
ATL

TRANSFORMATION EXAMPLE

 UmlActivityDiagram to MSProject

Date 04/04/2005

__

 Page 1/7

1. ATL Transformation Example

1.1. Example: UMLActivityDiagram ���� MSProject

The UMLActivityDiagram to MSProject example describes a transformation from a loop free UML
activity diagram (describing some tasks series) to a MS Project. The transformation is based on a
simplified subset of the UML State Machine metamodel. This transformation produces a project
defined in conformance to a limited subset of the MSProject metamodel.

1.1.1. Transformation overview

The aim of this transformation is to generate an MSProject project from a UML Activity Diagram. The
composition of the input activity diagram is restricted to “initial”, “fork” and “join” pseudostates and
actionstates. Moreover, the activity diagram must be loop free in order to be transformable into a
project.

Figure 1. A UML activity diagram example

As an example of the transformation, Figure 2 provides a screen capture of an MSProject project
generated from the initial activity diagram presented in Figure 1.

Figure 2. The corresponding MSProject project

ATL

TRANSFORMATION EXAMPLE

 UmlActivityDiagram to MSProject

Date 04/04/2005

__

 Page 2/7

1.2. Metamodels

This transformation is based on a simplified subset of the UML State Machine metamodel [1] which
only deals with information that is relevant in the scope of this transformation. The considered
metamodel is presented in Figure 3.

StateMachine

Transition

+name

StateVertex

+kind

Pseudostate ActionState FinalState

+source

1

+outgoing

*
+target

1

+incoming

*

1

+transitions*

1

+subvertex*

Figure 3. The UMLActivityDiagram metamodel

A UMLActivityDiagram is modelized by a StateMachine element. This element contains both
StateVertex (i.e. state) and Transition elements. An abstract StateVertex can be either a FinalState,
an ActionState (i.e. a state within the diagram), or a Pseudostate of different kinds:

- “initial” Pseudostate: an initial state (with no incoming Transitions);

- “fork” Pseudostate: a state with a single incoming transition and several outgoing ones;

- “join” Pseudostate: a state with several incoming transitions and a single outgoing one.

Each Transition is associated with an incoming and an outgoing StateVertex. According to its type, a
StateVertex can have none to several incoming and outgoing Transitions.

ATL

TRANSFORMATION EXAMPLE

 UmlActivityDiagram to MSProject

Date 04/04/2005

__

 Page 3/7

The transformation also relies on a simple Project definition [2]. The metamodel considered here is
described in Figure 4, and provided in Appendix I in km3 format [3].

MSProject

+UID

Task

1

+tasks*

+predecessors

*

+name

NamedElement

Figure 4. The MSProject metamodel

Within this metamodel, a project is associated with a MSProject element. Such an element contains
Task, identified by a unique UID attribute, which can have predecessors among other defined Tasks.

1.3. Rules Specification

These are the rules to transform a UMLActivityDiagram model to a MSProject model:

• For the root StateMachine element, a MSProject element is created.

• For each “initial” Pseudostate, a Task element without predecessors is created. “join” and
“fork” Pseudostates are not associated with output Tasks.

• For each ActionState or FinalState, a Task element is created. The set of its predecessors
contains the Tasks associated with ActionStates and “initial” Pseudostates that point to the
current state directly or through series of “join” or “fork” Pseudostates.

1.4. ATL Code

This ATL code for the UMLActivityDiagram to MSProject transformation consists of 3 helpers and 3
rules. The curId helper is an integer variable used to provide an incremented UID to each generated
Task of the output Project model. The is performed by the getId() helper, which makes use of the curId
variable. Each time it is called, this helper increments the curId value and returns its new value into a
String.

The getPredecessors() helper computes the set of predecessors of a given task. For this purpose, it
navigates the Transition pointing to the current state. If the other end of the Transition is an “initial”
Pseudostate, or an ActionState, it returns the associated Task as the unique predecessor. Otherwise
(if the previous state is either a “fork” or a “join”), it recursively performs the predecessors computing
on the previous state.

The rule Main allocates a MSProject element. This element is linked to all the Tasks elements to be
generated during the transformation.

The rule Pseudostate allocates a Task element for each Pseudostate of “initial” type. This new Task is
given a unique UID, the name of the source Pseudostate, and an empty set of predecessors.

