
ATL

TRANSFORMATION EXAMPLE

 Uml to Amble

Date 27/05/2005

__

 Page 1/18

1. ATL Transformation Example

1.1. Example: UML ���� Amble

The UML to Amble example describes a transformation from an UML model [1] specifying different
aspects of a distributed program into an implementation of this distributed program in the Amble
programming language [2].

Amble is a distributed programming language based on Objective Caml [3]. It enables to specify a
distributed program in terms of processes that run concurrently. These processes are designed as
states machines that are connected to each other by means of networks. Each network specifies a set
of channels. The source process of a channel is allowed to write to its target process. An Amble
program is composed of a single “.ml” file that includes the definition of the different process types that
are involved in the program, as well as a set of “.topo” files (one for each considered network) that
specifies the topology of the defined networks.

The input metamodel of this transformation is the UML metamodel. The transformation uses the
definition of class and state diagrams. An Amble metamodel has been defined to be used as the
output metamodel of the transformation. This metamodel describes the different elements that
compose an Amble program and the way they are related.

An input UML model has to include a state diagram for each type of process involved in the Amble
program to be generated, as well as a class diagram which describes the different kinds of considered
processes (classes) and the existing communication channels (associations) between these channels.

The class diagram has to describe the different processes (one for each class) along with their local
variables and methods. The classes can be connected to each other by means of unidirectional
association classes that define the existing communication channels between the processes. Each
association class defines a set of operations that correspond to the messages that can be sent over
the channel. A states machine has to be provided for each defined class of the class diagram. The
name of the states machines has to correspond to the one of the classes. Within a state machine,
transitions are named “CONDITION”, “RECEIPT” or “RECEIPT_ANY”, what corresponds to the
different kinds of Amble transitions. The guard and the effect of a transition are encoded by the name
of their respective UML model elements. Finally, when the guard of a transition corresponds to the
receipt of a message, it has to be encoded by the name of the message prefixed by the string
“received_”.

1.2. An example input UML model

The example developed in this section corresponds to a semaphore-based synchronisation between
several similar user processes that try to access a same critical resource. The input model is
composed of two different kinds of processes: a Semaphore process and n User processes. The
model is described in Figure 1, Figure 2 and Figure 3. The states machines provided in Figure 2 and
Figure 3 respectively describe the behaviour of a Semaphore and a User process, whereas the class
diagram provided in Figure 1 defines the processes local variables and the communication channels
between the User and the Semaphore processes.

ATL

TRANSFORMATION EXAMPLE

 Uml to Amble

Date 27/05/2005

__

 Page 2/18

Semaphore

+freeResourcesNb:int=1

+onHold:List=List.create()

User

+CSRequired:bool=false

Query

+p():void

+v():void

semaphore+

1 user+

1

Answer

+ok():void

Created with Poseidon for UML Community Edition. Not for Commercial Use.

Figure 1. Class diagram of the Semaphore example

Figure 1 contains the class diagram associated with our example. The Semaphore process (here
represented by a class) has two local variables encoding the number of available resources and the
list of “on hold” client processes. A User process has, in this model, a single local variable that
encodes whether it currently requires access to the critical resource. These two processes can
communicate by means of two communication channels. The Query channel enables User processes
to ask for and release a critical resource by means of the p() and v() messages whereas the Answer
channel enables the Semaphore to notify a Process waiting for a critical resource that it is now
available (ok() message).

Initial

Ready

[received_v]/add_CR
RECEIPT_ANY [received_p]/remove_CR

RECEIPT_ANY

Created with Poseidon for UML Community Edition. Not for Commercial Use.

Figure 2. State machine for the Semaphore process

Figure 2 describes the behaviour of the Semaphore process. A Semaphore has a single state, Ready.
It reacts to two kinds of events: the receipt of a p() or a v() message sent by any running processes
(RECEIPT_ANY). When a p() request is received, if there are available resources, the Semaphore
sends an ok() message back to the client. Otherwise, this client is put into the onHold queue. When a
v() message is received, a new resource is made available. If onHold is empty, freeResourceNb is

ATL

TRANSFORMATION EXAMPLE

 Uml to Amble

Date 27/05/2005

__

 Page 3/18

incremented. Otherwise, the first process of onHold is removed from the queue and an ok() message
is sent to it.

