WI N R IA PathExpression to PetriNet

& Date 18/07/2005

ATL
TRANSFORMATION EXAMPLE

PetriNet to PathExpression

1. ATL Transformation: path expressions to Petri nets

1.1. Introduction

The path expression to Petri nets example describes a transformation from a path expression to a
Petri net. This document provides an overview of the whole transformation sequence that enables to
produce an XML Petri net representation (in the PNML format [1]) from a textual definition of a path
expression.

The input metamodel of this transformation sequence is the TextualPathExp metamodel. Models
conforming to this metamodel are injected from a textual definition of the path expression by means of
a TCS (Textual Concrete Syntax) program (this part is out of the scope of the document). A
TextualPathExp model is then transformed into a PathExp model. The PathExp metamodel describes
the structure of the graphical representation of the path expression. This new representation is quite
similar to the structure defined by the PetriNet metamodel, and a PathExp model can easily be
transformed into a PetriNet model. This PetriNet model is then transformed into a XML model
providing a XML representation of the Petri net in the PNML format. As a final step, the XML model is
extracted to the textual XML representation using an ATL query (this last part is not described in this
document).

1.2. An example

In this section, we illustrate the transformation sequence by means of a simple example that provides
a comprehensive snapshot of the transformation sequence. The initial input of this transformation
sequence is the textual definition of a path expression, as illustrated in Figure 1. This path expression
is composed of a simple transition (“f"), followed by a composed alternative transition (“g;h + k;m*;n"),
followed by a simple alternative transition (“p+q”), and a final simple transition (“s”). The textual
encoding of this path expression is injected into a corresponding TextualPathExp model (this step is
not detailed in this document).

path f;(g;h + k;m*;n);(p+q);s end

Figure 1. Textual path expression example

Figure 2. Graphical path expression example

Page 1/48

B INRIA

ATL
TRANSFORMATION EXAMPLE

PathExpression to PetriNet

PetriNet to PathExpression

From the TextualPathExp model, we build a PathExp model (by means of the
TextualPathExp2PathExp transformation) that encodes the graphical representation of the path
expression considered so far (see Figure 2).

Next step corresponds to the core transformation of the transformations sequence: it builds a PetriNet
model from the obtained PathExp model. The PetriNet model corresponding to our PathExp model is

& Date 18/07/2005

given in Figure 3.

m

Figure 3. Petri net example

The following step of the transformations sequence aims to generate a XML model from this PetriNet
model. The XML encoding of the Petri net is generated into the PNML format.

<pnml xmIns="http://www.example.org/pnpl"> <place id="7">
<net id="n1" <name>
type="http://www.example.org/pnpl/PTNet"> <text></text>
<name> </name>
<text></text> </place>
</name> <transition id="8"/>
<place id="1"> <transition id="9"/>
<name> <transition id="10"/>
<text></text> <transition id="11"/>
</name> <transition id="12"/>
</place> <transition id="13"/>
<place id="2"> <transition id="14"/>
<name> <transition id="15"/>
<text></text> <transition id="16"/>
</name> <arc id="17" source="3" target="9"/>
</place> <arc id="18" source="12" target="5"/>
<place id="3"> <arc id="19" source="4" target="10"/>
<name> <arc id="20" source="8" target="7"/>
<text></text> <arc id="21" source="13" target="7"/>
</name> <arc id="22" source="9" target="5"/>
</place> <arc id="23" source="3" target="12"/>
<place id="4"> <arc id="24" source="7" target="16"/>
<name> <arc id="25" source="7" target="13"/>
<text></text> <arc id="26" source="15" target="6"/>
</name> <arc id="27" source="1" target="14"/>
</place> <arc id="28" source="2" target="11"/>
<place id="5"> <arc id="29" source="14" target="3"/>
<name> <arc id="30" source="10" target="2"/>
<text></text> <arc id="31" source="5" target="15"/>
</name> <arc id="32" source="16" target="3"/>
</place> <arc id="33" source="11" target="1"/>
<place id="6"> <arc id="34" source="2" target="8"/>
<name> </net>
<text></text> </pnmi>
</name>
</place>

Table 1. XML example

Page 2/48

ATL
TRANSFORMATION EXAMPLE

WI N R IA PathExpression to PetriNet

PetriNet to PathExpression

Considering the whole transformation process, a last step would be to extract the generated XML
model into a corresponding textual representation (see Table 1). This could be achieved by means of
an ATL query. This last step is not detailed in this document.

1.3. Metamodels
In the scope of this example, we consider four distinct metamodels:

- The TextualPathExp metamodel, which describes the structure of a path expression in its
textual form.

- The PathExp metamodel, which describes the structure of a path expression under its
graphical form.

- The PetriNet metamodel, which describes the structure of a Petri net.
- The XML metamodel, which describes the generic structure of a XML file.

These metamodels are detailed in the following subsections.

1.3.1. The TextualPathExp metamodel

Figure 4 describes the TextualPathExp metamodel used in the scope of this transformation. A
TextualPathExp contains a Path, which, in its turn, can contain from one to several Transitions. A
Transition can be defined as a multiple or a single Transition. It is an abstract entity that can be either
a PrimitiveTransition or an AlternativeTransition. A PrimitiveTransition is characterized by its name. An
AlternativeTransition contains a number of alternative Paths.

TextualPathExp| *path Path 1.*
>——
0.11 +altPaths
1
1. +transitions
Transition

+isMultiple : Boolean

PrimitiveTransition AlternativeTransition

+name : string @
0..1

Figure 4. The TextualPathExp metamodel

Page 3/48

& Date 18/07/2005

WI N R IA PathExpression to PetriNet

& Date 18/07/2005

ATL
TRANSFORMATION EXAMPLE

PetriNet to PathExpression

1.3.2. The PathExp metamodel

The PathExp metamodel describes the different model elements that compose the graphical
representation associated with path expressions, as well as the way they can be linked to each other.
The considered metamodel is presented in Figure 5. It is moreover provided in KM3 format [2] in
Appendix Il

PathExp Element
{>+name : string

.
- +
* +ransitions 1. states

1 *
State Transition
1 *
+source +outgoing

+target +incoming
Figure 5. The PathExp metamodel

A PathExp is composed of States and Transitions. Each Transition has a State as source and a State
as target. Each State can have several incoming and outgoing Transitions. Both Transition and
PathExp inherits from the abstract Element entity, for which a “name” attribute is defined.

1.3.3. The PetriNet metamodel

The PetriNet metamodel describes the different model elements that compose a Petri net model, as
well as the way they can be linked to each other. The considered metamodel is presented in Figure 6.
It is moreover provided in KM3 format [2] in Appendix III.

Page 4/48

‘ INRIA PathExpression to PetriNet

& Date 18/07/2005

ATL
TRANSFORMATION EXAMPLE

PetriNet to PathExpression

Element

+name : string

/N
PetriNet
1
@ >
1
* +transitions 1 +arcs 1.7 +places
Transition Arc Place
+weight : int
1 +source 1 +soyrce
1 +target 1 +target
+outgoing | |
TransToPlaceArc PlaceToTransArc *
+outgoing
+incoming * +incoming *

Figure 6. The PetriNet metamodel

A PetriNet model is composed of Transitions, Places and Arcs. The PetriNet entity, as well as the
Transition and the Place ones, inherits from the abstract Element entity that defines a “name” attribute.
An Arc is an abstract entity which is associated with a “weight” attribute. Each Arc is either of the
TransToPlaceArc or PlaceToTransArc kind. A TransToPlaceArc connects a Transition to a Place,
whereas a PlaceToTransArc connects a Place to a Transition.

A Place can have several outgoing PlaceToTransArcs and several incoming TransToPlaceArcs.
Similarly, a Transition can have several incoming PlaceToTransArcs and several outgoing
TransToPlaceArcs. Each TransToPlaceArc has a source Transition and a target Place. In the same
way, each PlaceToTransArc has a source Place and a target Transition.

1.3.4. The XML metamodel

The XML metamodel describes the different model elements that compose a XML model, as well as
the way they can be linked to each other. The considered metamodel is presented in Figure 7. It is
moreover provided in KM3 format [2] in Appendix IV.

Page 5/48

‘ INRIA PathExpression to PetriNet

& Date 18/07/2005

ATL
TRANSFORMATION EXAMPLE

PetriNet to PathExpression

Node

+startLine : int
+startColumn : int
+endLine : int
+endColumn : int
+name : string +children
+value : string

/\
+parent 0..1
Attribute Text Element
Root

Figure 7. The XML metamodel

A XML model has a single Root element. It also contains Elements, Texts, Attributes entities. The
Attribute, Text and Element elements all directly inherit from the abstract Node element, whereas Root
inherits from the Element entity. The following attributes are defined for the abstract Node entity:
“startLine”, “startColumn”, “endLine”, “endColumn”, “name” and “value”. In the scope of this example,
we only make use of the two last attributes, “name” and “value”. In case of an Attribute entity, “name”
encodes the name of the attribute, whereas “value” contains the value associated with the Attribute. In
case of a Text entity, “value” contains the textual content of the Text. Finally, considering an Element
entity, “name” encodes the name of the modelled XML tag.

An Element can contain several Nodes, which can be either of type Attribute, Text or Element.

Inversely, a Node can be contained by zero or one Element. In fact, each Node is contained by an
Element except the Root element which has no parent.

1.4. Transformations Specification

1.4.1. The TextualPathExp2PathExp transformation

The ATL code for the TextualPathExp to PathExp transformation consists of 20 helpers and 7 rules.

1.4.1.1. Assumptions

The ATL transformation described here makes a number of assumptions on the input TextualPathExp
models:

« AlternativeTrans should not be “multiple” (i.e. only simple loops can be defined).

Page 6/48

ATL
TRANSFORMATION EXAMPLE

WI N R IA PathExpression to PetriNet

PetriNet to PathExpression

» The first and the last Transitions of a Path, including the main Path, have to be “single”
Transitions.

 The first Transition of the input model must be a PrimitiveTrans.

1.4.1.2. Helpers

The first helper, root, is a constant helper. It provides access to the root input TextualPathExp
element.

The rootTrans helper is a constant helper. It calculates the first Transition of the main Path of the
input TextualPathExp. To this end, it returns the first Transition of the element provided by the root
helper.

The leafTrans helper is a constant helper. It calculates the last Transition of the main Path of the input
TextualPathExp. To this end, it returns the last Transition of the element provided by the root helper.

The allPaths helper is a constant helper. It computes a set containing all the Path elements of the
input TextualPathExp model.

The altPaths helper is a constant helper. It calculates a set containing all the alternative Paths, that is
all the Paths that are contained by an AlternativeTrans. For this purpose, the helper selects among all
Paths, those that are included in an AlternativeTrans.

The primTransitions helper is a constant helper. It calculates the set of PrimitiveTrans that are not
contained by a Path of any AlternativeTrans. To this end, the helper first gets the Paths that are not
included by any AlternativeTrans, and, for each selected Path, it collects the Transition of the
PrimitiveTrans type.

The singlePrimTransitions helper is a constant helper. It calculates the set of “single” PrimitiveTrans
that are not contained by a Path of any AlternativeTrans. For this purpose, it simply selects among the
primTransitions set, those whose isMultiple attribute is false.

The multiplePrimTransitions helper is a constant helper. It calculates the set of “multiple”
PrimitiveTrans that are not contained by a Path of any AlternativeTrans. For this purpose, it simply
selects among the primTransitions set, those whose isMultiple attribute is true.

The altTransitions1 helper is a constant helper. It calculates the set of PrimitiveTrans that are
contained by a Path that belongs to an AlternativeTrans, except the last Transition of each Path. To
this end, the helper first gets all the Transitions contained by the each AlternativePath. It then removes
the last Transition of each built Sequence of Transitions. The helper finally selects, among all
Transitions, those of the PrimitiveTrans type.

The singleAltTransitions1 helper is a constant helper. It calculates the set of “single” PrimitiveTrans
that are contained by a Path of an AlternativeTrans. For this purpose, it simply selects among the
altTransitions1 set, those whose isMultiple attribute is false.

The multipleAltTransitions1l helper is a constant helper. It calculates the set of “multiple”
PrimitiveTrans that are contained by a Path of an AlternativeTrans. For this purpose, it simply selects
among the altTransitions1 set, those whose isMultiple attribute is true.

The altTransitions2 helper is a constant helper. It calculates the set of PrimitiveTrans that are
contained by a Path that belongs to an AlternativeTrans and that are the last Transition their
respective Path. To this end, the helper first gets all the Transitions contained by the each
AlternativePath. It then selects the last Transition of each built Sequence of Transitions. The helper
finally selects, among all Transitions, those of the PrimitiveTrans type.

Page 7/48

& Date 18/07/2005

WI N R IA PathExpression to PetriNet

& Date 18/07/2005

ATL
TRANSFORMATION EXAMPLE

PetriNet to PathExpression

The getPath() helper returns the Path that contains the contextual Transition. To this end, it simply
selects, among all Paths, the one that contains the contextual Transition.

The isLastOfPath() helper returns a Boolean value stating whether the contextual Transition is the
last of its Path. The helper first gets the Path of the contextual Transition, and then checks whether the
last Transition of this Path is equal to the contextual Transition.

