

ATL:

Atlas Transformation Language

Specification of the ATL

Virtual Machine

- version 0.1 -

2005

by

ATLAS group

LINA & INRIA

Nantes

Content

Figure List .. 4

Table List.. 4

1 Introduction ... 5

2 ATL Programming Language Concepts ... 6

2.1 OCL Types and OCL Expressions in ATL... 6

2.1.1 OCL Primitive Types.. 6

2.1.2 OCL Collections ... 7

2.1.3 OCL Model Elements ... 10

2.1.4 Enumerations .. 11

2.1.5 OCL If Expression .. 11

2.1.6 OCL Let Expression ... 11

2.1.7 OCL Comment.. 11

2.1.8 OCL Tips and Tricks .. 12

2.2 ATL Modules.. 12

2.2.1 Preparation .. 13

2.2.2 Header Section .. 13

2.2.3 Import Section... 14

2.2.4 Helpers .. 14

2.2.5 Rules ... 15

2.3 ATL Advanced Features ... 16

2.3.1 Queries and the Generation of Text .. 16

2.3.2 Libraries .. 17

2.3.3 Complex Headers.. 17

2.3.4 Rules with Multiple Instantiations .. 18

2.3.5 Navigation and Multiple Instantiations... 18

2.3.6 Flexible Runtime Instantiation of Target Elements .. 19

3 The Structure of the ATL Virtual Machine... 21

3.1 Data Types .. 21

3.1.1 Primitive Types... 21

3.1.2 Composite Types .. 21

3.2 Runtime Data Structures ... 22

3.2.1 The pc Register .. 22
3.2.2 The ATL Virtual Machine Stack .. 22

3.3 Frames... 22

3.3.1 Local Variables ... 23

3.3.2 Operand Stack... 23

3.4 Representation of Model Elements... 23

3.5 Instruction Set Summary... 23

3.5.1 Operand Stack Handling Instructions ... 24

3.5.2 Control Instructions .. 24

3.5.3 Model Handling Instructions .. 24

4 The ATL Virtual Machine Instruction Set .. 26

4.1 Format of Instruction Description... 26

4.2 Stack Handling Instructions.. 26

4.2.1 The push instruction.. 26

4.2.2 The pushi instruction... 26

4.2.3 The pushd instruction.. 27

4.2.4 The pusht instruction... 27

4.2.5 The pushf instruction .. 27

4.2.6 The pop instruction ... 27

4.2.7 The store instruction ... 28

4.2.8 The load instruction .. 28

4.2.9 The swap instruction ... 28

4.2.10 The dup instruction ... 28

4.2.11 The dup_x1 instruction ... 29

4.3 Control Instructions .. 29

4.3.1 The if instruction... 29

4.3.2 The goto instruction .. 29

4.3.3 The iterate instruction ... 30

4.3.4 The enditerate instruction ... 30

4.3.5 The call instruction ... 30

4.4 Model Handling Instructions .. 31

4.4.1 The new instruction... 31

4.4.2 The get instruction .. 32

4.4.3 The set instruction... 32

4.4.4 The findme instruction.. 32

4.4.5 The getasm instruction.. 33

5 The asm File Format... 34

5.1 Overview of the asm File Structure ... 34

5.2 The Constant Pool... 34

5.2.1 Data Types Encoding.. 35

5.2.2 Operation Signatures Encoding .. 36

5.2.3 Expressions Location Encoding.. 36

5.3 The Fields.. 36

5.4 The Operations.. 37

5.4.1 The Context... 37

5.4.2 The Parameters.. 38

5.4.3 The Code... 38

5.4.4 The Line Number Table.. 39

5.4.5 The Local Variable Table ... 40

6 Compiling ATL for the ATL Virtual Machine ... 41

6.1 Format of Examples.. 41

6.2 Compiling ATL Code to the asm File Format ... 41

6.2.1 Additional Types... 41

6.2.2 Compiling Primitive Literals .. 43

6.2.3 Compiling Composite Literals.. 43

6.2.4 Compiling Model Elements .. 45

6.2.5 Compiling Transient Links ... 46

6.2.6 Compiling a Conditional Expression .. 47

6.2.7 Compiling an Iterative Block.. 47

6.2.8 Receiving Arguments.. 50

6.2.9 Invoking an Operation .. 51

6.3 Compiling an ATL Transformation .. 51

6.3.1 Compiling Helpers .. 51

6.3.2 Compiling Rules ... 52

6.3.3 Compiling a Transformation... 53

7 Future developments ... 55

7.1 Evolving the ATL Virtual Machine Instruction Set ... 55

7.1.1 Support for Object Deletion.. 55

7.1.2 Improvement of new and findme instructions... 55

7.2 Evolving the asm File Format .. 56

8 References ... 58

I. asm File DTD ... 59

II. asm code of __matchManual2Manual operation.. 61

III. asm code of __applyManual2Manual operation.. 62

Figure List

Figure 1. The Book metamodel.. 13

Figure 2. The Publication metamodel .. 13

Table List

Table 1. asm encoding of the ATL virtual machine required types .. 36

Table 2. asm encoding of OCL implementations of the collection type......................... 42

Table 3. asm encoding of OCL types .. 42

Table 4. asm encoding of custom ATL types.. 42

Specification of the ATL Virtual Machine

Page 5 / 62

1 Introduction
The ATL virtual machine is an abstract computing machine. As the Java Virtual Machine, it is associated with
its own particular instruction set. The ATL virtual machine is independent from the ATL transformation
language. It only has to deal with the file format in which programs to be executed are compiled to. An XML-
based file format, the asm file format, has been designed for the ATL virtual machine. An asm file contains
ATL virtual machine instructions (also called byte codes).

This document is organized as follows:

• Section 2 provides an overview of the ATL transformation language. It introduces the concepts and
the terminology necessary for the understanding of the rest of the document.

• Section 3 gives an overview of the ATL virtual machine architecture.

• Section 4 provides a specification of the instruction set of the ATL virtual machine.

• Section 5 specifies the present asm file format, the XML format used to represent compiled ATL
programs.

• Section 6 introduces compilation of code written in the ATL transformation language into the
instruction set of the ATL virtual machine.

• Finally, Section 7 introduces a set of possible evolutions for both the ATL virtual machine and the
asm format.

Specification of the ATL Virtual Machine

Page 6 / 62

2 ATL Programming Language Concepts
ATL, the Atlas Transformation Language, is the ATLAS INRIA & LINA research group answer to the OMG
MOF [1]/QVT RFP [2]. It is a model transformation language specified both as a metamodel and as a textual
concrete syntax. It is a hybrid of declarative and imperative. The preferred style of transformation writing is
declarative, which means simple mappings can be expressed simply. However, imperative constructs are
provided so that some mappings too complex to be declaratively handled can still be specified.

An ATL transformation program is composed of rules that define how source model elements are matched
and navigated to create and initialize the elements of the target models.

2.1 OCL Types and OCL Expressions in ATL

Since the OCL standard [3] is omnipresent in ATL programs, it is worth while introducing them right at the
beginning. ATL is designed and implemented with respect to the OCL standard. Derivations from the
standard are indicated with a specific remark.

2.1.1 OCL Primitive Types

OCL has four basic primitive datatypes:

• Boolean (true, false)

• Integer (1, -5, 2, 34, 26524, ...)

• Real (with the values 1.5, 3.14, ...)

• String (‘To be or not to be...’)

Furthermore, OCL has the following comparators: <, >, =, =>, =<.

2.1.1.1 Operations on Primitive Types

Integer and Real have the following operations:
*, +, -, /, div(), abs(), mod(), max(), min(), sum(), sin(), cos()

Boolean has the operations:
and, or, xor, not, implies, if-then-else

String has the operations:
concat(), size(), substring(), toInteger() and toReal()

A difference between OCL and ATL is that in ATL you can use the operator + for the concatenation of
Strings.

Early versions of ATL use div instead of / or div() for division.

2.1.1.2 Examples of Operation on Primitive Datatypes

In the following some usage examples of OCL operations on primitive datatypes are illustrated:

Addition of two integers:

1 + 1

Further mathematical operations:

1 - 80 div 2

1 < 2 and 1 > 2

Specification of the ATL Virtual Machine

Page 7 / 62

Boolean operations:

true or false

2.1.2 OCL Collections

Collection is the abstract superclass of Set, OrderedSet, Bag and Sequence. These Collection classes have
the following characteristics:

• Set is a collection without duplicates. Set has no order.

• OrderedSet is a collection without duplicates. OrderedSet has an order.

• Bag is a collection in which duplicates are allowed. Bag has no order.

• Sequence is a collection in which duplicates are allowed. Sequence has an order.

2.1.2.1 Collection Operations

Collection has the following operations:

• The number of elements in the collection self:

size()

• The information of whether an object is part of a collection:

includes()

• The information of whether an object is not part of a collection:

excludes()

• The number of times that object occurs in the collection self:

count()

• The information of whether all objects of a given collection are part of a specific collection:

includesAll()

• The information of whether none of the objects of a given collection are part of a specific collection:

excludesAll()

• The information if a collection is empty:

isEmpty()

• The information if a collection is not empty:

notEmpty()

• Iterators over collectionsThe selection of a sub-collection:

select()

• When specifying a collection which is derived from some other collection, but which contains
different objects from the original collection (i.e., it is not a sub-collection) use:

collect()

• The information of whether an expression is true for all objects of a given collection:

forAll()

Specification of the ATL Virtual Machine

Page 8 / 62

• The addition of all elements of a collection:

sum()

2.1.2.2 Sequence Operations

Sequence supports all collection operations and some specific ones:

• Adding an element at the end of a sequence:

append()

• Inserting an element at a specific point in a sequence:

insertAt()

• Casting a sequence to a set removes duplicates:

asSet()

• Casting a sequence to a bag:

asBag()

• Casting a sequence of collections to a sequence directly containing the children of the subordinate
collections:

flatten()

An example of the insertion of the element 15 at the second place is:

Sequence{12, 13, 12}->insertAt(2,15)

which results in:

Sequence{5, 10, 15, 20}

2.1.2.3 Set Operations

Set supports all collection operations and some specific ones:

• Adding an element to the set:

including()

• Removing an element from the set:

excluding()

• Casting a set to a sequence:

asSequence()

• Casting a set to a bag:

asBag()

2.1.2.4 Bag Operations

Bag supports all collection operations and some specific ones:

• Adding an element to the bag:

including()

Specification of the ATL Virtual Machine

Page 9 / 62

• Removing an element from the bag:

excluding()

• Casting a bag to a sequence:

asSequence()

• Casting a bag to a set:

asSet()

2.1.2.5 Collection Operation Examples
In the following some operations on collections are illustrated:

• Specifying a sequence literal:

Sequence{1, 2, 3}

• Is a collection empty?:

Sequence{1, 2, 3}->isEmpty()

• Getting the size of a collection:

Sequence{1, 2, 3}->size()

Please compare:

Sequence{3, 3, 3}->size()

returns 3 while

Set{3, 3, 3}->size()

returns 1 . This is the case because set eliminates duplicates and sequence not.

• Nesting sequences:

Sequence{ Sequence{ 2, 3}, Sequence{1, 2, 3} }

• Getting the first element of a sequence:

Sequence{1, 2, 3}->first()

• Getting the last element of a sequence:

Sequence{1, 2, 3}->last()

• Selecting all elements of a sequence that are smaller than 3:

Sequence{1, 2, 3, 4, 5, 6}->select(i | i <= 3)

• Rejecting all elements of a sequence that are smaller than 3:

Sequence{1, 2, 3, 4, 5, 6}->reject(i | i <= 3)

• Collect the names of all MOF classes:

MOF!Class.allInstances()->collect(e|e.name)

The OCL shorthand expression

MOF!Class.allInstances()->collect(name)

means semantically the same but is not yet implemented in ATL.

Specification of the ATL Virtual Machine

Page 10 / 62

• All numbers in the sequence greater than 2:

Sequence{12, 13, 12}->forAll(i | i>2)

• Exists a number in the sequence that is greater than 2?:

Sequence{12, 13, 12}->exists(i | i>2)

2.1.3 OCL Model Elements

Model elements are defined in the source and target metamodels. Most metamodels have classes. In ATL
the notation "Metamodel!Class" is used to be able to differentiate classes of different metamodels. Hence, it
is possible to refer to several metamodels in the same program in ATL. The latter is not the case in OCL.

There are different OCL operations to treat and analyze classes:

• The operation oclIsTypeOf() checks if a given instance is an instance of a certain type (and not of
one of its subtypes or of other types).

• The operation oclIsKindOf() checks if a given instance is an instance of a certain type or of one of its
subtypes.

• The operation allInstances() returns you all instances of a given Type.

• The operation oclIsUndefined() tests if the value of an expression is undefined (i.e. if an attribute with
the multiciplicity zero to one is void or not. Please note: attributes with the multiplicity n are often
represented with collections, which may be empty and not void).

2.1.3.1 Examples of Class Operations on MOF 1.4

It is very interesting to use OCL expressions in the context of the MOF metamodel [1]. Examples are given in
the following.

• Please compare:
MOF!Attribute.oclIsKindOf(MOF!ModelElement)

is true while
MOF!Attribute.oclIsTypeOf(MOF!ModelElement)

is false .

• Collect the names of all MOF classes:
MOF!Class.allInstances()->collect(e|e.name)

• Count the number of classes in MOF:
MOF!Class.allInstances()->size()

• Getting the names of all primitive MOF types by filtering:
MOF!DataType.allInstances()->
select(e|e.oclIsTypeOf(MOF!PrimitiveType))->collect (e|e.name)

• Getting the names of all primitive MOF types the simple way:
MOF!PrimitiveType.allInstances()->collect(e|e.name)

• An enumeration instance in MOF:
MOF!VisibilityKind.labels

• Getting all (local and inherited) StructuralFeatures of a Class. In the following code example the
names of all StructuralFeatures of the class PrimitiveTypes are displayed:
MOF!PrimitiveType.findElementsByTypeExtended(

MOF!StructuralFeature, true)->
collect(e | e.name))

Specification of the ATL Virtual Machine

Page 11 / 62

• Getting the names of all classes inheriting from more than one class:
MOF!Class.allInstances()->

select(e | e.supertypes->size() > 1)->
collect(e | e.name)

2.1.4 Enumerations

Enumerations are defined in the source and target metamodels. In OCL enumeration literals are written
using the enumeration type two double points and the value.

The value female of the enumeration Gender is expressed in OCL in the following way:
Gender::female

while the current version of ATL uses sharp and the enumeration value but no enumeration type:
#female

Enumerations can be compared using the equal operator. Supposing aPerson is a variable of the type
Person having the attribute sex which is of the enumeration type Gender, the following ATL expression is
possible:

 if aPerson.sex = #female then
 ' Madam '
 else
 ' Sir '
 endif;

2.1.5 OCL If Expression

In OCL if-clauses are expressed with an if-then-else-endif structure. Neither the else-part nor the endif can
be omitted.

An example of an if-clause:

if 3 > 2 then
'three is greater than two'

else
'this case should never occur'

endif

2.1.6 OCL Let Expression

Let expressions are very useful when debugging. They help displaying the value of an expression by the
means of the let variable.

The let command to define variables:

let a : Integer = 1 in a + 1

Enchaining let expressions:

let a : Integer = 1 in let b : Integer = 2 in a + b

2.1.7 OCL Comment

As in the OCL standard, also in ATL comments start with two consecutive hyphens "--" and end at the end of
the line.

The ATL editor in Eclipse colours comments with dark green, if the standard configuration is used:
-- this is an example of a comment

Specification of the ATL Virtual Machine

Page 12 / 62

2.1.8 OCL Tips and Tricks

In C++ and Java, the optimiser stops the evaluation of a logical expression if a false value is followed by a
logical AND or a true value is followed by a logical OR. It does not matter if the rest of the logical expression
results in an exception or an error because it is not evaluated.