Initial

OutOfCS

/initialization

WaitForCS

[CSRequired]/send_p

CONDITION

InCS

[received_ok]/set_CSRequired_to_false

RECEIPT

[CS_used]/send_v
CONDITION

Created with Poseidon for UML Community Edition. Not for Commercial Use.

Figure 3. State machine for a User process

Figure 3 describes the behaviour of a User process. A User process has three distinct states. The first
one, OutOfCS, is the initial state. A process stays in this initial state as long as it does not require
handling a critical resource. When it needs to access a critical resource (the condition CSRequired is
fulfilled), it sends a p() request to the Semaphore process and steps to the WaitForCS state. The User
process leaves this new state when is received an ok() message from the Semaphore process
(RECEIPT, as opposed to RECEIPT_ANY). It then steps to the InCS state and set its CSRequired
variable to false. Once the critical resource has been used, it is released by sending a v() message to
the Semaphore process. The process then returns to the OutOfCS state.

1.3. Metamodels

The UML to Amble transformation has the UML metamodel as input and the Amble metamodel as
output. We describe here these two metamodels.

1.3.1. The UML metamodel

In this example, we consider two simplified UML metamodels defining states machines and class
diagrams. Both these metamodels are included in the UML metamodel which is not presented here.
The transformation however makes use of the name property of the UML “Model” model element.

ATL

TRANSFORMATION EXAMPLE

 Uml to Amble

Date 27/05/2005

__

 Page 4/18

+name

ModelElement

Association

+isNavigable

AssociationEnd

+initialValue

Attribute AssociationClass

Class

+dataValue

TaggedValue

Operation

Feature

1

+taggedValue

*

1

+connection

2..*

+participant

1

+association

*

+owner

0..1

+feature

*

TagDefinition

+typedValue*

+type

*

Figure 4. Simplified UML class diagram metamodel

Figure 4 describes the simplified UML class diagram metamodel used in the scope of this
transformation. A Class can contain features that may be either Attributes (with an initialValue) or
Operations (both inherit from the abstract Feature element). A Class may be associated with several
Associations. An Association is connected to the Classes by means of AssociationEnd elements that
may be navigable or not. The AssociationClass element inherits from both the Association and the
Class elements.

Note that all elements, except TaggedValue, inherit from the abstract ModelElement element.

ATL

TRANSFORMATION EXAMPLE

 Uml to Amble

Date 27/05/2005

__

 Page 5/18

+name

ModelElement

StateMachine Guard

Transition

StatePseudostate

StateVertex

SimpleState

0..1
+transitions*

+source

1

+outgoing

*
+target

1

+incoming

*

1

+guard 0..10..1

+top1

CompositeState

+container

0..1

+subvertex

*

0..1

+effect0..1

CallAction

Figure 5. Simplified UML state machine metamodel

Figure 5 describes the simplified UML states machine metamodel used in the scope of the UML to
Amble transformation. A StateMachine contains a one and only “top” State element and a set of
Transition elements. The CompositeState and SimpleState elements both inherit from the State
element. A CompositeState contains a set of abstract StateVertex elements. These abstract elements
may be either State or PseudoState elements.

A Transition may contain a Guard and a CallAction. Note that CallAction is an UML 1.4 element that
corresponds to the UML 1.5 Procedure element. A Transition has a single source StateVertex and a
single target StateVertex. Each StateVertex can have several incoming and outgoing Transition
elements.

Note that all elements, except CallAction, inherit from the abstract ModelElement element.

1.3.2. The Amble metamodel

The Amble metamodel describes the different model elements that compose an Amble model, as well
as the way they can be linked to each other. The considered metamodel is presented in Erreur !
Source du renvoi introuvable.. It is moreover provided in KM3 format [4] in Appendix I.

ATL

TRANSFORMATION EXAMPLE

 Uml to Amble

Date 27/05/2005

__

 Page 6/18

Figure 6. The Amble metamodel

A Program contains a set of Networks and a set of Processes. Each defined Process can be
connected to several defined Networks. A Network defines a set of communication Channels. Each
communication Channel has a source and a target Process. It is associated with a set of Messages
that can be sent over the Channel from the source to the target Process.

