reference whose type attribute does
not target a Class.

Since the Ecore metamodel [6] does not provide support for attributes of type Class, the rule
ClassAttributeUnsupportedByEcore generates a warning Problem for each Attribute that points to a
Class element. To this end, the rule matches each Attribute whose type attribute targets a Class.

The rule AbstractClassShouldHaveChildren generates a warning Problem for each abstract Class
which is the supertype of no other classes. For this purpose, the rule matches each Class whose
isAbstract attribute is true, and for which there exists no Classes that have the input Class among its
set of supertypes.

Finally, the rule ClassifierNameShouldStartWithUpperCase generates a critic Problem for each
Classifier whose name does not start by an upper case character.

module KM32Problem; 1
create OUT : Problem from IN : KM3; 2
 3
--- ---------------------------- 4
-- HELPERS -- ---------------------------- 5
--- ---------------------------- 6
 7

ATL

TRANSFORMATION EXAMPLE

 KM3 to Problem

Date 04/08/2005

__

 Page 8/19

-- This helper computes a Sequence containing all t he Packages of the input 8
-- model. 9
-- CONTEXT: thisModule 10
-- RETURN: Sequence(KM3!Package) 11
helper def: allPackages : Sequence (KM3!Package) = 12
 KM3!Package.allInstances()->asSequence(); 13
 14
-- This helper computes a Sequence containing all t he Classes of the input 15
-- model. 16
-- CONTEXT: thisModule 17
-- RETURN: Sequence(KM3!Class) 18
helper def: allClasses : Sequence (KM3!Class) = 19
 KM3!Class.allInstances()->asSequence(); 20
 21
 22
-- This helper computes a Sequence that contains al l the direct and inherited 23
-- StructuralFeatures of the contextual Class. The Sequence s which is also 24
-- passed as a parameter contains the KM3!Class ele ments that have already been 25
-- visited by the recursive process and that are no t considered anymore. 26
-- The helper collects the direct StructuralFeature s of the contextual 27
-- Class and, by means of recursice calls, the ones of those of its supertypes 28
-- that do not already belong to the Sequence s. 29
-- CONTEXT: KM3!Class 30
-- IN: Sequence(KM3!Class) 31
-- RETURN: Sequence(KM3!StructuralFeature) 32
helper context KM3!Class 33
 def: allStructuralFeaturesRec(s : Sequence (KM3!Class)) : 34
 Sequence (KM3!StructuralFeature) = 35
 self.structuralFeatures->union(36
 self.supertypes->iterate(e; res : Sequence (KM3!Class) = Sequence {} | 37
 if s->includes(e) 38
 then 39
 res 40
 else 41
 res->union(e.allStructuralFeaturesRec(s->appen d(e))) 42
 endif 43
) 44
); 45
 46
-- This helper computes a Sequence that contains al l the direct and inherited 47
-- StructuralFeatures of the contextual Class. 48
-- To this end, the helper calls the allStructuralF eaturesRec helper with 49
-- an Sequence (containing the contextual Class) as parameter. 50
-- CONTEXT: KM3!Class 51
-- RETURN: Sequence(KM3!StructuralFeature) 52
helper context KM3!Class 53
 def: allStructuralFeatures() : Sequence (KM3!StructuralFeature) = 54
 self.allStructuralFeaturesRec(Sequence {self}); 55
 56
-- This helper computes a Boolean value stating whe ther a direct or indirect 57
-- inheritance is defined from the contextual Class to the Class c passed as a 58
-- parameter. The Sequence s which is also passed a s a parameter contains the 59
-- KM3!Class elements that have already been visite d by the recursive process 60
-- (except the c element) and that are not consdide red anymore. 61
-- To this end, the helper successively tests its o wn supertypes, and the 62
-- supertypes of its supertypes (by means of a recu rsive call): 63
-- * if the contextual Class has no supertype, the helper returns false. 64
-- * if the Class passed as a parameter is a super type of the contextual 65
-- Class, the helper returns true. 66
-- * otherwise, the helper returns the disjunction of the recursive calls of 67
-- the helper on each of its supertypes that has not been already visited 68
-- by the recursive process. 69