In OCL this is not the case. The expression will always be fully evaluated.

This is why rather than:

not person.oclIsUndefined() and person.name= ’Isabel’

you should write:

if person.oclIsUndefined() then
false

else
person.name= ’Isabel’

endif

Furthermore, you should not write:

 person.oclIsUndefined() or person.name= ’Isabel’

but rather:

if person.oclIsUndefined() then
 true
else

person.name= ’Isabel’

endif

Furthermore, you should not write:

 cols->select(person |

not person.oclIsUndefined() and person.name= ’Isabel’)
)

but rather:

 cols->select(person | not person.oclIsUndefined())->
 select(person | person.name= ’Isabel’)

or use an adequate if expression.

2.2 ATL Modules

The ATL programs for model to model transformation are called modules. A module file has the header
section, the imports section, as well as helpers and rules. For an ATL module only the header section is
mandatory. The ATL module is stored in a file with the extension .atl.

Please note:

• To navigate from an element to its attribute, write the name of the element, then “.” and the name of
the attribute.

• If an identifier (variable name, metamodel name, model element name, etc.) is in conflict with a
keyword, it has to be marked with apostrophes.

• The ATL parser is case sensitive. This concerns the file names as much as the source code itself.

Specification of the ATL Virtual Machine

Page 13 / 62

2.2.1 Preparation

Before an ATL program can be written you must have the target and the source metamodels. For the scope
of this manual, the Book to Publication transformation example (see Figure 1 for the Book metamodel and
Figure 2 for the Publication metamodel) is used to illustrate ATL.

Figure 1. The Book metamodel

The Book metamodel contains the class Book which contains a set of Chapters. Books and Chapters have
titles. Additionally, Chapters have a number of pages, nbPages, and author.

Publication

+title :String

+nbPages :Integer

+authors :String

Figure 2. The Publication metamodel

The metamodel Publication consists of the class Publication which has a title, a number of pages, nbPages,
and authors. The attribute authors is a String that contains the names of authors separated with the word
and.

In the following it will be shown step by step how to program an ATL module that transforms Book models
into Publication models. An ATL module begins with the header section and ends with the rules section.

2.2.2 Header Section

The header section defines the names of the transformation module and the variables of the source and
target models.

The following ATL source code represents the header of the Book2Publication.atl file, thus the ATL header
for the transformation from Book to Publication:

module Book2Publication;
create OUT : Publication from IN : Book;

The keyword module defines the module name.

The keyword create introduces the target models declaration.

The keywords from introduces the source models declaration.

Please note:

Book

+ title :String

Chapter

+ nbPages :Integer
+ title :String
+ author : String

chapters + *

Specification of the ATL Virtual Machine

Page 14 / 62

• The ATL file name (here: Book2Publication.atl) has to correspond to the module name (here:
Book2Publication) and must end with the extension .atl.

2.2.3 Import Section

The import section declares what libraries have to be imported. For instance, to import the strings library, one
would write:

uses strings;

The keyword uses declares the libraries that have to be imported. There can be several import declarations.

Please note:

• Do not declare imports that are not necessary.

• The string.atl library contains many useful functions for Strings but is not necessary for the Book to
Publication example.

2.2.4 Helpers

Helpers can be used to define (global) variables and functions. Helper functions are OCL expressions. They
can call each other (recursion is possible) or they can be called from within rules (see section 2.2.5). In
general, they serve to define repetitive pieces of code in one place.

A helper function has the following structure:

It starts with the keyword helper and ends with a semicolon. In between is an OCL expression.

• The notion of the term context is similar to OCL and it may be compared to an input parameter of a
method. A context variable is specified with the help of the ATL path expression metamodel!element
and is accessible via the self variable. In most cases the elements referred to are classes, i.e. the
class Book of the metamodel Book. If no context is specified, the module itself is taken as context.

• The function name is introduced with def : and is followed by brackets.

• The return type is between a colon and an equals sign that serves as starting point for the function
implementation.

• The function finishes with a semicolon.

For the Book to Publication example, a getAuthor function has to be implemented. Its task is to iterate over
the different Chapters of Book in order to build a String containing all Authors’ names. The word and
separates the Authors’ names:

helper context Book!Book def : getAuthors() : String =
 self.chapters->collect(e | e.author)->
 asSet()->
 iterate(authorName; acc : String = '' |
 acc +
 if acc = ''
 then authorName
 else ' and ' + authorName
 endif);

The context variable self is instance of the class Book!Book. The collect method gets all author attributes of
all Chapters. The asSet method eliminates all doublets by converting the sequence to a set. The iterate
operation is well known from OCL and iterates over a Collection while accumulating data. In this case it
iterates over the author attributes of all Chapters of a Book and collects the Authors’ names. The variable
authorName references the Author’s name of the current iteration. The variable acc severs to accumulate all
authorNames. The if expression returns an instance of String containing the authorName if acc is empty.

Specification of the ATL Virtual Machine

Page 15 / 62

Otherwise, it concatenates ‘and’ with the authorName. The getAuthors function returns the result of the last
iteration containing the concatenation of all Authors’ names.

Often it is possible to either define a context or a parameter variable. The below program with parameter
variable does exactly the same as the program above with context variable:

helper def : getAuthors(b : Book!Book) : String =
 b.chapters->collect(e | e.author)->
 asSet()->
 iterate(authorName; acc : String = '' |
 acc +
 if acc = ''
 then authorName
 else ' and ' + authorName
 endif);

The mayor difference of the two helper functions is the way that they are called.

The helper function with context is called with:
 b.getAuthors()

while the helper function with parameter is called with:
 thisModule.getAuthors(b)

Please note:

• Each helper function must have a name and a return type definition. There may be functions with the
same name but a different context.

• If the context is not otherwise specified, implicitly the module itself is taken as context.

• If the helper has no context defined, the helper has to be called with “thisModule”.

2.2.5 Rules

Rules describe the transformation from a source model to a target model by relating metamodels. Each rule
contains a unique name. It is introduced by the keyword rule that is followed by the rule’s name. Its
implementation is surrounded by curly brackets.

In the source pattern (from part), rules declare which element type of the source model has to be
transformed.

The source pattern consists of the keyword from, an in variable declaration and optionally of a filter. A filter is
an OCL expression restricting the rule to elements of the source model that satisfy certain constraints. The
filter is written behind the in variable declaration and surrounded by brackets.

In the target pattern (the to part), rules declare to which element(s) of the target model the source pattern
has to be transformed to. The implementation of the target pattern declares the details of the transformation.
It may contain one or several target pattern elements (see Section 2.3.4).

A target pattern element consists of a variable declaration (or more precisely the declaration of the target
pattern variable) and a sequence of bindings (assignments). These bindings consist mainly of left arrow
constructs. Usually, an attribute of the target model out (on the left side of the arrow) receives a return value
of an OCL expression (on the right side of the arrow) that is based on the in variable. In this sense, the right
side of the arrow may consist of an attribute of the in variable or a call to a helper function (which is an OCL
expression).

For the Book to Publication example, a rule is required that transforms a Book to a Publication. Only Books
with more than two pages are considered as Publications. The titles of Books and Publications have to
correspond. The authors attribute of Publication contains all authors of all Chapters. For the latter, the
function getAuthors (see Section 2.2.4) and the getNbPages can be reused. The number of pages of a
Publication is the sum of all pages of the Chapters of a Book.

Specification of the ATL Virtual Machine

Page 16 / 62

rule Book2Publication {
 from
 b : Book!Book (
 b.getNbPages() > 2
)
 to
 out : Publication!Publication (
 title <- b.title,
 authors <- b.getAuthors(),
 nbPages <- b.getNbPages()
)
}

Please note:

• Each rule must have a name that is unique within the module.

• Assignments are separated with comma ”,”. The last assignment in a block of statements does not
have a comma.

• The attribution of values is performed with the left arrow operator “<-”.

2.3 ATL Advanced Features

The advanced features will be explained using new examples.

2.3.1 Queries and the Generation of Text

The ATL programs shown so far are all modules. However, there are also ATL query programs. Queries
allow to analyse models and to calculate an output that is not necessarily a model. This makes them very
handy to generate text or code from a model.

ALT query programs must start with a query instantiation which consist of the keyword query, a query
variable, an equal sign and an OCL expression initializing the query variable. An include section (see Section
2.2.3) with uses is optional.

In the following example you see an extract of the XQuery2Code program which transforms XQuery models
to code. With the allInstances function it runs through all elements of a particular element type of the input
model. The collect function calls the toString helper functions and concatenates the String values that they
return. The writeTo function writes the concatenation into a dedicated file.

Please note that there are several toString helper functions. During the execution, the helper function with
the context type that fits best (here: to the type of the e variable) will be chosen for execution.

In general, one can say that this approach simplifies the generation of text or code because the programmer
is supported in treating the coding of each metamodel types separately.

query XQuery2Code = XQuery!XQueryProgram.allInstances()- >

collect(e | e.toString().
writeTo('C:/test.xquery'));

helper context XQuery!XQueryProgram def: toString() : String =
 self.expressions->iterate(e; acc : String = '' |
 acc + e.toString() + '\n'
);

helper context XQuery!ReturnXPath def: toString() : String =
 '{' + self.value + '}' ;

helper context XQuery!BooleanExp def: toString() : String =
 self.value;

Specification of the ATL Virtual Machine

Page 17 / 62

2.3.2 Libraries

When writing large programs, it is of advantage to group reusable pieces of code in one place. This is the
purpose of ATL libraries. In Section 2.2.3 it is explained how to import existing libraries in a module (and they
can be included in a query in the same way), in this section it will be illustrated how to write a library.

Unlike modules, Libraries are ATL programs that are not executable on their own and consist mainly of
helper methods. Libraries start with the keyword library, the library name and a semicolon. An include section
(see Section 2.2.3) with uses is optional. Then helpers follow.

In the following the GeometryLib is shown as example:

library GeometryLib;

helper def: PIDiv180 : Real = 180.toRadians() / 180;

-- and some further geometric global helper variabl es

-- adds two vectors
helper def : forward(a : TupleType(x : Real , y : Real , z : Real),
 b : TupleType(x : Real , y : Real , z : Real)):
 TupleType(x : Real , y : Real , z : Real) =

 Tuple {
 x = a.x + b.x,
 y = a.y + b.y,
 z = a.z + b.z
 };

- - subtracts the second from the first vector
helper def : backward(a : TupleType(x : Real , y : Real , z : Real),
 b : TupleType(x : Real , y : Real , z : Real)) :
 TupleType(x : Real , y : Real , z : Real) =

 Tuple {
 x = a.x - b.x,
 y = a.y - b.y,
 z = a.z - b.z

};
 -- and some further geometric helper functions

In the GeometryLib there are several helper functions (i.e. forward and backward) and global helper
variables (i.e. PIDiv180) defined that can be used by modules that needs such functionality.

Once a module (or query) has imported the GeometryLib, it can call the library’s helpers just as if they were
defined in the module (or query) itself.

Examples of usage of the above defined helpers:

 thisModule.PIDiv180

or

 thisModule.forward(Tuple {x=10, y=10, z=10},

Tuple {x=10, y=10, z=10}
)

2.3.3 Complex Headers

In ATL modules you may have several source models. Source metamodels may but need not have the same
metamodel. Here is an example:

Specification of the ATL Virtual Machine

Page 18 / 62

module GeometricalTransformations;

create OUT : DXF2 from IN1 : DXF1, IN2 : GeoTrans;

In the above case the DXF1 and DXF2 variables refer to same metamodel, namely DXF. DXF has the class
Point. One can distinguish if one refers to a Point of the model DXF1 or of the model DXF2 simply by using
the path expressions:

DXF1!Point

or

DXF2!Point

Please note:

• Each metamodel must have a different name (e.g. DFX1 and DXF2) but they may point to the same
metamodel file.

• Different source models are separated using commas “,”.

2.3.4 Rules with Multiple Instantiations

If for one source pattern (the from part of a rule) several target pattern elements (the to part of a rule) have to
be instantiated, we speak of multiple instantiations. Multiple instantiations are defined using several target
pattern elements in one and the same rule. They are separated using commas “,”.

The Class to Relational transformation has a rule requiring that a Table has to be created for each Class.
Additionally, each Table has to have a key set containing at least one key. In this example the key is a
Column with the name objectID. However, Classes of the source metamodel do not have persistent
identifiers (surrogates) such as keys. In this sense, for each Class not just a table but also a key column has
to be instantiated. Consequently, for the Class2Table rule two target pattern elements are needed, namely
table for the creation of the Table instance and new_key for the creation of the key.

Please note, that the key attribute of table (which is a set of columns) can be initialized with new_key (which
is a Column). However, you must not use new_key.name or table.name in expressions.

rule Class2Table {
 from
 c : Class!Class
 to
 table : Relational!Table (
 name <- c.name,
 key <- Set {new_key}

 -- further value assignments
),
 new_key : Relational!Column (
 name <- 'objectId'

-- further value assignments
)
}

2.3.5 Navigation and Multiple Instantiations

ATL forbids the navigation in the created target model because this implies restrictions on the execution
order. Such restrictions could severely hinder optimisation and very probably lead to poor performance.

Consequently, ATL promotes navigation in the source model. This also involves that whenever an attribute of
the target model has to be assigned with a reference to an element of the target model not the target
element is referenced, but the source element from which the target element has been or will be created.

Specification of the ATL Virtual Machine

Page 19 / 62

This works very well if each source element is mapped to no more than one target element. In case of
multiple instantiations, one can use the operation resoveTemp with the name of the target pattern variable in
order to distinguish between the different instantiations.

In the class to table transformation example for each class a table and a key will be generated:

rule Class2Table {
 from
 c : Class!Class
 to
 table : Relational!Table (
 name <- c.name,
 key <- Set {new_key}

 -- further value assignments
),
 new_key : Relational!Column (
 name <- 'objectId'

-- further value assignments
)
}

An example of how to get a table reference is:

 thisModule.resolveTemp(
 Class!Class->allInstances()->

select(c | c.name =
‘NameOfTheClassCorrespondingToTheSearchedTable’)),
‘table’

)

An example of how to get a key reference is:

 thisModule.resolveTemp(
 Class!Class->allInstances()->

select(c | c.name =
‘NameOfTheClassCorrespondingToTheSearchedKey’)),
‘new_key’

)

2.3.6 Flexible Runtime Instantiation of Target Elements

With the possibilities introduced so far it was only possible to create a fixed number of target elements per
rule. The forEach expression allows to instantiate as many instances of target elements per rule as needed
at runtime. Hence, the number of target elements may be undefined at compilation time.

With the help of an iterator, the forEach operation iterates through a set of elements and instantiates a new
target element of the specified type for each occurrence in the set.

The forEach expression is also called a forEach target pattern element. It starts with a target pattern variable,
a semicolon, the keyword distinct and the model element type that has to be instantiated for each iteration.
This is followed by the keyword forEach and the iterator declaration in brackets. The iterator declaration
comprises the iterator name, the keyword in and an expression of type set.

In the list to folder transformation a tree-structured file folder has to be mapped to a flat list of files. More
precisely, for the root element of a tree, a list must be generated. This list must contain all children of the
folder’s root. The number of children is not limited. This is a typical use case for a forEach expression:

rule Root2List {
 from
 f : Folder!File (
 f.folder.oclIsUndefined()

Specification of the ATL Virtual Machine

Page 20 / 62

)
 using {
 allFiles : Sequence (Folder!File) =

Folder!File.allInstances()->
 select(e | e.oclIsTypeOf(Folder!File))->

asSequence();
 allFilesPaths : Sequence (Sequence (String)) =

allFiles->collect(e | e.folder.getPaths());
 }
 to
 out : List!List (
 name <- f.name
),
 fi : distinct List!File foreach(singleFile in allFiles) (
 name <- singleFile.name,
 path <- allFilesPaths,
 list <- out
)
}

A speciality of (the current version of) ATL is that the forEach expression does not only iterate through the
allFiles sequence, but also through the allFilesPaths. This is why each file is assigned with the corresponding
path (represented through a sequence of folder names).