A Program contains a set of States, a Set of Transitions, a set of Variables and an optional initial
Action. The Variables define the local variables of the Process. They have a type and an initial value.
The optional initial Action of the Process defines the action to be performed at initialization time. The
set of States define the different states in which the Process may be during its execution. Each State
may have several incoming and outgoing Transitions.

The set of Transitions contained by the Program describes the existing Transitions between the States
of the Process. Each Transition has a single source State and target State. It may moreover contain
an Action, which defines the action associated with the Transition, and a Guard that specifies a
Boolean condition that has to be fulfilled for the Transition to be executed. Transition is an abstract
model element which is of one of the following types:

• Trans defines a Transition that is triggered by the receipt of a Message sent by a given
Process. It is associated with a particular type of Message.

ATL

TRANSFORMATION EXAMPLE

 Uml to Amble

Date 27/05/2005

__

 Page 7/18

• Transall defines a Transition that is triggered by the receipt of a Message sent by any
Processes. It is associated with a particular type of Message.

• Strans defines a Transition that does not depend on the receipt of a Message.

Note that, except the Transitions elements, all the elements of this metamodel inherit from an abstract
model element “Element” that defines the name of the element.

1.4. Rules Specification

Here are the main rules to transform an UML model into a distributed Amble program:

• For the UML Model element, an Amble Program element is created. It has the name of the
Model and its processes and networks are respectively created for each StateMachine and
AssociationClass.

• For each defined StateMachine, an Amble Process element is created. Its name and its
transitions are copied from the input StateMachine element. Its number of instance is read
from the TaggedValue attached to the Class homonym to the StateMachine. Its min and max
Id are computed according to the rank of the Class in a Sequence of all involved Classes
ordered by name. Thus, the minId of the first class of this sequence is 0, its maxId is the
number of instances of the Class. minId of the second class then corresponds to the previous
maxId + 1 and so on…

The set of States of the Process is computed by collecting all the SimpleState of the
StateMachine. Its initialization Action is computed by finding the CallAction associated with the
outgoing transition of the initial PseudoState of the StateMachine. The variables of the
Process are computed by selecting all the Attributes that are owned by an UML Class element
and whose owner’s name is equal to the StateMachine name. Finally, the set of Networks the
Process is connected to is computed by selecting all the AssociationClasses which point to
the UML Class homonym to the StateMachine associated with the Process to be created.

• For each Attribute owned by a Class element, a Variable is created. Its name, type and initial
value are copied from the input Attribute element.

• For each SimpleState element, an Amble State is created. Its name, as well as its links to the
incoming and outgoing transitions, is copied from the input SimpleState element. The isInitial
property is computed by checking if one of the states associated with the incoming transitions
is a PseudoState (in UML, an initial state is represented by a PseudoState element).

• For each Transition which is named “RECEIPT”, a Trans element is created. Its source, its
target, its guard and its action are copied from the input Transition element. The UML
Operation associated with the Message pointed by the Trans element is computed by
selecting among the operations owned by an AssociationClass the one:

o That has the same name (prefixed by “received_”) that the transition guard;

o Whose owner’s connections point to a Class that has the same name that the
StateMachine the transition belongs to.

• For each Transition which is named “RECEIPT_ANY”, a Transall element is created. Its
source, its target, its guard and its action are copied from the input Transition element. The
Message associated with the Transall element is calculated in the same way that it is for a
Trans element.

ATL

TRANSFORMATION EXAMPLE

 Uml to Amble

Date 27/05/2005

__

 Page 8/18

• For each Transition whose name is undefined or equal to “CONDITION”, a STrans element is
created. Its source, its target, its guard and its action are copied from the input Transition
element.

• For each Guard element, an Amble Guard is created. Its name is copied from the input Guard
element.

• For each CallAction element, an Effect is created. Its name is copied from the input
CallAction element.

• For each AssociationClass element, a Network and a Channel are created. The Network
name is copied from the AssociationClass name. It is associated with the Channel newly
created. The Channel is named in the same way that the Network. The Messages that can be
exchanged over the Channel correspond to the different features defined in the
AssociationClass (it is supposed that an AssociationClass only contains Operations). The
Channel source process corresponds to the StateMachine with the same name that the Class
that is connected to the association at the non navigable end. The target process is computed
in the same way with the navigable end.