The isFirstOfPath() helper returns a Boolean value stating whether the contextual Transition is the
first of its Path. The helper first gets the Path of the contextual Transition, and then checks whether
the first Transition of this Path is equal to the contextual Transition.

The getLoopTarget() helper returns the Transition for which is generated the target State of the loop
defined by the contextual PrimitiveTrans. Since a “multiple” PrimitiveTrans only leads to the generation
of a loop Transition, the target of the loop is the State generated for the previous PrimitiveTrans. As a
consequence, the helper first gets the Path of the contextual PrimitiveTrans, gets its index within the
Transitions Sequence, and returns the Transition that precedes it in that Sequence.

The looplncoming() helper returns a boolean value stating whether the contextual PrimitiveTrans
precedes a “multiple” Transition in its Path (i.e. whether the State that is going to be generated for the
contextual PrimitiveTrans is the target of a loop Transition). If the contextual PrimitiveTrans is the last
Transition of its Path, the helper returns false. Otherwise, the helper returns the value of the isMultiple
attribute of the Transition that follows the contextual PrimitiveTrans in the Path.

The getLooplincoming() helper returns the loop PrimitiveTrans than follows the contextual
Primitivetrans in the Path. The helper should only be called on a PrimitiveTrans that precedes a
“multiple” PrimitiveTrans in its Path. The helper first gets the Path of the contextual PrimitiveTrans,
gets its index within the Transitions Sequence, and returns the Transition that follows it in that
Sequence.

The getOutgoing() helper is a recursive helper that returns the set of non-loop PrimitiveTrans that
follows the contextual PrimitiveTrans. Returned PrimitiveTrans are those that are going to be matched
into the following States of the contextual PrimitiveTrans. To this end, the helper is based on the
following rules:

« If the next Transition is a “single” PrimitiveTrans, the helper returns this next PrimitiveTrans.

« Else if the next Transition is a “multiple” PrimitiveTrans, the helper returns the result of a
recursive call of getOutgoing() on this next PrimitiveTrans.

« Else if the next Transition is an AlternativeTrans, the helper returns a Set composed of the first
Transition of each alternative Path of this AlternativeTrans.

The getPreviousTransition() helper is a recursive helper that returns the Transition (either primitive
or alternative) that precedes the contextual PrimitiveTrans in the input TextualPathExp. This helper
should not be called onto the first Transition of a TextualPathExp. The helper first checks whether the
contextual PrimitiveTrans is the first one of its Path. If not, the helper then checks whether the status
of the isMultiple attribute of the preceding transition. If this Transition is a single Transition, it returns it.
Otherwise, if the preceding Transition is a multiple one, the helper returns the result of a recursive call
to getPreviousTransition() helper onto this preceding Transition. In case the contextual helper is the
first Transition of its Path, the helper first gets the AlternativeTrans this Path belongs to. It then
computes the Path the AlternativeTrans is defined in, and the Transition (either primitive or
alternative), that precedes the computed AlternativetTrans within this new Path. If this transition is a
“single” Transition, it is returned as the result of the helper call. If the transition is a “multiple”
Transition, the helper returns the result of a recursive call to getPreviousTransition() helper onto the
calculated preceding Transition.

Page 8/48

ATL
TRANSFORMATION EXAMPLE

WI N R IA PathExpression to PetriNet

PetriNet to PathExpression

1.4.1.3. Rules

The Main rule generates both a PathExp and its initial State for the input TextualPathExp element.
The generated PathExp accepts an empty string as name. Its set of States corresponds to the States
generated for the input single PrimitiveTrans that are not part of an AtlernativeTrans, for those that are
part of an AlternativeTrans, for the States generated for each AlternativeTrans, and the initial State
generated by the rule. Its set of Transitions corresponds to Transitions generated for each
PrimitiveTrans, whatever the constant helper it belongs to. The incoming Transitions of the generated
State correspond to an empty set. Its outgoing Transitions correspond to the Transitions generated for
the root Transition (provided by the rootTrans helper) of the input TextualPathExp model.

The AlternativeTrans rule generates a State for each input AlternativeTrans element. Matched
AlternativeTrans are supposed not to be “multiple” (see assumptions). The generated State
corresponds to the State that closes the alternative transition in the built PathExp model. Its set of
incoming Transitions corresponds to the Transitions generated for the last PrimitiveTrans of each
alternative Path of the contextual AlternativeTrans. Its set of outgoing Transitions corresponds to the
Transitions generated for the outgoing TextualPathExp Transitions (computed by the getOutgoing()
helper) of the contextual AlternativeTrans.

The SinglePrimitiveTrans rule generates both a State and a Transition for each input “single”
PrimitiveTrans that is not defined within an AlternativeTrans. The generated Transition is the PathExp
Transition that targets the State generated by the rule. The name of the generated Transition is copied
from the input PrimitiveTrans. If the contextual PrimitiveTrans is the TextualPathExp rootTrans, the
source of the generated Transition corresponds to the State generated by the Main rule. Otherwise,
the source of the generated Transition corresponds to the State generated for the Transition that
precedes the contextual PrimitiveTrans in its Path. The target of the generated Transition corresponds
to the State generated by the rule. The set of incoming transitions of the State generated by the rule
contains to the generated Transition and the loop Transition that is generated for a potential loop (as
stated by the looplncoming() helper). In this case, the getLooplncoming() helper returns the input
Transition for which the loop PrimitiveTrans is generated. If the contextual PrimitiveTrans is the leaf
Transition of the input TextualPathExp, the set of outgoing Transitions of the generated State is
empty. Otherwise, the set of outgoing Transitions of the State corresponds to the Transitions
generated for the TextualPathExp Transitions returned by the getOugoing() helper, and the loop
Transition generated for a potential loop.

The MultiplePrimitiveTrans rule generates a Transition for each “multiple” input PrimitiveTrans that is
not defined within an AlternativeTrans. The generated Transition corresponds to a simple loop within
the built PathExp model. The name of the generated Transition is copied from the input
PrimitiveTrans. If the input PrimitiveTrans is the rootTrans of the TextualPathExp, the source and the
target of the generated Transition correspond to the State generated by the Main rule. Otherwise, they
correspond to the State generated for the PrimitiveTrans returned by the getLoopTarget() helper.

The SingleAltTransl rule generates both a Transition and a State for each “single” input
PrimitiveTrans that belongs to an AlternativeTrans without being the last Transition of its alternative
Path. The generated Transition is the PathExp Transition that targets the State generated by the rule.
The name of the generated Transition is copied from the input PrimitiveTrans. The source of the
generated Transition corresponds to the State generated for the TextualPathExp Transition returned
by the getPreviousTransition() helper. Its target corresponds to the State generated by the rule. The
set of incoming transitions of the State generated by the rule contains to the generated Transition and
the loop Transition that is generated for a potential loop (as stated by the loopIncoming() helper). In
this case, the getLoopincoming() helper returns the input Transition for which the loop PrimitiveTrans
is generated. The set of outgoing Transitions of the State corresponds to the Transitions generated for
the TextualPathExp Transitions returned by the getOugoing() helper, and the loop Transition
generated for a potential loop.

Page 9/48

& Date 18/07/2005

W INRIA PathExpression to PetriNet

& Date 18/07/2005

ATL
TRANSFORMATION EXAMPLE

PetriNet to PathExpression

©oo~NOUAWNE

The MultipleAltTrans2 rule generates a Transition for each “multiple” input PrimitiveTrans that is
included into an AlternativeTrans without being the last Transition of its alternative Path. The
generated Transition corresponds to a simple loop within the built PathExp model. The name of the
generated Transition is copied from the input PrimitiveTrans. Its source and its target correspond to
the State generated for the PrimitiveTrans returned by the getLoopTarget() helper.

The AltTrans2 rule generates a Transition for each “single” input PrimitiveTrans which is included into
an AlternativeTrans and which is the last Transition of its Path. The generated Transition corresponds
to a simple loop within the built PathExp model. The name of the generated Transition is copied from
the input PrimitiveTrans. The source of the generated Transition corresponds to the State generated
for the TextualPathExp Transition returned by the getPreviousTransition() helper. Its target
corresponds to the closing State generated for the AlternativeTrans that contains the contextual
PrimitiveTrans.

nmodul e TextualPathExp2PathExp;
creat e OUT : PathExp f romIN : TextualPathExp;

-- HELPERS

-- This helper returns the root TextualPathExp elem ent of the input
-- TextualPathExp model.
-- CONTEXT: thisModule
-- RETURN: TextualPathExp!TextualPathExp
hel per def: root : TextualPathExp!TextualPathExp =
TextualPathExp!TextualPathExp.allinstances()
->asSequence()->first();

-- This helper returns the 1st Transition element ¢ ontained by the root

-- TextualPathExp model.

-- CONTEXT: thisModule

-- RETURN: TextualPathExp!Transition

hel per def: rootTrans : TextualPathExp!Transition =
thisModule.root.path.transitions->first();

-- This helper returns the last Transition element contained by the root

-- TextualPathExp model.

-- CONTEXT: thisModule

-- RETURN: TextualPathExp!Transition

hel per def: leafTrans : TextualPathExp!Transition =
thisModule.root.path.transitions->last();

-- This helper computes the Set containing all the Path elements of the input

-- TextualPathExp model.

-- CONTEXT: thisModule

-- RETURN: Set(TextualPathExp!Path)

hel per def: allPaths : Set (TextualPathExp!Path) =
TextualPathExp!Path.allinstances();

-- This helper computes the Set of Path elements th at are contained by
-- AlternativeTransition elements.
-- CONTEXT: thisModule
-- RETURN: Set(TextualPathExp!PrimitiveTrans)
hel per def: altPaths : Set (TextualPathExp!Path) =
thisModule.allPaths
->select(a |
TextualPathExp!AlternativeTrans.allinstances()
->collect(b | b.altPaths)

Page 10/48

ATL
TRANSFORMATION EXAMPLE

W INRIA PathExpression to PetriNet

&
PetriNet to PathExpression

Date 18/07/2005

->flatten()
->includes(a)
)i
-- This helper computes the Set of PrimitiveTrans t hat are not contained
-- by any AlternativeTransition.
-- To this end, it selects, among all Paths, those that are not contained
-- by any AlternativeTransition element. It then ge ts, for the selected Paths,

-- the transitions of type PrimitiveTrans.
-- CONTEXT: thisModule
-- RETURN: Set(TextualPathExp!PrimitiveTrans)
hel per def: primTransitions : Set (TextualPathExp!PrimitiveTrans) =
TextualPathExp!Path.allinstances()
->select(a |
not TextualPathExp!AlternativeTrans.allinstances()
->collect(b | b.altPaths)
->flatten()
->includes(a)

)
->collect(p | p.transitions)
->flatten()
->select(c | c.ocllsTypeOf(TextualPathExp!Primiti veTrans));
-- This helper computes the Set of 'single' primiti ve transitions.
-- For this purpose, it selects in the primTransiti ons set, the transitions

-- whose 'isMultiple' attribute is set to false.
-- CONTEXT: thisModule
-- RETURN: Set(TextualPathExp!PrimitiveTrans)

hel per def : singlePrimTransitions : Set (TextualPathExp!PrimitiveTrans) =
thisModule.primTransitions->select(c | c.isMultipl e= false),

-- This helper computes the Set of 'multiple’ primi tive transitions.

-- For this purpose, it selects in the primTransiti ons set, the transitions

-- whose 'isMultiple" attribute is set to true.
-- CONTEXT: thisModule
-- RETURN: Set(TextualPathExp!PrimitiveTrans)

hel per def: multiplePrimTransitions : Set (TextualPathExp!PrimitiveTrans) =
thisModule.primTransitions->select(c | c.isMultipl e= ftrue);

-- This helper computes the Set of PrimitiveTrans t hat are contained by an

-- AlternativeTransition, except those that are the last transition of their

-- Path.

-- To this end, the helper first collects the trans itions contained by each

-- alternative path. For each collected sequence of transitions of size S, it

-- gets the (S-1) first transition. Finally, it se lects in the built sequence

-- the transitions of type PrimitiveTrans.
-- CONTEXT: thisModule
-- RETURN: Set(TextualPathExp!PrimitiveTrans)
hel per def : altTransitions1 : Set (TextualPathExp!PrimitiveTrans) =
thisModule.altPaths
->collect(p | p.transitions)

->iterate(e;
res: Sequence (Sequence (TextualPathExp!Transition)) = Set {} |
res->including(e->subSequence(1, e->size()-1))
)
->asSequence()
->flatten()
->select(c | c.ocllsTypeOf(TextualPathExp!Primiti veTrans));
-- This helper computes the Set of 'single' alterna tive transitions.
-- For this purpose, it selects in the altTransitio nsl set, the transitions

-- whose 'isMultiple' attribute is set to false.
-- CONTEXT: thisModule

Page 11/48

ATL

TRANSFORMATION EXAMPLE

B INRIA

PathExpression to PetriNet

&

PetriNet to PathExpression

Date 18/07/2005

119 -- RETURN: Set(TextualPathExp!PrimitiveTrans)

120 hel per def: singleAltTransitions1 : Set (TextualPathExp!PrimitiveTrans) =

121 thisModule.altTransitions1->select(c | c.isMultipl e= false);

122

123

124 -- This helper computes the Set of ‘'multiple’ alter native transitions.