ATL

TRANSFORMATION EXAMPLE

 KM3 to Problem

Date 04/08/2005

__

 Page 9/19

-- CONTEXT: KM3!Class 70
-- IN: KM3!Class 71
-- IN: Sequence(KM3!Class) 72
-- RETURN: Boolean 73
helper context KM3!Class 74
 def: recursiveInheritanceRec(c : KM3!Class, 75
 s : Sequence (KM3!Class)) : Boolean = 76
 if self.supertypes->isEmpty() 77
 then 78
 false 79
 else 80
 if self.supertypes->exists(e | e = c) 81
 then 82
 true 83
 else 84
 self.supertypes->iterate(e; res : Boolean = false | 85
 if s->includes(e) 86
 then 87
 res 88
 else 89
 res or e.recursiveInheritanceRec(c, s->append(e)) 90
 endif 91
) 92
 endif 93
 endif; 94
 95
-- This helper computes a Boolean value stating whe ther a direct or indirect 96
-- recursive inheritance is defined for the context ual Class. 97
-- To this end, the helper calls the recursiveInher itanceRec helper with 98
-- itself, and an empty Sequence as parameters. 99
-- CONTEXT: KM3!Class 100
-- RETURN: Boolean 101
helper context KM3!Class def: recursiveInheritance() : Boolean = 102
 self.recursiveInheritanceRec(self, Sequence {}); 103
 104
 105
--- ---------------------------- 106
-- RULES -- ---------------------------- 107
--- ---------------------------- 108
 109
-- Rule 'PackageNameUnique' 110
-- This rule generates an 'error' Problem element f or each Package whose name 111
-- is not unique. 112
rule PackageNameUnique { 113
 from 114
 i : KM3!Package (115
 thisModule.allPackages->exists(e | (i <> e) and (i.name = e.name)) 116
) 117
 to 118
 o : Problem!Problem (119
 severity <- #error , 120
 description <- 121
 'a Package of the same name already exists: ' 122
 + i.name, 123
 location <- i.location 124
) 125
} 126
 127
-- Rule 'ClassifierInPackage' 128
-- This rule generates an 'error' Problem element f or each Classifier which is 129
-- not defined within a Package. 130
rule ClassifierInPackage { 131

ATL

TRANSFORMATION EXAMPLE

 KM3 to Problem

Date 04/08/2005

__

 Page 10/19

 from 132
 i : KM3!Classifier (133
 i.package.oclIsUndefined() 134
) 135
 to 136
 o : Problem!Problem (137
 severity <- #error , 138
 description <- 139
 'the Classifier ' + i.name 140
 + ' must be contained by a Package' , 141
 location <- i.location 142
) 143
} 144
 145
-- Rule 'EnumLiteralInPackage' 146
-- This rule generates an 'error' Problem element f or each EnumLiteral which is 147
-- not defined within a Package. 148
rule EnumLiteralInPackage { 149
 from 150
 i : KM3!EnumLiteral (151
 i.package.oclIsUndefined() 152
) 153
 to 154
 o : Problem!Problem (155
 severity <- #error , 156
 description <- 157
 'the EnumLiteral ' + i.name 158
 + ' must be contained by a Package' , 159
 location <- i.location 160
) 161
} 162
 163
-- Rule 'StructuralFeatureInClass' 164
-- This rule generates an 'error' Problem element f or each Classifier which is 165
-- not defined within a Class. 166
rule StructuralFeatureInClass { 167
 from 168
 i : KM3!StructuralFeature (169
 not i.package.oclIsUndefined() 170
) 171
 to 172
 o : Problem!Problem (173
 severity <- #error , 174
 description <- 175
 'the Feature ' + i.name 176
 + ' cannot be contained by a Package' , 177
 location <- i.location 178
) 179
} 180
 181
-- Rule 'OppositeOfOppositeExists' 182
-- This rule generates an 'error' Problem element f or each Reference whose 183
-- opposite of the opposite is not defined. 184
rule OppositeOfOppositeExists { 185
 from 186
 i : KM3!Reference (187
 if i.opposite.oclIsUndefined() 188
 then 189
 false 190
 else 191
 i.opposite.opposite.oclIsUndefined() 192
 endif 193

