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1 Introduction 
The ATL virtual machine is an abstract computing machine. As the Java Virtual Machine, it is associated with 
its own particular instruction set. The ATL virtual machine is independent from the ATL transformation 
language. It only has to deal with the file format in which programs to be executed are compiled to. An XML-
based file format, the asm file format, has been designed for the ATL virtual machine. An asm file contains 
ATL virtual machine instructions (also called byte codes). 

This document is organized as follows: 

• Section 2 provides an overview of the ATL transformation language. It introduces the concepts and 
the terminology necessary for the understanding of the rest of the document. 

• Section 3 gives an overview of the ATL virtual machine architecture. 

• Section 4 provides a specification of the instruction set of the ATL virtual machine. 

• Section 5 specifies the present asm file format, the XML format used to represent compiled ATL 
programs. 

• Section 6 introduces compilation of code written in the ATL transformation language into the 
instruction set of the ATL virtual machine. 

• Finally, Section 7 introduces a set of possible evolutions for both the ATL virtual machine and the 
asm format. 
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2 ATL Programming Language Concepts 
ATL, the Atlas Transformation Language, is the ATLAS INRIA & LINA research group answer to the OMG 
MOF [1]/QVT RFP [2]. It is a model transformation language specified both as a metamodel and as a textual 
concrete syntax. It is a hybrid of declarative and imperative. The preferred style of transformation writing is 
declarative, which means simple mappings can be expressed simply. However, imperative constructs are 
provided so that some mappings too complex to be declaratively handled can still be specified. 

An ATL transformation program is composed of rules that define how source model elements are matched 
and navigated to create and initialize the elements of the target models. 

2.1 OCL Types and OCL Expressions in ATL 

Since the OCL standard [3] is omnipresent in ATL programs, it is worth while introducing them right at the 
beginning. ATL is designed and implemented with respect to the OCL standard. Derivations from the 
standard are indicated with a specific remark. 

2.1.1 OCL Primitive Types 

OCL has four basic primitive datatypes: 

• Boolean (true, false) 

• Integer (1, -5, 2, 34, 26524, ...) 

• Real (with the values 1.5, 3.14, ...) 

• String (‘To be or not to be...’) 

Furthermore, OCL has the following comparators: <, >, =, =>, =<. 

2.1.1.1 Operations on Primitive Types 

Integer and Real have the following operations:  
*, +, -, /, div(), abs(), mod(), max(), min(), sum(), sin(), cos()  

Boolean has the operations:  
and, or, xor, not, implies, if-then-else  

String has the operations:  
concat(), size(), substring(), toInteger() and toReal()  

A difference between OCL and ATL is that in ATL you can use the operator + for the concatenation of 
Strings. 

Early versions of ATL use div instead of / or div() for division. 

2.1.1.2 Examples of Operation on Primitive Datatypes 

In the following some usage examples of OCL operations on primitive datatypes are illustrated: 

Addition of two integers: 

1 + 1 

Further mathematical operations: 

1 - 80 div 2 

1 < 2 and 1 > 2 
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Boolean operations: 

true or false 

2.1.2 OCL Collections 

Collection is the abstract superclass of Set, OrderedSet, Bag and Sequence. These Collection classes have 
the following characteristics: 

• Set is a collection without duplicates. Set has no order. 

• OrderedSet is a collection without duplicates. OrderedSet has an order. 

• Bag is a collection in which duplicates are allowed. Bag has no order. 

• Sequence is a collection in which duplicates are allowed. Sequence has an order. 

2.1.2.1 Collection Operations 

Collection has the following operations: 

• The number of elements in the collection self: 

size() 

• The information of whether an object is part of a collection: 

includes() 

• The information of whether an object is not part of a collection: 

excludes() 

• The number of times that object occurs in the collection self: 

count() 

• The information of whether all objects of a given collection are part of a specific collection: 

includesAll() 

• The information of whether none of the objects of a given collection are part of a specific collection: 

excludesAll() 

• The information if a collection is empty: 

isEmpty() 

• The information if a collection is not empty: 

notEmpty() 

• Iterators over collectionsThe selection of a sub-collection: 

select() 

• When specifying a collection which is derived from some other collection, but which contains 
different objects from the original collection (i.e., it is not a sub-collection) use: 

collect() 

• The information of whether an expression is true for all objects of a given collection: 

forAll() 
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• The addition of all elements of a collection: 

sum() 

2.1.2.2 Sequence Operations 

Sequence supports all collection operations and some specific ones: 

• Adding an element at the end of a sequence: 

append() 

• Inserting an element at a specific point in a sequence: 

insertAt() 

• Casting a sequence to a set removes duplicates:  

asSet() 

