
The Atlas Transformation LanguageAtlas Transformation Language (ATLATL) project

ATLAS GroupATLAS Group
INRIA & LINA (University of Nantes)INRIA & LINA (University of Nantes)

GMT/ATL project website: http://www.eclipse.org/gmt/atl/
Contacts: Frédéric Jouault – frederic.jouault@univ-nantes.fr

Freddy Allilaire - freddy.allilaire@univ-nantes.fr

ATL Project GoalsATL Project Goals

Operational Context of ATLOperational Context of ATLPrinciplesPrinciples

ATL Language OverviewATL Language Overview

ATL (Atlas Transformation Language) is a model transformation language and toolkit developed by the Atlas
group (INRIA & LINA). In the field of Model-Driven Engineering (MDE), ATL provides ways to produce a set of
target models from a set of source models.
Developed on top of the Eclipse platform, the ATL Integrated Development Environment (IDE) provides a
number of standard development tools (syntax highlighting, debugger, etc.) that aim to ease the development of
ATL transformations.

Transforming models with ATL

• A model transformation is the automatic creation of
target models from source models.
• Model transformation is not only about M1 to M1
transformations (e.g. promotion from M1 to M2).

Metametamodel

Metamodel

Terminal
Model

M3

M2

M1

ATL is a hybrid transformation language. It contains a mixture of declarative and imperative constructs. The
encouraged style is declarative.
ATL transformations are unidirectional, operating on read-only source models and producing write-only target
models. A bidirectional transformation is implemented as a couple of transformations: one for each direction.
During the execution of a transformation the source model may be navigated but changes are not allowed to it.
The target model cannot be navigated. Source and target models for ATL may be expressed in the XMI OMG
serialization format. Source and target metamodels may also be expressed in XMI or in the more convenient KM3
notation.
An ATL transformation can be decomposed into three parts: a header, helpers and rules. The header is used to
declare general information such as the module name (this is the transformation name: it must match the file
name), the source and target metamodels and imported libraries. Helpers are subroutines (based on OCL) that
are used to avoid code redundancy. Rules are the heart of ATL transformations because they describe how target
elements (based on the target metamodel) are produced from source elements (based on the source metamodel).
They are made up of bindings, each one expressing a mapping between a source element and a target element.

A source model Ma is transformed into a target model
Mb according to a transformation definition
MMa2MMb.atl written in the ATL language. The
transformation definition is a model conforming to the
ATL metamodel. All metamodels conform to the
metametamodel (e.g. KM3, MOF, Ecore).

KM3

ATLMMa MMb

Ma Mb
MMa2MMb.atl

source target

conformsTo

transformation

Legend:• A model transformation is the automatic creation of
target models from source models.
• Model transformation is not only about M1 to M1
transformations (e.g. promotion from M1 to M2).

The transformation creates tables and columns from classes and attributes.
NamedElt

+name:String

Classifier

Attribute

+multivalued:Boolean

type+

DataType Class att+

*
{ordered}

owner

NamedElt

+name:String

Classifier

Attribute

+multivalued:Boolean

type+

DataType Class att+

*
{ordered}

owner

ATL Rule Sample:
rule Class2Table {

from
c : Class!Class

to
t : Relational!Table (

name <- c.name,
col <- c.attr->select(e |

not e.multiValued
)->union(Sequence {key}),

key <- Set {key}
),
key : Relational!Column (

name <- ‘Id’
)

}

ATL Transformation ATL Transformation ExampleExample: : Class to Class to RelationalRelational

The source metamodel Class is a
simplification of class diagrams.

The target metamodel Relational is a
simplification of the relational model.

ATL declaration of the transformation:
module Class2Relational;
create Mout : Relational from Min : Class;

A Table is created
for each Class

The name of the Table
is the name of the Class

The columns of the table
correspond to the

single-valued
attributes of the class

Each Table owns
a key containing a
unique identifier

ATL Transformations ZooATL Transformations Zoo
The ATL component hosts an initial experiment for building a collection of
model transformations. This collection of transformations already offers an
interesting landscape of application domains of model transformations. It
represents an interesting starting point for studying what should be the content
of transformation libraries and helps identifying some of the issues large
scale transformation libraries will have to face. More than 70 scenarios are
available. A classification of the ATL Transformations has been created:
• Semantic Bridges
• Bridges to Graphical Representations
• From Tool to Tool Transformations
• Calculation Transformations
• Miscellaneous Transformations

Metamodel
name

Model Element
Name

Named

+ name :String

Table Column

owner+

col+

*
{ordered}

keyOf+ 1..* key+ *

Type* type+

Eclipse Platform

Engine DebugBuilderEditor

ATL Development Tools

Uses ATL Engine API

Uses Eclipse API

LegendATL is accompanied by a set of tools built on top
of the Eclipse platform. ADT (ATL Development
Toolkit) is composed of the ATL transformation
engine (Engine block) and the ATL Integrated
Development Environment (IDE: Editor,
Builder and Debug blocks).

ATL ToolkitATL Toolkit

DebuggingDebugging
ATL transformations may be debugged (see right) using
the same launch configuration used for launching. The only
difference is that we now use the Debug button instead of
Launch. Transformations can be executed step-by-step or
run normally. In this case, execution stops when an error
occurs or when a breakpoint is reached. The current
context (i.e. values of variables) may be analyzed using the
variable view. It enables simple navigation in source and
target models from the current context (rule or helper).

ATL EngineATL Engine
The ATL engine (see right) is responsible for dealing with
core ATL tasks: compilation and execution. ATL
transformations are compiled to programs in a specific
byte-code. The byte-code is executed by the ATL Virtual
Machine (VM). The VM is specialized in handling models
and provides a set of instructions for model manipulation.
The VM may run on top of various model management
systems. To isolate the VM from their specifics an
intermediate level is introduced called Model Handler
Abstraction Layer. This layer translates the instructions of
the VM for model manipulation to the instructions of a
specific model handler. Model handlers are components
that provide programming interface for model
manipulation.