125 -- For this purpose, it selects in the altTransitio nsl set, the transitions
126 -- whose ‘isMultiple' attribute is set to true.

127 -- CONTEXT: thisModule

128 -- RETURN: Set(TextualPathExp!PrimitiveTrans)

129 hel per def: multipleAltTransitions1 : Set (TextualPathExp!PrimitiveTrans) =
130 thisModule.altTransitions1->select(c | c.isMultipl e= true);

131

132

133 -- This helper computes the Set of PrimitiveTrans t hat are contained by an
134 -- AlternativeTransition and that are the last tran sition of their Path (which
135 -- may also be the first transition if the path con tains a singel transition).
136 -- To this end, the helper first collects the trans itions contained by each
137 -- alternative path. For each collected sequence of transitions of size S, it
138 -- gets the transition number S. Finally, it select s in the built sequence
139 -- the transitions of type PrimitiveTrans.

140 -- CONTEXT: thisModule

141 -- RETURN: Set(TextualPathExp!PrimitiveTrans)

142 hel per def: altTransitions2 : Set (TextualPathExp!PrimitiveTrans) =

143 thisModule.altPaths

144 ->collect(p | p.transitions)

145 ->iterate(e;

146 res: Sequence (Sequence (TextualPathExp!Transition)) = Set {}|
147 res->including(e->last())

148)

149 ->asSequence()

150 ->flatten()

151 ->select(c | c.ocllsTypeOf(TextualPathExp!Primiti veTrans));

152

153

154 -- This helper computes the containing Path of the contextual Transition
155 -- element.

156 -- For this purpose, it selects ammong all Paths, t he one that contains the
157 -- contextual Transition elements.

158 -- CONTEXT: TextualPathExp!Transition

159 -- RETURN: TextualPathExp!Path

160 hel per cont ext TextualPathExp!Transition

161 def : getPath() : TextualPathExp!Path =

162 thisModule.allPaths

163 ->select(a | a.transitions->includes(self))

164 ->first();

165

166

167 -- This helper computes a boolean value assessing w hether or not the contextual
168 -- PrimitiveTrans is the last transition of its Pat h.

169 -- To this end, the helper first gets the path of t he contextual transition (by
170 -- means of the 'getPath' helper) and then compares the contextual transition
171 -- to the last transition of the path.

172 -- CONTEXT: TextualPathExp!PrimitiveTrans

173 -- RETURN: TextualPathExp!Transition

174 hel per cont ext TextualPathExp!PrimitiveTrans

175 def : isLastOfPath() : Boolean =

176 | et p: TextualPathExp!Path = self.getPath()

177 i n self = p.transitions->last();

178

179

180 -- This helper computes a boolean value assessing w hether or not the contextual
181 -- PrimitiveTrans is the first transition of its Pa th.

182 -- To this end, the helper first gets the path of t he contextual transition (by
183 -- means of the 'getPath' helper) and then compares the contextual transition
184 -- to the first transition of the path.

185 -- CONTEXT: TextualPathExp!PrimitiveTrans

186 -- RETURN: TextualPathExp!Transition

Page 12/48

B INRIA

ATL

TRANSFORMATION EXAMPLE

PathExpression to PetriNet

&

PetriNet to PathExpression

Date 18/07/2005

187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254

hel per cont ext TextualPathExp!PrimitiveTrans
def : isFirstOfPath() : Boolean =
| et p: TextualPathExp!Path = self.getPath()
i n self = p.transitions->first();

-- This helper computes the Transition for which is

-- of the loop defined by the contextual PrimitiveT

-- transition only leads to the generation of a loo

-- consequence, the computed Transition is the one

-- primitive transition in their path. The contextu

-- should therefore not be the first of its path.

-- CONTEXT: TextualPathExp!PrimitiveTrans

-- RETURN: TextualPathExp!Transition

hel per cont ext TextualPathExp!PrimitiveTrans
def : getLoopTarget() : TextualPathExp!Transition =
| et p: TextualPathExp!Path = self.getPath()
inleti: Integer = p.transitions->indexOf(self)
i n p.transitions->at(i-1);

-- This helper computes a boolean value assessing w

-- PrimitiveTrans is preceding a multiple transitio

-- If the contextual PrimitiveTrans is the last tra

-- helper returns false. Otherwise, it returns the

-- attribute of the next transition in the path.

-- CONTEXT: TextualPathExp!PrimitiveTrans

-- RETURN: Boolean

hel per cont ext TextualPathExp!PrimitiveTrans
def : looplncoming() : Boolean =
| et p: TextualPathExp!Path = self.getPath()

inleti: Integer = p.transitions->indexOf(self)
in if self =p.transitions->last() t hen
false
el se
p.transitions->at(i+1).isMultiple
endi f;

-- This helper computes the incoming/outgoing loop

-- multiple PrimitiveTrans.

-- For this purpose, it returns the next transition

-- PRECOND: this helper should only be called from

-- precedes a multiple PrimitiveTrans.

-- CONTEXT: TextualPathExp!PrimitiveTrans

-- RETURN: TextualPathExp!Transition

hel per cont ext TextualPathExp!PrimitiveTrans
def : getLooplncoming() : TextualPathExp!Transition =
| et p: TextualPathExp!Path = self.getPath()
inleti: Integer = p.transitions->indexOf(self)
i n p.transitions->at(i + 1);

-- This helper computes the set of primitive transi
-- transitions) that follow the contextual transiti

-- For this purpose, the helper first gets the tran
-- contextual transition in the same path.

-- If this following transition is a PrimitiveTrans

-- helper returns the transition. If the following

-- PrimitiveTrans, then the helper looks for the tr
-- next transition by means of a recursive call ont
-- If the following transition is an AlternativeTra

-- first transition of each alternative path of the

-- returns the calculated set.

-- CONTEXT: TextualPathExp!Transition

-- IN: Integer

-- RETURN: Set(TextualPathExp!PrimitiveTrans)
hel per cont ext TextualPathExp!Transition

generated the target state
rans. A multiple primitive
p transition. As a
preceding the contextual
al primitrive transition

hether or not the contextual
nin its Path.

nsition of its Path, the
value of the ‘isMultiple’

Transition of the contextual

in the path.
a PrimTransition that

tions (except loop
on.
sition next to the

and is not multiple, the
transition is a multiple
ansitions that follow this
o this "next transition".
ns, the helper collects the
AlternativeTrans, and

Page 13/48

ATL
TRANSFORMATION EXAMPLE

PathExpression to PetriNet

B INRIA

&

PetriNet to PathExpression

Date 18/07/2005

255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322

def : getOutgoing() :
| et p: TextualPathExp!Path = self.getPath()
inleti: Integer = p.transitions->indexOf(self)

Set (TextualPathExp!PrimitiveTrans) =

in |et t:TextualPathExp!Transition = p.transitions->at(i+1)

in if tocllsTypeOf(TextualPathExp!PrimitiveTrans) t hen
i f not tisMultiple t hen

Set {t}
el se
t.getOutgoing()
endi f
el se
t.altPaths
->iterate(e; res : Set (TextualPathExp!PrimitiveTrans) = Set {}|

res->including(e.transitions->first())

endi f;

-- This helper computes the Transition (primitive o
-- the contextual PrimitiveTrans in the input Textu
-- To this end, the helper first checks whether or

-- PrimitiveTrans is the first transition of its Pa

-- If the contextual transition is the first of its

-- the AtlernativeTrans the contextual transition b
-- Path in which this AlternativeTrans is defined,

-- AlternativeTrans within this Path. From then, it
-- precedes the computed AlternativeTrans. The help
-- transition if it is not multiple. If the precedi

-- the helper returns the transition that precedes

-- by means of a recursive call of the helper onto

-- the AlternativeTrans.

-- If the contextual transition is not the first of

-- returns its preceding transition if this last is

-- preceding transition is multiple, the helper ret

-- transition of the preceding transition by means

-- helper onto the transition preceding the context
-- PRECOND: this helper should not be called on the
-- input model.

-- CONTEXT: TextualPathExp!PrimitiveTrans

-- RETURN: TextualPathExp!Transition

hel per cont ext TextualPathExp!PrimitiveTrans

def : getPreviousTransition() : TextualPathExp!Transiti
| et p: TextualPathExp!Path = self.getPath()
i f self.isFirstOfPath() t hen
| et alt: TextualPathExp!AlternativeTrans =
TextualPathExp!AlternativeTrans.allinstances()
->select(a | a.altPaths->includes(p))
->first()
in |et p2: TextualPathExp!Path =
thisModule.allPaths
->select(a | a.transitions->includes(alt))

->first()

inleti: Integer = p2.transitions->indexOf(alt)

in |et t:TextualPathExp!Transition =
p2.transitions->at(i-1) in

i f tisMultiple t hen
t.getPreviousTransition()

el se
t

endi f

el se

leti: Integer = p.transitions->indexOf(self)

in |et t:TextualPathExp!Transition =
p.transitions->at(i-1) in

i f tisMultiple t hen
t.getPreviousTransition()

el se

t

r alternative) that precedes
alPathExp model.

not the contextual

th.

path, the helper first gets
elongs to. It then gets the
and the rank of the

gets the transition that

er returns this preceding
ng transition is multiple,
this preceding transition
the transition that precedes

its path, the helper

not multiple. If the

urns the preceding

of a recursive call of the
ual transition.

root Transition of the

on =

Page 14/48

B INRIA

ATL
TRANSFORMATION EXAMPLE

PathExpression to PetriNet

&

PetriNet to PathExpression

Date 18/07/2005

323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390

endi f
endi f;

-- RULES

-- Rule 'Main'

-- This rule generates both a PathExp element and i
-- from the input root TextualPathExp element.

-- The generated PathExp element accepts an empty s
-- states corresponds to the 'pe_s' elements genera
-- of the singlePrimTransitions, singleAltTransitio

-- elements generated for AlternativeTransition, pl
-- generated by the current rule. Its set of transi

-- 'pe_t' elements generated for the input elements
-- altTransitions1, and altTransitions2 sets.

-- The generated initial State has an empty set of

-- set of outgoing transitions corresponds to the '

-- generated for the outgoing transitions computed

rul e Main {
from
tpe : TextualPathExp!TextualPathExp
to
pe : PathExp!PathExp (
name <- "
states <- Set{
thisModule.singlePrimTransitions
->collect(e | thisModule.resolveTemp(e,
thisModule.singleAltTransitions1
->collect(e | thisModule.resolveTemp(e,
TextualPathExp!Alternative Trans.allinstances(
->collect(e | thisModule.resolveTemp(e,
pe_s
h
transitions <- Set{

thisModule.primTransitions

->collect(e | thisModule.resolveTemp(e,

thisModule.altTransitions1

->collect(e | thisModule.resolveTemp(e,

thisModule.altTransitions2

->collect(e | thisModule.resolveTemp(e,

)

pe_s : PathExp!State (
incoming <- Set {},
outgoing <- Set {thisModule.rootTrans}

->collect(e | thisModule.resolveTemp(e,

-- Rule "AlternativeTrans'
-- This rule generates the State element that close
-- AlternativeTransition element. The generated Sta
-- different alternative paths of the AlternativeTr
-- Incoming transitions of the generated state corr
-- generated for the last alternative transitions o
-- AlternativeTransition element.
-- Outgoing transitions of the generated state corr
-- elements generated for the set of transitions re
-- getOutgoing(1).
rul e AlternativeTrans {

from

tpe_at : TextualPathExp!AlternativeTrans (

-- tpe_at.isMultiple = false

ts initial State element

tring as name. Its set of
ted for the input elements
ns sets, plus the 'pe_s'
us the initial State

tions corresponds to the
in the primTransitions,

incoming transitions. Its
pe_t' elements that are
by the getOutgoing(0) call.

‘pe_s'),
‘pe_s'),
)

‘pe_s'),
‘pe_t),
‘pe_t),
‘pe_t)
‘pe_t)

s an input

te is the one at which the
ansition join.

espond to the elements
f the input

espond to the 'pe_t'
turned by the call of

Page 15/48

ATL
TRANSFORMATION EXAMPLE

W INRIA PathExpression to PetriNet

& Date 18/07/2005
PetriNet to PathExpression

391 true

392)

393 to

394 pe_s : PathExp!State (

395 incoming <- thisModule.altTransitions2

396 ->select(a | tpe_at.altPaths

397 ->collect(b | b.transitions)

398 ->flatten()

399 ->includes(a)

400 ,

401 outgoing <- tpe_at.getOutgoing()

402 ->collect(e | thisModule.resolveTemp(e, ‘pe_t')
403)

404 }

405

406

407 -- Rule "

408 -- This rule generates ...

409 --rule MultipleAlternativeTrans {

410 -- from

411 -~ tpe_at: TextualPathExp!AlternativeTrans (

412 -- tpe_at.isMultiple = true

413 -)

414 --to

415 - pe_s: PathExp!State (

416 -- outgoing <- Set{

417 -- tpe_at.getOutgoing()

418 -- ->collect(e | thisModule.resolveTemp(e, 'p e t9),
419 -- pe_t}

420 -)

421 -

422 -- pe_t: PathExp!Transition (

423 -- name <- "--,

424 -- target <- pe_s

425 -)

426 -}

427

428

429 -- Rule 'SinglePrimitiveTrans'

430 -- This rule generates both a Transition and a Stat e for each PrimitiveTrans
431 -- element that belongs to the 'singlePrimTransitio ns' set.