• Casting a sequence to a bag: 

asBag() 

• Casting a sequence of collections to a sequence directly containing the children of the subordinate 
collections: 

flatten() 

An example of the insertion of the element 15 at the second place is: 

Sequence{12, 13, 12}->insertAt(2,15) 

which results in: 

Sequence{5, 10, 15, 20} 

2.1.2.3 Set Operations 

Set supports all collection operations and some specific ones: 

• Adding an element to the set: 

including() 

• Removing an element from the set: 

excluding() 

• Casting a set to a sequence: 

asSequence() 

• Casting a set to a bag: 

asBag() 

2.1.2.4 Bag Operations 

Bag supports all collection operations and some specific ones: 

• Adding an element to the bag: 

including() 
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• Removing an element from the bag: 

excluding() 

• Casting a bag to a sequence: 

asSequence() 

• Casting a bag to a set: 

asSet() 

2.1.2.5 Collection Operation Examples 
In the following some operations on collections are illustrated: 

• Specifying a sequence literal: 

Sequence{1, 2, 3} 

• Is a collection empty?: 

Sequence{1, 2, 3}->isEmpty() 

• Getting the size of a collection: 

Sequence{1, 2, 3}->size() 

Please compare: 

Sequence{3, 3, 3}->size() 

returns 3 while 

Set{3, 3, 3}->size() 

returns 1 . This is the case because set eliminates duplicates and sequence not. 

• Nesting sequences: 

Sequence{ Sequence{ 2, 3}, Sequence{1, 2, 3} } 

• Getting the first element of a sequence: 

Sequence{1, 2, 3}->first() 

• Getting the last element of a sequence: 

Sequence{1, 2, 3}->last() 

• Selecting all elements of a sequence that are smaller than 3: 

Sequence{1, 2, 3, 4, 5, 6}->select( i | i <= 3) 

• Rejecting all elements of a sequence that are smaller than 3: 

Sequence{1, 2, 3, 4, 5, 6}->reject( i | i <= 3) 

• Collect the names of all MOF classes: 

MOF!Class.allInstances()->collect(e|e.name) 

The OCL shorthand expression 

MOF!Class.allInstances()->collect(name) 

means semantically the same but is not yet implemented in ATL. 
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• All numbers in the sequence greater than 2: 

Sequence{12, 13, 12}->forAll( i | i>2 ) 

• Exists a number in the sequence that is greater than 2?: 

Sequence{12, 13, 12}->exists( i | i>2 ) 

2.1.3 OCL Model Elements 

Model elements are defined in the source and target metamodels. Most metamodels have classes. In ATL 
the notation "Metamodel!Class" is used to be able to differentiate classes of different metamodels. Hence, it 
is possible to refer to several metamodels in the same program in ATL. The latter is not the case in OCL. 

There are different OCL operations to treat and analyze classes: 

• The operation oclIsTypeOf() checks if a given instance is an instance of a certain type (and not of 
one of its subtypes or of other types). 

• The operation oclIsKindOf() checks if a given instance is an instance of a certain type or of one of its 
subtypes. 

• The operation allInstances() returns you all instances of a given Type. 

• The operation oclIsUndefined() tests if the value of an expression is undefined (i.e. if an attribute with 
the multiciplicity zero to one is void or not. Please note: attributes with the multiplicity n are often 
represented with collections, which may be empty and not void). 

2.1.3.1 Examples of Class Operations on MOF 1.4 

It is very interesting to use OCL expressions in the context of the MOF metamodel [1]. Examples are given in 
the following. 

• Please compare: 
MOF!Attribute.oclIsKindOf(MOF!ModelElement) 

is true  while 
MOF!Attribute.oclIsTypeOf(MOF!ModelElement) 

is false . 

• Collect the names of all MOF classes: 
MOF!Class.allInstances()->collect(e|e.name) 

• Count the number of classes in MOF: 
MOF!Class.allInstances()->size() 

• Getting the names of all primitive MOF types by filtering: 
MOF!DataType.allInstances()-> 
select(e|e.oclIsTypeOf(MOF!PrimitiveType))->collect (e|e.name)    

• Getting the names of all primitive MOF types the simple way: 
MOF!PrimitiveType.allInstances()->collect(e|e.name)  

• An enumeration instance in MOF: 
MOF!VisibilityKind.labels 

• Getting all (local and inherited) StructuralFeatures of a Class. In the following code example the 
names of all StructuralFeatures of the class PrimitiveTypes are displayed: 
MOF!PrimitiveType.findElementsByTypeExtended( 

MOF!StructuralFeature, true)-> 
collect(e | e.name)) 
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• Getting the names of all classes inheriting from more than one class: 
MOF!Class.allInstances()->  

select(e | e.supertypes->size() > 1)-> 
collect(e | e.name) 

2.1.4 Enumerations 

Enumerations are defined in the source and target metamodels. In OCL enumeration literals are written 
using the enumeration type two double points and the value. 