ATL

TRANSFORMATION EXAMPLE

 KM3 to Problem

Date 04/08/2005

__

 Page 11/19

) 194
 to 195
 o : Problem!Problem (196
 severity <- #error , 197
 description <- 198
 'the opposite of the opposite of Reference ' + 199
 i.owner.name + '::' + i.name + 200
 ' should be defined' , 201
 location <- i.location 202
) 203
} 204
 205
-- Rule 'OppositeOfOppositeIsSelf' 206
-- This rule generates an 'error' Problem element f or each Reference whose 207
-- opposite of the opposite is different from itsel f. 208
rule OppositeOfOppositeIsSelf { 209
 from 210
 i : KM3!Reference (211
 if i.opposite.oclIsUndefined() 212
 then 213
 false 214
 else 215
 if i.opposite.opposite.oclIsUndefined() 216
 then 217
 false 218
 else 219
 i.opposite.opposite <> i 220
 endif 221
 endif 222
) 223
 to 224
 o : Problem!Problem (225
 severity <- #error , 226
 description <- 227
 'the opposite of the opposite of Reference ' + 228
 i.owner.name + '::' + i.name + 229
 ' should be this very same Reference' , 230
 location <- i.location 231
) 232
} 233
 234
-- Rule 'TypeOfOppositeIsOwner' 235
-- This rule generates an 'error' Problem element f or each Reference whose 236
-- type of the opposite is different from its owner . 237
rule TypeOfOppositeIsOwner { 238
 from 239
 i : KM3!Reference (240
 not 241
 if i.opposite.oclIsUndefined() then 242
 true 243
 else 244
 i.opposite.type = i.owner 245
 endif 246
) 247
 to 248
 o : Problem!Problem (249
 severity <- #error , 250
 description <- 251
 'the type of the opposite of Reference ' + 252
 i.owner.name + '::' + i.name + 253
 ' should be the owner of this Reference (' + 254
 i.owner.name + ')' , 255

ATL

TRANSFORMATION EXAMPLE

 KM3 to Problem

Date 04/08/2005

__

 Page 12/19

 location <- i.location 256
) 257
} 258
 259
-- Rule 'ClassifierNameUniqueInPackage' 260
-- This rule generates an 'error' Problem element f or each Classifier whose 261
-- name is not unique within its Package. 262
rule ClassifierNameUniqueInPackage { 263
 from 264
 i : KM3!Classifier (265
 i.package.contents->exists(e | (i <> e) and (i.name = e.name)) 266
) 267
 to 268
 o : Problem!Problem (269
 severity <- #error , 270
 description <- 271
 'a Classifier named ' + i.name 272
 + ' already exists in Package ' 273
 + i.package.name, 274
 location <- i.location 275
) 276
} 277
 278
-- Rule 'ClassIsNotItsOwnSupertype' 279
-- This rule generates an 'error' Problem element f or each Class which is its 280
-- direct or indirect supertype. 281
rule ClassIsNotItsOwnSupertype { 282
 from 283
 i : KM3!Class (284
 i.recursiveInheritance() 285
) 286
 to 287
 o : Problem!Problem (288
 severity <- #error , 289
 description <- 'the Class ' + i.name 290
 + ' is its direct/indirect own supertype' , 291
 location <- i.location 292
) 293
} 294
 295
-- Rule 'StructuralFeatureNameUniqueInClass' 296
-- This rule generates an 'error' Problem element f or each StructuralFeature 297
-- whose name is not unique within its Class (inclu ding inherited SFs). 298
rule StructuralFeatureNameUniqueInClass { 299
 from 300
 i : KM3!StructuralFeature (301
 i.owner.allStructuralFeatures() 302
 ->exists(e | (i <> e) and (i.name = e.name)) 303
) 304
 to 305
 o : Problem!Problem (306
 severity <- #error , 307
 description <- 308
 'the Class ' + i.owner.name 309
 + ' contains another feature (including inherited one s) ' 310
 + 'with the same name: ' 311
 + i.name, 312
 location <- i.location 313
) 314
} 315
 316
-- Rule 'StructuralFeatureLower' 317