432 -- The generated transition accepts as hame the nam e of the input

433 -- PrimitiveTrans. If the input PrimitiveTrans is t he root transition of the
434 -- input model, its source corresponds to the 'pe_s " initial state generated
435 -- for the input TextualPathExp element by rule 'Ma in'. Otherwise, the source
436 -- element corresponds to the 'pe_s' element genera ted for the transition that
437 -- precedes the input PrimitiveTrans in the current Path. Its target is the
438 -- State generated by the rule.

439 -- Incoming transitions for the generated State inc lude the Transition
440 -- generated by the rule and, when the input Transi tion precedes a multiple
441 -- transition, the 'pe_t' element generated for thi S next transition.

442 -- If the input PrimitiveTrans is the leaf transiti on of the input model, the
443 -- generated State has no outgoing transitions. Oth erwise, its outgoing
444 -- transition corresponds to the 'pe_t' element gen erated for the input
445 -- transition returned by the call of getOugoing(). Moreover, if the input
446 -- Transition precedes a multiple transition, the ' pe_t' element generated for
447 -- this next transition is added to the set ougoing transitions of the

448 -- generated State.

449 rul e SinglePrimitiveTrans {

450 from

451 tpe_pt : TextualPathExp!PrimitiveTrans (

452 thisModule.singlePrimTransitions->includes(tpe_p t)

453)

454 to

455 pe_t : PathExp!Transition (

456 name <- tpe_pt.name,

457 source <-

458 i f tpe_pt = thisModule.rootTrans t hen

Page 16/48

W INRIA PathExpression to PetriNet

ATL
TRANSFORMATION EXAMPLE

& Date 18/07/2005
PetriNet to PathExpression

459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526

thisModule.resolveTemp(thisModule.root, ‘pe_s')
el se

| et p: TextualPathExp!Path = tpe_pt.getPath()

inleti: Integer = p.transitions->indexOf(tpe_pt)

in |et t:TextualPathExp!Transition =
p.transitions->at(i-1)
i n thisModule.resolveTemp(t, '‘pe_s')
endi f,
target <- pe_s

)

pe_s : PathExp!State (

incoming <- Set {pe_t}->union(
i f tpe_pt.looplncoming() t hen
Set {thisModule.resolveTemp(tpe_pt.getLooplncoming(), ‘pe_t')}
el se
Set {}
endi f
),
outgoing <- i f tpe_pt = thisModule.leafTrans t hen
Set {}
el se
tpe_pt.getOutgoing()
->collect(e | thisModule.resolveTemp(e, ‘pe_t')
->union(
i f tpe_pt.looplncoming() t hen
Set {thisModule.resolveTemp(tpe_pt.getLooplncoming(), ‘pe_t')}
el se
Set {}
endi f
)
endi f
)
}
-- Rule 'MultiplePrimitiveTrans'
-- This rule generates a loop transition for each t ransition that belongs
-- to the 'multiplePrimTransitions' set. The genera ted transition is a
-- transition from and to the state generated for t he previous input
-- transition.
-- The generated loop transition accepts the name o f the input Transition as
-- name.
-- If the input PrimitiveTrans is the root transiti on of the input model, its
-- source is the initial State generated by the 'Ma in' rule. Otherwise, the
-- source is computed by the getLoopTarget() helper .
-- If the input PrimitiveTrans is the root transiti on of the input model, its
-- target is the initial State generated by the 'Ma in' rule. Otherwise, the

-- target is computed by the getLoopTarget() helper
rul e MultiplePrimitiveTrans {
from
tpe_pt : TextualPathExp!PrimitiveTrans (
thisModule.multiplePrimTransitions->includes(tpe _pt)
)

to
pe_t : PathExp!Transition (

name <- tpe_pt.name,

source <-
i f tpe_pt = thisModule.rootTrans t hen
thisModule.resolveTemp(thisModule.root, ‘pe_s')
el se
tpe_pt.getLoopTarget()
endi f,

target <-
i f tpe_pt = thisModule.rootTrans t hen
thisModule.resolveTemp(thisModule.root, ‘pe_s')
el se
tpe_pt.getLoopTarget()

Page 17/48

B INRIA

ATL
TRANSFORMATION EXAMPLE

PathExpression to PetriNet

&

PetriNet to PathExpression

Date 18/07/2005

527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594

endi f

-- Rule 'SingleAltTransl'
-- This rule generates both a Transition and a Stat
-- element that belongs to the 'singleAltTransition
-- The generated transition accepts as name the nam
-- PrimitiveTrans. Its source element corresponds t
-- generated for the transition returned by the cal
-- 'getPrevioustransition’ helper. Its target is th
-- rule.
-- Incoming transitions for the generated State inc
-- generated by the rule and, when the input Transi
-- transition, the 'pe_t' element generated for thi
-- Outgoing transitions for the generated State inc
-- generated for the input transition returned by t
-- Moreover, if the input Transition precedes a mul
-- element generated for this next transition is ad
-- transitions of the generated State.
rul e SingleAltTrans1 {
from
tpe_pt : TextualPathExp!PrimitiveTrans (
thisModule.singleAltTransitions1->includes(tpe_p
)

to
pe_t : PathExp!Transition (

name <- tpe_pt.name,

source <-
thisModule.resolveTemp(

tpe_pt.getPreviousTransition(),
‘ve_s'

),

target <- pe_s

)

pe_s : PathExp!State (

e for each PrimitiveTrans
sl' set.

e of the input

o the 'pe_s' element

| of the

e State generated by the

lude the Transition

tion precedes a multiple
S next transition.

lude to the 'pe_t' element
he call of getOugoing(1).
tiple transition, the 'pe_t'
ded to the set ougoing

t)

incoming <- Set {pe_t}->union(
i f tpe_pt.looplncoming() t hen
Set {thisModule.resolveTemp(tpe_pt.getLoopIncoming(),
el se
Set {}
endi f

),
outgoing <- tpe_pt.getOutgoing()
->collect(e | thisModule.resolveTemp(e,

pe_t)

->union(
i f tpe_pt.looplncoming() t hen
Set {thisModule.resolveTemp(tpe_pt.getLoopincoming(),
el se
Set {}
endi f

-- Rule 'MultipleAltTrans1'

-- This rule generates a loop transition for each t

-- to the 'multipleAltTransitions1' set. The genera

-- transition from and to the state generated for t

-- transition.

-- The generated loop transition accepts the name o
-- name.

-- Its source corresponds to the 'pe_s' element gen
-- returned by the call to the getLoopTarget() help

-- Its target corresponds to the 'pe_s' element gen

ransition that belongs
ted transition is a
he previous input

f the input Transition as
erated for the input State

er.
erated for the input State

pe_t)}

‘pe_t)}

Page 18/48

B INRIA

ATL

TRANSFORMATION EXAMPLE

PathExpression to PetriNet

&

PetriNet to PathExpression

Date 18/07/2005

595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643

-- returned by the call to the getLoopTarget() help
rul e MultipleAltTrans1 {
from
tpe_pt : TextualPathExp!PrimitiveTrans (
thisModule.multipleAltTransitions1->includes(tpe
)

to
pe_t : PathExp!Transition (
name <- tpe_pt.name,
source <- thisModule.resolveTemp(tpe_pt.getLoopT
target <- thisModule.resolveTemp(tpe_pt.getLoopT
)

-- Rule 'AltTrans2'
-- This rule generates a Transition from the last T
-- contained by an AlternativeTransition. The gener
-- the state generated for the previous transition
-- for the current AlternativeTransition by the Al
-- The generated loop transition accepts the name o
-- name.
-- Its source corresponds to the 'pe_s' element gen
-- returned by the call of the 'getPreviousTransiti
-- Its target corresponds to the '‘pe_s' element gen
-- AlternativeTransition element that contains the
-- element in one of its alternative pathes.
rul e AltTrans2 {
from
tpe_pt : TextualPathExp!PrimitiveTrans (
thisModule.altTransitions2->includes(tpe_pt)
)

to
pe_t : PathExp!Transition (
name <- tpe_pt.name,
source <- thisModule.resolveTemp(
tpe_pt.getPreviousTransition(),
‘pe_s'),
target <- thisModule.resolveTemp(
TextualPathExp!Alternative Trans.alllnstances(
->select(a | a.altPaths
->collect(b | b.transitions)
->flatten()
->includes(tpe_pt)
)->asSequence()
->first(),
‘pe_s’)

er.

_pt)

arget(), '‘pe_s'),
arget(), '‘pe_s')

ransition of a Path

ated transition goes from
to the final state generated
ternativeTrans' helper.

f the input Transition as

erated for the input element
on()' helper.

erated for the

rule input PrimitiveTrans

Page 19/48

Wf N R IA PathExpression to PetriNet

& Date 18/07/2005

ATL
TRANSFORMATION EXAMPLE

PetriNet to PathExpression

O©CO~NOOUDWNE

1.4.2. The PathExp2PetriNet transformation

The ATL code for the PathExp to PetriNet transformation consists of 1 helper and 3 rules.

1.4.2.1. Helpers

The allTransitions helper is a constant helper. It calculates a Set that contains all the Transition
model elements of the input PetriNet model.

1.4.2.2. Rules

The Main rule generates a PetriNet element from the input PathExp element. Name of the generated
PetriNet element is copied from the one the PathExp. Its set of Places corresponds to the Places
generated for the input State elements. Its set of Transitions corresponds to output Transitions
generated for the input Transition elements. Finally, its set of Arcs corresponds to the
PlaceToTransArc and TransToPlaceArcs elements generated for the input Transition elements.

The State rule generates a Place element for each PathExp State input element. Generated Place
accepts an empty string as name. Its set of incoming arcs corresponds to the TransToPlaceArcs
generated for the incoming Transitions of the input PathExp State. Its set of outgoing arcs
corresponds to the PlaceToTransArcs generated for the outgoing Transitions of the input PathExp
State.

The Transition rule generates a PetriNet Transition, a PlaceToTransArc and a TransToPlaceArc for
each input PathExp Transition. The generated Transition accepts an empty string as name. Its set of
incoming arcs corresponds to the generated PlaceToTransArc (“pn_ia”). Its set of outgoing arcs
corresponds to the generated TransToPlaceArc (“pn_oa”). The generated PlaceToTransArc weight is
set to 1. Its source corresponds to the Place generated for the source of the input PathExp Transition.
Its target corresponds to the generated Transition (“pn_t"). The generated TransToPlaceArc weight is
set to 1. Its source corresponds to the generated Transition (“pn_t"). Its target corresponds to the
Place generated for the target of the input PathExp Transition.

nodul e PathExp2PetriNet;

creat e OUT : PetriNet fromIN : PathExp;
-- HELPERS
-- This helper computes the Set containing all the Transitions of the input

-- PathExp model.

-- CONTEXT: thisModule

-- RETURN: Set(PathExp!Transition)

hel per def : allTransitions : Set (PathExp!Transition) =
PathExp!Transition.allinstances();

-- RULES

-- Rule 'Main'

-- This rule generates a PetriNet element from the input PathExp element.

-- The name of the generated PetriNet is copied fro m the input PathExp element.

Page 20/48

ATL
TRANSFORMATION EXAMPLE

W INRIA PathExpression to PetriNet

& Date 18/07/2005
PetriNet to PathExpression

26 -- Its set of places and its set of transitions res pectively correspond to the
27 -- elements generated for states and the transition s of the input PathExp.
28 -- Its set of arcs correspond to the 'pn_ia' and 'p n_oa' elements generated for
29 -- the input Transition elements.

30 rul e Main {

31 from

32 pe : PathExp!PathExp

33 to

34 pn : PetriNet!PetriNet (

35 name <- pe.name,

36 places <- pe.states,

37 transitions <- pe.transitions,

38 arcs <- thisModule.allTransitions

39 ->collect(e | thisModule.resolveTemp(e, ‘pn_ia’)

40 ->union(

41 thisModule.allTransitions

42 ->collect(e | thisModule.resolveTemp(e, ‘pn_oa'))
43

44)

45 }

46

a7

48 -- Rule 'State’

49 -- This rule generates a Place element from an inpu t State element.

50 -- Generated Place accepts an empty string as name.

51 -- Its set of incoming arcs correspond to 'pn_oa' e lements that are generated
52 -- for the incoming Transitions of the input State.

53 -- Its set of outgoing arcs correspond to '‘pn_ia' e lements that are generated
54 -- for the outgoing Transitions of the input State.

55 rul e State {

56 from

57 pe_s : PathExp!State

58 to

59 pn_p : PetriNet!Place (

60 name <- "

61 incoming <- pe_s.incoming

62 ->collect(e | thisModule.resolveTemp(e, ‘pn_oa’')),
63 outgoing <- pe_s.outgoing

64 ->collect(e | thisModule.resolveTemp(e, ‘pn_ia’ 1))
65)

66 }

67

68

69 -- Rule "Transition’

70 -- From an input PathExp Transition, this rule gene rates:

71 -- * a PetriNet Transition

72 -- *a PlaceToTransArc

73 -- *a TransToPlaceArc

74 -- The generated Transition accepts an empty string as name, the generated
75 -- 'pn_ia' PlaceToTransArc as incoming arc, and the generated 'pn_oa’

76 -- TransToPlaceArc as outgoing arc.