The value female of the enumeration Gender is expressed in OCL in the following way: 
Gender::female 

while the current version of ATL uses sharp and the enumeration value but no enumeration type: 
#female  

Enumerations can be compared using the equal operator. Supposing aPerson is a variable of the type 
Person having the attribute sex which is of the enumeration type Gender, the following ATL expression is 
possible: 
 
 if aPerson.sex = #female  then 
  ' Madam '  
 else 
  ' Sir '  
 endif; 

2.1.5 OCL If Expression 

In OCL if-clauses are expressed with an if-then-else-endif structure. Neither the else-part nor the endif can 
be omitted. 

An example of an if-clause: 
 

if 3 > 2 then  
'three is greater than two'  

else  
'this case should never occur'  

endif 

2.1.6 OCL Let Expression 

Let expressions are very useful when debugging. They help displaying the value of an expression by the 
means of the let variable. 

The let command to define variables: 
 

let a : Integer = 1 in a + 1 

Enchaining let expressions: 
 

let a : Integer = 1 in let b : Integer = 2 in a + b 

2.1.7 OCL Comment 

As in the OCL standard, also in ATL comments start with two consecutive hyphens "--" and end at the end of 
the line. 

The ATL editor in Eclipse colours comments with dark green, if the standard configuration is used: 
-- this is an example of a comment 
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2.1.8 OCL Tips and Tricks 

In C++ and Java, the optimiser stops the evaluation of a logical expression if a false value is followed by a 
logical AND or a true value is followed by a logical OR. It does not matter if the rest of the logical expression 
results in an exception or an error because it is not evaluated. 

In OCL this is not the case. The expression will always be fully evaluated. 

This is why rather than: 
 

not person.oclIsUndefined() and person.name= ’Isabel’  

you should write: 
 

if person.oclIsUndefined() then  
false 

else 
person.name= ’Isabel’   

endif 

Furthermore, you should not write: 
 
 person.oclIsUndefined() or person.name= ’Isabel’   

but rather: 
 

if person.oclIsUndefined() then  
 true 
else 

person.name= ’Isabel’   
 

endif 

Furthermore, you should not write: 
 
 cols->select( person |  

not person.oclIsUndefined() and person.name= ’Isabel’ ) 
) 

but rather: 
 
 cols->select( person |  not person.oclIsUndefined( ) )-> 
  select( person |  person.name= ’Isabel’  ) 

or use an adequate if expression. 

2.2 ATL Modules 

The ATL programs for model to model transformation are called modules. A module file has the header 
section, the imports section, as well as helpers and rules. For an ATL module only the header section is 
mandatory. The ATL module is stored in a file with the extension .atl. 

Please note: 

• To navigate from an element to its attribute, write the name of the element, then “.” and the name of 
the attribute. 

• If an identifier (variable name, metamodel name, model element name, etc.) is in conflict with a 
keyword, it has to be marked with apostrophes. 

• The ATL parser is case sensitive. This concerns the file names as much as the source code itself. 
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2.2.1 Preparation 

Before an ATL program can be written you must have the target and the source metamodels. For the scope 
of this manual, the Book to Publication transformation example (see Figure 1 for the Book metamodel and 
Figure 2 for the Publication metamodel) is used to illustrate ATL. 

Figure 1. The Book metamodel 

The Book metamodel contains the class Book which contains a set of Chapters. Books and Chapters have 
titles. Additionally, Chapters have a number of pages, nbPages, and author. 

Publication

+title   :String

+nbPages   :Integer

+authors   :String

 
Figure 2. The Publication metamodel 

The metamodel Publication consists of the class Publication which has a title, a number of pages, nbPages, 
and authors. The attribute authors is a String that contains the names of authors separated with the word 
and. 

In the following it will be shown step by step how to program an ATL module that transforms Book models 
into Publication models. An ATL module begins with the header section and ends with the rules section. 

2.2.2 Header Section 

The header section defines the names of the transformation module and the variables of the source and 
target models. 

The following ATL source code represents the header of the Book2Publication.atl file, thus the ATL header 
for the transformation from Book to Publication: 
 

module Book2Publication; 
create OUT : Publication from IN : Book; 

The keyword module defines the module name. 

The keyword create introduces the target models declaration. 

The keywords from introduces the source models declaration. 