Specification of the ATL Virtual Machine

Page 21 / 62

3 The Structure of the ATL Virtual Machine
This section specifies an abstract machine. It does not document any particular implementation of the ATL
virtual machine. In order to be executed, ATL code, as well as code from other languages, can be compiled
into the asm format. This file format example is detailed in Section 5.

The present section provides an overall description of an ATL virtual machine. It introduces the data types
that have to be supported by the virtual machine, describes its internal runtime data structures as well as the
model elements representation and presents the specified instruction set.

3.1 Data Types

All the types manipulated by the ATL virtual machine are considered as objects in that sense it is possible to
call operations on them. However, two kinds of types may be distinguished: primitive and composite types.
Primitive types provide support for string, boolean and numerical values. This set defines the core types the
virtual machine relies on. Besides these primitive types, the specification of the ATL virtual machine also
refers to a set of composite types that includes collections, operation signatures and object references. The
representation of these composite types is to be based on the set of primitive types.

The ATL virtual machine expects that nearly all type checking is done prior to run time, typically by a
compiler, and does not have to be done by the ATL virtual machine itself. The instruction set of the ATL
virtual machine distinguishes its operand types using instructions intended to operate on values of specific
types. For instance, push, pushi and pushd are all ATL virtual machine instructions that push a value onto
the current operand stack, but each is specialized for its operand type: string , int and double ,
respectively. For a summary of type support in the ATL virtual machine instruction set, see Section 3.5.

3.1.1 Primitive Types

The set of primitive types supported required for the ATL virtual machine to run is the following:

• the int type that encodes integral numerical values.

• the double type that encodes real numerical values.

• the boolean type that encodes true and false truth values.

• the string type.

3.1.2 Composite Types

There are three kinds of composite types: the collection type, the operation signature type and the
reference type. Composite values must be encoded by means of primitive types. However, this
specification does not mandate any particular representation for these composite types and implementation
choices are let to the discretion of the implementors.

The collection type simply specifies collections of elements. The elements contained in a collection can
be of either a primitive or a complex type. However, the elements of a given collection must be of the same
type. No particular assumptions are made on the structure and the semantics of collections that may be
implemented for the ATL virtual machine. Thus, a collection implementation can either authorize or prohibit
duplicated elements. In the same way, it can be either ordered or unordered. However, the ATL virtual
machine requires each collection to supply an element by element iteration facility.

The operation signature type has to encode all information enabling to uniquely identify an operation. This
information includes: the context for which the operation is defined, the operation name, as well as the
number, the type and the order of the operation parameters. Based on encoded data, the ATL virtual
machine is to be able to resolve an invoked operation and, therefore, to allocate and initialize a new frame
for the operation execution to proceed. In the same manner the structure of collections is not specified, the
way operation identification information shall be encoded and resolved is let to the discretion of the
implementors.

Specification of the ATL Virtual Machine

Page 22 / 62

Besides the collection and signature types, the ATL virtual machine handles a third composite data
type, the references. A reference can be thought of as a pointer to an object. More than one reference to an
object may exist. Referred objects can be of either primitive or composite types. It is possible, within a virtual
machine, to implement references for all available types. However, the ATL virtual machine specification
specifically requires an implementation to provide support for both the variableref and the modeleltref
types.

The ATL virtual machine has to deal with the local variables defined in each allocated frame. These local
variables are always fetched and modified via values of type variableref . The ATL virtual machine is to
be able to resolve these variable references in order to access the local variables of the current frame. As for
the collection and the signature types, the scheme enabling to resolve a variable reference into a variable of
the local variables set of the current frame is let to the discretion of the implementors.

The ATL virtual machine contains explicit support for model elements. A reference to a model element is
considered to have ATL virtual machine type modeleltref . Model elements are always operated on,
passed, and tested via values of type modeleltref . Unlike for model elements, the ATL virtual machine
does not requires any specific support for models. Although the ATL virtual machine deals with them, it does
not handle model objects in the serialized format (i.e. as arguments of the virtual machine instructions), but
refers to them via their name (encoded by means of string values).

3.2 Runtime Data Structures

The ATL virtual machine defines various runtime data areas that are used during execution of a
transformation.

3.2.1 The pc Register

The ATL virtual machine has a pc (program counter) register. At any time, the ATL virtual machine executes
the code of a single operation, the current operation. If this operation is not a native method, the pc register
has to contain the address of the ATL virtual machine instruction currently being executed.

The pc register could be managed at either the frame or the virtual machine level. In the second case, the
value of the pc register has to be memorized each time an operation is invoked so that, once the operation
has completed, the execution may be resumed from the instruction following its invocation.

3.2.2 The ATL Virtual Machine Stack

The ATL virtual machine has a private ATL virtual machine stack, created at the virtual machine start-up
time. The ATL virtual machine stack stores frames. An ATL virtual machine stack is analogous to the stack of
a conventional language such as C: it holds local variables and partial results, and plays a part in operation
invocation and return.

3.3 Frames

A new frame is created each time a non-native operation is invoked. A frame is destroyed when its operation
invocation completes. Frames are allocated from the ATL virtual machine stack. Each frame has its own
array of local variables and its own operand stack. Only one frame is active at anytime. This frame is referred
to as the current frame, and the operation associated to this frame is known as the current operation.

A frame ceases to be the current frame if its operation completes or invokes another operation. When an
operation is invoked, a new frame is created and becomes current when control transfers to the new
operation. On operation return, the current frame passes back the result of its operation invocation, if any, to
the previous frame. The current frame is then discarded as the previous frame becomes the current one.

It may be interesting to allocate a particular kind of frames (that may be called a native frames) each time a
non-native operation calls a native method. By this mean, it would be possible to provide useful runtime
information. When frames are only created for non-native methods, an error occurring in a native method is
associated with its calling non-native operation. With native frame allocations, it would be possible to
determine whether an error occurred in a native method or in the non-native operation that called it.

Specification of the ATL Virtual Machine

Page 23 / 62

3.3.1 Local Variables

Each frame is associated with a set of variables known as its local variables. According to the virtual
machine implementation, the size of the local variable set may be specified or calculated at runtime. Anyway,
the local variable set has to be encoded and embodied, along with the code, in the operation representation
that is associated with each non-native frame. Local variables can be associated with data of either primitive
or composite types.

The ATL virtual machine uses local variables to pass parameters on operation invocation. The values of the
parameters associated with an operation invocation are therefore assigned to local variables. The ATL virtual
machine must provide a scheme that enables to identify, among all local parameters, the operation context
(self in the ATL transformation language) and the subsequently passed parameters.

3.3.2 Operand Stack

Each frame contains a last-in-first-out (LIFO) stack known as its operand stack. The operand stack is empty
when the frame that contains it is created. The ATL virtual machine supplies instructions to load constants or
values from local variables or model elements fields onto the operand stack. Other ATL virtual machine
instructions take operands from the operand stack, operate on them, and push the result back onto the
operand stack. The operand stack is also used to prepare parameters to be passed to operations and to
receive operation results.

As an example, the model handling get instruction fetches the value of a model element field. It requires a
modeleltref to be added on top of the operand stack, pushed there by previous instructions. The modeleltref
is popped from the operand stack and the value of the fetched field is pushed back onto the operand stack.

Each entry on the operand stack can hold a value of any ATL virtual machine type. Values from the operand
stack must be operated upon in ways appropriate to their types. It is not possible, for example, to push two
int values and subsequently treat them as a modeleltref. A small number of ATL virtual machine
instructions (the dup instructions and swap) operate on runtime data areas as raw values without regard to
their specific types; these instructions are defined in such a way that they cannot be used to modify or break
up individual values.

3.4 Representation of Model Elements

The way model elements are internally managed by ATL virtual machine is not constrained. Implementors
are therefore free to use some existing model handling facilities or to provide their own model repository.
Custom implementations may be based on various underlying technologies. For instance, one may provide a
model repository implementation based on relational database technologies. In this context, a model element
allocation may be associated with the creation of a new record. Fetching a model element attribute would
therefore correspond to a request on a field of the record associated with the model element.

Implementors may also prefer to use an existing model handling library, such as MDR [4] or EMF [5]. Both
include facilities to create, modify and store models and model elements, but they are based on distinct
internal representations: MDR uses the MOF 1.4 [1] metamodel whereas EMF is based on Ecore [6]. Both
MDR and EMF also offer XMI [7] serialization/deserialization support. However, they do not rely on the same
XMI version (XMI 1.2 for MDR and 2.0 for EMF), which implies that a model serialized with MDR can not be
deserialized with EMF (and inversely).

3.5 Instruction Set Summary

An ATL virtual machine instruction consists of an opcode specifying the operation to be performed followed
an optional inline operand. Additional arguments or data that may be required by an instruction have to be
fetched from the top of operand stack. Some instructions have no inline operands, but still require operands
from the operand stack. Some other instructions have no operands at all and consist only of an opcode.

Instructions of the ATL virtual machine can be grouped into three distinct sets: the stack handling instruction
set, the control instruction set and the model handling instruction set.

Specification of the ATL Virtual Machine

Page 24 / 62

3.5.1 Operand Stack Handling Instructions

The ATL virtual machine provides a number of instructions enabling direct manipulations of the operand
stack. These instructions may be sorted into three subgroups: the typed constants pushing instructions, the
untyped handling instructions and the loading/storing instructions:

• Pushing a constant onto the operand stack: push, pushi, pushd, pusht, pushf.

• Untyped manipulations of the operand stack: pop, dup, dup_x1, swap.

• Loading/storing a variable from/onto the operand stack: load, store.

Pushing instructions are specialized instructions. Except for the push instruction (dedicated to string
constants), the name of these instructions identifies the data type it applies on: pushi pushes an int
constant, pushd pushes a double constant, whereas pusht and pushf respectively push the true and false
boolean values. The untyped stack handling instructions provide some basic operations on the operand
stack. These instructions proceed in the same way on all primitive and composite types. Thus, a dup
instruction, which duplicates the top value of the operand stack, duplicates indifferently an integral value and
an operation signature. As the previous instructions, the load and store instructions are untyped instructions.
They perform transfers of values between local variables of the current frame and the operand stack of an
ATL virtual machine frame.

3.5.2 Control Instructions

Control instructions cause the ongoing execution to continue from an instruction that may be different from
the instruction that follows the control instruction. The ATL virtual machine defines five different control
instructions:

• Conditional branch: if.

• Unconditional branch: goto.

• Iterative execution: iterate, enditerate.

• Method invocation: call.

In the case of a conditional branch, a boolean argument is checked in order to establish whether the
execution continues from the next instruction, or whether it is redirected to another instruction. The
unconditional branch defines a systematic branch of the execution flow to another instruction.

An iterative execution can be defined by means of the two instructions iterate and enditerate. Iterative
treatments can be nested, and an enditerate instruction must be specified for each iterate instruction. An
iterative treatment corresponds to the set of instructions embraced by an iterate and its corresponding
enditerate instruction. The ATL virtual machine requires iterations to be specified with reference to a
collection: the iterative treatment is therefore executed for each element of the collection provided as
argument.

The last control instruction is the operation invocation instruction. When called operation is a non-native
operation, this instruction systematically redirects the execution to the first instruction of the called operation.
Once called operation has completed, execution goes back to the instruction that follows the call instruction.

3.5.3 Model Handling Instructions

This last class provides an instruction set dedicated to models and model elements handling. This instruction
set also enables the ATL virtual machine to handle objects. There exist five model handling instructions:

• Create a new object: new.

• Access objects attributes: get, put.

• Fetch a model element: findme.

Specification of the ATL Virtual Machine

Page 25 / 62

• Access the ATL context module element: getasm.

The new, get and put instructions provide objects manipulation facilities. Within the ATL virtual machine, all
types are considered as objects (see Section 3.1). However, each of these three instructions is only
supported by a particular subset of existing objects. The new instruction allows allocating both new model
elements and new composite type objects, but primitive data type are created by simply pushing values onto
the operand stack. The get and put instructions respectively provides read/write facilities on objects
attributes. These two instructions should only be defined for composite objects for which they are
meaningful. In the scope of the ATL virtual machine specification, they are defined for both model elements
and the ATL context module. Implementors shall note that a custom native type does not have to implement
the two instructions together (i.e. a type may be associated with the only get instruction).

Besides get, put and new, which define generic facilities for objects manipulation, the model handling
instructions set supply two additional instructions, findme and getasm, that are specifically dedicated to
model elements. The findme instruction is used to get a reference on a model element, based on the name
of the metamodel it belongs to and its own name. In this context, getasm can be though as a specialized
version of the findme instruction that returns a reference to the ATL context module element.

Specification of the ATL Virtual Machine

Page 26 / 62

4 The ATL Virtual Machine Instruction Set
The instructions the ATL virtual machine supports can be grouped into three classes: the stack handling
instructions, the control instructions and the model handling instructions. The stack handling instruction set
defines the instructions enabling to handle a frame operand stack. The control instruction set specifies the
instructions that provide control (such as iteration) over the execution flow. The model handling instruction
set provides model elements access facilities. This section gives details about the format of each ATL virtual
machine instruction and the operation it performs.

4.1 Format of Instruction Description
Each instruction description is presented as follows:

Operation

Short description of the instruction.

Format

mnemonic

operand

Operand stack

…, value1, value2 ⇒ …, result

This notation shows an operation that begins by having value2 on top of the operand stack, with

value1 just beneath it. As a result of the execution of the instruction, value1 and value2 are popped

from the operand stack and replaced by result value, which has been calculated by the instruction.

The remainder of the operand stack, represented by an ellipsis (…), is unaffected by the execution

of the instruction.

Description

A longer description detailing constraints on operand stack contents or constant pool entries, the

operation performed the type of results, etc.

Notes

Comments not strictly part of the specification of an instruction are set aside as notes at the end of

the description.

4.2 Stack Handling Instructions

4.2.1 The push instruction
Operation

Push string constant.

Format

push

s

Operand Stack

… ⇒ …, s

Description

Push the string constant s onto the operand stack.

4.2.2 The pushi instruction
Operation

Specification of the ATL Virtual Machine

Page 27 / 62

Push int constant.

Format

pushi

i

Operand Stack

… ⇒ …, i

Description

Push the int constant i onto the operand stack.

4.2.3 The pushd instruction
Operation

Push double constant.

Format

Pushd

D

Operand Stack

… ⇒ …, d

Description

Push the double constant d onto the operand stack.

4.2.4 The pusht instruction
Operation

Push true boolean constant.

Format

pusht

Operand Stack

… ⇒ …, true

Description

Push the true boolean constant onto the operand stack.

4.2.5 The pushf instruction
Operation

Push false boolean constant.

Format

pushf

Operand Stack

… ⇒ …, false

Description

Push the false boolean constant onto the operand stack.

4.2.6 The pop instruction
Operation

Specification of the ATL Virtual Machine

Page 28 / 62

Pop the top operand stack value.

Format

pop

Operand Stack

…, value ⇒ …

Description

Pop the top value from the operand stack.

4.2.7 The store instruction
Operation

Store value into local variable.

Format

store

variableref

Operand Stack

…, value ⇒ …

Description

The value on the top of the operand stack is popped from the operand stack, and the local variable

referred by variableref is set to value.

4.2.8 The load instruction
Operation

Load value from local variable.

Format

load

variableref

Operand Stack

… ⇒ …, value

Description

The value of the local variable referred by variableref is pushed onto the operand stack.