77 -- The generated PlaceToTransArc accepts the elemen t generated for the source
78 -- of the input PathExpTransition as source, and th e generated PetriNet

79 -- Transition as target.

80 -- The generated TransToPlaceArc accepts the genera ted PetriNet Transition as
81 -- source, and the element generated for the target of the input

82 -- PathExpTransition as target.

83 r ul e Transition {

84 from

85 pe_t : PathExp!Transition

86 to

87 pn_t : PetriNet!Transition (

88 name <- "

89 incoming <- pn_ia,

90 outgoing <- pn_oa

91)

92

93 pn_ia : PetriNet!PlaceToTransArc (

Page 21/48

ATL
TRANSFORMATION EXAMPLE

B INRIA

PathExpression to PetriNet
&
PetriNet to PathExpression

Date 18/07/2005

94 source <- pe_t.source,
95 target <- pn_t,
96 weight <- 1
97),
98
99 pn_oa : PetriNet!TransToPlaceArc (
100 source <- pn_t,
101 target <- pe_t.target,
102 weight <- 1
103)
104 }

Page 22/48

WI N R IA PathExpression to PetriNet

& Date 18/07/2005

ATL
TRANSFORMATION EXAMPLE

PetriNet to PathExpression

1.4.3. The PetriNet2XML transformation

The ATL code for the PetriNet to XML transformation consists of 3 helpers and 5 rules.

1.4.3.1. Helpers

The first helper, allPlaces, is a constant helper. It calculates a Sequence that contains all the Place
model elements of the input PetriNet model.

The allTransitions helper is a constant helper. It calculates a Sequence that contains all the
Transition model elements of the input PetriNet model.

The allArcs helper is a constant helper. It calculates a Sequence that contains all the Arc
(PlaceToTransArc and TransToPlaceArc ones) model elements of the input PetriNet model.

1.4.3.2. Rules
Besides helpers, the UML to Amble transformation is composed of 5 rules.

The Main rule generates the XML Root element as well as a collection of 3 Attributes, 3 Elements and
a Text node from the PetriNet input element. The generated Root element is a “pnml” tag that has an
“xmins” Attribute and a “net” Element as children. Value of the “xmins” attribute is the
“http://www.example.org/pnpl” constant string. The “net” Element has an “id” and a “type” Attribute, a
“name” sub-Element, as well as the Elements generated for each input element of the allPlaces,
allTransitions and allArcs Sequences. The “id” attribute corresponds to a constant value (not used
here), whereas the “type” attribute contains the “http://www.example.org/pnpl/PTNet” constant string.
Finally, the “name” Element contains a “text” Element, which itself contains a Text node whose value
corresponds to the name of the input PetriNet element.

The Place rule generates three XML Elements, one XML Attribute and one XML Text for each
PetriNet Place input element. The first generated Element, “xml_place”, is a “place” tag which accepts
an “id” Attribute as well as a child “name” Element. The value of the “id” attribute corresponds to the
index of the input Place in the allPlaces Sequence.

The Transition rule generates both a XML Element and a XML Attribute for each PetriNet Transition
input element. The generated element is a “transition” tag that accepts the generated “id” Attribute as
attribute. The value of this generated attribute corresponds to the size of the allPlaces Sequence plus
the index of the input Transition in the allTransitions Sequence. The generated “name” Element
accepts a “text” Element as child. This last one has a child which is a Text node. Its value corresponds
to the name of the input Place.

The PlaceToTransArc rule generates a XML Element with three XML Attributes for each PetriNet
PlaceToTransArc. The generated Element is an “arc” tag that has three Attribute children: “id”,
“source” and “target”. The value of the “id” attribute corresponds to the size of the allPlaces Sequence
plus the size of the allTransitions Sequence plus the index of the input PlaceToTransArc in the
allArcs Sequence. The value of the “source” attribute corresponds to the index of the source of the
input PlaceToTransArc in the allPlaces Sequence. Finally, the value of the *“target” attribute
corresponds to the size of the allPlaces Sequence plus the index of the target of the input
PlaceToTransArc in the allTransitions Sequence.

The TransToPlaceArc rule generates a XML Element with three XML Attributes for each PetriNet
TransToPlaceArc. The generated Element is an “arc” tag that has three Attribute children: “id”,
“source” and “target”. The value of the “id” attribute corresponds to the size of the allPlaces Sequence

Page 23/48

ATL
TRANSFORMATION EXAMPLE

W INRIA PathExpression to PetriNet

&
PetriNet to PathExpression

Date 18/07/2005

©o~NOUA~WNE

plus the size of the allTransitions Sequence plus the index of the input PlaceToTransArc in the
allArcs Sequence. The value of the “source” attribute corresponds to the size of the allPlaces
Sequence plus the index of the source of the input TransToPlaceArc in the allTransitions Sequence.
Finally, the value of the “target” attribute corresponds to the index of the target of the input

TransToPlaceArc in the allPlaces Sequence.

nodul e PetriNet2XML;
create OUT: XML fromlN : PetriNet;

-- HELPERS

-- This helper computes a Sequence that contains al | the Places of the input

-- PetriNet model.

-- CONTEXT: thisModule

-- RETURN: Sequence(PetriNet!Place)

hel per def: allPlaces : Sequence (PetriNet!Place) =
PetriNet!Place.allinstances()->asSequence();

-- This helper computes a Sequence that contains al | the Transitions of the

-- input PetriNet model.

-- CONTEXT: thisModule

-- RETURN: Sequence(PetriNet!Transition)

hel per def: allTransitions : Sequence (PetriNet! Transition) =
PetriNet!Transition.allinstances()->asSequence();

-- This helper computes a Sequence that contains al | the Arcs of the input

-- PetriNet model.

-- CONTEXT: thisModule

-- RETURN: Sequence(PetriNet!Arc)

hel per def: allArcs : Sequence (PetriNet!Arc) =
PetriNet!Arc.allinstances()->asSequence();

-- RULES
-- Rule 'Main'
-- This rule generates the "pnml" root tag from the input PetriNet element.
-- This tag has an "xmins" attribute and a "net" el ement as child element.
-- The "net" tag has an "id", a "type" and a "name" attributes, and the
-- following children elements:
-- *a"place" element for each Place of the input PetriNet model
-- *a "transition" element for each Transition of the input PetriNet model
-- *an "arc" element for each Arc of the input Pe triNet model.
rul e Main {
from
pn : PetriNet!PetriNet
to
root : XML!Root (
name <- ‘pnml"
children <- Sequence {xmins, net}

xmins: XML!Attribute (
name <- 'xmins'
value <- ‘http://lwww.example.org/pnpl’

)

Page 24/48

ATL
TRANSFORMATION EXAMPLE

W INRIA PathExpression to PetriNet

&

PetriNet to PathExpression

Date 18/07/2005

60 net : XML!Element (
61 name <- net'
62 children <- Sequence {
63 id,
64 type,
65 name,
66 thisModule.allPlaces,
67 thisModule.allTransitions,
68 thisModule.allArcs
69 }
70),
71 id : XML!Attribute (
72 name <- id o,
73 value <- nl'
74),
75 type : XML!Attribute (
76 name <- ‘type'
77 value <- 'http://www.example.org/pnpl/PTNet'
78),
79
80 name : XML!Element (
81 name <- ‘name’
82 children <- Sequence {text}
83)
84 text : XML!Element (
85 name <- ‘text’
86 children <- Sequence {val}
87),
88 val : XMLIText (
89 value <- pn.name
90)
91 }
92
93
94 -- Rule 'Place'
95 -- This rule generates a "place" tag from an input Place element.
96 -- This tag has an "id" attribute which value corre sponds to the Place rank
97 -- within the allPlaces sequence.
98 -- The "place" tag also has a "name" child element, which has itself a "text"
99 -- child element that contains the name of the plac e (copied from the input
100 -- Place element).
101 rul e Place {
102 from
103 pn_s : PetriNet!Place
104 to
105 xml_place : XMLIElement (
106 name <- '‘place’
107 children <- Sequence {id, name}
108),
109 id : XML!Attribute (
110 name <- id
111 value <- thisModule.allPlaces->indexOf(pn_s).toS tring()
112),
113
114 name : XML!Element (
115 name <- ‘name’
116 children <- Sequence {text}
117),
118 text : XML!Element (
119 name <- ‘text’
120 children <- Sequence {val}
121),
122 val : XMLIText (
123 value <- pn_s.name
124)
125 }
126
127

Page 25/48

B INRIA

ATL

TRANSFORMATION EXAMPLE

PathExpression to PetriNet

&

PetriNet to PathExpression

Date 18/07/2005

128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195

-- Rule "Transition'
-- This rule generates a "transition" tag from an i
-- This tag has an "id" attribute which value corre
-- allPlaces sequence + the Transition rank within
-- sequence).

rul e Transition {

fr

om

pn_t : PetriNet!Transition

to

xml_trans : XML!Element (
name <- 'transition’
children <-

),

trans_id : XML!Attribute (
name <- id o,

Sequence {trans_id}

value <- (thisModule.allPlaces->size() +
thisModule.allTransitions->indexOf(pn_t)).to

-- Rule 'PlaceToTransArc'
-- This rule generates an "arc" tag from an input P
-- This tag has an "id", a "source" and a "target"

-- Value of the "id" attribute corresponds to (the

-- sequence + the size of the allTransitions sequen
-- the allArcs sequence).
-- Value of the "source" attribute corresponds to t

-- withi

n the allPlaces sequence.

-- Value of the "target" attribute corresponds to (
-- sequence + the target Transition rank within the
rul e PlaceToTransArc {

fr

to

om

pn_a : PetriNet!PlaceToTransArc

xml_arc : XML!Element (

Sequence {id, source, target}

value <- (thisModule.allPlaces->size() +
thisModule.allTransitions->size() +

thisModule.allArcs->indexOf(pn_a)).toString(

name <- arc
children <-

)s

id : XML!Attribute (
name <- id

),

source : XML!Attribute (
name <- 'source’

value <- thisModule.allPlaces

->indexOf(pn_a.source).toString()

)
target : XML!Attribute (
name <- ‘target’
value <- (thisModule.allPlaces->size() +
thisModule.allTransitions
->indexOf(pn_a.target)).toString()
)

-- Rule 'TransToPlaceArc'
-- This rule generates an "arc" tag from an input T
-- This tag has an "id", a "source" and a "target"

-- Value of the "id" attribute corresponds to (the

-- sequence + the size of the allTransitions sequen
-- the allArcs sequence).
-- Value of the "source" attribute corresponds to (
-- sequence + the source Transition rank within the
-- Value of the "target" attribute corresponds to t

nput Transition element.
sponds to (the size of the
the allTransitions

String()

laceToTransArc element.
attributes.

size of the allPlaces

ce + the Arc rank within

he source Place rank

the size of the allPlaces
allTransitions sequence).

ransToPlaceArc element.
attributes.

size of the allPlaces

ce + the Arc rank within

the size of the allPlaces
allTransitions sequence).
he target Place rank

Page 26/48

ATL
TRANSFORMATION EXAMPLE

PathExpression to PetriNet

B INRIA

&

PetriNet to PathExpression

Date 18/07/2005

196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222

-- within the allPlaces sequence.
rul e TransToPlaceArc {
from
pn_a : PetriNet!TransToPlaceArc
to
xml_arc : XML!Element (
name <- ‘arc'
children <- Sequence {id, source, target}

),
id : XMLI!Attribute (
name <- id
value <- (thisModule.allPlaces->size() +
thisModule.allTransitions->size() +
thisModule.allArcs->indexOf(pn_a)).toString(

)
source : XML!Attribute (
name <- 'source’
value <- (thisModule.allPlaces->size() +
thisModule.allTransitions
->indexOf(pn_a.source)).toString()
),
target : XML!Attribute (
name <- ‘target’ ,
value <- thisModule.allPlaces
->indexOf(pn_a.target).toString()

Page 27/48

WI N R IA PathExpression to PetriNet

& Date 18/07/2005

ATL
TRANSFORMATION EXAMPLE

PetriNet to PathExpression

2. ATL Transformation: Petri nets to path expressions

2.1. Introduction

The Petri nets to path expression example describes the reverse transformation of the one described
in Section 1. This section provides an overview of the whole transformation sequence that enables to
produce a textual definition of a path expression from a XML Petri net representation (in the PNML
format [1]).

The input metamodel of this transformation sequence is the XML metamodel. Indeed, the PNML XML
textual representation of the Petri net is first injected into a XML model (this part is out of the scope of
the document). The XML model is then transformed into a PetriNet model that describes the structure
of the encoded Petri net. The PetriNet model can then be transformed into a PathExp model, which
defines the structure of a path expression as it is expressed in a graphical way. The PathExp model is
then transformed into a TextualPathExp that encodes the same path expression according to the
semantics of its textual representation. Finally, the TextualPathExp model is extracted to a textual
representation of the path expression by means of a TCS (Textual Concrete Syntax) program. This
last step is not documented in this document.