ATL

TRANSFORMATION EXAMPLE

 KM3 to Problem

Date 04/08/2005

__

 Page 13/19

-- This rule generates an 'error' Problem element f or each StructuralFeature 318
-- whose lower attribute is lower than 0. 319
rule StructuralFeatureLower { 320
 from 321
 i : KM3!StructuralFeature (322
 i.lower < 0 323
) 324
 to 325
 o : Problem!Problem (326
 severity <- #error , 327
 description <- 328
 'Lower bound value of Feature ' + i.owner.name + '::' 329
 + i.name + 'is unvalid (lower than 0)' , 330
 location <- i.location 331
) 332
} 333
 334
-- Rule 'StructuralFeatureUpper' 335
-- This rule generates an 'error' Problem element f or each StructuralFeature 336
-- whose upper attribute is lower than 1. 337
rule StructuralFeatureUpper { 338
 from 339
 i : KM3!StructuralFeature (340
 (i.upper < 1) and (i.upper <> 0-1) 341
) 342
 to 343
 o : Problem!Problem (344
 severity <- #error , 345
 description <- 346
 'Upper bound of Feature ' + i.owner.name + '::' 347
 + i.name + 'is unvalid (lower than 1)' , 348
 location <- i.location 349
) 350
} 351
 352
-- Rule 'StructuralFeatureLowerUpper' 353
-- This rule generates an 'error' Problem element f or each StructuralFeature 354
-- whose upper attribute is lower than its upper at tribute. 355
rule StructuralFeatureLowerUpper { 356
 from 357
 i : KM3!StructuralFeature (358
 (i.upper < i.lower) and (i.upper <> 0-1) 359
) 360
 to 361
 o : Problem!Problem (362
 severity <- #error , 363
 description <- 364
 'Upper bound of Feature ' + i.owner.name + '::' 365
 + i.name + ' is lower than its lower bound' , 366
 location <- i.location 367
) 368
} 369
 370
-- Rule 'StructuralFeatureUniqueOrdered' 371
-- This rule generates an 'error' Problem element f or each StructuralFeature 372
-- whose upper attribute is 1 and isOrdered attribu te is true. 373
rule StructuralFeatureUniqueOrdered { 374
 from 375
 i : KM3!StructuralFeature (376
 (i.upper = 1) and (i.isOrdered = true) 377
) 378
 to 379

ATL

TRANSFORMATION EXAMPLE

 KM3 to Problem

Date 04/08/2005

__

 Page 14/19

 o : Problem!Problem (380
 severity <- #error , 381
 description <- 382
 'Feature ' + i.owner.name + '::' + i.name 383
 + ' cannot be ordered with an upper bound equals to 1 ' , 384
 location <- i.location 385
) 386
} 387
 388
-- Rule 'DataTypeReferenceProhibited' 389
-- This rule generates an 'error' Problem element f or each Reference which 390
-- targets a Datatype element. 391
rule DataTypeReferenceProhibited { 392
 from 393
 i : KM3!Reference (394
 not i.type.oclIsTypeOf(KM3!Class) 395
) 396
 to 397
 o : Problem!Problem (398
 severity <- #error , 399
 description <- 400
 'Reference ' + i.owner.name + '::' + i.name 401
 + ' cannot target a DataType element' , 402
 location <- i.location 403
) 404
} 405
 406
-- Rule 'ClassAttributeUnsupportedByEcore' 407
-- This rule generates an 'warning' Problem element for each Attribute whose 408
-- type is Class. 409
rule ClassAttributeUnsupportedByEcore { 410
 from 411
 i : KM3!Attribute (412
 i.type.oclIsTypeOf(KM3!Class) 413
) 414
 to 415
 o : Problem!Problem (416
 severity <- #warning , 417
 description <- 418
 'Class ' + i.owner.name + ' defines a class Attribute (' 419
 + i.name 420
 + ') that is not supported by the Ecore metamodel' , 421
 location <- i.location 422
) 423
} 424
 425
-- Rule 'AbstractClassShouldHaveChildren' 426
-- This rule generates an 'error' Problem element f or each abstract Class which 427
-- has no child. 428
rule AbstractClassShouldHaveChildren { 429
 from 430
 i : KM3!Class (431
 i.isAbstract and 432
 (thisModule.allClasses 433
 ->select(e | e.supertypes->includes(i)) 434
 ->isEmpty() 435
) 436
) 437
 to 438
 o : Problem!Problem (439
 severity <- #warning , 440
 description <- 'the abstract Class ' + i.name + ' has no children' , 441

ATL

TRANSFORMATION EXAMPLE

 KM3 to Problem

Date 04/08/2005

__

 Page 15/19

 location <- i.location 442
) 443
} 444
 445
-- Rule 'ClassifierNameShouldStartWithUpperCase' 446
-- This rule generates an 'critic' Problem element for each Classifier whose 447
-- name does not start by an upper case character. 448
rule ClassifierNameShouldStartWithUpperCase { 449
 from 450
 i : KM3!Classifier (451
 let firstChar : String = i.name.substring(1, 1) in 452
 firstChar <> firstChar.toUpper() 453
) 454
 to 455
 o : Problem!Problem (456
 severity <- #critic , 457
 description <- 458
 'the name of Classifier ' + i.name 459
 + ' should begin with an upper case' , 460
 location <- i.location 461
) 462
} 463