4.2.9 The swap instruction
Operation

Swap the two top operand stack values.

Format

swap

Operand Stack

…, value2, value1 ⇒ …, value1, value2

Description

Swap the two top values on the operand stack.

4.2.10 The dup instruction
Operation

Specification of the ATL Virtual Machine

Page 29 / 62

Duplicate the top operand stack value.

Format

dup

Operand Stack

…, value ⇒ …, value, value

Description

Duplicate the top value on the operand stack and push the duplicated value onto the operand stack.

4.2.11 The dup_x1 instruction
Operation

Duplicate the top operand stack value and insert two values down.

Format

dup_x1

Operand Stack

…, value2, value1 ⇒ …, value1, value2, value1

Description

Duplicate the top value on the operand stack and insert the duplicated value two values down in the

operand stack.

4.3 Control Instructions

4.3.1 The if instruction
Operation

Branch if boolean value b is true.

Format

if

offset

Operand Stack

…, b ⇒ …

Description

The value b on the top of the operand stack must be of type boolean , whereas the offset operand

must be of type int . b is popped from the operand stack and checked. If the value is true, the

execution proceeds at the offset from the address of the opcode of this if instruction. The target

address must be that of an opcode of an instruction within the operation that contains this if

instruction. Otherwise, if the boolean value b is false, execution proceeds at the address of the

instruction following this if instruction.

4.3.2 The goto instruction
Operation

Branch always.

Format

goto

offset

Operand Stack

Specification of the ATL Virtual Machine

Page 30 / 62

No change.

Description

The offset operand must be of type int. Execution proceeds at the offset from the address of the

opcode of this goto instruction. The target address must be that of an opcode of an instruction

within the operation that contains this goto instruction.

4.3.3 The iterate instruction
Operation

Delimitate the beginning of iteration on collection elements.

Format

Iterate

Operand Stack

…, collection ⇒ …

Description

collection is popped from the operand stack. Execution proceeds from the opcode following this

iterate instruction to its corresponding enditerate opcode (iterate instructions can be nested) for

each element of the popped collection. Before each loop entry, the next element of the popped

collection is pushed onto the operand stack. After the last loop, execution proceeds from the opcode

following the enditerate instruction associated with this iterate instruction. Within an operation,

each iterate instruction has to be associated with an enditerate instruction.

4.3.4 The enditerate instruction
Operation

Delimitate the end of iteration on collection elements.

Format

enditerate

Operand Stack

No change.

Description

Delimitate the end of an iteration previously opened by an iterate instruction. No action is

associated with an enditerate instruction. Within a given operation, the number of enditerate

instructions must be equal to the number of iterate instructions. An enditerate instruction may be

specified only if a non-delimited iterate instruction has been previously declared in the same

operation.

4.3.5 The call instruction
Operation

Call a method.

Format

call

signature

Operand Stack

…, context, [arg1, [arg2 ...]] ⇒ … when called operation has no return

value

Specification of the ATL Virtual Machine

Page 31 / 62

…, context, [arg1, [arg2 ...]] ⇒ result when called operation has a return value

Description

signature is a reference to an operation, which gives the name as well as the description of the

operation (context for which the operation is defined and parameters types). The named operation is

resolved according to its name, its context and the number, type and order of its parameters. The

context must be followed on the operand stack by nargs argument values, where the number, type,

and order of the values must be consistent with the signature of the selected operation.

The context and the nargs argument values are popped from the operand stack. If the operation is

not native, a new frame is created on the ATL virtual machine for the method being invoked. The

context and the argument values are consecutively made the values of local variables of the new

frame, with context in local variable 0, arg1 in local variable 1, and so one. The new frame is then

made current, and the ATL virtual pc is set to the opcode of the first instruction of the operation to

be invoked. Execution continues with the first instruction of the operation. When the operation has

a return value, it is assigned to the remaining top value of the operand stack once the operation has

completed. The return value is then pushed onto the operand stack of the calling frame.

If the called operation is a native method, the nargs argument values and context are passed to the

code that implements the method.

Notes

The ATL virtual machine instruction set includes no return-like instruction. It is however possible

to replace it with a goto instruction pointing to the last operation instruction.

4.4 Model Handling Instructions

4.4.1 The new instruction
Operation

Create new object.

Format

new

Operand Stack

…, classifier-name, metamodel-name ⇒ …, reference

Description

This instruction is used to create new model elements and new composite objects. The type of the

object (the element) to be created is resolved from classifier-name and metamodel-name. If the

metamodel name is #native, the classifier is resolved from the set of supported composite native

types. Otherwise, metamodel-name has to specify the name of a metamodel involved in the current

transformation. The classifier is then resolved from the target models that conform to the

metamodel identified by metamodel-name. If resolution completes successfully, memory for the

new object instance is allocated. As a result, both classifier-name and metamodel-name are popped

from the operand stack and replaced by a reference to the allocated object.

Notes

The current version of the ATL language does not enable to run transformations producing several

target models that conform to a same metamodel. In such a situation, the model in which the new

model element is allocated is undefined (among the models sharing the same metamodel). Future

versions of the ATL virtual machine will include an additional instruction for model element

allocation. Compared to the new instruction, this instruction will accept an additional parameter in

order to identify the target model into which the new element will have to be allocated.

Specification of the ATL Virtual Machine

Page 32 / 62

4.4.2 The get instruction
Operation

Fetch field from object.

Format

get

name

Operand Stack

…, reference ⇒ …, value

Description

The reference is popped from the operand stack. The referenced field is resolved from reference

and name. The value of the resolved field of the object pointed by reference is then fetched and

pushed onto the operand stack.

Notes

The get instruction must be defined for the object pointed by reference. The ATL virtual machine

internal types for which get instruction is defined are model elements and the ATL context module.

4.4.3 The set instruction
Operation

Set field in object.

Format

set

name

Operand Stack

…, reference, value ⇒ …

Description

The referenced field is resolved from reference and name. The type of a value stored by a set

instruction must be compatible with the referenced field. The value and reference are popped from

the operand stack. The referenced field of the object pointed by reference is then set to value.

Notes

The set instruction must be defined for the object pointed by reference. The ATL virtual machine

internal types for which set instruction is defined are model elements and the ATL context module.

4.4.4 The findme instruction
Operation

Fetch a classifier.

Format

findme

Operand Stack

…, classifier-name, metamodel-name ⇒ …, classifier

Description

The classifier is resolved from classifier-name and metamodel-name. As a result, both classifier-

name and metamodel-name are popped from the operand stack, and replaced by the resolved

classifier.

Specification of the ATL Virtual Machine

Page 33 / 62

4.4.5 The getasm instruction
Operation

Fetch the asm element.

Format

getasm

Operand Stack

… ⇒ …, asm

Description

Push asm, a reference to the ATL Context Module element, onto the operand stack.

Specification of the ATL Virtual Machine

Page 34 / 62

5 The asm File Format
This section describes the ATL virtual machine asm file format. This format is the one which is interpreted by
the current reference implementation of the ATL virtual machine. This reference implementation does not
fully meet the abstract specification provided in Section 3 and Section 4. However, the asm file format
includes all information that may be required to build an implementation of the ATL virtual machine that
complies with this abstract specification. ATL virtual machine implementations that aim to execute ATL
transformations compiled into asm files have to be able to read the asm file format and correctly perform the
operations specified therein.

Each asm file contains the definition of either an ATL transformation or an ATL query. This section mainly
focuses on the asm encoding of ATL transformations. An asm file is an XML-based textual file. Its main
elements are introduced in Section 5.1. The remaining sections provide a detailed specification of these
elements.

5.1 Overview of the asm File Structure

An asm file is a textual file containing some XML data which encode an ATL transformation. This section
provides an overview of the main XML elements that may be found in asm files. A complete DTD
representation of the structure of asm files is provided in Appendix I.

An asm file is composed of a single asm structure:

<!DOCTYPE asm [
 <!ELEMENT asm (cp, field*, operation+)>
 <!ELEMENT cp (constant*)>
 <!ELEMENT field (...)>
 <!ELEMENT operation (...)>
 ...
 <!ATTLIST asm name CDATA>
]>

The asm structure is an ordered structure that contains the transformation constant pool (cp), followed by a
set of field (that may be empty) and one or more operation . The asm structure also has a name
attribute. The value of this attribute is a constant pool index pointing to the constant pool entry that stores the
transformation name (see Section 5.2, The Constant Pool).

The constant pool can be viewed as a storage space for the constant values that are handled in an asm file.
It contains a set of constant pool entries. Each constant pool entry encodes a constant value. A single
constant pool entry can be referred by multiple constant occurrences. Section 5.2 specifies the type and the
format of the data that are stored in the constant pool.

Specified fields are those that are associated with the ATL context module. As opposed to constant pool
entries, fields are not ordered and have to be accessed by their name. The field elements are described in
Section 5.3.

Finally, the asm structure contains a non empty set of operations. The operation set specifies the instructions
to be executed by the ATL virtual machine in order to carry out the compiled transformation. Each executable
asm file contains at least one operation, the main operation, which is the entry point of the transformation
program. The structure of an operation element is described in Section 5.4.

5.2 The Constant Pool

The constant pool stores all the constant values, whatever their type and the kind of information they encode
(transformation name, operation signatures, offset values, etc.), that appear in an asm file. Within the
constant pool, each constant value is hold by an indexed constant pool entry (a constant element). In the
asm file format, constant tags embed no indexing information. Constant pool entries are therefore indexed
according to the order in which they are defined within the asm file. Thus, the first constant element is

Specification of the ATL Virtual Machine

Page 35 / 62

associated with the 0 index, the second with 1 and so on… A constant pool index is considered as valid if it
is greater than 0 and less than the number of constant pool entries minus one. Note that the constant pool
size is not specified in the asm file format: it has to be calculated by the ATL virtual machine.

The constant pool is defined by the following cp structure:

<!DOCTYPE asm [
 ...
 <!ELEMENT cp (constant*)>
 <!ELEMENT constant EMPTY>
 ...
 <!ATTLIST constant value CDATA>
]>

The constant pool is composed of constant elements. These constant elements have a value attribute
that contains the constant value. This value is encoded as a string. The different kinds of constant data
stored in the constant pool, and the context in which they appear, are:

• The transformation name (in the asm element).

• The names of the manipulated ATL virtual machine types (in push instructions, see Section 5.4.3).

• The asm encoding of the ATL virtual machine types (in field , context and parameter elements,
see Section 5.4.3).

• The names of the transformation input and output metamodels (in push instructions, see Section
5.4.3).

• The names of the transformation input and output models (in push instructions, see Section 5.4.3).

• The names of the model elements handled by the transformation (in push instructions, see Section
5.4.3).

• The operation signatures (in call instructions, see Section 5.2.2).

• The names of locally defined non-native operations (in operation elements, see Section 5.4).

• The handled offset values (in goto and if instructions, see Section 5.4.3).

• The local variables names (in lve elements, see Section 5.4.5).

• The asm encoding of the location of source code expressions (in lne elements, see Section 5.4.4).

Several occurrences of a same constant in an asm file are represented by the single entry in the constant
pool. Note that a given constant pool entry may represent different data types. For instance, the “3” constant
can represent both an offset value and a local variable table index. An executable asm file has to include a
main operation. As a consequence, the constant pool of such an asm file will at least include a constant pool
entry containing the “main” value.

The asm file format assumes specific encoding schemes for data types, operation signatures and expression
locations. The following subsections detail these particular encodings.

5.2.1 Data Types Encoding

The asm file format defines an internal encoding for the types of the elements it handles. These values,
encoded as strings, are used to specify data types (i.e. primitive, composite as well as model elements
types) for the tags field , context and parameter . The field tag defines an attribute of the ATL context
module. The context tag specifies the element type for which an operation is defined, whereas the
parameter one defines both name and type of an operation parameter. Table 1 summarizes the encoding
of the data types an ATL virtual machine is required to implement.

Specification of the ATL Virtual Machine

Page 36 / 62

Type Name Type Encoding
string S
int I
double D
boolean B
Model element M<metamodel-name>!<modelelt-name>;
Collection(<type>) C<type>

Table 1. asm encoding of the ATL virtual machine required types

The ATL virtual machine requires model elements to be handled by means of the modeleltref composite
type. Encoding for such elements both includes the name of the pointed model element and the name of its
metamodel. For instance, a Node model element defined in the scope of the XML metamodel is encoded as
MXML!Node; .

The composite variableref type is implemented, in the asm file format, as an integral value that indexes
an entry of the local variable table. However, as the other data types, variableref values are stored as
strings within the constant pool.

Encoding of the abstract collection type includes the type of the elements contained in the collection.
Thus, a collection of int value is encoded by CI . In the same way, a collection of XML Node model
elements is encoded by CMXML!Node;.

5.2.2 Operation Signatures Encoding

The ATL virtual machine signature type is used by the call instructions to identify the operation to be
invoked. A signature therefore has to encode all information that may be required by the virtual machine to
match an operation call to its corresponding operation definition. In the asm file format, the signature type
is encoded by means of a string and relies on the type encoding scheme specified in the previous section.

An asm signature encodes the following information: the operation name, the context in which the operation
is defined, the operation return type and the number, the type and the order of the operation parameters.
This information is encoded in the following string:
<context-type>.<operation-name>(<param-type1><param -type2>...<param-
typen>):<return-type>

Considering this encoding scheme, an operation named toBoolean, which is defined within a string
context, that returns a boolean value and that accepts no parameters is encoded by S.toBoolean():B .
In the same way, the signature of the getAttrVal operation, defined in the context of an XML element, which
accepts a string parameter (encoding the attribute name) and returns a string is
MXML!Element;.getAttrVal(S):S .

5.2.3 Expressions Location Encoding

Within each defined operation , the linenumbertable structure encodes the bindings between source
code expressions and ATL virtual machine instructions. Each linenumbertable entry binds a set of
consecutive virtual machine instructions to a portion of the source code (see Section 5.4.4).

The asm file format defines a specific string encoding to identify source code portions. This encoding defines
both the portion start line and start column and its end line and end column. An asm expression location
encoding string respects the following format:
startline:startcolumn-endline:endcolumn

Considering this format, the string 21:41-21:57 identifies the source code portion that is comprised
between the columns 41 and 57 of the line 21 of the source code file.

5.3 The Fields

An asm structure can include some field definitions. Fields can be viewed as local variables that are
directly associated with the ATL context module. A field is defined by the following structure:

Specification of the ATL Virtual Machine

Page 37 / 62

<!DOCTYPE asm [
 ...
 <!ELEMENT field EMPTY>
 ...
 <!ATTLIST field name CDATA>
 <!ATTLIST field type CDATA>
]>

Fields have a name and a type attributes. These attributes contain valid constant pool indexes. Value of the
name attributes indexes a variable name constant, whereas the type attribute value points to a data type
encoding constant.

5.4 The Operations

An asm file defines a set of operation . Executable asm files have a program entry point which must be
implemented by a main operation. Each operation contains a sequence of instructions that will have to be
interpreted by the ATL virtual machine when the operation will be invoked. An operation is defined by the
following structure:

<!DOCTYPE asm [
 ...
 <!ELEMENT operation (context, parameters, code, l inenumbertable,
localvariabletable)>
 <!ELEMENT context EMPTY>
 <!ELEMENT parameters (...)>
 <!ELEMENT code (...)>
 <!ELEMENT linenumbertable (...)>
 <!ELEMENT localvariabletable (...)>
 ...
]>

An operation is an ordered structure in which are specified a context , some parameters , some
instructions (within the code element), a linenumbertable and a localvariabletable . The context
element defines the context in which the operation is defined. The set of parameters encodes both type
and name of the operation parameters. The code element contains an ordered sequence of instructions that
implements the treatment associated with the operation. The linenumbertable structure defines bindings
between the instructions of the code element and the expressions that appear in the source code. Finally,
the localvariabletable stores the local variables that are defined for the operation. Note that, as
opposed to the operation signature encoding, the asm file format does not include return type information to
its operation definition.