Please note: 

Book

+ title    :String 

Chapter 

+ nbPages   :Integer 
+ title    :String 
+ author   : String 

chapters + * 
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• The ATL file name (here: Book2Publication.atl) has to correspond to the module name (here: 
Book2Publication) and must end with the extension .atl. 

2.2.3 Import Section 

The import section declares what libraries have to be imported. For instance, to import the strings library, one 
would write: 
 

uses strings; 

The keyword uses declares the libraries that have to be imported. There can be several import declarations. 

Please note: 

• Do not declare imports that are not necessary. 

• The string.atl library contains many useful functions for Strings but is not necessary for the Book to 
Publication example. 

2.2.4 Helpers 

Helpers can be used to define (global) variables and functions. Helper functions are OCL expressions. They 
can call each other (recursion is possible) or they can be called from within rules (see section 2.2.5). In 
general, they serve to define repetitive pieces of code in one place. 

A helper function has the following structure: 

It starts with the keyword helper and ends with a semicolon. In between is an OCL expression. 

• The notion of the term context is similar to OCL and it may be compared to an input parameter of a 
method. A context variable is specified with the help of the ATL path expression metamodel!element 
and is accessible via the self variable. In most cases the elements referred to are classes, i.e. the 
class Book of the metamodel Book. If no context is specified, the module itself is taken as context. 

• The function name is introduced with def : and is followed by brackets. 

• The return type is between a colon and an equals sign that serves as starting point for the function 
implementation. 

• The function finishes with a semicolon. 

For the Book to Publication example, a getAuthor function has to be implemented. Its task is to iterate over 
the different Chapters of Book in order to build a String containing all Authors’ names. The word and 
separates the Authors’ names: 
 

helper context Book!Book def : getAuthors() : String  = 
       self.chapters->collect(e | e.author)-> 
        asSet()-> 
     iterate(authorName; acc : String  = ''  | 
                      acc +  
        if acc = ''   
          then authorName  
          else ' and ' + authorName  
        endif); 

The context variable self is instance of the class Book!Book. The collect method gets all author attributes of 
all Chapters. The asSet method eliminates all doublets by converting the sequence to a set. The iterate 
operation is well known from OCL and iterates over a Collection while accumulating data. In this case it 
iterates over the author attributes of all Chapters of a Book and collects the Authors’ names. The variable 
authorName references the Author’s name of the current iteration. The variable acc severs to accumulate all 
authorNames. The if expression returns an instance of String containing the authorName if acc is empty. 
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Otherwise, it concatenates ‘and’ with the authorName. The getAuthors function returns the result of the last 
iteration containing the concatenation of all Authors’ names. 

Often it is possible to either define a context or a parameter variable. The below program with parameter 
variable does exactly the same as the program above with context variable: 
 

helper def : getAuthors(b : Book!Book) : String  = 
       b.chapters->collect(e | e.author)-> 
        asSet()-> 
     iterate(authorName; acc : String  = ''  | 
                      acc +  
        if acc = ''   
          then authorName  
          else ' and ' + authorName  
        endif); 

The mayor difference of the two helper functions is the way that they are called. 

The helper function with context is called with: 
 b.getAuthors() 

while the helper function with parameter is called with: 
 thisModule.getAuthors(b) 

Please note: 

• Each helper function must have a name and a return type definition. There may be functions with the 
same name but a different context. 

• If the context is not otherwise specified, implicitly the module itself is taken as context.  

• If the helper has no context defined, the helper has to be called with “thisModule”. 

2.2.5 Rules 

Rules describe the transformation from a source model to a target model by relating metamodels. Each rule 
contains a unique name. It is introduced by the keyword rule that is followed by the rule’s name. Its 
implementation is surrounded by curly brackets. 

In the source pattern (from part), rules declare which element type of the source model has to be 
transformed.  

The source pattern consists of the keyword from, an in variable declaration and optionally of a filter. A filter is 
an OCL expression restricting the rule to elements of the source model that satisfy certain constraints. The 
filter is written behind the in variable declaration and surrounded by brackets. 

In the target pattern (the to part), rules declare to which element(s) of the target model the source pattern 
has to be transformed to. The implementation of the target pattern declares the details of the transformation. 
It may contain one or several target pattern elements (see Section 2.3.4). 

A target pattern element consists of a variable declaration (or more precisely the declaration of the target 
pattern variable) and a sequence of bindings (assignments). These bindings consist mainly of left arrow 
constructs. Usually, an attribute of the target model out (on the left side of the arrow) receives a return value 
of an OCL expression (on the right side of the arrow) that is based on the in variable. In this sense, the right 
side of the arrow may consist of an attribute of the in variable or a call to a helper function (which is an OCL 
expression). 