ATL

TRANSFORMATION EXAMPLE

 KM3 to Problem

Date 04/08/2005

__

 Page 16/19

I. KM3 metamodel in KM3 format

package KM3 {
 abstract class LocatedElement {
 attribute location : String;
 }

 abstract class ModelElement extends LocatedElement {
 attribute name : String;
 reference "package" : Package oppositeOf contents ;
 }

 class Classifier extends ModelElement {}

 class DataType extends Classifier {}

 class Enumeration extends Classifier { -- extends DataType in Ecore but if so,
cannot use an abstract template in TCS
 reference literals[*] ordered container : EnumLit eral oppositeOf enum;
 }

 class EnumLiteral extends ModelElement {
 reference enum : Enumeration oppositeOf literals;
 }

-- WARNING, ONLY FOR OCL Standard Library
 class TemplateParameter extends Classifier {
 }
-- End WARNING

 class Class extends Classifier {
-- WARNING, ONLY FOR OCL Standard Library
 reference parameters[*] ordered container : Templ ateParameter;
-- End WARNING

 attribute isAbstract : Boolean;
 reference supertypes[*] : Class;
 reference structuralFeatures[*] ordered container : StructuralFeature
oppositeOf owner;
 reference operations[*] ordered container : Opera tion oppositeOf owner;
 }

 class TypedElement extends ModelElement {
 attribute lower : Integer;
 attribute upper : Integer;
 attribute isOrdered : Boolean;
 attribute isUnique : Boolean;
 reference type : Classifier;
 }

 class StructuralFeature extends TypedElement {
 reference owner : Class oppositeOf structuralFeat ures;
 reference subsetOf[*] : StructuralFeature opposit eOf derivedFrom;
 reference derivedFrom[*] : StructuralFeature oppo siteOf subsetOf;
 }

 class Attribute extends StructuralFeature {}

 class Reference extends StructuralFeature {
 attribute isContainer : Boolean;
 reference opposite[0-1] : Reference;

ATL

TRANSFORMATION EXAMPLE

 KM3 to Problem

Date 04/08/2005

__

 Page 17/19

 }

 class Operation extends TypedElement {
 reference owner : Class oppositeOf operations;
 reference parameters[*] ordered container : Param eter oppositeOf owner;
 }

 class Parameter extends TypedElement {
 reference owner : Operation oppositeOf parameters ;
 }

 class Package extends ModelElement {
 reference contents[*] ordered container : ModelEl ement oppositeOf "package";
 reference metamodel : Metamodel oppositeOf conten ts;
 }

 class Metamodel extends LocatedElement {
 reference contents[*] ordered container : Package oppositeOf metamodel;
 }
}

package PrimitiveTypes {
 datatype Boolean;
 datatype Integer;
 datatype String;
}

ATL

TRANSFORMATION EXAMPLE

 KM3 to Problem

Date 04/08/2005

__

 Page 18/19

II. Problem metamodel in KM3 format

package Problem {

 enumeration Severity {
 literal error;
 literal warning;
 literal critic;
 }

 class Problem {
 attribute severity: Severity;
 attribute location: String;
 attribute description: String;
 }
}

package PrimitiveTypes {
 datatype String;
}

ATL

TRANSFORMATION EXAMPLE

 KM3 to Problem

Date 04/08/2005

__

 Page 19/19

References

[1] KM3: Kernel MetaMetaModel. Available at http://dev.eclipse.org/viewcvs/indextech.cgi/~checkout~/gmt-

home/doc/atl/index.html.

[2] Bézivin, J, and Jouault, F. Using ATL for Checking Models. To appear in Proceedings of the International

Workshop on Graph and Model Transformation (GraMoT), September 2005, Tallinn, Estonia.

[3] OMG/MOF. Meta Object Facility (MOF), v1.4. OMG Document formal/02-04-03, April 2002. Available

from www.omg.org.

[4] OMG/OCL Specification, ptc/03-10-14. October 2003. Available from www.omg.org.

[5] F. Allilaire, and T. Idrissi. ADT: Eclipse development tools for ATL. In Proceedings of the Second

European Workshop on Model Driven Architecture (MDA) with an emphasis on Methodologies and

Transformations (EWMDA-2), September 2004, Canterbury, England.

[6] F. Budinsky, and D. Steinberg, and E. Merks, and R. Ellersick, and T. J. Grose: Eclipse Modeling

Framework, Chapter 5 Ecore Modeling Concepts, Addison-Wesley.