These different elements are detailed in the following subsections: Section 5.4.1 defines the structure of the
context element, Section 5.4.2 details the parameters definition, Section 5.4.3 describes the content of
the code element and Section 5.4.4 and 5.4.5 respectively specify the structure of the linenumbertable
and localvariabletable elements.

5.4.1 The Context

An operation context element specifies the context in which the operation is defined. A context element is
defined by the following structure:

<!DOCTYPE asm [
 ...
 <!ELEMENT context EMPTY>
 ...
 <!ATTLIST context type CDATA>
]>

Specification of the ATL Virtual Machine

Page 38 / 62

Each operation is associated with a unique context . This context is defined by the type attribute that
points to a data type encoding entry of the constant pool.

5.4.2 The Parameters

Each operation is associated with an ordered set of parameters. This ordered set encodes the parameter
declaration order. The parameter set is empty for operations that accept no parameters. A parameter set is
defined by the following structure:

<!DOCTYPE asm [
 ...
 <!ELEMENT parameters (parameter*)>
 <!ELEMENT parameter EMPTY>
 ...
 <!ATTLIST parameter name CDATA>
 <!ATTLIST parameter type CDATA>
]>

Each parameter entry (encoded by a parameter element) has a name and a type attributes. Both
attributes contain the index of a constant pool entry. The name attribute points to a constant pool entry that
contains a variable name (the name of the parameter). The entry the type attribute refers to contains a data
type encoding constant, which defines the parameter type. Parameter tags embed no ordering information.
Within an asm file, the parameters order is encoded by the order in which the parameter tags appear in the
parameters element.

5.4.3 The Code

The treatments that are performed by an operation are defined within the operation code element. The code
of an operation is defined by the following structure:

<!DOCTYPE asm [
 ...
 <!ELEMENT code (push, pushi, pushd, pushf, pusht, pop, store, load, swap, dup,
dup_x1, if, goto, iterate, enditerate, call, new, g et, set, findme, getasm)*>
 <!ELEMENT push EMPTY>
 <!ELEMENT pushi EMPTY>
 <!ELEMENT pushd EMPTY>
 <!ELEMENT pushf EMPTY>
 <!ELEMENT pusht EMPTY>
 <!ELEMENT pop EMPTY>
 <!ELEMENT store EMPTY>
 <!ELEMENT load EMPTY>
 <!ELEMENT swap EMPTY>
 <!ELEMENT dup EMPTY>
 <!ELEMENT dup_x1 EMPTY>
 <!ELEMENT if EMPTY>
 <!ELEMENT goto EMPTY>
 <!ELEMENT iterate EMPTY>
 <!ELEMENT enditerate EMPTY>
 <!ELEMENT call EMPTY>
 <!ELEMENT new EMPTY>
 <!ELEMENT get EMPTY>
 <!ELEMENT set EMPTY>
 <!ELEMENT findme EMPTY>
 <!ELEMENT getasm EMPTY>
 ...
 <!ATTLIST push arg CDATA>
 <!ATTLIST pushi arg CDATA>
 <!ATTLIST pushd arg CDATA>
 <!ATTLIST store arg CDATA>

Specification of the ATL Virtual Machine

Page 39 / 62

 <!ATTLIST load arg CDATA>
 <!ATTLIST if arg CDATA>
 <!ATTLIST goto arg CDATA>
 <!ATTLIST call arg CDATA>
 <!ATTLIST get arg CDATA>
 <!ATTLIST set arg CDATA>
]>

The code part of an operation definition contains a sequence of instructions among those that have been
defined in the ATL virtual machine instruction set (see Section 4). Each defined instruction has its
counterpart (in the form of an instruction element) in the asm file format. The instruction tags embed no
ordering information. Within an asm file, instructions are ordered according to their order of appearance in
the code part. They are numbered from 0 to the number of instructions minus one.

Some instructions tags (push, pushi, pushd, store, load, if, goto, call, get and set) have an arg attribute. This
attribute contains the inline parameter of the instruction. Its value is an index that targets a constant pool
entry. According to the instruction, the attribute points to different kinds of constant pool entries:

• Push instructions. Identified constant pool entry contains either a string constant (push), an integral
constant (pushi) or a double constant (pushd).

• load and store instructions. Identified constant pool entry contains an index value for the local
variable table.

• if and goto instructions. Identified constant pool entry contains an offset value. The constant pool
stores absolute offset values. An offset value refers to the instruction number offset of the local
instructions stack (instructions are numbered from 0).

• get and set instructions. Identified constant pool entry contains the name of an object attribute.

• call instructions. Identified constant pool entry contains an operation signature value.

5.4.4 The Line Number Table

The linenumbertable structure defines the bindings between the stack instructions of an operation and
the corresponding code within the source file. This structure encodes useful information for implementers
that wish to provide debugging facilities along with the ATL virtual machine. The linenumbertable is
defined by the following structure:

<!DOCTYPE asm [
 ...
 <!ELEMENT linenumbertable (lne*)>
 <!ELEMENT lne EMPTY>
 ...
 <!ATTLIST lne id CDATA>
 <!ATTLIST lne begin CDATA>
 <!ATTLIST lne end CDATA>
]>

The line number table is composed of line number entries (lne elements). Each entry specifies a binding
between an instructions sequence from the operation stack and a part of the source code file.

Each entry has an id id , a begin and an end attributes. The id attribute identifies a source file portion. The
attribute points to an expression location constant pool entry. The begin and end attributes make it possible
to identify the sequence of instructions that are associated with the identified portion of the source code file.
They respectively specify the number of the first and the last instructions of this sequence within the code
element. The code instructions are numbered from 0 to the number of instructions minus one. The begin
and end attributes do not refer to constant pool entries, but directly encode the instruction number values.

Specification of the ATL Virtual Machine

Page 40 / 62

5.4.5 The Local Variable Table

The localvariabletable structure is similar to the Java local variable table. It encodes the visibility of
each local variable within the operation. It also specifies the bindings between these local variables and the
variable slots that are used to host them. The localvariabletable is defined by the following structure:

<!DOCTYPE asm [
 ...
 <!ELEMENT localvariabletable (lve+)>
 <!ELEMENT lve EMPTY>
 ...
 <!ATTLIST lve slot CDATA>
 <!ATTLIST lve name CDATA>
 <!ATTLIST lve begin CDATA>
 <!ATTLIST lve end CDATA>
]>

The local variable table is composed of local variable entries (lve elements). A local variable table contains
at least one entry: the object that defines the context in which the operation has been called.

Each table entry is associated with a single local variable defined for the current operation. Each entry has a
slot , a name, a begin and an end attributes. The slot attribute specifies the slot number the local
variable is assigned to. The slot is identifies by an integral value (stored as a string). Note that this value is
not a reference to the asm constant pool. A single slot can successively hold different variables of an
operation providing that these variables are defined for distinct portions of the operation code. The name
attribute defines the local variable name. This attribute contains a constant pool index that points to a
variable name constant. Finally, the begin and end attributes make it possible to identify the sequence of
instructions for which the local variable is defined. They respectively specify the number of the first and the
last instructions of this sequence within the code element. The code instructions are numbered from 0 to the
number of instructions minus one. As for the slot attribute, these integral values do not refer to constant
pool entries.

Whatever the considered operation, the first slot of the local variable table is associated with the context
object of the operation. Subsequent slots are associated with the operation parameters in the order they
have been defined. Thus, the first parameter is associated with slot 1, the second parameter with slot 2 and
so on… Following additional slots are used to hold the locally declared variables. The number of these
additional slots has to be at least equal to the maximum number of simultaneously defined variables (i.e.
variables that are defined over a same sequence of instructions).

Specification of the ATL Virtual Machine

Page 41 / 62

6 Compiling ATL for the ATL Virtual Machine
This section aims to introduce compilation techniques for the ATL virtual machine. The ATL virtual machine
has been primarily designed to support the ATL transformation language. This section therefore
concentrates on compiling source code written in the ATL transformation language for the asm file format
described in Section 5.

However, the ATL virtual machine does not assume that the instructions it executes are generated from ATL
code. One may be interested in compiling source code written in another programming/transformation
language to the ATL virtual machine. Understanding how the reference compiler utilizes the ATL virtual
machine can therefore prove to be useful to prospective compiler writers, as well as to those trying to
understand the ATL virtual machine itself.

A large part of this section is devoted to the way ATL code is compiled into the asm format. The compilation
technique the referenced ATL compiler implementation is based on is also detailed.

6.1 Format of Examples

The format of the examples presented in this section should be familiar to anyone who has read assembly
code. Each instruction takes the form:
<index> <opcode> [<operand>] [<comment>]

The <index> is the index of the opcode of the instruction in the array that contains the bytes of ATL virtual
machine code for this method. Alternatively, the <index> may be thought of as a byte offset from the
beginning of the method. The <opcode> is the mnemonic for the instruction's opcode. The optional
<operand> is the operand of the instruction and the optional <comment> is given in the XML comment
format:
 8 <pushi arg="100"> <!-- Push int constant 100 -->

The <index> prefacing each instruction may be used as the target of a control transfer instruction. For
instance, a <goto arg="8"> instruction transfers control to the instruction at index 8.

6.2 Compiling ATL Code to the asm File Format

This section aims to introduce some of the basic compilation techniques that are used to build asm files from
ATL code. For this purpose, some common instruction patterns (such as control instructions, iterative blocks
and operation invocations) are identified and the way they can be compiled to the asm format is discussed.

The additional data types are required to compile the ATL language are introduced in a first subsection.
Sections 6.2.2 to 6.2.5 deal with the compilation of the supported data types. Compilation of conditional
expression and iterative blocks are respectively detailed in Sections 6.2.6 and 6.2.7. Finally, Sections 6.2.8
and 6.2.9 illustrate compilation of operation invocations.

6.2.1 Additional Types

The ATL virtual machine specification requires implementations to provide support for the set of virtual
machine data types (specified in Section 3.1). Executing transformations with the ATL virtual machine may
require this set of virtual machine types to be enriched by means of language specific types.

The ATL transformation language has been built upon the OCL language [3]. Within ATL, the helpers, but
also the rules filters and the initializations of allocated elements are expressed by means of OCL
expressions. Since they appear in ATL transformations, OCL data types have to be supported by ATL virtual
machines that aim to execute ATL transformations. Besides OCL-related types, ATL also defines its own
specific types. These custom types, as well as OCL ones, are described in the following paragraphs.

The OCL language defines four different implementations of the ATL abstract collection . These OCL-
based types are listed in Table 2 along with their respective encoding within the asm file format. Note that, in
OCL as in ATL, these types all inherit from an abstract collection type.

Specification of the ATL Virtual Machine

Page 42 / 62

Type Name Type Encoding
Sequence<type> Q<type>
Bag<type> G<type>
Set<type> E<type>
OrderedSet<type> O<type>

Table 2. asm encoding of OCL implementations of the collection type

The four collection types defined within OCL provide all combinations between ordered/non-ordered and
with/without duplicates:

• The bag type. It defines non-ordered collections with duplicates.

• The set type. It defines non-ordered collections without duplicates.

• The sequence type. It defines ordered collections with duplicates.

• The orderedset type. It defines ordered collections without duplicates.

Whatever their type, collection types are encoded in asm by their own encoding followed by the encoding of
the contained elements. As an example, a sequence of integral numerical value is encoded as QI . In the
same way, an ordered set of Node elements (defined within the XML metamodel) is encoded as
QMXML!Node;.

Besides collection types, OCL defines two additional data types. Table 3 lists these remaining OCL-based
types along with their respective asm encoding.

Type Name Type Encoding
Tuple(<type1>, …, <typen>) T<type1>…<typen>
EnumLiteral Z

Table 3. asm encoding of OCL types

The tuple type defines signatures of multi-typed sequences. A tuple is encoded by associating its own
encoding with those of elements that compose it (in the order they are presented by the signature). For
instance, a tuple respectively containing an integral numerical value, a Node model element and a boolean
value is encoded as TIMXML!Node;B .

The EnumLiteral type corresponds to the ATL enumeration type (see Section 2.1.4). In the scope of ATL,
enumerations are specified in source and target metamodels, and the properties they define can be referred
within the ATL code.

The ATL transformation language also defines some specific types that do not belong to the set of types
required by the ATL virtual machine to run. These types are listed in Table 4 with their encoding in the asm
file format.

Type Name Type Encoding
Model L
ATL context module A
Transient Link NTransientLink;
Transient Link Set NTransientLinkSet;

Table 4. asm encoding of custom ATL types

The model type is associated with models. An ATL transformation mainly deals with its input and output
models. The ATL context module type is associated with the transformation itself. For each ATL
transformation execution, there exists a one and only instance of ATL context module . This element
makes it possible for a transformation being executed to access elements of the transformation module
(such as the transformation fields).

Finally, compilation of ATL code for the asm file format also takes advantage of the transient link type
(encoded as NTransientLink;). This last type does not belong of the ATL language definition. This
means that ATL programmers cannot define transient link variables within their ATL transformations. The

Specification of the ATL Virtual Machine

Page 43 / 62

transient link type can be viewed as a linkage type internal to this ATL virtual machine implementation. A
transient link makes it possible to link a given input model element matched by a rule to its previously
created corresponding output model element(s). Thus, each distinct match of a single rule is represented by
its own transient link. The transient link type comes along with the transient link set type (which is encoded
by NTransientLinkSet;). This internal type defines convenient facilities for handling transient link
collections.

6.2.2 Compiling Primitive Literals

The ATL language handles both primitive and composite data types. The four primitive ATL types are
Integer , Double , String and Boolean . On the other hand, collections and model elements form the set
of composite types. In this section, we introduce the compilation of both collections and primitive data types
to the asm file format. Compilation of model elements handling is addressed in the next section.

Compiling primitive data types in achieved in a very simple way. Such data are therefore created and
initialized by simply pushing, by means of the appropriate virtual machine instruction, a constant of the
corresponding type onto the operand stack. Thus, the instruction <push arg="10"> creates a new string
which value is stored by constant pool entry 10. In the same way, assuming that the constant pool entry 11
contains an integral constant, the instruction <pushi arg="11"> can be used to allocate a new integral
value.

6.2.3 Compiling Composite Literals

Compilation of composite literals, such as collections, is not much more complex. Composite data types are
required to be created before being initialized. Concerning the collection data type, this means that the ATL
virtual machine first allocates an empty collection and then initializes it by means of successive element
insertions. In the scope of the ATL virtual machine, collections are allocated by means of the new instruction.
Inserting elements into the newly created collection can then be achieved by calling the native including
operation defined for the collection. As an example, it is possible to consider the following declaration of an
integer set with the ATL language:

let int_set: Set (Integer) = Set {8, 15, 6}

This simple declaration can be compiled into the following instruction set:

 0 <push arg="78"/> <!-- Push string constant "S et" -->
 1 <push arg="9"/> <!-- Push string constant "#n ative" -->
 2 <new/>
 3 <pushi arg="79"/> <!-- Push int constant 8 -- >
 4 <call arg="46"/> <!-- Call CJ.including(J):CJ operation -->
 5 <pushi arg="27"/> <!-- Push int constant 15 - ->
 6 <call arg="46"/> <!-- Call CJ.including(J):CJ operation -->
 7 <pushi arg="56"/> <!-- Push int constant 6 -- >
 8 <call arg="46"/> <!-- Call CJ.including(J):CJ operation -->

The first step consists in allocating a new empty Set . For this purpose, the strings “Set” and “#native” are
successively pushed onto the operand stack (instructions 0 and 1). Whereas “#native” encodes the
metamodel of the element to be created, “Set” refers to its classifier type. Instruction 2 uses these two strings
to create a new empty set. As a result, the set is pushed on top of the operand stack. At this stage, the
allocated set still requires to be initialized. That is the purpose of the remaining instructions. Each element of
the declared collection is pushed onto the operand stack in turn and the including operation associated with
the considered collection type is called for each of them. In the considered example, the considered
collection is composed of integers. Initialization of the allocated set therefore consists in pushing an integer
onto the operand stack (instructions 3, 5, 7) and calling the set including operation (instructions 4, 6, 8) with
the set as context and the pushed integer as argument. Note that an including operation pushes the modified
collection back onto the operand stack, so that it is still present on top of the stack once the operation has
completed.