• For each Operation owned by an AssociationClass element, a Message is created. Its name
is copied from the input Operation element.

1.5. ATL Code

The ATL code for the UML to Amble transformation consists of 8 helpers and 11 rules.

1.5.1. Helpers

The first helper, sortedClasses, is a constant helper. It calculates a Sequence that contains all the
Class model elements (but not the model elements derived from Class, such as AssociationClass
elements) ordered according to their name. The computed sequence is used to determinate the min
and max Id of each type of processes.

The getInstancesNb() helper computes the instances number defined for the contextual Class. This
number is stored within the tagged value, whose tag definition name is “instances”, associated with
the Class element.

The getMinId() and getMaxId() helpers aim to compute the min and max Id of the process associated
with the contextual Class. The multiple instances of a same process type are being assigned to
consecutive Id values. In this scope, the getMinId() helper uses the sortedClasses sequence to
compute its return value. This value corresponds to the sum of the instances number of the classes
that appear before the contextual class in the sortedClasses sequence. The value returned by the
getMaxId() helper is equal to the min Id of the class plus its instances number.

The getVariables() helper calculates the set of Attributes of a contextual states machine that
correspond to the local variables of the process associated with the states machine. For this purpose,
it simply selects all the Attribute instances that are owned by the Class model element (but not by
model elements derived from Class) whose name is equal to the contextual states machine name.

When a Transition depends on the receipt of a message, the getMessage() helper aims to compute
the Operation that defines to the received message within the UML class diagram. To this end, the
helper selects, among all Operation instances whose owner is an AssociationClass model element,
those:

ATL

TRANSFORMATION EXAMPLE

 Uml to Amble

Date 27/05/2005

__

 Page 9/18

• Whose name, prefixed by the “received_” string is equal to the name of the guard of the
contextual transition.

• Whose AssociationClass is connected to a Class whose name is equals to the one of the state
machine to which the contextual transition belongs to.

Finally, the getSourceProcess() and getTargetProcess() helpers respectively calculate the states
machines that correspond to the source and target processes of the channel represented by the
contextual AssociationClass. For this purpose, getSourceProcess() selects, among all states
machines instances, the one that has the same name that the class connected to the navigable
AssociationEnd of the contextual AssociationClass. getTargetProcess() behaves similarly, except
that it selects the class connected to the non navigable AssociationEnd of the contextual
AssociationClass.

1.5.2. Rules

Besides helpers, the UML to Amble transformation is composed of 11 rules.

The Model2Program rule generates an Amble Program element. Its name is copied from the input
Model element, its processes and networks are generated for each StateMachine and
AssociationClass input elements.

The StateMachine2Process rule aims to generate an Amble Process for each UML StateMachine.
Name of the generated Process is copied from the state machine name. Its instancesNb, minId and
maxId are respectively computed by the getInstancesNb(), getMinId() and getMaxId() helpers. The
set of its local variables is computed by the getVariables() helper. Its set of states corresponds to the
Amble States generated for each state of the input UML states machine. Its set of transitions
corresponds to the transitions defined for the input UML states machine. Its initial action corresponds
to the ActionCall assoctiated with the outgoing transition of the UML initial PseudoState contained in
the input states machine. Finally, the set of networks it is connected to contains the networks created
for the UML AssociationClasses that are connected to an UML Class that has the same name that the
input states machine.

The Attribute2Variable rule generates an Amble Variable for each UML Attribute owned by a Class
model element.

The State2State rule generates an Amble State for each UML SimpleState. Its name, as well as its
sets of incoming and outgoing transitions, is copied from the input SimpleState. Its isInitial property is
computed by checking whether the input UML SimpleState is connected to the initial PseudoState of
the stateq machine.

The Transition2Trans rule generates an Amble Trans element from each UML Transition whose
name is “RECEIPT”. Source, target, guard and effect of the created Trans element are copied from
the input UML Transition element. The message associated with this transition is computed by the
getMessage() helper.

The Transition2TransAll rule generates an Amble Transall element from each UML Transition whose
name is “RECEIPT_ANY”. Source, target, guard and effect of the created Trans element are copied
from the input UML Transition element. The message associated with this transition is computed by
the getMessage() helper.