For the Book to Publication example, a rule is required that transforms a Book to a Publication. Only Books 
with more than two pages are considered as Publications. The titles of Books and Publications have to 
correspond. The authors attribute of Publication contains all authors of all Chapters. For the latter, the 
function getAuthors (see Section 2.2.4) and the getNbPages can be reused. The number of pages of a 
Publication is the sum of all pages of the Chapters of a Book. 
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rule Book2Publication { 
 from  
  b : Book!Book ( 
   b.getNbPages() > 2 
  )  
 to  
  out : Publication!Publication ( 
   title <- b.title, 
   authors <- b.getAuthors(), 
   nbPages <- b.getNbPages() 
  ) 
} 

Please note: 

• Each rule must have a name that is unique within the module. 

• Assignments are separated with comma ”,”. The last assignment in a block of statements does not 
have a comma.  

• The attribution of values is performed with the left arrow operator “<-”.  

2.3 ATL Advanced Features 

The advanced features will be explained using new examples. 

2.3.1 Queries and the Generation of Text 

The ATL programs shown so far are all modules. However, there are also ATL query programs. Queries 
allow to analyse models and to calculate an output that is not necessarily a model. This makes them very 
handy to generate text or code from a model.  

ALT query programs must start with a query instantiation which consist of the keyword query, a query 
variable, an equal sign and an OCL expression initializing the query variable. An include section (see Section 
2.2.3) with uses is optional. 

In the following example you see an extract of the XQuery2Code program which transforms XQuery models 
to code. With the allInstances function it runs through all elements of a particular element type of the input 
model. The collect function calls the toString helper functions and concatenates the String values that they 
return. The writeTo function writes the concatenation into a dedicated file. 

Please note that there are several toString helper functions. During the execution, the helper function with 
the context type that fits best (here: to the type of the e variable) will be chosen for execution. 

In general, one can say that this approach simplifies the generation of text or code because the programmer 
is supported in treating the coding of each metamodel types separately. 
 
query XQuery2Code = XQuery!XQueryProgram.allInstances()- > 

collect(e | e.toString(). 
writeTo( 'C:/test.xquery' )); 

 
helper context XQuery!XQueryProgram def: toString() : String  = 
 self.expressions->iterate(e; acc : String  = ''  | 
  acc + e.toString() + '\n'  
 ); 
 
helper context XQuery!ReturnXPath def: toString() : String  = 
 '{'  + self.value + '}' ; 
 
helper context XQuery!BooleanExp def: toString() : String  = 
 self.value; 
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2.3.2 Libraries 

When writing large programs, it is of advantage to group reusable pieces of code in one place. This is the 
purpose of ATL libraries. In Section 2.2.3 it is explained how to import existing libraries in a module (and they 
can be included in a query in the same way), in this section it will be illustrated how to write a library. 

Unlike modules, Libraries are ATL programs that are not executable on their own and consist mainly of 
helper methods. Libraries start with the keyword library, the library name and a semicolon. An include section 
(see Section 2.2.3) with uses is optional. Then helpers follow. 

In the following the GeometryLib is shown as example: 
 

library GeometryLib; 
 
helper def: PIDiv180 : Real  = 180.toRadians() / 180; 
 
-- and some further geometric global helper variabl es  
 
-- adds two vectors 
helper def : forward( a : TupleType(x : Real , y : Real , z : Real ), 
    b : TupleType(x : Real , y : Real , z : Real )): 
        TupleType(x : Real , y : Real , z : Real ) = 
 
 Tuple  { 
  x = a.x + b.x, 
  y = a.y + b.y, 
  z = a.z + b.z 
 }; 
 
- - subtracts the second from the first vector  
helper def : backward(a : TupleType(x : Real , y : Real , z : Real ), 
     b : TupleType(x : Real , y : Real , z : Real )) : 
       TupleType(x : Real , y : Real , z : Real ) = 
 
 Tuple  { 
  x = a.x - b.x, 
  y = a.y - b.y, 
  z = a.z - b.z 

}; 
  -- and some further geometric helper functions     

In the GeometryLib there are several helper functions (i.e. forward and backward) and global helper 
variables (i.e. PIDiv180) defined that can be used by modules that needs such functionality. 

Once a module (or query) has imported the GeometryLib, it can call the library’s helpers just as if they were 
defined in the module (or query) itself.  