EditingEditing
The ATL editor (see below) supports syntax
highlighting, error reporting, and outline view (i.e.
tree-based representation of the ATL program).

Building and Launching ATL Building and Launching ATL
TransformationsTransformations
The ATL compiler is automatically called on each
ATL file in all ATL projects during the Eclipse build
process. By default, this process is triggered when a
file is modified (e.g. saved).
Executing an ATL transformation requires that the
declared source and target models and metamodels
to be bound to actual models (i.e. XMI files typically
ending in .xmi or .ecore). This is done in the launch
configuration wizard (see left). The ATL engine
delegates reading and writing models to the
underlying model handler. For instance, when EMF is
used source and target models must be in EMF XMI
2.0. More complex transformation scenarios can use
other kinds of formats (e.g. XML, textual).

MMt MMb

Mb

conformsTo

conformsTo

based on

conformsTo

conformsTo

MMM

MMa

Ma

conformsTo

conformsTo

conformsTo

M1

M2

M3

Tab

based on

input output
executed

The AMW (Atlas Model Weaver) component supports
the creation of different kinds of links between
model elements. The links are saved in a weaving
model. This weaving model conforms to an
extensible weaving metamodel. Weaving models
can be used in different application scenarios, such
as tool interoperability, transformation specification,
traceability, model merging.

The AMMA PlatformThe AMMA Platform
The ATL project has allowed broadening the view of MDE. Model transformations are absolutely necessary to any
application of MDE. However, they are probably not sufficient. We need other operations as well. AMMA (Atlas
Model Management Architecture) is a model management platform developed by the Atlas group (INRIA & LINA).
In the AMMA platform, in addition to ATL, some new components are being developed. One is AMW (Atlas model
Weaver). Another one is AM3 (Atlas MegaModel Management tool). A last one is ATP (Atlas Technical
Projectors), a set of injectors and extractors to/from other technical spaces. ATL, AMW, AM3 and ATP are
presently the essential part of the AMMA platform. Three of these components: AM3, AMW, and ATL are
available as GMT components. All these tools are built on top of the Eclipse Modeling Framework (EMF).

The goal of AM3 (Atlas MegaModel Management) is
to provide a practical support for modeling in the
large, i.e. managing global resources in the field of
MDE. These global resources are usually
heterogeneous and distributed. To access them
without increasing the accidental complexity of MDE,
we need to invent new ways to create, store, view,
access, and modify the global entities that may be
involved in developing a solution. To this end, the
notion of megamodel (i.e. a model which elements
are themselves models) is being used. In order to
achieve this overall goal, AM3 provides a set of tools
and artifacts that implement our Global Model
Management (GMM) approach which is based on the
concept of "megamodel".

TCS (Textual Concrete Syntax) is a DSL (Domain
Specific Language) for the specification of Textual
Concrete Syntaxes in MDE.

KM3 (Kernel Meta MetaModel) is a neutral language to write metamodels. There is an evolutive library of
open source metamodels written in KM3 called: AtlanticZoo. This library contains over 230 KM3 metamodels.
This collection of KM3 metamodels is intended for experimental purposes. On the same site there are also a
number of "mirror zoos" containing metamodels written in other languages like MOF, UML, Prolog, VB, SQL,
Microsoft DSL Tools, GME, ASM, etc.

Additional ATL ResourcesAdditional ATL Resources
• GMT/ATL Web Site: http://www.eclipse.org/gmt/atl/
• ATL Reference manuals: User Manual, Starter Guide, Installation Guide and the ATL Virtual Machine
Specification (http://www.eclipse.org/gmt/atl/doc/).
• Atlas Publications: http://www.sciences.univ-nantes.fr/lina/atl/publications/
• ATL Wiki: http://wiki.eclipse.org/index.php/ATL (FAQ, troubleshooter, etc.)
• ATL Download: http://www.eclipse.org/gmt/atl/download/
• ATL Transformations Zoo: http://www.eclipse.org/gmt/atl/atlTransformations/
• ATL Mailing List: http://groups.yahoo.com/group/atl_discussion/
• ATL Source Code: http://dev.eclipse.org/viewcvs/indextech.cgi/org.eclipse.gmt/ATL
• AMMA Wiki: http://wiki.eclipse.org/index.php/AMMA

Contact informationContact information
Send a mail to atl-contact@univ-nantes.fr to request ATL mailing-list membership or any additional information.
The AMMA/ATL web site can be found at http://www.sciences.univ-nantes.fr/lina/atl/ and the GMT/ATL web
site, on which ATL is released (source, binaries, documentation, examples, wiki, bugzilla, etc.), is located at
http://www.eclipse.org/gmt/atl/.

TCSTCS

AMWAMWAM3AM3

KM3KM3

http://www.eclipse.org/gmt/atl/
http://www.eclipse.org/gmt/atl/
http://www.eclipse.org/gmt/atl/doc/
http://www.sciences.univ-nantes.fr/lina/atl/publications/
http://wiki.eclipse.org/index.php/ATL
http://www.eclipse.org/gmt/atl/download/
http://www.eclipse.org/gmt/atl/atlTransformations/
http://groups.yahoo.com/group/atl_discussion/
http://dev.eclipse.org/viewcvs/indextech.cgi/org.eclipse.gmt/ATL
http://wiki.eclipse.org/index.php/AMMA
mailto:atl-contact@univ-nantes.fr
http://www.sciences.univ-nantes.fr/lina/atl/