The Transition2Strans rule generates an Amble Strans element from each UML Transition whose
source is an UML SimpleState element and whose name is either undefined or equal to
“CONDITION”. Source, target, guard and effect of the created Trans element are copied from the input
UML Transition element.

The Guard2Guard rule generates an Amble Guard for each UML Guard.

ATL

TRANSFORMATION EXAMPLE

 Uml to Amble

Date 27/05/2005

__

 Page 10/18

The Effect2Action rule generates an Amble Action for each UML CallAction.

The Class2Network rule generates both a Network and a Channel. The created elements all take the
name of the input Class element. The created Channel constitutes the only channel of this network.
The set of messages that can be sent over this channel corresponds to the features of the input
AssociationClass. The source and the target of the channel are respectively computed by the
getSourceProcess() and getTargetProcess() helpers.

The Operation2Message rule generates an Amble Message for each UML Operation owned by an
AssociationClass model element.

module UML2Amble; 1
create OUT : Amble from IN : UMLDI; 2
 3
 4
--- ---------------------------- 5
-- HELPERS -- ---------------------------- 6
--- ---------------------------- 7
 8
 9
-- This helper computes the sequence of Class model element ordered according 10
-- to their name. 11
-- CONTEXT: thisModule 12
-- RETURN: Sequence(UMLDI!Class) 13
helper def : sortedClasses : Sequence (UMLDI!Class) = 14
 UMLDI!Class.allInstances() 15
 ->select(a | a.oclIsTypeOf(UMLDI!Class)) 16
 ->asSequence() 17
 ->sortedBy(b | b.name); 18
 19
 20
-- This helper calculates the number of declared in stances of a given process. 21
-- This data is encoded as a taggedValue, of type ' instances' associated with 22
-- each Class model element. 23
-- CONTEXT: UMLDI!Class 24
-- RETURN: Integer 25
helper context UMLDI!Class def : getInstancesNb() : Integer = 26
 self.taggedValue 27
 ->select(x | x.type.name = 'instances') 28
 ->first().dataValue 29
 ->asSequence()->first().toInteger(); 30
 31
 32
-- This helper calculates the minId of the process associated with the 33
-- contextual Class. Consecutive Ids are assigned t o processes according to 34
-- their rank in the sortedClasses Sequence, and th eir instances number. 35
-- The minId associated with a Class C corresponds to the sum of instances 36
-- number of the classes that appear before C withi n sortedClasses. 37
-- CONTEXT: UMLDI!Class 38
-- RETURN: Integer 39
helper context UMLDI!Class def : getMinId() : Integer = 40
 thisModule.sortedClasses 41
 ->iterate(e; acc : Integer = 0 | 42
 if thisModule.sortedClasses->indexOf(e) 43
 < thisModule.sortedClasses->indexOf(self) then 44
 acc + e.getInstancesNb() 45
 else 46
 acc 47
 endif 48
); 49