Examples of usage of the above defined helpers: 
 
 thisModule.PIDiv180 

or 
 
 thisModule.forward( Tuple  {x=10, y=10, z=10},  

Tuple  {x=10, y=10, z=10} 
) 

2.3.3 Complex Headers 

In ATL modules you may have several source models. Source metamodels may but need not have the same 
metamodel. Here is an example: 
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module GeometricalTransformations; 
 
create OUT : DXF2 from IN1 : DXF1, IN2 : GeoTrans; 

In the above case the DXF1 and DXF2 variables refer to same metamodel, namely DXF. DXF has the class 
Point. One can distinguish if one refers to a Point of the model DXF1 or of the model DXF2 simply by using 
the path expressions: 
 

DXF1!Point 

or 
 

DXF2!Point 

Please note: 

• Each metamodel must have a different name (e.g. DFX1 and DXF2) but they may point to the same 
metamodel file. 

• Different source models are separated using commas “,”. 

2.3.4 Rules with Multiple Instantiations 

If for one source pattern (the from part of a rule) several target pattern elements (the to part of a rule) have to 
be instantiated, we speak of multiple instantiations. Multiple instantiations are defined using several target 
pattern elements in one and the same rule. They are separated using commas “,”. 

The Class to Relational transformation has a rule requiring that a Table has to be created for each Class. 
Additionally, each Table has to have a key set containing at least one key. In this example the key is a 
Column with the name objectID. However, Classes of the source metamodel do not have persistent 
identifiers (surrogates) such as keys. In this sense, for each Class not just a table but also a key column has 
to be instantiated. Consequently, for the Class2Table rule two target pattern elements are needed, namely 
table for the creation of the Table instance and new_key for the creation of the key.  

Please note, that the key attribute of table (which is a set of columns) can be initialized with new_key  (which 
is a Column).  However, you must not use new_key.name or table.name in expressions. 
 
rule Class2Table { 
 from 
  c : Class!Class 
 to 
  table : Relational!Table ( 
   name <- c.name, 
   key <- Set  {new_key} 

  -- further value assignments  
  ), 
  new_key : Relational!Column ( 
   name <- 'objectId' 

-- further value assignments 
  ) 
} 

2.3.5 Navigation and Multiple Instantiations 

ATL forbids the navigation in the created target model because this implies restrictions on the execution 
order. Such restrictions could severely hinder optimisation and very probably lead to poor performance. 

Consequently, ATL promotes navigation in the source model. This also involves that whenever an attribute of 
the target model has to be assigned with a reference to an element of the target model not the target 
element is referenced, but the source element from which the target element has been or will be created.   
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This works very well if each source element is mapped to no more than one target element. In case of 
multiple instantiations, one can use the operation resoveTemp with the name of the target pattern variable in 
order to distinguish between the different instantiations. 

In the class to table transformation example for each class a table and a key will be generated: 
 
rule Class2Table { 
 from 
  c : Class!Class 
 to 
  table : Relational!Table ( 
   name <- c.name, 
   key <- Set  {new_key} 

  -- further value assignments  
  ), 
  new_key : Relational!Column ( 
   name <- 'objectId' 

-- further value assignments 
  ) 
} 

An example of how to get a table reference is: 
 
 thisModule.resolveTemp(  
  Class!Class->allInstances()-> 

select(c | c.name =  
‘NameOfTheClassCorrespondingToTheSearchedTable’)), 
‘table’ 

) 

An example of how to get a key reference is: 
 
 thisModule.resolveTemp(  
  Class!Class->allInstances()-> 

select(c | c.name =  
‘NameOfTheClassCorrespondingToTheSearchedKey’)), 
‘new_key’ 

) 

2.3.6 Flexible Runtime Instantiation of Target Elements 

With the possibilities introduced so far it was only possible to create a fixed number of target elements per 
rule. The forEach expression allows to instantiate as many instances of target elements per rule as needed 
at runtime. Hence, the number of target elements may be undefined at compilation time. 

With the help of an iterator, the forEach operation iterates through a set of elements and instantiates a new 
target element of the specified type for each occurrence in the set. 

The forEach expression is also called a forEach target pattern element. It starts with a target pattern variable, 
a semicolon, the keyword distinct and the model element type that has to be instantiated for each iteration. 
This is followed by the keyword forEach and the iterator declaration in brackets. The iterator declaration 
comprises the iterator name, the keyword in and an expression of type set. 