In the scope of the ATL transformation language, tuples are considered as another composite data type. As
a collection, a tuple has to be created before being initialized. While a tuple allocation is performed by means

Specification of the ATL Virtual Machine

Page 44 / 62

of the new instruction, its initialization is achieved by successively assigning values to its elements (with the
set object handling instruction). As an example, the following declaration of an integer set with the ATL
language may be considered:

let a_tuple: TupleType (a: Integer , b: String , c: Real , d: Boolean) =
 Tuple {a=8, b= 'Hello' , c=15.9, d= true };

This tuple declaration can be compiled into the following instruction set:

 0 <push arg="121"/> <!-- Push string constant " Tuple" -->
 1 <push arg="9"/> <!-- Push string constant "#n ative" -->
 2 <new/>
 3 <dup/>
 4 <pushi arg="108"/> <!-- Push int constant 8 -- >
 5 <set arg="122"/> <!-- Set "a" object property -->
 6 <dup/>
 7 <push arg="123"/> <!-- Push string constant " Hello" -->
 8 <set arg="124"/> <!-- Set "b" object property -->
 9 <dup/>
 10 <pushd arg="125"/> <!-- Push double constant 1 5.9 -->
 11 <set arg="126"/> <!-- Set "c" object property -->
 12 <pusht/> <!-- Push true constant -->
 13 <set arg="127"/> <!-- Set "d" object property -->

The first step aims to allocate a new tuple structure. This is achieved by instructions 0 to 2. They first push
two string constants, “Tuple” and “#native” (which respectively encode the classifier and the metamodel of
the object to be created), onto the operand stack. The new instruction is then called with these two
parameters.

Once a new tuple object has been allocated, its elements can be initialized. The different elements can be
initialized in any order. For each of them, the initial value is first pushed onto the operand stack and then
assign to its corresponding property. In the example considered here, the initial values are provided as
constants. Thus, assignment of the “a” property is achieved by pushing an integral constant onto the
operand stack (instruction 4) and assigning it to the tuple “a” property (instruction 5). Initialization of the “b”
property is achieved in the same way, by pushing a string value onto the operand stack (instruction 7). Note
that the different dup instructions aim to duplicate the reference to the created tuple (on the operand stack)
before it is consumed by the set instruction.

Finally, ATL deals with a last composite data type which corresponds to OCL enumerations. Although
enumerations can not be defined within an ATL module, the ATL code can refer to enumerated properties.
As the other composite types, a reference to an enumeration needs to be allocated prior to be initialized. As
for the tuple data type, these two steps are based on the new and the set object handling instructions. In the
following example, “sex” is a property of a Person model element whose possible values are “#male” or
“#female”.

if aPerson.sex = #female
 then ' Madam '
 else ' Sir '
endif;

Assuming that the “sex” property of the Person model element is stored in local variable 1 (see Section
6.2.4 for further details on model elements compilation), this ATL code can be compiled into the following
instruction set:

 0 <load arg="28"/> <!-- Load local variable 1 - ->
 1 <push arg="144"/> <!-- Push string constant " EnumLiteral" -->
 2 <push arg="9"/> <!-- Push string constant "#n ative" -->
 3 <new/>
 4 <push arg="145"/> <!-- Push string constant " female" -->
 5 <set arg="58"/> <!-- Set "name" object proper ty -->
 6 ...

Specification of the ATL Virtual Machine

Page 45 / 62

The first instruction loads the model element property onto the operand stack. The enumeration object is
then allocated. For this purpose, two strings constants, “EnumLiteral” for the classifier name and “#native” for
the metamodel, are successively pushed onto the operand stack (instructions 1, 2). The enumeration object
is then allocated with a new instruction that accept the two previously pushed strings as parameters
(instruction 3). The enumeration can then be initialized: the “female” string constant is pushed onto the
operand stack (instruction 4) and assigned to the object “name” property (instruction 5). Now the
enumeration data is initialized, the conditional expression can be further compiled (see Section 6.2.6 for
details).

6.2.4 Compiling Model Elements

Among composite types, the ATL language provides support for model elements. As composite data, model
elements are compiled into the asm format similarly to collections. This means that a model element is
created and initialized during two distinct steps. There is however a significant difference in ATL between
collections and model elements: whereas ATL allows programmers to create new collections, it does not
provide any facilities for model element allocation. As a matter of fact, the model element allocations
implicitly defined within an ATL transformation are made explicit (i.e. encoded into the asm file) at compile
time.

In order to illustrate the way model element handling is compiled, we introduce an ATL rule which simply
copies an input manual BibTeX entry to an equivalent output element:

rule Manual2Manual {
 from
 i : BibTeX!Manual
 to
 o : BibTeX!Manual (
 title <- i.title,
 id <- i.id
)
}

Depending on the way a transformation is compiled into asm, the allocation and the initialisation of a model
element can be distributed among several operations. This is, for instance, the case with the current
reference compiler: a first operation allocates a new output element for each matched input elements and a
second operation is dedicated to the initialization of previously created output elements (see Section 6.3 for
further details). However, for simplicity sake, we present here both allocation and initialisation steps within a
single instruction set. Assuming that the input element is stored in local variable 1, the rule can be compiled
to:

 0 <push arg="22"/> <!-- Push string constant "M anual" -->
 1 <push arg="23"/> <!-- Push string constant "B ibTeX" -->
 2 <new/>
 3 <store arg="96"/> <!-- Store into local varia ble 2 -->
 4 <load arg="96"/> <!-- Load local variable 2 - ->
 5 <load arg="49"/> <!-- Load local variable 1 - ->
 6 <get arg="75"/> <!-- Fetch "title" object pro perty -->
 7 <set arg="75"/> <!-- Set "title" object prope rty -->
 8 <load arg="96"/> <!-- Load local variable 2 - ->
 9 <load arg="49"/> <!-- Load local variable 1 - ->
 10 <get arg="124"/> <!-- Fetch "id" object prope rty -->
 11 <set arg="124"/> <!-- Set "id" object propert y -->

Similarly to the composite data types, the first step here consists in allocating a new output model element.
This allocation follows the same scheme: two strings, respectively encoding the name of the element
classifier and the name of its metamodel, are successively pushed onto the operand stack before the new
instruction to be called (instructions 0 to 2). Created model element is then stored in local variable 2
(instruction 3). The remaining instructions are dedicated to the initialisation of the model element.

The created output model element is loaded onto the operand stack (instruction 4). The input model element
is then pushed over it (instruction 5). Its title attribute is fetched by instruction 6. It is pushed back onto the

Specification of the ATL Virtual Machine

Page 46 / 62

operand stack. This value can then be set to the title attribute of the previously (by instruction 4) pushed
output model element (instruction 7). Initialisation of the id attribute follows the same process.

Note that initialisation of non-primitive attributes (i.e. links to other model elements) is slightly more complex.
It requires calling the __resolve__ operation (see Section 6.3.3 for further details).

6.2.5 Compiling Transient Links

The transient link type is not part of the ATL language. It represents a virtual machine internal facility to
encode links between matched source elements and allocated target elements. Transient links explicitly
capture the relations between the input and output elements of a rule. Explicit definition of transient links is
performed at compile time.

In order to illustrate the way this data type may be compiled, we may consider again the Manual2Manual
rule defined in previous section. This simple rule associates an input model element (i) to a single output
model element (o). Each match of the Manual2Manual rule may lead to the creation of a distinct transient
link. Assuming the input model element is stored in local variable 1, the creation of such a new element may
be compiled by the following instruction set:

 0 <push arg="31"/> <!-- Push string constant "T ransientLink" -->
 1 <push arg="9"/> <!-- Push string constant "#n ative" -->
 2 <new/>
 3 <dup>
 4 <push arg="32"/> <!-- Push string constant "M anual2Manual" -->
 5 <call arg="33"/> <!-- Call NTransientLink;.se tRule(MATL!Rule;):V
operation -->
 6 <dup>
 7 <push arg="34"/> <!-- Push string constant "i " -->
 8 <load arg="28"/> <!-- Load local variable 1 - ->
 9 <call arg="35"/> <!-- Call NTransientLink;.ad dSourceElement(SJ):V
operation -->
 10 <push arg="36"/> <!-- Push string constant "o " -->
 11 <push arg="22"/> <!-- Push string constant "M anual" -->
 12 <push arg="23"/> <!-- Push string constant "B ibTeX" -->
 13 <new/>
 14 <call arg="37"/> <!-- Call NTransientLink;.ad dTargetElement(SJ):V
operation -->

The first step consists in allocating a new TransientLink . For this purpose, the strings “TransientLink” and
“#native” are successively pushed onto the operand stack (instructions 0 and 1). Whereas “#native” encodes
the metamodel of the element to be created, “TransientLink” refers to its classifier type. Instruction 2 uses
these two strings to create a new transient link. The name of the rule is then pushed onto the operand stack
(instruction 4) and set to the allocated transient link by calling the setRule operation (instruction 5).

Next step is to initialize both input and output elements of the transient link. The input element name is
pushed on top of the operand stack by instruction 7. The input model element can then be loaded from local
variable 1 (instruction 8) and the addSourceElement operation called with these two data as arguments
(instruction 9). The name of the output element is in turn pushed onto the operand stack (instruction 10).
Instructions 11 to 13 then create a new empty output model element and the addTargetElement operation is
called with both the element name and the allocated model element as arguments (instruction 14).

The transient link data type is defined along with the transient link set type. It provides a set of facilities for
storing and retrieving transient links. Assuming that local variable 1 contains an already initialized transient
link, the following instruction set illustrates the creation and the initialization of such a structure:

 0 <push arg="19"/> <!-- Push string constant "T ransientLinkSet" -->
 1 <push arg="9"/> <!-- Push string constant "#n ative" -->
 2 <new/>
 3 <load arg="28"/> <!-- Load local variable 1 - ->
 4 <call arg="38"/> <!-- Call
NTransientLinkSet;.addLink(NTransientLink;):V opera tion -->

Specification of the ATL Virtual Machine

Page 47 / 62

This example shows that a transient link set is allocated in the same way collections are. The only difference
is the classifier name provided to the new instruction (which here is “TransientLinkSet”). One a transient link
has been loaded on top of the operand stack (instruction 3), it can be inserted into the transient link set by
calling the addLink operation.

6.2.6 Compiling a Conditional Expression

The ATL language provides programmers with a conditional expression represented by the if-then-
else-endif keywords. As opposed to a traditional programming language (such as Java or C), the ATL if
instruction corresponds to an expression and, as such, must be associated with a value in any cases (i.e.
whatever the result of the condition test). As a consequence, ATL if instructions always have to include an
else clause.

For the purpose of illustrating the compilation of an ATL if-then-else-endif sequence, we consider a
simple conditional expression which returns two distinct integral constants according to the value of a given
integral variable:

if val > 10
 then 1
 else 2
endif;

This ATL conditional expression can be compiled into the following ATL virtual machine instructions set:

 0 <load arg="21"/> <!-- Load local variable 1 - ->
 1 <pushi arg="54"/> <!-- Push int constant 10 - ->
 2 <call arg="55"/> <!-- Call J.>(J):J operation -->
 3 <if arg="56"/> <!—- Conditional branch to ins truction 6 -->
 4 <pushi arg="32"/> <!-- Push int constant 2 -- >
 5 <goto arg="57"/> <!—- Branch to instruction 7 -->
 6 <pushi arg="21"/> <!-- Push int constant 1 -- >

The first step is here to evaluate the if boolean expression. Assuming that the val variable implied in this
boolean expression is stored within local variable 1, it is loaded on top of the operand stack (instruction 0).
The integral constant that constitutes the other part of the boolean expression is pushed in its turn onto the
operand stack (instruction 1). Next instruction can then invoke the > operation with val as context and 10 as
parameter (instruction 2). As a result, this operation pushes a boolean value on top of the operand stack.
Returned boolean value is then tested by a conditional branch (instruction 3). If the value is true (i.e. the
condition is fulfilled), the execution flow is redirected to instruction 6 which pushes the integral constant 2
onto the operand stack. Otherwise, if the boolean value is false, the execution proceeds from the next
instruction (instruction 4) which pushes the integral constant 1 on top of the operand stack. Next instruction
(instruction 5) then redirects execution to the instruction directly following the true condition block. In this
example, execution is redirected to instruction 7 which follows the instruction 6 that constitutes the true
condition block.

This simple example illustrates that it is possible for a branch (i.e. a goto or an if virtual machine instruction)
to target the instruction n in an operation composed of n instructions numbered from 0 to n-1. Such a branch
will result in resuming the operation being executed. If this operation has a return value, the value on top of
the operand stack when branch is performed is the one to be returned. In the case a conditional expression
constitutes the body of an iterative treatment, the corresponding branch will target the virtual machine
enditerate instruction that is associated with the on going iterative treatment (see Section 6.2.7, compilation
of the select ATL instruction).

6.2.7 Compiling an Iterative Block

As with the OCL language, an iterative treatment is associated in ATL with an iteration over a collection of
elements. This implies an iterative block to be executed for each element of the collection it refers to. An
iterative block is typically compiled into a set of ATL virtual machine instructions embraced by the
iterate/enditerate couple of virtual machine instructions (see Sections 4.3.3 and 4.3.4). As ATL iterations, the
virtual machine iterate instruction is defined according to a reference collection, which is taken on top of the

Specification of the ATL Virtual Machine

Page 48 / 62

operand stack. Prior to each iteration, a new element of the reference collection is pushed onto the operand
stack. The enditerate instruction only aims to mark the end of an iterative block (it is not associated with any
particular treatment).

The ATL language defines three main iterative instructions: select , collect and iterate . The select
instruction enables to select a subset of the reference collection. Elements of this reference collection are
filtered according to a boolean expression. A select instruction produces an output collection which size is
equal or less than the one of the reference collection. These elements moreover have the same type that
those of the reference collection. As opposed to the select one, the collect instruction produces a
homogeneous Sequence of elements whose cardinal is equal to the reference collection one. Although the
returned sequence is to be homogeneous, the type of its elements may be different from the one of
reference collection elements. A collect may, for instance, be used on a model elements collection to
compile the values of a given property of these elements. It can also be used on any collection of cardinal n
to easily produce a new Sequence composed of n identical constant values.

