ATL

TRANSFORMATION EXAMPLE
% INRIA

UmlActivityDiagram to MSProject Date 04/04/2005

1. ATL Transformation Example

1.1. Example: UMLActivityDiagram - MSProject

The UMLActivityDiagram to MSProject example describes a transformation from a loop free UML
activity diagram (describing some tasks series) to a MS Project. The transformation is based on a
simplified subset of the UML State Machine metamodel. This transformation produces a project
defined in conformance to a limited subset of the MSProject metamodel.

1.1.1. Transformation overview

The aim of this transformation is to generate an MSProject project from a UML Activity Diagram. The
composition of the input activity diagram is restricted to “initial”, “fork” and “join” pseudostates and
actionstates. Moreover, the activity diagram must be loop free in order to be transformable into a
project.

[_Yj example-uml.xmi - Poseidon for UML Community Edition - Not for Commercial Use.

Fichier Editer Vair Créerun dia pide Purchase

e Organiser Gén A
o EY rBRLDBRRRG
[Orienté Faquetage Activity diagram_1 |

A cO= 0@ A% O AdocOcL | @

Action_State_13

Action_State_3

Final_State_1

Action _State_15

il State_1 |
G ki] I ~ Action _State_15
e

4 [

3 O @ %o viagan X

Propriétés | style | Decument tation_|

o IAchwty diagram_1 |
|2 —0— wmx L o] I
I |

Figure 1. A UML activity diagram example

As an example of the transformation, Figure 2 provides a screen capture of an MSProject project
generated from the initial activity diagram presented in Figure 1.

B Microsoft Project - Projet?

) Fichier Edtion Affichage Insertion Formst Oubls Projet Colaborer Fendtre Tapez une question -8 %
HRRER® KA A R R SN MRS N N NN A N O -8 |6 1 s H
Bl \ ~ | Ressources | Assurerlasuii - | Rapport - l
© |homcelatiche Durée Dékut Fin Prédécesseurs 1 [Cur 03 Jan [Miar 04 Jarn [Wier 05 Jan [J5U 6 Jan [07 Jan Sam 08 Jan_+
12 Matin | 0 b O Matin [12 Matin | O Metin [12 Metin | 0 Matin | 12 Metin | O Matin [12 Matin | 0Matin [12

1 - e T
o 53 1jour?, Lun 0GOS Lun 030105
S] s 1 jour? Mer OSMM0S | Mer 001105 3
&
slER=] 52 jour?. Mar 040005 Mar 0410105 1
] 4 Initial_State_1 1jour?| Mer OSMM0S Mer 0S/01i05 3
2 - = Final_State_1 1jour?| Yen O7ANOS Ven 0701405 §
SER=] 3¢ 1jour? | Jeu DBIANS JeuDBITI0S 42

1 i v
Prét NOM | ;

Figure 2. The corresponding MSProject project

Page 1/7

ATL

W TRANSFORMATION EXAMPLE

INRIA

UmlActivityDiagram to MSProject Date 04/04/2005

1.2. Metamodels

This transformation is based on a simplified subset of the UML State Machine metamodel [1] which
only deals with information that is relevant in the scope of this transformation. The considered
metamodel is presented in Figure 3.

1 StateMachine
—e >——
1
* +subvertex * +transitions
+source +outgoing

StateVertex Transition

Thame ;-target +incoming

/\ 1 '
Pseudostate ActionState FinalState
+kind

Figure 3. The UMLActivityDiagram metamodel

A UMLActivityDiagram is modelized by a StateMachine element. This element contains both
StateVertex (i.e. state) and Transition elements. An abstract StateVertex can be either a FinalState,
an ActionState (i.e. a state within the diagram), or a Pseudostate of different kinds:

- ‘“initial” Pseudostate: an initial state (with no incoming Transitions);
- “fork” Pseudostate: a state with a single incoming transition and several outgoing ones;
- “join” Pseudostate: a state with several incoming transitions and a single outgoing one.

Each Transition is associated with an incoming and an outgoing StateVertex. According to its type, a
StateVertex can have none to several incoming and outgoing Transitions.

Page 2/7

ATL

W TRANSFORMATION EXAMPLE

% | N R1A

UmlActivityDiagram to MSProject Date 04/04/2005

The transformation also relies on a simple Project definition [2]. The metamodel considered here is
described in Figure 4, and provided in Appendix | in km3 format [3].

MSProject
NamedElement
+name <]— 1
* +tasks
Task *
+UID

+predecessors

Figure 4. The MSProject metamodel

Within this metamodel, a project is associated with a MSProject element. Such an element contains
Task, identified by a unique UID attribute, which can have predecessors among other defined Tasks.

1.3. Rules Specification
These are the rules to transform a UMLActivityDiagram model to a MSProject model:
« For the root StateMachine element, a MSProject element is created.

« For each “initial” Pseudostate, a Task element without predecessors is created. “join” and
“fork” Pseudostates are not associated with output Tasks.

« For each ActionState or FinalState, a Task element is created. The set of its predecessors
contains the Tasks associated with ActionStates and “initial” Pseudostates that point to the
current state directly or through series of “join” or “fork” Pseudostates.

1.4. ATL Code

This ATL code for the UMLActivityDiagram to MSProject transformation consists of 3 helpers and 3
rules. The curld helper is an integer variable used to provide an incremented UID to each generated
Task of the output Project model. The is performed by the getld() helper, which makes use of the curld
variable. Each time it is called, this helper increments the curld value and returns its new value into a
String.