ATL

TRANSFORMATION EXAMPLE

 UmlActivityDiagram to MSProject

Date 04/04/2005

__

 Page 4/7

The rule StateVertex allocates a new Task element for each ActionState and FinalState in the input
model. This new Task is given a unique UID and the name of the source state. Its predecessors set is
computed by the getPredecessos() helper.

module UmlActivityDiagram2MSProject; 1
create OUT : MSProject from IN : UML; 2
 3
 4
--- ---------------------------- 5
-- HELPERS -- ---------------------------- 6
--- ---------------------------- 7
 8
-- This helper stores an integer value used to assi gn an ID to each generated 9
-- Task. 10
-- CONTEXT: thisModule 11
-- RETURN: Integer 12
helper def: curId : Integer = 0; 13
 14
-- This helper computes the value to be assigned to the ID field of a generated 15
-- Task. It increments the value stored by the "cur Id" helper and returns its 16
-- new value as a String. 17
-- CONTEXT: thisModule 18
-- RETURN: String 19
helper def: getId() : String = 20
 thisModule.refSetValue('curId' , thisModule.curId + 1).curId.toString(); 21
 22
 23
-- This helper computes the set of StateVertex that will be associated with 24
-- the predecessors of a Task. 25
-- The computed set contains all the ActionState an d Pseudostate of "initial" 26
-- type (ie. the initial state) that point to the c urrent StateVertex 27
-- (the context one) either directly or through "fo rk" and "join" Pseudostate. 28
-- 29
-- WARNING: this helper is not able to deal with lo ops. However, there shall 30
-- be no loops in a diagram dedicated to the repres entation of a project. 31
-- 32
-- CONTEXT: UML!StateVertex 33
-- RETURN: Set(UML!StateVertex) 34
helper context UML!StateVertex def: getPredecessors() : Set (UML!StateVertex) = 35
 let trans : Set (UML!StateVertex) = self.incoming in 36
 37
 if trans.isEmpty() then 38
 Set {} 39
 else trans->collect(t | t.source) 40
 ->iterate(e; ret : Set (UML!StateVertex) = Sequence {} | 41
 if e.oclIsKindOf(UML!ActionState) then 42
 ret->including(e) 43
 else 44
 if e.oclIsKindOf(UML!Pseudostate) then 45
 if e.kind = #pk_initial then 46
 ret->including(e) 47
 else 48
 ret->including(e.getPredecessors()) 49
 endif 50
 else 51
 ret 52
 endif 53
 endif 54
) 55
 endif; 56

ATL

TRANSFORMATION EXAMPLE

 UmlActivityDiagram to MSProject

Date 04/04/2005

__

 Page 5/7

 57
 58
 59
--- ---------------------------- 60
-- RULES -- ---------------------------- 61
--- ---------------------------- 62
 63
-- Rule 'Main' 64
-- This rule generates the Project element. Contain ed tasks are those 65
-- associated with: 66
-- * UML Final State 67
-- * UML Action State 68
-- * UML Pseudostate of "initial" kind. 69
rule Main { 70
 from 71
 s : UML!StateMachine 72
 to 73
 pro : MSProject!MSProject (74
 tasks <- UML!StateVertex.allInstances() 75
) 76
} 77
 78
-- Rule 'Pseudostate' 79
-- This rule generates a Task for the Pseudostate o f "initial" type (that is, 80
-- the diagram initial state). 81
-- The generated initial Task has no predecessors (sine it corresponds to the 82
-- intial state of the UML activity diagram). 83
rule Pseudostate { 84
 from 85
 s : UML!Pseudostate (86
 s.kind = #pk_initial 87
) 88
 to 89
 t : MSProject!Task (90
 UID <- thisModule.getId(), 91
 name <- s.name, 92
 predecessors <- Set {} 93
) 94
} 95
 96
-- Rule 'StateVertex' 97
-- This rule generates Tasks for both ActionStates and FinalStates. 98
-- The set of predecessors of a Task is computed by the getPredecessors helper. 99
-- It corresponds to the set of ActionState/"initia l" Pseudostate pointing to 100
-- the current state directly, or through one or se veral "fork" and "join" 101
-- Pseudostates. 102
rule StateVertex { 103
 from 104
 s : UML!StateVertex (105
 s.oclIsKindOf(UML!FinalState) 106
 or s.oclIsKindOf(UML!ActionState) 107
) 108
 to 109
 t : MSProject!Task (110
 UID <- thisModule.getId(), 111
 name <- s.name, 112
 predecessors <- s.getPredecessors() 113
) 114
} 115

ATL

TRANSFORMATION EXAMPLE

 UmlActivityDiagram to MSProject

Date 04/04/2005

__

 Page 6/7

I. MSProject metamodel in km3 format

package MSProject {
 class MSProject {
 reference tasks[1-*] container : Task;
 }

 abstract class NamedElement {
 attribute name : String;
 }

 class Task extends NamedElement {
 attribute UID : String;
 reference predecessors[*] : Task;
 }
}

package PrimitiveTypes {
 datatype String;
}

ATL

TRANSFORMATION EXAMPLE

 UmlActivityDiagram to MSProject

Date 04/04/2005

__

 Page 7/7

References

[1] Unified Modeling Language (UML), version 1.5.

http://www.omg.org/technology/documents/formal/uml.htm.

[2] Overview of XML for Project. http://msdn.microsoft.com/library/default.asp?url=/library/en-

us/pjsdk/html/pjxml_overview_HV01051036.asp.

[3] KM3: Kernel MetaMetaModel. Available at http://dev.eclipse.org/viewcvs/indextech.cgi/~checkout~/gmt-

home/doc/atl/index.html.