We propose here to illustrate the compilation of both select and collect ATL instructions. We first
consider an example making use of the select function. We introduce, in this scope, a set of integral
values:

let int_set: Set (Integer) = Set {8, 15, 6, 3, 19}

It is now possible to operate a selection on int_set in order to build the subset of values that are greater
than 10. This selection corresponds to the following ATL statement:

int_set->select(e | e > 10);

This simple ATL selection can be compiled into the following ATL virtual machine instructions set:

 0 <push arg="31"/> <!-- Push string constant "S et" -->
 1 <push arg="9"/> <!-- Push string constant "#n ative" -->
 2 <new/>
 3 <load arg="21"/> <!-- Load local variable 1 - ->
 4 <iterate/>
 5 <store arg="32"/> <!-- Store into local varia ble 2 -->
 6 <load arg="32"/> <!-- Load local variable 2 - ->
 7 <pushi arg="46"/> <!-- Push int constant 10 - ->
 8 <call arg="47"/> <!-- Call J.>(J):J operation -->
 9 <call arg="48"/> <!-- Call B.not():B operatio n -->
 10 <if arg="49"/> <!-- Conditional branch to ins truction 13 -->
 11 <load arg="32"/> <!-- Load local variable 2 - ->
 12 <call arg="50"/> <!-- Call CJ.including(J):CJ operation -->
 13 <enditerate/>

Performing a select operation on an ATL set results in a new set that contains the only elements that fulfil
the condition specified with the boolean expression. The first step therefore consists in instantiating a new
empty set. This is achieved with instructions 0 to 2. Assuming that the reference set is stored within local
variable 1, it can be then loaded on top of the operand stack (instruction 3). The iterate instruction uses this
set as its reference collection.

Prior to each iteration, a new element of the collection is implicitly pushed onto the operand stack by the ATL
virtual machine. This element is saved into local variable 2 and made available again on top of the operand
stack by instructions 5 and 6. Next step corresponds to the evaluation of the ATL boolean expression (e >
10). For this purpose, the 10 integral constant is pushed onto the operand stack (instruction 7) and the >
operation is called with the current element as context and the integral constant as parameter (instruction 8).
This invocation returns a boolean value on top of the operand stack. Next instruction calls the not operation
with the previously returned boolean value as context (instruction 9). This new invocation pushes a new
boolean value onto the operand stack. This value is then tested by a conditional branch (instruction 10). If
the value is true (i.e. the ATL condition is not fulfilled), the execution flow is redirected to instruction 13
which corresponds to the end of the current iteration. Otherwise, if the ATL condition is fulfilled, execution
proceeds from the next instruction (instruction 11). This instruction loads the current collection element onto

Specification of the ATL Virtual Machine

Page 49 / 62

the operand stack. This element can then be inserted into the produced set by calling the including
operation with the output collection as context and the current element as parameter (instruction 12). Note
that:

• The context output collection is initially pushed onto the operand stack by instruction 3.

• The including operation pushes the updated collection onto the operand stack so that it is not
necessary to push it again for the next iteration.

In order to illustrate the compilation of the collect instruction, we now introduce another example. For this
purpose, we consider entry_set , a set of model elements of type TitledEntry that represent those
entries of a BibTeX file that include a title attribute. It is possible to operate a collect on this
entry_set in order to build a sequence containing the titles that appear in the considered BibTeX file. This
operation corresponds to the following ATL statement:

entry_set->collect(e | e.title);

This simple ATL instruction can be compiled into the following ATL virtual machine instructions set:

 0 <push arg="31"/> <!-- Push string constant "S equence" -->
 1 <push arg="9"/> <!-- Push string constant "#n ative" -->
 2 <new/>
 3 <load arg="21"/> <!-- Load local variable 1 - ->
 4 <iterate/>
 5 <store arg="32"/> <!-- Store into local varia ble 2 -->
 6 <load arg="32"/> <!-- Load local variable 2 - ->
 7 <get arg="45"/> <!-- Fetch "title" object pro perty -->
 8 <call arg="46"/> <!-- Call CJ.including(J):CJ operation -->
 9 <enditerate/>

When applied to an ATL collection, a collect instruction produces a Sequence that contains as many
elements as the reference collection. As for a select compilation, the first step consists in instantiating a
new empty sequence. This is achieved with instructions 0 to 2. Assuming that the reference set is stored
within local variable 1, it can be then loaded on top of the operand stack (instruction 3). The iterate
instruction uses this set as its reference collection.

Similarly to the select compilation, a new element of the collection is implicitly pushed onto the operand
stack by the ATL virtual machine priori to each iteration. This element is saved into local variable 2 and made
available again on top of the operand stack by instructions 5 and 6.

Next step aims to retrieve/build the element to be inserted in the sequence to be returned. In our example,
this element corresponds to the title of the current BibTeX entry (i.e. the current element of the reference
collection). This string value is fetched by means of the get instruction (that applies to the model element on
top of the operand stack) and pushed back onto the operand stack (instruction 7). The title can then be
inserted into the produced sequence by calling the including operation with the output collection as
context and the fetched string as parameter (instruction 8).

The last iterative instruction provided by the ATL language is the iterate instruction (which should not be
confused with its homonym virtual machine instruction). This last instruction is more flexible than the select
and collect ones. It therefore allows programmers to:

• Declare (and initialize) the data type of the value to be returned by the iterative treatement. For
instance, iterate makes it possible to return a primitive ATL data type (such as String ,
Integer , etc.) as result of the iterative treatment.

• Specify what iterative treatment to perform.

In order to illustrate the compilation of the iterate ATL instruction, we consider int_set as a set of
integral values. It is therefore possible to compute the sum of the values contained in int_set by means of
the following ATL instruction:

Specification of the ATL Virtual Machine

Page 50 / 62

int_set->iterate(e; ret : Integer = 0 | ret + e);

As a reminder, e identifies the current element of the reference collection. ret : Integer = 0
corresponds to the declaration and the initialization of the variable to be returned (ret). Finally, ret + e
specifies the operation to be iteratively performed. This ATL instruction can be compiled into the following
ATL virtual machine instructions set:

 0 <pushi arg="7"/> <!-- Push int constant 0 -->
 1 <store arg="32"/> <!-- Store into local varia ble 2 -->
 2 <load arg="21"/> <!-- Load local variable 1 - ->
 3 <iterate/>
 4 <store arg="67"/> <!-- Store into local varia ble 3 -->
 5 <load arg="32"/> <!-- Load local variable 2 - ->
 6 <load arg="67"/> <!-- Load local variable 3 - ->
 7 <call arg="68"/> <!-- Call J.+(J):J operation -->
 8 <store arg="32"/> <!-- Store into local varia ble 2 -->
 9 <enditerate/>
 10 <load arg="32"/> <!-- Load local variable 2 - ->

Similarly to the previously described ATL iterative instructions, the first step consists in allocating and
initializing the variable used to store the value to be returned. However, compared to the other iterative
instructions, this variable can be here of any ATL types. In this example, this step consists in initializing the
integral value ret to 0. This is achieved by instruction 0. Initilialized value is then stored in local variable 2
(instruction 1). Assuming that the reference set is stored within local variable 1, it is then loaded on top of the
operand stack (instruction 2). The iterate instruction (instruction 3) uses this set as its reference collection.

A new element of the reference collection is implicitly pushed onto the operand stack at the beginning of
each iteration. It is saved into local variable 3 by instruction 4. Instructions 5 and 6 respectively load the
value to be returned and the current element on top of the operand stack. The operation + is then called with
the value to be returned as context and the current element of the reference collection as parameter
(instruction 7). As a result, the operation pushes the computed value onto the operand stack. This value is
stored in local variable 2 as the value to be returned (instruction 8). Once the iteration has completed, the
content of local variable 2 is loaded onto the operand stack (instruction 10).

6.2.8 Receiving Arguments

As opposed to Java, the ATL language does not define context-less operation calls facilities. Whereas
static Java methods do not have any instance, all invoked operations in ATL are to be associated with a
specific context. As a consequence, there exist a one and only way to receive arguments for ATL operations.

The n arguments that are passed to an invoked operation are stored in the localvariabletable structure
of the stack frame created for the new operation. The table entry 0 is reserved to hold a reference to the
context in which the operation is called and the arguments are stored in local variables numbered from 1 to
n. The arguments are received in the order they were passed. As an example, consider the code of the
following ATL helper:

helper
 def: firstOfTwo(i: Integer , j: Integer) : Integer = i;

This helper is defined in the context of the ATL context module and simply returns the value of its first
argument. It compiles to:

Operation int firstOfTwo(int,int)
 0 <load arg="1"> <!-- Load local variable 1 -->

The value of the operation first argument is loaded on top of the operand stack. This top value is the one to
be returned when the operation completes.

Specification of the ATL Virtual Machine

Page 51 / 62

6.2.9 Invoking an Operation

The ATL language defines a one and only way to invoke operations. ATL invocations are implemented by
the call instruction (see Section 4.3.5), which takes as argument an index to a constant pool entry containing
the full signature of the invoked operation. This operation signature provides the type of context for which the
operation is defined, the operation name, its return type and the number, the order and the type of its
arguments. The test helper, defined below, provides an operation invocation example:

helper def: test() : Integer =
 thisModule.firstOfTwo(12, 13);

This new helper, which is also defined in the context of the ATL context module, calls the firstOfTwo
helper with two integral numerical constants. It compiles to:

Operation test()
 0 <getasm> <!-- Push asm module -->
 1 <pushi arg="31"> <!-- Push int constant 12 -- >
 3 <pushi arg="32"> <!-- Push int constant 13 -- >
 4 <call arg="46"> <!-- Call A.firstOfTwo(II):I operation -->

First step of the operation invocation process is pushing operation context and arguments onto the top of the
operand stack. This is achieved by first pushing a reference to the ATL context module onto the operand
stack. Operation invocation's arguments, int values 12 and 13 , are pushed in their turn onto the operand
stack. Once the frame associated with the firstOfTwo operation is created, the context and the arguments
passed to the operation invocation become the initial values of the new frame's local variables. Thus, the
local variable 0 of the invoked firstOfTwo operation will receive the reference to the ATL context module
whereas local variables 1 and 2 will be respectively initialized to the 12 and 13 int values.

When the invoked operation completes, its int return value is pushed onto the operand stack of the
invoking operation (test). Note that the ATL virtual machine does not define any return-like instruction. As a
consequence, an operation always completes with its last instruction. An early return instruction can however
be implemented by means of a goto instruction pointing to the last instruction of the operation.

If the invoked operation has no return value (i.e. returns a void element), the operand stack of its invoking
operation remains unchanged when it completes.

The operand of the call instruction (in the example, the runtime constant pool index #4) is a symbolic
reference (the operation signature) to a method of an instance. This reference is stored in the constant pool
and resolved at run time to determine the actual operation location.

6.3 Compiling an ATL Transformation

This section describes the way an ATL transformation is compiled into the asm format for the current
reference implementation of the ATL virtual machine. Compiling an ATL transformation consists in
generating constant pool, a set of fields and a set of operations from the ATL source code elements (helpers
and rules). The following subsections describe the way these source elements are compiled into asm
elements.

6.3.1 Compiling Helpers

The ATL language enables to define two different kinds of helpers: attribute and function helpers. An
attribute helper can be though as a variable global to the ATL module. This variable has to be initialized at
the transformation start-up. A function helper specifies a treatment which is executed each time it is invoked.

According to their type, helpers are compiled differently. Thus, two asm elements are generated for each
attribute helper: a homonym field and an initialization operation. The field aims to store the value associated
with the attribute helper whereas the operation specifies the code for the field initialization. Such a generated
operation is named __init<helper-name>. The context of an attribute helper has to refer to the ATL module
but the generated operation accepts the same parameters that the helper it is associated with. The following
attribute helper declaration may be considered as an example:

Specification of the ATL Virtual Machine

Page 52 / 62

helper def: size_max : Integer = 15;

This helper declaration compiles into the following asm field:

<field name="5" type="6"/> <!-- size_max : I -->

Moreover, the initialization of the field is performed by this generated operation:

<operation name="21"> <!-- __initsize_max -->
 <context type="8"/> <!-- A -->
 <parameters>
 </parameters>
 <code>
 <load arg="9"/> <!-- 0 -->
 <pushi arg="22"/> <!-- 15 -->
 <set arg="5"/> <!-- size_max -->
 </code>
 <localvariabletable>
 <lve slot="0" name="20" begin="0" end="2"/><!-- s elf -->
 </localvariabletable>
</operation>

Note that an attribute helper may accept other attribute helpers as parameters. Cross-references, as well as
recursivity, are obviously prohibited in attribute helper definitions. However, a compiler should be able to
manage valid dependencies between among attribute helpers. The reference compiler currently does not
manage these dependencies. Attribute helpers are therefore required to be declared in the right order (with
respect to existing dependencies).

Compared to attribute helpers, function helpers are simply compiled into homonym operations. Generated
operations are defined with the same context and parameters that their corresponding ATL helpers. An
example is provided by the firstOfTwo helper introduced in Section 6.2.8:

helper
 def: firstOfTwo(i: Integer , j: Integer) : Integer = ...;

The context of this helper is the ATL module (since no context is specified), it accepts two integral
parameters and returns an integral value. It is compiled into the following asm structure:

<operation name="67"> <!-- firstOfTwo -->
 <context type="8"/> <!-- A -->
 <parameters>
 <parameter name="34" type="6"/> <!-- 1 : I -->
 <parameter name="54" type="6"/> <!-- 2 : I -->
 </parameters>
 <code>
 ...
 </code>
 <localvariabletable>
 <lve slot="0" name="20" begin="0" end="0"/><!-- s elf -->
 <lve slot="1" name="40" begin="0" end="0"/><!-- i -->
 <lve slot="2" name="69" begin="0" end="0"/><!-- j -->
 </localvariabletable>
</operation>

Note that entries 1 and 2 of the local variable table respectively contain to the helper parameters i and j .

6.3.2 Compiling Rules

A rule includes a filter and an instantiation parts. The filter defines a condition that has to be fulfilled by input
model elements in order to generate output model elements. The instantiation part specifies the way newly

Specification of the ATL Virtual Machine

Page 53 / 62

allocated output model elements are initialized. Compilation of an ATL rule results in inserting two new
operations into the asm file. These operations are the rule matching operation and the rule instantiation
operation. They are respectively named __match<rule-name> and __apply<rule-name>. Both are defined
within the ATL module context.

The matching operation checks, for each source model element which has a meta relation with the
metamodel element associated with the rule source pattern, whether it verifies the filter or not. A target
metamodel element is instantiated for each source model element validating the filter. Matching operations
have no parameters. A matching operation is called once for all the input model elements targeted by its
associated rule. It iterates over this set of input model elements. For each of them, it tests the condition
specified within the in pattern of the rule. If the current model element fulfils this condition, the matching
operation allocates a new empty target model element. A new transient link, which associates the rule, the
input and the output model elements, is then allocated and inserted into the ATL module transient link set.
The matching operation generated for the Manual2Manual operation introduced in Section 6.2.4 is provided
in Appendix II.

The instantiation operation aims to initialize the properties of the output model elements instantiated by the
corresponding matching operation. It is called for each generated output model element. The instantiation
operation accepts a transient link as argument. This transient link is one of the links generated by the
corresponding matching operation. It associates an empty allocated output model element with its input
model element. For this purpose, the operation fetches the properties of the input model element and builds
new values that are assigned to the output model element properties. To this end, the __resolve__ operation
is invoked to resolve references to other input model elements (see Section 6.3.3 for further details on the
__resolve__ operation). The instantiation operation generated for the Manual2Manual operation introduced
in Section 6.2.4 is provided in Appendix III.

6.3.3 Compiling a Transformation

An ATL transformation is composed of helper and rule definitions. Previous sections have introduced the
way the different elements that compose an ATL transformation are compiled into the asm format. We
describe here the asm elements that are generated for an ATL transformation.

Compilation of an ATL transformation module results in two asm fields (links and col) and three new
operations (main, __matcher__ and __exec__). The links field contains a transient link set which is used by
the ATL module to store the transient links that are generated by the matching operations. The col field

The main operation is the transformation entry point. It first initializes the col field. It then calls the attribute
helper initialization operations (__init<helper-name>), before calling the __matcher__ operation and finally
the __exec__ one. The __matcher__ operation initializes the links field and calls the __match<rule-name>
operation associated with each defined rule. Finally, the __exec__ operation invokes the __apply<rule-
name> operations.