2.2. Metamodels

This transformation sequence is based on the same four metamodels that the path expression to Petri
nets transformation sequence: XML, PetriNet, PathExp, and TextualPathExp. Description of these
metamodels can be found in Section 1.3.

2.3. Transformations Specification

2.3.1. The XML2PetriNet transformation

The ATL code for the XML to PetriNet transformation consists of 8 helpers and 5 rules.

2.3.1.1. Helpers

The first helper, allPlaces, is a constant helper. It calculates a Set that contains all the XML Elements
named “place”.

The allTransitions helper is a constant helper. It calculates a Set that contains all the XML Elements
named “transition”.

The allArcs helper is a constant helper. It calculates a Set that contains all the XML Elements named

arc-.

The getAttributeValue() helper returns the value of an attribute (identified by its name, passed as a
parameter) of the contextual XML Element. For this purpose, its collects, among the children of this
contextual Element, the Attribute whose name matches the name passed in parameter. The helper
returns the value of the first matched attribute.

Page 28/48

WI N R IA PathExpression to PetriNet

& Date 18/07/2005

ATL
TRANSFORMATION EXAMPLE

PetriNet to PathExpression

WN -

The getName() helper returns the name of a “net” or a “place” XML Element. To this end, it first gets,
among its Element children, the one named “name”. It then gets the “text” XML Element child of this
new node, and finally returns the value associated with it.

The getld() helper returns the value of the “id” attribute of the contextual XML Element. For this
purpose, it returns the value provided by the getAttributeValue() helper called with “id” as parameter.

The getTarget() helper returns the value of the “target” attribute of the contextual XML Element. For
this purpose, it returns the value provided by the getAttributeValue() helper called with “target” as
parameter.

The getSource() helper returns the value of the “source” attribute of the contextual XML Element. For
this purpose, it returns the value provided by the getAttributeValue() helper called with “source” as
parameter.

2.3.1.2. Rules

The Main rule generates a PetriNet from each “net” XML Element input element. Name of the
generated PetriNet is computed by calling the getName() helper. Its set of Places corresponds to the
Places generated for the “place” XML Elements. Its set of Transitions corresponds to the Transitions
generated for the “transition” XML Elements. Finally, its set of Arcs corresponds to TransToPlaceArcs
and PlaceToTransArcs generated for the “arc” XML Elements.

The Place rule generates a PetriNet Place for each “place” XML Element. Name of the generated
Place is computed by a call to the getName() helper. Its set of incoming arcs contains the
TransToPlaceArcs generated for the XML Elements whose target (computed by the getTarget()
helper) is equal to the input “place” XML Element id (returned by the getld() helper). Similarly, its set
of outgoing arcs contains the PlaceToTransArcs generated for the XML Elements whose source
(computed by the getSource() helper) is equal to the input “place” XML Element id (returned by the
getld() helper).

The Transition rule generates a PetriNet Transition for each “transition” XML Element. Generated
Transition accepts an empty string as name. Its set of incoming arcs contains the PlaceToTransArcs
generated for the XML Elements whose target (computed by the getTarget() helper) is equal to the
input “transition” XML Element id (returned by the getld() helper). Similarly, its set of outgoing arcs
contains the TransToPlaceArcs generated for the XML Elements whose source (computed by the
getSource() helper) is equal to the input “transition” XML Element id (returned by the getld() helper).

The PlaceToTransArc rule generates a PlaceToTransArc for each “arc” XML Element whose source
(obtained by means of the getSource() helper) corresponds to the id of a “place” XML Element.
Weight of the generated PlaceToTransArc is set to 1. Its source corresponds to the Place generated
for the “place” XML Element whose id (obtained with getld()) is equal to the source of the input “arc”
XML Element. Its target corresponds to the Transition generated for the “transition” XML Element
whose id (obtained with getld()) is equal to the target of the input “arc” XML Element.

The TransToPlaceArc rule generates a TransToPlaceArc for each “arc” XML Element whose source
(obtained by means of the getSource() helper) corresponds to the id of a “transition” XML Element.
Weight of the generated TransToPlaceArc is set to 1. Its source corresponds to the Transition
generated for the “transition” XML Element whose id (obtained with getld()) is equal to the source of
the input “arc” XML Element. Its target corresponds to the Place generated for the “place” XML
Element whose id (obtained with getld()) is equal to the target of the input “arc” XML Element.

nodul e XML2PetriNet;
creat e OUT : PetriNet fromIN : XML;

Page 29/48

ATL
TRANSFORMATION EXAMPLE

W INRIA PathExpression to PetriNet

&
PetriNet to PathExpression

Date 18/07/2005

-- HELPERS

-- This helper computes the Set containing all the XML!Element of the input
-- XML model that are named 'place’.
-- CONTEXT: thisModule
-- RETURN: Set(XML!Element)
hel per def: allPlaces : Set (XML!Element) =
XML!Element.allinstances()
->select(e | e.name = ‘place’);

-- This helper computes the Set containing all the XML!Element of the input
-- XML model that are named 'transition’.

-- CONTEXT: thisModule

-- RETURN: Set(XML!Element)

hel per def : allTransitions : Set (XML!Element) =
XML!Element.allinstances()
->select(e | e.name = ‘transition’);
-- This helper computes the Set containing all the XML!Element of the input

-- XML model that are named 'arc'.
-- CONTEXT: thisModule
-- RETURN: Set(XML!Element)

hel per def: allArcs : Set (XML!Element) =
XML!Element.alllnstances()
->select(e | e.name = ‘arc’);
-- This helper computes the name value of an input XML!Element.
-- For this purpose, it first selects among its ele ments children the one
-- named 'name’. It then selects, among children of this new element, the one
-- named 'text'. It then selects the XML!Text child of this last element and

-- returns its value.
-- CONTEXT: XML!Element
-- RETURN: String

hel per context XML!Element def : getName(): String =
self.children
->select(c | c.ocllsTypeOf(XML!Element) and c.name = 'name')
->first().children
->select(c | c.ocllsTypeOf(XML!Element) and c.name = ‘text)

->first().children
->first().value;

-- This helper calculates the value of a given attr ibute (identified by the
-- name provided as a parameter) of the contextual XML!Element.
-- To this end, it selects among its attribute chil dren the one which has the
-- name provided in parameter, and returns its valu e.
-- CONTEXT: XML!Element
-- IN: String
-- RETURN: String
hel per context XML!Element def : getAttributeValue(name : String): String
self.children
->select(c | c.ocllsTypeOf(XMLI!Attribute) and c.name = name)

->first().value;

-- This helper calculates the value of the 'id" att ribute of the contextual
-- XML!Element. For this purpose, it calls the 'get AttributeValue' with 'id'
-- as parameter.

-- CONTEXT: XML!Element

-- RETURN: String

hel per context XML!Element def : getld(): String =

Page 30/48

ATL
TRANSFORMATION EXAMPLE

W INRIA PathExpression to PetriNet

& Date 18/07/2005
PetriNet to PathExpression

72 self.getAttributeValue(id);

73

74

75 -- This helper calculates the value of the 'target' attribute of the contextual

76 -- XML!Element. For this purpose, it calls the 'get AttributeValue' with

77 -- 'target’ as parameter.

78 -- CONTEXT: XML!Element

79 -- RETURN: String

80 hel per cont ext XML!Element def : getTarget() : String =

81 self.getAttributeValue(‘target');

82

83

84 -- This helper calculates the value of the 'source' attribute of the contextual

85 -- XML!Element. For this purpose, it calls the 'get AttributeValue' with

86 -- 'source' as parameter.

87 -- CONTEXT: XML!Element

88 -- RETURN: String

89 hel per context XML!Element def : getSource() : String =

90 self.getAttributeValue(‘'source’),

91

92

93

94 -- RULES

95

96

97

98 -- Rule 'Main'

99 -- This rule generates a PetriNet element from the XML!Element called 'net'.
100 -- Name of the generated PetriNet is computed by th e 'getName' helper.
101 -- Its places, transitions and arcs respectively co rrespond to the elements
102 -- generated for the XML!Elements named 'place’, 't ransition’, and 'arc'.
103 rul e Main {

104 from

105 xml_net : XML!Element (

106 xml_net.name = net'

107)

108 to

109 pn : PetriNet!PetriNet (

110 name <- xml_net.getName(),

111 places <- thisModule.allPlaces,

112 transitions <- thisModule.allTransitions,

113 arcs <- thisModule.allArcs

114)

115 }

116

117

118 -- Rule 'State'

119 -- This rule generates a Place element for each XML IElement called 'place’.
120 -- Name of the generated Place is computed by the getName' helper.
121 -- Its incoming arcs correspond to the elements gen erated for the XML!Element
122 -- named 'arc' whose target is the input 'place’ XM L!Element.

123 -- Its outgoing arcs correspond to the elements gen erated for the XML!Element
124 -- named 'arc' whose source is the input 'place’ XM L!Element.

125 rul e Place {

126 from

127 xml_place : XML!Element (

128 xml_place.name = ‘place’

129)

130 to

131 pn_p : PetriNet!Place (

132 name <- xml_place.getName(),

133 incoming <- thisModule.allArcs

134 ->select(a | a.getTarget() = xml_place.getld 0),
135 outgoing <- thisModule.allArcs

136 ->select(a | a.getSource() = xml_place.getld 0)
137)

138 }

139

Page 31/48

B INRIA

ATL

TRANSFORMATION EXAMPLE

PathExpression to PetriNet

&

PetriNet to PathExpression

Date 18/07/2005

140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207

-- Rule "Transition’
-- This rule generates a Transition element for eac
-- 'transition’'.
-- Generated Place accepts an empty string as name.
-- Its incoming arcs correspond to the elements gen
-- named 'arc' whose target is the input 'transitio
-- Its outgoing arcs correspond to the elements gen
-- named 'arc' whose source is the input 'transitio
rul e Transition {
from
xml_trans : XML!Element (
xml_trans.name = 'transition’
)
to
pn_t : PetriNet!Transition (
name <- "
incoming <- thisModule.allArcs

h XML!Element called

erated for the XML!Element
n' XML!Element.
erated for the XML!Element
n' XML!Element.

->select(a | a.getTarget() = xml_trans.getld 0),

outgoing <- thisModule.allArcs

->select(a | a.getSource() = xml_trans.getld 0)

-- Rule 'PlaceToTransArc'
-- This rule generates a PlaceToTransArc element fo
-- 'arc' whose source is a 'place' XML!Element.
-- The source of the generated PlaceToTransArc corr
-- generated for the 'place’' XML!Element whose 'id'
-- the input 'arc' XML!Element.
-- The target of the generated PlaceToTransArc corr
-- generated for the 'transition' XML!Element whose
-- of the input 'arc’ XML!Element.
rul e PlaceToTransArc {
from
xml_arc : XML!Element (
i f xml_arc.name = ‘arc’ then
thisModule.allPlaces
->collect(p | p.getld())
->includes(xml_arc.getSource())
el se
false
endi f
)
to
pn_a : PetriNet!PlaceToTransArc (
weight <- 1,
source <- thisModule.allPlaces

r each XML!Element called

esponds to the element
is equal to the source of

esponds to the element
'id" is equal to the target

->select(b | b.getld() = xml_arc.getSource())

->first(),
target <- thisModule.allTransitions

->select(b | b.getld() = xml_arc.getTarget())

->first()

-- Rule 'TransToPlaceArc'

-- This rule generates a TransToPlaceArc element fo
-- 'arc' whose source is an 'transition' XML!Elemen

-- The source of the generated TransToPlaceArc corr
-- generated for the 'transition' XML!Element whose
-- of the input 'arc' XML!Element.

-- The target of the generated TransToPlaceArc corr
-- generated for the 'place’ XML!Element whose 'id'

-- the input 'arc' XML!Element.

rul e TransToPlaceArc {

r each XML!Element called
t.

esponds to the element

'id" is equal to the source

esponds to the element
is equal to the target of

Page 32/48

ATL

TRANSFORMATION EXAMPLE

WI N R IA PathExpression to PetriNet

&
PetriNet to PathExpression

Date 18/07/2005

208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228

from
xml_arc : XML!Element (
i f xml_arc.name = ‘arc' t hen
thisModule.allTransitions
->collect(p | p.getld())
->includes(xml_arc.getSource())
el se
false
endi f
)
to
pn_a : PetriNet!TransToPlaceArc (
weight <- 1,

source <- thisModule.allTransitions
->select(b | b.getld() = xml_arc.getSource())
->first(),

target <- thisModule.allPlaces
->select(b | b.getld() = xml_arc.getTarget())
->first()

Page 33/48

Wf N R IA PathExpression to PetriNet

& Date 18/07/2005

ATL
TRANSFORMATION EXAMPLE

PetriNet to PathExpression

©oo~NOUAWNE

2.3.2. The PetriNet2PathExp transformation

The ATL code for the PetriNet to PathExp transformation consists of 3 rules (no helpers).

2.3.2.1. Rules

The Main rule generates a PathExp from the input PetriNet. Name of the generated PathExp is copied
from the name of the PetriNet. Its set of States corresponds to the States generated for the Places of
the input PetriNet. Its set of Transitions corresponds to the Transitions generated for the Transitions of
the input PetriNet.