ATL

TRANSFORMATION EXAMPLE

 Uml to Amble

Date 27/05/2005

__

 Page 11/18

 50
 51
-- This helper calculates the maxId of the process associated with the 52
-- contextual Class. This value corresponds to the minId of the Class 53
-- plus the instances number of the Class. 54
-- CONTEXT: UMLDI!Class 55
-- RETURN: Integer 56
helper context UMLDI!Class def : getMaxId() : Integer = 57
 self.getMinId() + self.getInstancesNb() - 1; 58
 59
 60
-- This helper computes the set of attributes that are owned by the UML class 61
-- that has the same name that the contextual state machine. 62
-- CONTEXT: UMLDI!StateMachine 63
-- RETURN: Set(UMLDI!Attribute) 64
helper context UMLDI!StateMachine def : getVariables() : Set (UMLDI!Attribute) = 65
 UMLDI!Attribute.allInstances() 66
 ->select(a | a.owner.oclIsTypeOf(UMLDI!Class) and 67
 a.owner.name = self.name 68
); 69
 70
 71
-- This helper computes the message receipt operati on (owned by an association 72
-- class) associated with the contextual transition . 73
-- CONTEXT: UMLDI!Transition 74
-- RETURN: UMLDI!Operation 75
helper context UMLDI!Transition def : getMessage() : UMLDI!Operation = 76
 let statemachine_name : String = 77
 UMLDI!StateMachine.allInstances() 78
 ->select(a | a.transitions->includes(self)) 79
 ->first().name in 80
 let guard_name : String = self.guard.name in 81
 UMLDI!Operation.allInstances() 82
 ->select(a | a.owner.oclIsTypeOf(UMLDI!Associatio nClass)) 83
 ->select(b | 'received_' + b.name = guard_name) 84
 ->select(c | c.owner.connection 85
 ->collect(d | d.participant) 86
 ->collect(e | e.name) 87
 ->includes(statemachine_name) 88
) 89
 ->first(); 90
 91
 92
-- This helper computes the state machine that has the same name that the 93
-- source class of the contextual association class . 94
-- CONTEXT: UMLDI!AssociationClass 95
-- RETURN: UMLDI!StateMachine 96
helper context UMLDI!AssociationClass 97
 def : getSourceProcess() : UMLDI!StateMachine = 98
 let source_name : String = 99
 self.connection 100
 ->select(a | not a.isNavigable) 101
 ->first().participant.name in 102
 UMLDI!StateMachine.allInstances() 103
 ->select(a | a.name = source_name)->first(); 104
 105
 106
-- This helper computes the state machine that has the same name that the 107
-- target class of the contextual association class . 108
-- CONTEXT: UMLDI!AssociationClass 109
-- RETURN: UMLDI!StateMachine 110
helper context UMLDI!AssociationClass 111

ATL

TRANSFORMATION EXAMPLE

 Uml to Amble

Date 27/05/2005

__

 Page 12/18

 def : getTargetProcess() : UMLDI!StateMachine = 112
 let target_name : String = 113
 self.connection 114
 ->select(a | a.isNavigable) 115
 ->first().participant.name in 116
 UMLDI!StateMachine.allInstances() 117
 ->select(a | a.name = target_name)->first(); 118
 119
 120
 121
--- ---------------------------- 122
-- RULES -- ---------------------------- 123
--- ---------------------------- 124
 125
 126
-- Rule 'Model2Program'. 127
-- This rule generates the structure of the root Pr ogram element from the UML 128
-- model. 129
rule Model2Program { 130
 from 131
 model: UMLDI!Model 132
 to 133
 prg: Amble!Program (134
 name <- model.name, 135
 processes <- UMLDI!StateMachine.allInstances(), 136
 networks <- UMLDI!AssociationClass.allInstances() 137
) 138
} 139
 140
 141
-- Rule 'StateMachine2Process'. 142
-- This rule generates an Amble process, with its s tates, its transitions and 143
-- its initial action from an UML state machine. 144
-- It also generates the 'id' variable associated w ith the created Amble 145
-- process. 146
rule StateMachine2Process { 147
 from 148
 statemachine: UMLDI!StateMachine 149
 using { 150
 crt_class : UMLDI!Class = 151
 UMLDI!Class.allInstances() 152
 ->select(a | a.name = statemachine.name) 153
 ->first(); 154
 } 155
 to 156
 process: Amble!Process (157
 name <- statemachine.name, 158
 instancesNb <- crt_class.getInstancesNb(), 159
 minId <- crt_class.getMinId(), 160
 maxId <- crt_class.getMaxId(), 161
 states <- statemachine.top.subvertex 162
 ->select(d | d.oclIsKindOf(UMLDI!SimpleState)), 163
 transitions <- statemachine.transitions, 164
 initial <- statemachine.top.subvertex 165
 ->select(d | d.oclIsKindOf(UMLDI!Pseudostate)) 166
 ->collect(o | o.outgoing 167
 ->collect(e | e.effect)).flatten()->first() , 168
 variables <- statemachine.getVariables(), 169
 connectedTo <- UMLDI!AssociationClass.allInstanc es() 170
 ->select(e | e.connection 171
 ->collect(d | d.participant.name) 172
 ->includes(statemachine.name)) 173