The getPredecessors() helper computes the set of predecessors of a given task. For this purpose, it
navigates the Transition pointing to the current state. If the other end of the Transition is an “initial”
Pseudostate, or an ActionState, it returns the associated Task as the unique predecessor. Otherwise
(if the previous state is either a “fork” or a “join”), it recursively performs the predecessors computing
on the previous state.

The rule Main allocates a MSProject element. This element is linked to all the Tasks elements to be
generated during the transformation.

The rule Pseudostate allocates a Task element for each Pseudostate of “initial” type. This new Task is
given a unique UID, the name of the source Pseudostate, and an empty set of predecessors.

Page 3/7

ATL
TRANSFORMATION EXAMPLE

% INRIA

UmlActivityDiagram to MSProject

Date 04/04/2005

The rule StateVertex allocates a new Task element for each ActionState and FinalState in the input
model. This new Task is given a unique UID and the name of the source state. Its predecessors set is

computed by the getPredecessos() helper.

1 nodul e UmlActivityDiagram2MSProject;
2 creat e OUT : MSProject fromIN : UML;
3
4
5
6 -- HELPERS
7
8
9 -- This helper stores an integer value used to assi gn an ID to each generated
10 -- Task.
11 -- CONTEXT: thisModule
12 -- RETURN:Integer
13 hel per def: curld: Integer =0;
14
15 -- This helper computes the value to be assigned to the ID field of a generated
16 -- Task. It increments the value stored by the "cur Id" helper and returns its
17 -- new value as a String.
18 -- CONTEXT: thisModule
19 -- RETURN:String
20 hel per def: getld() : String =
21 thisModule.refSetValue(‘curld" , thisModule.curld + 1).curld.toString();
22
23
24 -- This helper computes the set of StateVertex that will be associated with
25 -- the predecessors of a Task.
26 -- The computed set contains all the ActionState an d Pseudostate of "initial"
27 -- type (ie. the initial state) that point to the ¢ urrent StateVertex
28 -- (the context one) either directly or through "fo rk" and "join" Pseudostate.
29 -
30 -- WARNING: this helper is not able to deal with lo ops. However, there shall
31 -- be no loops in a diagram dedicated to the repres entation of a project.
32 -
33 -- CONTEXT: UMLI!StateVertex
34 -- RETURN:Set(UML!StateVertex)
35 hel per cont ext UML!StateVertex def : getPredecessors() : Set (UML!StateVertex) =
36 | et trans: Set (UML!StateVertex) = self.incoming in
37
38 i f trans.isEmpty() t hen
39 Set {}
40 el se trans->collect(t | t.source)
41 ->iterate(e; ret : Set (UML!StateVertex) = Sequence {} |
42 i f e.ocllsKindOf(UML!ActionState) t hen
43 ret->including(e)
44 el se
45 i f e.ocllsKindOf(UML!Pseudostate) t hen
46 i f ekind = #pk_initial t hen
47 ret->including(e)
48 el se
49 ret->including(e.getPredecessors())
50 endi f
51 el se
52 ret
53 endi f
54 endi f
55
56 endi f;

Page 4/7

% INRIA

ATL

TRANSFORMATION EXAMPLE

UmlActivityDiagram to MSProject

Date 04/04/2005

57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
e
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115

-- RULES

-- Rule 'Main'
-- This rule generates the Project element. Contain
-- associated with:
-- * UML Final State
-- * UML Action State
-- * UML Pseudostate of "initial" kind.
rul e Main {

from

s : UML!StateMachine

to

pro : MSProject!MSProject (

)
}

tasks <- UML!StateVertex.alllnstances()

-- Rule 'Pseudostate’
-- This rule generates a Task for the Pseudostate o
-- the diagram initial state).
-- The generated initial Task has no predecessors (
-- intial state of the UML activity diagram).
r ul e Pseudostate {

from

s : UML!Pseudostate (

)

to

t:

}

s.kind = #pk_initial

MSProject!Task (

UID <- thisModule.getld(),
name <- s.name,
predecessors <- Set {}

-- Rule 'StateVertex'
-- This rule generates Tasks for both ActionStates
-- The set of predecessors of a Task is computed by
-- It corresponds to the set of ActionState/"initia
-- the current state directly, or through one or se
-- Pseudostates.
rul e StateVertex {

from

s : UML!StateVertex (

s.ocllsKindOf(UML!FinalState)
or s.ocllsKindOf(UML!ActionState)

: MSProject!Task (

UID <- thisModule.getld(),
name <- s.name,
predecessors <- s.getPredecessors()

ed tasks are those

f "initial” type (that is,

sine it corresponds to the

and FinalStates.

the getPredecessors helper.
I Pseudostate pointing to
veral "fork" and "join"

Page 5/7

ATL

W TRANSFORMATION EXAMPLE

% | N R1A

UmlActivityDiagram to MSProject

Date 04/04/2005

l. MSProject metamodel in km3 format

package MSProject {
class MSProject {
reference tasks[1-*] container : Task;

}

abstract class NamedElement {
attribute name : String;

}

class Task extends NamedElement {
attribute UID : String;
reference predecessors[*] : Task;
}
}

package PrimitiveTypes {
datatype String;

Page 6/7

ATL
TRANSFORMATION EXAMPLE

S

% | N R1A

UmlActivityDiagram to MSProject Date 04/04/2005

References

[1] Unified Modeling Language (UML), version 1.5.
http://www.omg.org/technology/documents/formal/uml.htm.

[2] Overview of XML for Project. http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/pjsdk/html/pjxml_overview HV01051036.asp.

[3] KM3: Kernel MetaMetaModel. Available at http://dev.eclipse.org/viewcvs/indextech.cgi/~checkout~/gmt-
home/doc/atl/index.html.

Page 7/7