The Place rule generates a State for each input Place. The set of incoming Transitions of the
generated State corresponds to the Transitions generated for the PetriNet Transitions that are source
of the incoming arcs of the input Place. Its set of outgoing Transitions corresponds to the Transitions
generated for the PetriNet Transitions that are target of the outgoing arcs of the input Place.

The Transition rule generates a Transition for each input PetriNet Transition. The generated
Transition accepts an empty string as name. The source State of the generated Transition
corresponds to the State generated for the PetriNet Place that is source of the first incoming arc of the
input Transition. Its target State corresponds to the State generated for the PetriNet Place that is
target of the first outgoing arc of the input Transition.

nmodul e PetriNet2PathExp;
creat e OUT : PathExp fromIN : PetriNet;

-- RULES

-- Rule 'Main'
-- This rule generates a PathExp from the input Pet riNet element.
-- Name of the generated PathExp is copied from the PetriNet one.
-- Its set of states and transitions respectively ¢ orrespond to the elements
-- that are generated for the input Places and Tran sitions.
rul e Main {
from
pn : PetriNet!PetriNet
to
pe : PathExp!PathExp (
name <- pn.name,
states <- pn.places,
transitions <- pn.transitions

)

}

-- Rule 'Place'

-- This rule generates State for each input Place e lement.

-- The set of incoming transitions of the generated Place corresponds to the
-- elements generated for Transitions that are sour ce of the incoming

-- PetriNet!Arc.

-- The set of outgoing transitions of the generated Place corresponds to the
-- elements generated for Transitions that are tagr et of the outgoing

-- PetriNet!Arc.
rul e Place {
from
pn_p : PetriNet!Place
to
pe_s : PathExp!State (

Page 34/48

B INRIA

ATL

TRANSFORMATION EXAMPLE

PathExpression to PetriNet
&
PetriNet to PathExpression

Date 18/07/2005

incoming <- pn_p.incoming
->collect(e | e.source)
->flatten(),

outgoing <- pn_p.outgoing
->collect(e | e.target)
->flatten()

-- Rule "Transition’
-- This rule generates a PathExp!Transition for eac
-- Source of the generated Transition corresponds t
-- the Place that is the source of the incoming Pet
-- Target of the generated Transition corresponds t
-- the Place that is the target of the outgoing Pet
rul e Transition {
from
pn_t : PetriNet! Transition
to
pe_t : PathExp!Transition (
name <- "
source <- pn_t.incoming
->collect(e | e.source)
->flatten()
->first(),
target <- pn_t.outgoing
->collect(e | e.target)
->flatten()
->first()

h PetriNet! Transition.

o the element generated for
riNet!Arc.

o the element generated for
riNet!Arc.

Page 35/48

WI N R IA PathExpression to PetriNet

& Date 18/07/2005

ATL
TRANSFORMATION EXAMPLE

PetriNet to PathExpression

2.3.3. The PathExp2TextualPathExp transformation

The ATL code for the PathExp to TextualPathExp transformation consists of 10 helpers and 5 rules.

2.3.3.1. Assumptions

The ATL transformation described here is based on the following assumption on the input PathExp
models:

» The PathExp input model includes only “simple” (single transition) loops (i.e. the transformation is
not able to produce composed multiple Transitions).

2.3.3.2. Helpers

The first helper, rootState, is a constant helper. It calculates the root State of the input PathExp
model. For this purpose, it selects among all State instances, the one that has no incoming
Transitions.

The existLoop() helper returns a Boolean value stating whether the contextual State is targeted by a
simple loop Transition. To this end, it checks if there exists a Transition, among the incoming
Transitions of the State, whose source is the State itself.

The getLoop() helper returns the simple loop Transition of the contextual State. This contextual State
must have a simple loop Transition. The helper returns the first Transition, among incoming ones of
the State, whose source is the State itself.

The getInT() helper computes a Sequence of all the non-loop incoming Transitions of the contextual
State. For this purpose, it collects all the State incoming Transitions whose source is different from the
contextual State.

The getOutT() helper computes a Sequence of all the non-loop outgoing Transitions of the contextual
State. For this purpose, it collects all the State outgoing Transitions whose target is different from the
contextual State.

The getPrevStates() helper computes the Sequence of the States that precede the contextual State
in the input PathExp model. Note that the contextual State is excluded from the result when it has a
simple loop transition. The helper simply collects the source State of the Transitions returned by a call
to the getInT() helper on the contextual State.

The getNextStates() helper computes the Sequence of the States that follow the contextual State in
the input PathExp model. Note that the contextual State is excluded from the result when it has a
simple loop transition. The helper simply collects the target State of the Transitions returned by a call
to the getOutT() helper on the contextual State.

The findNextState(n:Integer) helper is a recursive helper that returns the State that closes the
alternative Transition that is initiated by the contextual State of the initial call. The helper accepts an
integer parameter n, 0 at the initial call, which encodes the number of successive nested alternative
Transition currently opened. The helper is based on the following rules:

« If the current contextual State has more than one previous State (computed by the
getPrevStates() helper), and its parameter is 0, the closing State has been found and the
helper returns the current contextual State.

Page 36/48

WI N R IA PathExpression to PetriNet

& Date 18/07/2005

ATL
TRANSFORMATION EXAMPLE

PetriNet to PathExpression

< Else if the current contextual State has more than one previous State and more than one next
State (computed by the getNextStates() helper), a nested alternative transition is closed and
a new one is opened. The helper then returns the result of the recursive call of
findNextState(0) on one of the next States of the current contextual State.

< Else if the current contextual State has more than one previous State and a single next State,
a nested alternative transition is closed. The helper then returns the result of the recursive call
of findNextState(n-1) on the next State of the current contextual State.

< Else if the current contextual State has a single previous State and more than one next State,
a new alternative transition is initiated. The helper then returns the result of the recursive call
of findNextState(n+1) on one of the next States of the current contextual State.

- Else if the current contextual State has a single previous State and a single next State, the
helper then returns the result of the recursive call of findNextState(n) on the next State of the
current contextual State.

The getTransitionsFromStates(Boolean) helper computes the Sequence of oclAny elements (that
are either State or Transition elements) that are going to be matched into the Transitions of the Path
initiated by the contextual State. The helper is a recursive helper that accepts a Boolean parameter
that encodes the fact that a nested alternative transition has just been parsed.
getTransitionsFromStates(Boolean) is initially called with false as parameter. The helper is base on
the following rules:

« If the contextual State has more than one previous State (computed by the getPrevStates()
helper) and the Boolean parameter is false, the helper returns an empty Sequence. This rule
handles the State that corresponds to the end of the Path currently being parsed.

« Else if the contextual State has more then one next State (computed by the getNextStates()
helper), a new alternative is opened. The helper then returns a Sequence composed of a
potential loop Transition, the contextual State, and the result of the recursive call of
getTransitionsFromStates(true) on the closing State of the opened alternative Transition
(this State is obtained by means of the findNextState() helper).

- Else if the contextual State has a single next State, it returns a Sequence composed of a
potential loop Transition, its outgoing Transition, and the result of the recursive call of
getTransitionsFromStates(false) on the next State of the contextual State.

- Else if the contextual State has no next States, it returns an empty Sequence. This rule
handles the case of the end of the PathExp, which also corresponds to the end of the Path
currently being parsed.

The getTransitionsFromTrans() helper computes the Sequence of oclAny elements (that are either
State or Transition elements) that are going to be matched into the Transitions of the Path initiated by
the contextual Trans. To this end, it returns a Sequence composed by the contextual Transition and
the result of the call of the getTransitionsFromStates(Boolean) helper onto the target of the
contextual Transition.

2.3.3.3. Rules

The Main rule generates a TextualPathExp and its main Path element from the input PathExp. The
generated TextualPathExp takes the generated Path as path. The transitions sequence of the
generated Path corresponds to the Transition Sequence returned by the call of
getTransitionsFromStates(flase) on the root State of the input PathExp.

Page 37/48

Wf N R IA PathExpression to PetriNet

& Date 18/07/2005

ATL
TRANSFORMATION EXAMPLE

PetriNet to PathExpression

©CoO~NOUDWNE

The Loop rule generates a PrimitiveTrans from each input PathExp Transition that has the same
State as source and target. Generated PrimitiveTrans accepts an empty string as name. Its isMultiple
attribute is set to true.

The STransition rule generates a PrimitiveTrans from each input PathExp Transition whose target is
different from source, and whose source State has a single non-loop outgoing Transition. Generated
PrimitiveTrans accepts an empty string as name. Its isMultiple attribute is set to false.

The MTransition rule generates a PrimitiveTrans from each input PathExp Transition whose target is
different from source, and whose source State has more than one non-loop outgoing Transition.
Generated PrimitiveTrans accepts an empty string as hame. Its isMultiple attribute is set to false.

The State rule generated an AlternativeTrans, along with its multiple alternative Paths, for each
PathExp State that has more than one non-loop outgoing Transition. To this end, the rule first
computes the Sequence transitions2, which is a Sequence of Sequence of oclAny. For each non-
loop outgoing Transition of the input State, transitions2 contains the Sequence of Transition/State that
are going to be matched into TextualPathExp Transitions (each of these Sequences is computed by a
call of the getTransitionsFromTrans() helper on an outgoing Transition). The set of paths of the
generated AlternativeTrans corresponds to the different paths generated by the rule execution. The
AlternativeTrans isMultiple attribute is set to false. The Sequence of Transitions of each generated
Path corresponds to the Transitions generated for the corresponding (i.e. same rank) Sequence of
State/Transition in transitions2.

nodul e PathExp2TextualPathExp;

creat e OUT : TextualPathExp fromIN : PathExp;

-- HELPERS

-- This helper computes the root State of the input PathExp model.

-- To this end, it selects among all State instance s the one that has no

-- incoming transition.
-- CONTEXT: thisModule
-- RETURN: PathExp!State
hel per def : rootState : PathExp!State =
PathExp!State.allinstances()
->select(s | s.incoming->isEmpty())

->asSequence()
->first();
-- This helper computes a boolean value stating whe ther a loop transition is
-- defined for the contextual State.
-- For this purpose, the helper checks if there exi sts an incoming transition

-- whose source is the contextual State.
-- CONTEXT: PathExp!State
-- RETURN: Boolean
hel per cont ext PathExp!State def : existLoop() : Boolean =
self.incoming
->select(e | e.source = self)

->notEmpty();
-- This helper returns the loop Transition defined for the contextual State.
-- To this end, it returns the first incoming trans ition that has the
-- contextual State as source.
-- PRECOND: a loop transition must be defined for t he contextual State.

-- CONTEXT: PathExp!State
-- RETURN: PathExp!Transition
hel per cont ext PathExp!State def : getLoop() : PathExp!Transition =

Page 38/48

ATL

TRANSFORMATION EXAMPLE

B INRIA

PathExpression to PetriNet

&

PetriNet to PathExpression

Date 18/07/2005

40 self.incoming

41 ->select(e | e.source = self)

42 ->asSequence()

43 ->first();

44

45

46 -- This helper computes the set of non-loop incomin

a7 -- contextual State.

48 -- To this end, it selects among incoming transitio

49 -- target the contextual State.

50 -- CONTEXT: PathExp!State

51 -- RETURN: Sequence(PathExp!Transition)

52 hel per cont ext PathExp!State def : getInT() :

53 self.incoming

54 ->select(e | e.source <> self)

55 ->asSequence();

56

57

58 -- This helper computes the set of non-loop outgoin

59 -- contextual State.

60 -- To this end, it selects among outgoing transitio

61 -- target the contextual State.

62 -- CONTEXT: PathExp!State

63 -- RETURN: Sequence(PathExp!Transition)

64 hel per cont ext PathExp!State def : getOutT() :

65 self.outgoing

66 ->select(e | e.target <> self)

67 ->asSequence();

68

69

70 -- This helper computes the set of States whose tra

71 -- contextual State (except the contextual State if

72 -- by means of a loop transitions).

73 -- For this purpose, the helper simply collects the

74 -- returned by the call of the 'getInT' helper onto

75 -- CONTEXT: PathExp!State

76 -- RETURN: Sequence(PathExp!State)

77 hel per cont ext PathExp!State def : getPrevStates() :

78 self.getInT()->collect(e | e.source);

79

80

81 -- This helper computes the set of States that can

82 -- outgoing transitions of the contextual State (ex

83 -- if it is reachable from itself through a loop tr

84 -- For this purpose, the helper simply collects the

85 -- returned by the call of the 'getOutT" helper ont

86 -- CONTEXT: PathExp!State

87 -- RETURN: Sequence(PathExp!State)

88 hel per cont ext PathExp!State def : getNextStates() :

89 self.getOutT()->collect(e | e.target);

90

91

92 -- This helper computes the sequence of both Path!S

93 -- input elements that correspond to the transition

94 -- the contextual State.

95 -- The helper accepts a Boolean parameter that enco

96 -- cooresponds to a nested alternative transition h

97 -- helper is initially called with false as paramet

98 -- * A contextual State with several non-loop inco

99 -- afalse nested parameter, identifies the end
100 -- helper therefore returns an empty sequence.
101 -- *If the contextual State has several non-loop
102 -- true along with a nested parameter, this iden
103 -- new nested alternative transition within the
104 -- then returns a sequence made of 1) the loop t
105 -- State, if it is defined, 2) the contextual St
106 -- sequence returned by a recursive call of 'get
107 -- state that closes the new alternative transit

g transitions of the

ns the ones that do not

Sequence (PathExp!Transition) =

g transitions of the

ns the ones that do not

Sequence (PathExp!Transition) =

nsitions lead to the
it is reachable from itself

source of the transitions
the contextual State.