ATL

TRANSFORMATION EXAMPLE

 Uml to Amble

Date 27/05/2005

__

 Page 13/18

) 174
} 175
 176
 177
-- Rule 'Attribute2Variable'. 178
-- This rule generates an Amble process Variable fr om each UML attribute 179
-- that is defined within the context of an UML Cla ss. 180
rule Attribute2Variable { 181
 from 182
 attribute: UMLDI!Attribute (183
 attribute.owner.oclIsTypeOf(UMLDI!Class) 184
) 185
 to 186
 variable: Amble!Variable (187
 name <- attribute.name, 188
 type <- attribute.type.name, 189
 initValue <- attribute.initialValue.body 190
) 191
} 192
 193
 194
-- Rule 'State2State'. 195
-- This rule generates an Amble state with its name and its incoming and 196
-- outgoing transitions from an UML simple state. 197
-- The 'isInitial' property is computed by checking if one of the incoming 198
-- transitions is initialted by an UML pseudostate. 199
rule State2State { 200
 from 201
 uml_state: UMLDI!SimpleState 202
 to 203
 amble_state: Amble!State (204
 name <- uml_state.name, 205
 isInitial <- not uml_state.incoming 206
 ->collect(e | e.source) 207
 ->select(d | d.oclIsKindOf(UMLDI!Pseudostate)) 208
 ->isEmpty(), 209
 incoming <- uml_state.incoming, 210
 outgoing <- uml_state.outgoing 211
) 212
} 213
 214
 215
-- Rule 'Transition2Trans'. 216
-- This rule generates the structure of the root Pr ogram element when the 217
-- input element contains no monitors. 218
rule Transition2Trans { 219
 from 220
 uml_trans: UMLDI!Transition(221
 uml_trans.name = 'RECEIPT' 222
) 223
 to 224
 trans: Amble!Trans (225
 source <- uml_trans.source, 226
 target <- uml_trans.target, 227
 guard <- uml_trans.guard, 228
 action <- uml_trans.effect, 229
 waitFor <- uml_trans.getMessage() 230
) 231
} 232
 233
 234
-- Rule 'Transition2TransAll'. 235

ATL

TRANSFORMATION EXAMPLE

 Uml to Amble

Date 27/05/2005

__

 Page 14/18

-- This rule generates the structure of the root Pr ogram element when the 236
-- input element contains no monitors. 237
rule Transition2TransAll { 238
 from 239
 uml_trans: UMLDI!Transition(240
 uml_trans.name = 'RECEIPT_ANY' 241
) 242
 to 243
 trans: Amble!Transall (244
 source <- uml_trans.source, 245
 target <- uml_trans.target, 246
 guard <- uml_trans.guard, 247
 action <- uml_trans.effect, 248
 waitFor <- uml_trans.getMessage() 249
) 250
} 251
 252
 253
-- Rule 'Transition2Strans'. 254
-- This rule generates the structure of the root Pr ogram element when the 255
-- input element contains no monitors. 256
rule Transition2Strans { 257
 from 258
 uml_trans: UMLDI!Transition(259
 (260
 uml_trans.name.oclIsUndefined() 261
 or uml_trans.name = 'CONDITION' 262
) 263
 and 264
 uml_trans.source->oclIsKindOf(UMLDI!SimpleState) 265
) 266
 to 267
 trans: Amble!Strans (268
 source <- uml_trans.source, 269
 target <- uml_trans.target, 270
 guard <- uml_trans.guard, 271
 action <- uml_trans.effect 272
) 273
} 274
 275
 276
-- Rule 'Guard2Guard'. 277
-- This rule generates an Amble guard from an UML g uard. 278
rule Guard2Guard { 279
 from 280
 uml_guard: UMLDI!Guard 281
 to 282
 amble_guard: Amble!Guard (283
 name <- uml_guard.name 284
) 285
} 286
 287
 288
-- Rule 'Effect2Action'. 289
-- This rule generates an Amble action from an UML effect. 290
rule Effect2Action { 291
 from 292
 effect: UMLDI!CallAction 293
 to 294
 action: Amble!Action (295
 name <- effect.name 296
) 297