In the list to folder transformation a tree-structured file folder has to be mapped to a flat list of files. More 
precisely, for the root element of a tree, a list must be generated. This list must contain all children of the 
folder’s root. The number of children is not limited. This is a typical use case for a forEach expression: 
 
rule Root2List { 
 from 
  f : Folder!File ( 
   f.folder.oclIsUndefined() 
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  ) 
 using { 
  allFiles : Sequence (Folder!File) =  

Folder!File.allInstances()-> 
   select(e | e.oclIsTypeOf(Folder!File))-> 

asSequence(); 
  allFilesPaths : Sequence ( Sequence ( String )) =  

allFiles->collect(e | e.folder.getPaths()); 
 }  
 to 
  out : List!List ( 
   name <- f.name 
  ), 
  fi : distinct List!File foreach(singleFile in allFiles) ( 
   name <- singleFile.name, 
   path <- allFilesPaths, 
   list <- out 
  ) 
} 

A speciality of (the current version of) ATL is that the forEach expression does not only iterate through the 
allFiles sequence, but also through the allFilesPaths. This is why each file is assigned with the corresponding 
path (represented through a sequence of folder names). 
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3 The Structure of the ATL Virtual Machine 
This section specifies an abstract machine. It does not document any particular implementation of the ATL 
virtual machine. In order to be executed, ATL code, as well as code from other languages, can be compiled 
into the asm format. This file format example is detailed in Section 5. 

The present section provides an overall description of an ATL virtual machine. It introduces the data types 
that have to be supported by the virtual machine, describes its internal runtime data structures as well as the 
model elements representation and presents the specified instruction set. 

3.1 Data Types 

All the types manipulated by the ATL virtual machine are considered as objects in that sense it is possible to 
call operations on them. However, two kinds of types may be distinguished: primitive and composite types. 
Primitive types provide support for string, boolean and numerical values. This set defines the core types the 
virtual machine relies on. Besides these primitive types, the specification of the ATL virtual machine also 
refers to a set of composite types that includes collections, operation signatures and object references. The 
representation of these composite types is to be based on the set of primitive types. 

The ATL virtual machine expects that nearly all type checking is done prior to run time, typically by a 
compiler, and does not have to be done by the ATL virtual machine itself. The instruction set of the ATL 
virtual machine distinguishes its operand types using instructions intended to operate on values of specific 
types. For instance, push, pushi and pushd are all ATL virtual machine instructions that push a value onto 
the current operand stack, but each is specialized for its operand type: string , int  and double , 
respectively. For a summary of type support in the ATL virtual machine instruction set, see Section 3.5. 

3.1.1 Primitive Types 

The set of primitive types supported required for the ATL virtual machine to run is the following: 

• the int  type that encodes integral numerical values. 

• the double  type that encodes real numerical values. 

• the boolean  type that encodes true and false truth values. 

• the string  type. 

3.1.2 Composite Types 

There are three kinds of composite types: the collection  type, the operation signature  type and the 
reference  type. Composite values must be encoded by means of primitive types. However, this 
specification does not mandate any particular representation for these composite types and implementation 
choices are let to the discretion of the implementors. 

The collection  type simply specifies collections of elements. The elements contained in a collection can 
be of either a primitive or a complex type. However, the elements of a given collection must be of the same 
type. No particular assumptions are made on the structure and the semantics of collections that may be 
implemented for the ATL virtual machine. Thus, a collection implementation can either authorize or prohibit 
duplicated elements. In the same way, it can be either ordered or unordered. However, the ATL virtual 
machine requires each collection to supply an element by element iteration facility. 

The operation signature  type has to encode all information enabling to uniquely identify an operation. This 
information includes: the context for which the operation is defined, the operation name, as well as the 
number, the type and the order of the operation parameters. Based on encoded data, the ATL virtual 
machine is to be able to resolve an invoked operation and, therefore, to allocate and initialize a new frame 
for the operation execution to proceed. In the same manner the structure of collections is not specified, the 
way operation identification information shall be encoded and resolved is let to the discretion of the 
implementors. 
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Besides the collection  and signature  types, the ATL virtual machine handles a third composite data 
type, the references. A reference can be thought of as a pointer to an object. More than one reference to an 
object may exist. Referred objects can be of either primitive or composite types. It is possible, within a virtual 
machine, to implement references for all available types. However, the ATL virtual machine specification 
specifically requires an implementation to provide support for both the variableref  and the modeleltref  
types. 

The ATL virtual machine has to deal with the local variables defined in each allocated frame. These local 
variables are always fetched and modified via values of type variableref . The ATL virtual machine is to 
be able to resolve these variable references in order to access the local variables of the current frame. As for 
the collection and the signature types, the scheme enabling to resolve a variable reference into a variable of 
the local variables set of the current frame is let to the discretion of the implementors. 

The ATL virtual machine contains explicit support for model elements. A reference to a model element is 
considered to have ATL virtual machine type modeleltref . Model elements are always operated on, 
passed, and tested via values of type modeleltref . Unlike for model elements, the ATL virtual machine 
does not requires any specific support for models. Although the ATL virtual machine deals with them, it does 
not handle model objects in the serialized format (i.e. as arguments of the virtual machine instructions), but 
refers to them via their name (encoded by means of string  values). 