Sequence (PathExp!State) =

be reached by means of
cept the contextual State
ansitions).

target of the transitions
o the contextual State.

Sequence (PathExp!State) =

tate and Path!Transition
s of the Path initiated by

des the fact that what

as just been parsed. The
er.

ming transitions along with
of the current Path. The

outgoing transitions with a
tifies the beginning of a
current Path. The helper
ransition of the contextual
ate itself, and 3) the
TransitionsFromState' on the
ion (it is computed by the

Page 39/48

B INRIA

ATL

TRANSFORMATION EXAMPLE

PathExpression to PetriNet

&

PetriNet to PathExpression

Date 18/07/2005

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175

-- 'findNextState' helper), with the nested para

-- *|f the contextual State has a single non-loop
-- helper returns a sequence made of 1) the loop
-- contextual State, if it is defined, 2) the ou

-- contextual State, and 3) the sequence returne
-- 'getTransitionsFromState' onto the the next s
-- State, with the nested parameter set to false
-- * Finally, a contextual State with no outgoing

-- end of the input PathExp and (also) of the cu
-- therefore returns an empty sequence.

-- NOTE: the result type of the helper is currently
-- strings since 1) the oclAny type is not implemen
-- verifications are performed by the current atl v
-- CONTEXT: PathExp!State
- IN: Boolean
-- RETURN: Sequence(oclAny)
hel per cont ext PathExp!State

def : getTransitionsFromState(nested :

| et nextStates :

in |et prevStates :

in let loop: Sequence (PathExp!Transition) =
i f self.existLoop() then
self.getLoop()
el se
Sequence {}
endi f
in

i f prevStates->size() > 1
Sequence {}

el se
i f nextStates->size() > 1 t hen

| et state : PathExp!State = nextStates->first().findNe

i n Sequence {
loop,
self,
state.getTransitionsFromState(

}->flatten()

el se

i f nextStates->size() = 1 t hen
Sequence {
loop,
self.getOutT()->first(),

nextStates->first().getTransitionsFromState(

}->flatten()
el se
Sequence {}
endi f
endi f
endi f;

-- This helper computes the sequence of both Path!S
-- input elements that correspond to the transition

-- the contextual Transition.

-- The returned sequence is composed of the context
-- the result of the call of the 'getTransitionsFro

-- target of this contextual transition.

-- NOTE: the result type of the helper is currently

-- strings since 1) the oclAny type is not implemen

-- verifications are performed by the current atl v

-- CONTEXT: PathExp!State

-- RETURN: Sequence(oclAny)

hel per context PathExp!Transition

and not nested

meter set to true.
outgoing transition, the
transition of the

tgoing transition of the
d by a recursive call of
tate of the contextual

Transitions indicates the

rrent Path. The helper

encoded as a sequence of
ted yet 2) and no type
ersion.

Sequence (String) =

Sequence (PathExp!State) = self.getNextStates()
Sequence (PathExp!State) = self.getPrevStates()

xtState(0)

false)

tate and Path!Transition
s of the Path initiated by

ual transition followed by
mState' helper onto the

encoded as a sequence of
ted yet 2) and no type
ersion.

Page 40/48

ATL
TRANSFORMATION EXAMPLE

W INRIA PathExpression to PetriNet

& Date 18/07/2005
PetriNet to PathExpression

176 def : getTransitionsFromTrans() : Sequence (String) =

177 Sequence {self, self.target.getTransitionsFromState(false)}->flatten();
178

179

180 -- This helper aims to compute the State that close s the alternative transition
181 -- that is started at the contextual State of the i nitial call.

182 -- It accepts an Integer as parameter which indicat es the number of opened
183 -- nested alternative transitions. It is initially called with n = 0.

184 -- In order to compute its closing State, the helpe r recursively parses the
185 -- Path:

186 -- *if the contextual State has more than one inc oming transition and no
187 -- nested alternative trans. are opened (n=0), t he helper returns the

188 -- contextualState.

189 -- *if the contextual State has more than one inc oming transition and more
190 -- than one outgoing transition, the helper retu rns the value provided by
191 -- the recursive call of 'findNextState(n)' onto one of the next states of
192 -- the contextual state.

193 -- * if the contextual State has more than one inc oming transition but a

194 -- single outgoing transition, the helper return s the value provided by the
195 -- recursive call of findNextState(n-1)" onto t he next state of the

196 -- contextual state.

197 -- *if the contextual State has a single incoming transition and more than
198 -- one outgoing transition, the helper returns t he value provided by the
199 -- ‘findNextState(n+1)' onto one of the next sta tes of the contextual state.
200 -- *finally, if the contextual State has a single incoming transition and a
201 -- single outgoing transition, the helper return s the value provided by the
202 --recursive call of findNextState(n+)" onto th e next state of the

203 -- contextual state.

204 -- CONTEXT: PathExp!State

205 -- IN: Integer

206 -- RETURN: PathExp!State

207 hel per cont ext PathExp!State def : findNextState(n : Integer) : PathExp!State =
208 | et prevStates : Sequence (PathExp!State) = self.getPrevStates() in
209 | et nextStates : Sequence (PathExp!State) = self.getNextStates() in
210 i f prevStates->size() > 1 andn=0 then

211 self

212 el se

213 i f prevStates->size() > 1 t hen

214 i f nextStates->size() > 1 t hen

215 nextStates->first().findNextState(n)

216 el se

217 nextStates->first().findNextState(n-1)

218 endi f

219 el se

220 i f nextStates->size() > 1 then

221 nextStates->first().findNextState(n+1)

222 el se

223 nextStates->first().findNextState(n)

224 endi f

225 endi f

226 endi f;

227

228

229

230 -- RULES

231

232

233 -- Rule 'Main'

234 -- This rule generates both a TextualPathExp and it s main Path from the root
235 -- PathExp input element.

236 -- The generated TextualPathExp accepts the Path ge nerated by the rule as path.
237 -- The sequence of transitions contained by the gen erated Path is returned by
238 -- the call of the 'getTransitionsFromState' helper onto the root State element
239 -- of the input model.

240 rul e Main {

241 from

242 pe : PathExp!PathExp

243 to

Page 41/48

B INRIA

ATL
TRANSFORMATION EXAMPLE

PathExpression to PetriNet
&
PetriNet to PathExpression

Date 18/07/2005

244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
201
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311

tpe : TextualPathExp!TextualPathExp (

path <- p
),

p : TextualPathExp!Path (

transitions <- thisModule.rootState.getTransitio nsFromState(false)
)
}
-- Rule 'Loop'
-- This rule generates a multiple PrimitiveTrans fr om a loop Transition.
-- The generated PrimitiveTrans accepts an empty st ring as name. Its
-- 'isMultiple' attribute is set to 'true’'.
rul e Loop {
from

t : PathExp!Transition (
t.source = t.target

)
to
pt : TextualPathExp!PrimitiveTrans (
name <- "
isMultiple <- true
)
}
-- Rule 'STransition'
-- This rule generates a simple PrimitiveTrans from a non-loop transition
-- which is the only outgoing transition of its sou rce State.
-- The generated PrimitiveTrans accepts an empty st ring as name. Its
-- 'isMultiple' attribute is set to ‘false’.
r ul e STransition {
from
t: PathExp!Transition (
t.source <> t.target and
t.source.getOutT()->size() = 1
)
to
pt : TextualPathExp!PrimitiveTrans (
name <- "
isMultiple <- false
)
}
-- Rule 'MTransition'
-- This rule generates a simple PrimitiveTrans from a non-loop transition
-- which is NOT the only outgoing transition of its source State.
-- The generated PrimitiveTrans accepts an empty st ring as name. Its

-- 'isMultiple' attribute is set to ‘false’'.
rul e MTransition {
from
t : PathExp!Transition (
t.source <> t.target
t.source.getOutT()->size() > 1

and

)
to
pt : TextualPathExp!PrimitiveTrans (
name <- ",
isMultiple <- false
)
}
-- Rule 'State’

-- This rule generates both an AlternativeTransitio

n and the different Paths

-- that compose that compose this alternative trans ition from an input State

Page 42/48

B INRIA

ATL

TRANSFORMATION EXAMPLE

PathExpression to PetriNet

&

PetriNet to PathExpression

Date 18/07/2005

312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337

-- that has multiple non-loop outgoing Transitions.
-- Paths of the generated AlternativeTransition are
-- by the rule. Its 'isMultiple' attribute is set t
-- A distinct Path is generated for each non-loop o
-- input State. The sequence of transitions that is
-- Path is the corresponding (ie. at same rank) seq
-- the 'transitions2' sequence (calculated in the u
rul e State {
from
s : PathExp!State (
s.getOutT()->size() > 1

usi ng {
transitions?2 : Sequence (String) =
s.getOutT()->collect(e | e.getTransitionsFrom

to
at : TextualPathExp!AlternativeTrans (
altPaths <- paths,
isMultiple <- false

)

paths : di sti nct TextualPathExp!Path
transitions <- transitions2

)

those that are generated

o 'false’.

utgoing Transition of the
assigned to a generated
uence of model elements in
sing clause).

Trans());

foreach(e i n transitions2) (

Page 43/48

ATL

TRANSFORMATION EXAMPLE

WI N R IA PathExpression to PetriNet

&

PetriNet to PathExpression

Date 18/07/2005

l. TextualPathExp metamodel in KM3 format

package TextualPathExp {

class TextualPathExp {
reference path container : Path;
}

class Path {
reference transitions [1-*] ordered container : T
}

abstract class Transition {
attribute isMultiple : Boolean;
}

class AlternativeTrans extends Transition {
reference altPaths [1-*] ordered container : Path
}

class PrimitiveTrans extends Transition {
attribute name : String;
}

}

package PrimitiveTypes {
datatype String;
datatype Boolean;

}

ransition;

Page 44/48

ATL

TRANSFORMATION EXAMPLE

WI N R IA PathExpression to PetriNet

&

PetriNet to PathExpression

Date 18/07/2005

Il. PathExp metamodel in KM3 format

package PathExp {

abstract class Element {
attribute name : String;
}

class PathExp extends Element {
reference states [1-*] container : State;
reference transitions [*] container : Transition;

}

class State {
reference incoming [*] : Transition oppositeOf ta
reference outgoing [*] : Transition oppositeOf so

}

class Transition extends Element {
reference source : State oppositeOf outgoing;
reference target : State oppositeOf incoming;
}
}

package PrimitiveTypes {
datatype String;

rget;
urce,

Page 45/48

ATL
TRANSFORMATION EXAMPLE

B INRIA

PathExpression to PetriNet

PetriNet to PathExpression

Date 18/07/2005

PetriNet metamodel in KM3 format

package PetriNet {

abstract class Element {
attribute name : String;

}

class PetriNet extends Element {
reference places[1-*] container : Place;
reference transitions[*] container : Transition;
reference arcs [*] container : Arc;

}

class Place extends Element {
reference incoming [*] : TransToPlaceArc opposite
reference outgoing [*] : PlaceToTransArc opposite

}

class Transition extends Element {
reference incoming [1-*] : PlaceToTransArc opposi
reference outgoing [1-*] : TransToPlaceArc opposi

}

abstact class Arc {
attribute weight : Integer;

}

class PlaceToTransArc extends Arc {
reference source : Place oppositeOf outgoing;
reference target : Transition oppositeOf incoming

}

class TransToPlaceArc extends Arc {
reference source : Transition oppositeOf outgoing
reference target : Place oppositeOf incoming;
}
}

package PrimitiveTypes {
datatype String;
datatype Integer;

}

Of target;
Of source;

teOf target;
teOf source;

Page 46/48

B INRIA

ATL
TRANSFORMATION EXAMPLE

PathExpression to PetriNet
&
PetriNet to PathExpression

Date 18/07/2005

V. XML metamodel in KM3 format

package XML {

abstract class Node {
attribute startLine[0-1] : Integer;

attribute startColumn[0-1] : Integer;

attribute endLine[0-1] : Integer;

attribute endColumn[0-1] : Integer;

attribute name : String;
attribute value : String;

reference parent[0-1] : Element oppositeOf childr en;

}

class Attribute extends Node {

}

class Text extends Node {

}

class Element extends Node {

reference children[*] ordered container : Node op positeOf parent;

}

class Root extends Element {

}
}

package PrimitiveTypes {
datatype Boolean;
datatype Integer;
datatype String;

}

Page 47/48

ATL
TRANSFORMATION EXAMPLE

‘ INRIA PathExpression to PetriNet

& Date 18/07/2005
PetriNet to PathExpression

References

[1] The Petri Net Markup Language (PNML). Documentation and tools available at http://www.informatik.hu-
berlin.de/top/pnml/about.html.

[2] KM3: Kernel MetaMetaModel. Available at http://dev.eclipse.org/viewcvs/indextech.cgi/~checkout~/gmt-
home/doc/atl/index.html.

Page 48/48