ATL

TRANSFORMATION EXAMPLE

 Uml to Amble

Date 27/05/2005

__

 Page 15/18

} 298
 299
 300
-- Rule 'Class2Network'. 301
-- This rule generates ... 302
rule Class2Network { 303
 from 304
 class: UMLDI!AssociationClass 305
 to 306
 net: Amble!Network (307
 name <- class.name, 308
 channels <- new_channel 309
), 310
 new_channel: Amble!Channel (311
 name <- class.name, 312
 messages <- class.feature, 313
 source <- class.getSourceProcess(), 314
 target <- class.getTargetProcess() 315
) 316
} 317
 318
 319
-- Rule 'Operation2Message'. 320
-- This rule generates ... 321
rule Operation2Message { 322
 from 323
 operation: UMLDI!Operation (324
 operation.owner.oclIsTypeOf(UMLDI!AssociationCla ss) 325
) 326
 to 327
 message: Amble!Message (328
 name <- operation.name 329
) 330
} 331

ATL

TRANSFORMATION EXAMPLE

 Uml to Amble

Date 27/05/2005

__

 Page 16/18

I. Amble metamodel in KM3 format

package Program {

 abstract class LocatedElement {
 attribute location : String;
 }

 abstract class NamedElement extends LocatedElement {
 attribute name : String;
 }

 abstract class Structure extends NamedElement {
 reference variables[*] ordered container : Variab leDeclaration oppositeOf
structure;
 }

 abstract class ProcContainerElement extends Struct ure {
 reference procedures[*] ordered container : Proce dure oppositeOf "container";
 }

 class Program extends ProcContainerElement {
 reference monitors[*] ordered container : Monitor oppositeOf program;
 }

 class Monitor extends ProcContainerElement {
 reference program : Program oppositeOf monitors;
 }

 -- Procedures
 class Procedure extends Structure {
 reference "container" : ProcContainerElement oppo siteOf procedures;
 reference parameters[*] ordered container : Param eter oppositeOf procedure;
 reference statements[*] ordered container : State ment;
 }

 class VariableDeclaration extends NamedElement {
 reference type : Type;
 reference initialValue[0-1] container : Expressio n;
 reference structure : Structure oppositeOf variab les;
 }

 class Parameter extends VariableDeclaration {
 attribute direction : Direction;
 reference procedure : Procedure oppositeOf parame ters;
 }

 enumeration Direction {
 literal in;
 literal out;
 }
 -- End Procedures

 -- Types
 class Type extends NamedElement {
 }
 -- End Types

 -- Expressions
 abstract class Expression extends LocatedElement {
 }

ATL

TRANSFORMATION EXAMPLE

 Uml to Amble

Date 27/05/2005

__

 Page 17/18

 class VariableExp extends Expression {
 reference declaration : VariableDeclaration;
 }

 -- PropertyCalls
 abstract class PropertyCallExp extends Expression {
 reference source container : Expression;
 attribute name : String;
 }

 class OperatorCallExp extends PropertyCallExp {
 reference right container : Expression;
 }

 class AttributeCallExp extends PropertyCallExp {
 }

 class ProcedureCallExp extends PropertyCallExp {
 reference arguments[*] ordered container : Expres sion;
 }
 -- End PropertyCalls

 -- Literals
 abstract class LiteralExp extends Expression {
 }

 class BooleanExp extends LiteralExp {
 attribute symbol : Boolean;
 }

 class IntegerExp extends LiteralExp {
 attribute symbol : Integer;
 }
 -- End Literals
 -- End Expressions

 -- Statements
 abstract class Statement extends LocatedElement {
 }

 class AssignmentStat extends Statement {
 reference target container : VariableExp;
 reference value container : Expression;
 }

 class ConditionalStat extends Statement {
 reference condition container : Expression;
 reference thenStats[1-*] container : Statement;
 reference elseStats[*] container : Statement;
 }

 class WhileStat extends Statement {
 reference condition container : Expression;
 reference doStats[1-*] container : Statement;
 }

 class ExpressionStat extends Statement {
 reference expression container : Expression;
 }
 -- End Statements
}

ATL

TRANSFORMATION EXAMPLE

 Uml to Amble

Date 27/05/2005

__

 Page 18/18

References

[1] Unified Modeling Language (UML), version 1.5.

http://www.omg.org/technology/documents/formal/uml.htm.

[2] Amble library. Documentation and source code available at http://home.gna.org/amble/.

[3] Objective Ca ml. Documentation and source code available at http://caml.inria.fr/ocaml/.

[4] KM3: Kernel MetaMetaModel. Available at http://dev.eclipse.org/viewcvs/indextech.cgi/~checkout~/gmt-

home/doc/atl/index.html.