Most internally generated operations have their name escaped in order to avoid name collisions with defined
helpers and rules. As an exception, the ATL to asm reference compiler does not escape the name of the
main operation at present time. This behaviour has no incidence on rules naming since the name of
operations that are associated with rules are either prefixed by __match or __apply. However, since a
function helper is associated with a homonym operation, ATL programs are assumed not to contain any
function helper named “main”. Naming of attribute helpers remains unconstrained (names of the operations
associated with this kind of helpers are prefixed with __init).

Two additional operations may be generated according to the transformation code: the __resolve__ and
resolveTemp operations (the reference compiler currently generates them even when they are not required).
Both are defined within the ATL module context. The __resolve__ is called by instantiation operations, once
all output model elements have been allocated. It aims to resolve references between input model elements.
Indeed, at the instantiation stage, the output model elements are initialized by executing the assignments
specified in the output patterns of each rule. With the ATL language, output model element properties are
computed from input model element ones. In case the considered input property is a reference to another
input model element, it has to be resolved into the corresponding allocated output model element. This
corresponding output model element is the default output element generated by the rule that has matched
the input model element.

Specification of the ATL Virtual Machine

Page 54 / 62

The information that is required to achieve the resolution is stored within the transient link set associated with
the links field of the ATL module. The getLinkBySourceElement operation (defined in the context of a
transient link set) makes it possible to obtain a transient link from its source model element. The
getTargetFromSource operation, defined in the context of a transient link, then enables to get the transient
link default target element from its source element.

The __resolve__ operation accepts an object as parameter and returns an object. The parameter is a
property of an input model element whereas the returned value is the corresponding data in the output
model:

• When the parameter is a simple attribute (i.e. as opposed to a model element reference),
__resolve__ returns the value of this parameter.

• If the parameter is a reference to an input model element, the reference is resolved and the
corresponding output element is returned. In case the rule that matches the pointed input model
element produces more than one output model element, the __resolve__ operation returns an
instance of the first output element of the considered rule (which is considered as the default output
model element).

• Finally, if the parameter is an instance of a collection type, the operation returns a collection. The
returned collection is build by recursively calling the __resolve__ operation on each element of the
collection provided as a parameter.

As opposed to the __resolve__ operation, which may only be invoked from the code being generated by the
compiler, the resolveTemp operation is currently defined in the ATL language. In an ATL file, this operation
can be called from the instantiation expressions of the rules output patterns (and from helpers invoked from
such expressions). As __resolve__, the resolveTemp operation aims to resolve references between input
model elements during the instantiation step. However, compared to __resolve__, this new operation also
allows resolving references to non-default output model elements of the rules. For this purpose, it accepts an
additional string parameter that identifies the output model element the reference has to be resolved to. This
parameter is passed to the getNamedTargetFromSource operation (defined in the context of a transient link)
in order to get an identified output model element (as opposed to the default one) of the transient link.

Specification of the ATL Virtual Machine

Page 55 / 62

7 Future developments
In this document, we have presented the ATL virtual machine specification along with an XML-based byte
code file format (the asm file format). In order to illustrate these specifications, we detailed in Section 6, a
possible compiling scheme of the ATL language to the asm file format.

In this section, we introduce a set of possible future evolutions for both the ATL virtual machine and the asm
file format. These possible evolutions have been sorted into two groups: those concerning the ATL virtual
machine instruction set and those that are related to the asm file format.

7.1 Evolving the ATL Virtual Machine Instruction Set

The ATL virtual machine instruction set was primarily designed to provide an execution support for the ATL
transformation language. This has obviously influenced the initial design of the virtual machine instruction set
which is not large enough to support a broad set of languages. In particular, the ATL virtual machine
instruction set does not define any object deletion facilities. On the other hand, some other instructions,
which are supported in an inefficient way, should be redefined to improve performance. We describe, from
these observations, a couple of possible future evolutions for the ATL virtual machine instruction set.

7.1.1 Support for Object Deletion

Since the ATL language does not require any object deletion facilities, the virtual machine instruction
presently does not define any deletion instruction. However, object removal facilities are required by many
other languages specifications and a delete instruction should be added soon to the ATL virtual machine
instruction set. This delete instruction will most likely follow the following specification:

Operation

Delete an object.

Format

delete

Operand Stack

…, reference ⇒ …

Description

The object to be removed may be either a model element or an instance of a composite data type.

The referenced object is deleted. The reference is popped from the operand stack.

7.1.2 Improvement of new and findme instructions

The new and findme instructions have a very similar behaviour. Both return an object reference. With the
findme instruction, the returned object is to be a model element. Both accept two parameters which define
the metamodel and the classifier (or type) of the object to be allocated/fetched. These parameters must be
available on the top of the operand stack of the current frame. As a consequence, executing a new or a
findme instruction implies the former execution of at least two additional instructions in order to
compute/push/load the new/findme parameters onto the operand stack. Providing the instruction with the full
type of the object to be allocated/fetched as an inline parameter would be a more efficient solution. The
instructions of the ATL virtual machine instruction set are however limited to an only inline argument. The
proposed solution then requires both the object metamodel and type to be encoded within a single argument.
This could be achieved by means of a string-based type encoding similar to the data type encoding scheme
defined for the asm file format (see Section 5.2.1). Thus, with respect to the asm type encoding scheme, the
allocation a new Node model element of the XML metamodel would be performed by means of a single
instruction: <new arg="MXML!Node;"> . This new instruction will most likely follow the following
specification:

Specification of the ATL Virtual Machine

Page 56 / 62

Operation

Create new object.

Format

New

type-encoding

Operand Stack

… ⇒ …, reference

Description

This instruction is used to create new model elements and new composite objects. The type of the

object (the element) is resolved from the inline type-encoding argument. If resolution completes

successfully, memory for the new object instance is allocated. As a result, type-encoding is popped

from the operand stack and replaced by a reference to the allocated object.

7.2 Evolving the asm File Format

As the ATL virtual machine instruction set, the asm file format has been primarily designed to encode
compiled ATL transformations. At the present time, it is already generic enough to support the encoding of
different languages. However, some points may still be improved in order to provide language compilers with
even more encoding options.

The asm format makes it possible to define a set of fields. These fields are used to store variables. As
opposed to the operations, they currently cannot be associated with a specific context. As a matter of fact,
they all have to be associated with a default context. In the scope of the ATL language, this context is the
ATL module. It may be interesting to allow the declaration of fields in different context. For this purpose, the
context in which a field is defined has to be encoded into the asm format. This context may be encoded in
the same way that the operation context, as illustrated by the following extract of then asm structure:

<!DOCTYPE asm [
 ...
 <!ELEMENT field (context)>
 <!ELEMENT context EMPTY>
 ...
 <!ATTLIST field name CDATA>
 <!ATTLIST field type CDATA>
 <!ATTLIST context type CDATA>
]>

With such a definition, the col field generated for an ATL transformation (see Section N) would be encoded
by the following asm structure:

<field name="3" type="4"> <!-- col : J; -->
 <context type="8"/> <!-- A -->
</field>

Encoding the context of fields into the asm format would provide support for some possible ATL language
extensions. We may, for instance, allow ATL programmers to associate attribute helpers with input model
elements. These attribute helpers would therefore be encoded in asm as fields that would be defined into the
context of input model elements.

Finally, the asm format does not encode the operations return type. As this kind of information may be useful,
it is possible to include it into the operation definition along with the operation context and parameters. As for
the context element, the only required information is the type of the returned value. This information could be
encoded in the asm structure in the following way:

<!DOCTYPE asm [

Specification of the ATL Virtual Machine

Page 57 / 62

 ...
 <!ELEMENT operation (context, parameters, return, code, linenumbertable,
localvariabletable)>
 <!ELEMENT context EMPTY>
 <!ELEMENT parameters (...)>
 <!ELEMENT return EMPTY>
 <!ELEMENT code (...)>
 <!ELEMENT linenumbertable (...)>
 <!ELEMENT localvariabletable (...)>
 ...
 <!ATTLIST return type CDATA>
]>

Specification of the ATL Virtual Machine

Page 58 / 62

8 References

[1] OMG/MOF Meta Object Facility (MOF). Version 1.4. formal/2002-04-03, 2002.

[2] OMG/RFP/QVT MOF 2.0 Query/Views/Transformations RFP. October 2002.

[3] OMG/OCL Specification, ptc/03-10-14. October 2003.

[4] SUN, netBeans project, MDR - Metadata Repository. http://mdr.netbeans.org/.

[5] F. Budinsky, and D. Steinberg, and E. Merks, and R. Ellersick, and T. J. Grose: Eclipse Modeling
Framework. Addison-Wesley.

[6] F. Budinsky, and D. Steinberg, and E. Merks, and R. Ellersick, and T. J. Grose: Eclipse Modeling
Framework, Chapter 5 Ecore Modeling Concepts, Addison-Wesley.

[7] OMG/XMI XML Model Interchange (XMI) OMG Document AD/98-10-05, October 1998.

Specification of the ATL Virtual Machine

Page 59 / 62

I. asm File DTD

<!DOCTYPE asm [

 <!ELEMENT asm (cp, field*, operation+)>
 <!ELEMENT cp (constant*)>
 <!ELEMENT constant EMPTY>
 <!ELEMENT field EMPTY>
 <!ELEMENT operation (context, parameters, code, l inenumbertable,
localvariabletable)>
 <!ELEMENT context EMPTY>
 <!ELEMENT parameters (parameter*)>
 <!ELEMENT parameter EMPTY>
 <!ELEMENT code (push, pushi, pushd, pushf, pusht, pop, store, load, swap, dup,
dup_x1, if, goto, iterate, enditerate, call, new, g et, set, findme, getasm)*>
 <!ELEMENT push EMPTY>
 <!ELEMENT pushi EMPTY>
 <!ELEMENT pushd EMPTY>
 <!ELEMENT pushf EMPTY>
 <!ELEMENT pusht EMPTY>
 <!ELEMENT pop EMPTY>
 <!ELEMENT store EMPTY>
 <!ELEMENT load EMPTY>
 <!ELEMENT swap EMPTY>
 <!ELEMENT dup EMPTY>
 <!ELEMENT dup_x1 EMPTY>
 <!ELEMENT if EMPTY>
 <!ELEMENT goto EMPTY>
 <!ELEMENT iterate EMPTY>
 <!ELEMENT enditerate EMPTY>
 <!ELEMENT call EMPTY>
 <!ELEMENT new EMPTY>
 <!ELEMENT get EMPTY>
 <!ELEMENT set EMPTY>
 <!ELEMENT findme EMPTY>
 <!ELEMENT getasm EMPTY>
 <!ELEMENT linenumbertable (lne*)>
 <!ELEMENT lne EMPTY>
 <!ELEMENT localvariabletable (lve+)>
 <!ELEMENT lve EMPTY>

 <!ATTLIST asm name CDATA>
 <!ATTLIST constant value CDATA>
 <!ATTLIST field name CDATA>
 <!ATTLIST field type CDATA>
 <!ATTLIST context type CDATA>
 <!ATTLIST parameter name CDATA>
 <!ATTLIST parameter type CDATA>
 <!ATTLIST push arg CDATA>
 <!ATTLIST pushi arg CDATA>
 <!ATTLIST pushd arg CDATA>
 <!ATTLIST store arg CDATA>
 <!ATTLIST load arg CDATA>
 <!ATTLIST if arg CDATA>
 <!ATTLIST goto arg CDATA>
 <!ATTLIST call arg CDATA>
 <!ATTLIST get arg CDATA>

Specification of the ATL Virtual Machine

Page 60 / 62

 <!ATTLIST set arg CDATA>
 <!ATTLIST lne id CDATA>
 <!ATTLIST lne begin CDATA>
 <!ATTLIST lne end CDATA>
 <!ATTLIST lve slot CDATA>
 <!ATTLIST lve name CDATA>
 <!ATTLIST lve begin CDATA>
 <!ATTLIST lve end CDATA>

]>

Specification of the ATL Virtual Machine

Page 61 / 62

II. asm code of __matchManual2Manual operation

<operation name="27"> <!-- __matchManual2Manual -->
 <context type="8"/> <!-- A -->
 <parameters>
 </parameters>
 <code>
 <push arg="28"/> <!-- Manual -->
 <push arg="29"/> <!-- BibTeX -->
 <findme/>
 <push arg="30"/> <!-- Sequence -->
 <push arg="11"/> <!-- #native -->
 <new/>
 <swap/>
 <dup_x1/>
 <push arg="31"/> <!-- IN -->
 <call arg="32"/> <!-- MMOF!Classifier;.allInstance sFrom(S):QJ -->
 <call arg="33"/> <!-- CJ.union(CJ):CJ -->
 <swap/>
 <pop/>
 <iterate/>
 <store arg="34"/> <!-- 1 -->
 <pusht/>
 <call arg="35"/> <!-- B.not():B -->
 <if arg="36"/> <!-- 37 -->
 <load arg="9"/> <!-- 0 -->
 <get arg="1"/> <!-- links -->
 <push arg="37"/> <!-- TransientLink -->
 <push arg="11"/> <!-- #native -->
 <new/>
 <dup/>
 <push arg="38"/> <!-- Manual2Manual -->
 <call arg="39"/> <!-- NTransientLink;.setRule(MATL !Rule;):V -->
 <dup/>
 <push arg="40"/> <!-- i -->
 <load arg="34"/> <!-- 1 -->
 <call arg="41"/> <!-- NTransientLink;.addSourceEle ment(SJ):V -->
 <dup/>
 <push arg="42"/> <!-- o -->
 <push arg="28"/> <!-- Manual -->
 <push arg="29"/> <!-- BibTeX -->
 <new/>
 <call arg="43"/> <!-- NTransientLink;.addTargetEle ment(SJ):V -->
 <call arg="44"/> <!-- NTransientLinkSet;.addLink(N TransientLink;):V -->
 <enditerate/>
 </code>
 <localvariabletable>
 <lve slot="1" name="40" begin="14" end="36"/><!-- i -->
 <lve slot="0" name="20" begin="0" end="37"/><!-- s elf -->
 </localvariabletable>
</operation>

Specification of the ATL Virtual Machine

Page 62 / 62

III. asm code of __applyManual2Manual operation

<operation name="161"> <!-- __applyManual2Manual - ->
 <context type="8"/> <!-- A -->
 <parameters>
 <parameter name="34" type="162"/><!-- 1 : NTransie ntLink; -->
 </parameters>
 <code>
 <load arg="34"/> <!-- 1 -->
 <push arg="40"/> <!-- i -->
 <call arg="163"/> <!-- NTransientLink;.getSourceE lement(S):J -->
 <store arg="54"/> <!-- 2 -->
 <load arg="34"/> <!-- 1 -->
 <push arg="42"/> <!-- o -->
 <call arg="164"/> <!-- NTransientLink;.getTargetE lement(S):J -->
 <store arg="100"/> <!-- 3 -->
 <load arg="100"/> <!-- 3 -->
 <dup/>
 <load arg="9"/> <!-- 0 -->
 <load arg="54"/> <!-- 2 -->
 <get arg="79"/> <!-- title -->
 <call arg="55"/> <!-- A.__resolve__(J):J -->
 <set arg="79"/> <!-- title -->
 <dup/>
 <load arg="9"/> <!-- 0 -->
 <load arg="54"/> <!-- 2 -->
 <get arg="165"/> <!-- id -->
 <call arg="55"/> <!-- A.__resolve__(J):J -->
 <set arg="165"/> <!-- id -->
 <pop/>
 </code>
 <localvariabletable>
 <lve slot="2" name="40" begin="3" end="21"/><!-- i -->
 <lve slot="3" name="42" begin="7" end="21"/><!-- o -->
 <lve slot="0" name="20" begin="0" end="21"/><!-- s elf -->
 <lve slot="1" name="172" begin="0" end="21"/><!-- link -->
 </localvariabletable>
</operation>