3.2 Runtime Data Structures 

The ATL virtual machine defines various runtime data areas that are used during execution of a 
transformation. 

3.2.1 The pc Register 

The ATL virtual machine has a pc  (program counter) register. At any time, the ATL virtual machine executes 
the code of a single operation, the current operation. If this operation is not a native method, the pc  register 
has to contain the address of the ATL virtual machine instruction currently being executed. 

The pc  register could be managed at either the frame or the virtual machine level. In the second case, the 
value of the pc  register has to be memorized each time an operation is invoked so that, once the operation 
has completed, the execution may be resumed from the instruction following its invocation. 

3.2.2 The ATL Virtual Machine Stack 

The ATL virtual machine has a private ATL virtual machine stack, created at the virtual machine start-up 
time. The ATL virtual machine stack stores frames. An ATL virtual machine stack is analogous to the stack of 
a conventional language such as C: it holds local variables and partial results, and plays a part in operation 
invocation and return. 

3.3 Frames 

A new frame is created each time a non-native operation is invoked. A frame is destroyed when its operation 
invocation completes. Frames are allocated from the ATL virtual machine stack. Each frame has its own 
array of local variables and its own operand stack. Only one frame is active at anytime. This frame is referred 
to as the current frame, and the operation associated to this frame is known as the current operation. 

A frame ceases to be the current frame if its operation completes or invokes another operation. When an 
operation is invoked, a new frame is created and becomes current when control transfers to the new 
operation. On operation return, the current frame passes back the result of its operation invocation, if any, to 
the previous frame. The current frame is then discarded as the previous frame becomes the current one. 

It may be interesting to allocate a particular kind of frames (that may be called a native frames) each time a 
non-native operation calls a native method. By this mean, it would be possible to provide useful runtime 
information. When frames are only created for non-native methods, an error occurring in a native method is 
associated with its calling non-native operation. With native frame allocations, it would be possible to 
determine whether an error occurred in a native method or in the non-native operation that called it. 
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3.3.1 Local Variables 

Each frame is associated with a set of variables known as its local variables. According to the virtual 
machine implementation, the size of the local variable set may be specified or calculated at runtime. Anyway, 
the local variable set has to be encoded and embodied, along with the code, in the operation representation 
that is associated with each non-native frame. Local variables can be associated with data of either primitive 
or composite types. 

The ATL virtual machine uses local variables to pass parameters on operation invocation. The values of the 
parameters associated with an operation invocation are therefore assigned to local variables. The ATL virtual 
machine must provide a scheme that enables to identify, among all local parameters, the operation context 
(self  in the ATL transformation language) and the subsequently passed parameters. 

3.3.2 Operand Stack 

Each frame contains a last-in-first-out (LIFO) stack known as its operand stack. The operand stack is empty 
when the frame that contains it is created. The ATL virtual machine supplies instructions to load constants or 
values from local variables or model elements fields onto the operand stack. Other ATL virtual machine 
instructions take operands from the operand stack, operate on them, and push the result back onto the 
operand stack. The operand stack is also used to prepare parameters to be passed to operations and to 
receive operation results. 

As an example, the model handling get instruction fetches the value of a model element field. It requires a 
modeleltref to be added on top of the operand stack, pushed there by previous instructions. The modeleltref 
is popped from the operand stack and the value of the fetched field is pushed back onto the operand stack. 

Each entry on the operand stack can hold a value of any ATL virtual machine type. Values from the operand 
stack must be operated upon in ways appropriate to their types. It is not possible, for example, to push two 
int  values and subsequently treat them as a modeleltref. A small number of ATL virtual machine 
instructions (the dup instructions and swap) operate on runtime data areas as raw values without regard to 
their specific types; these instructions are defined in such a way that they cannot be used to modify or break 
up individual values. 

3.4 Representation of Model Elements 

The way model elements are internally managed by ATL virtual machine is not constrained. Implementors 
are therefore free to use some existing model handling facilities or to provide their own model repository. 
Custom implementations may be based on various underlying technologies. For instance, one may provide a 
model repository implementation based on relational database technologies. In this context, a model element 
allocation may be associated with the creation of a new record. Fetching a model element attribute would 
therefore correspond to a request on a field of the record associated with the model element. 

Implementors may also prefer to use an existing model handling library, such as MDR [4] or EMF [5]. Both 
include facilities to create, modify and store models and model elements, but they are based on distinct 
internal representations: MDR uses the MOF 1.4 [1] metamodel whereas EMF is based on Ecore [6]. Both 
MDR and EMF also offer XMI [7] serialization/deserialization support. However, they do not rely on the same 
XMI version (XMI 1.2 for MDR and 2.0 for EMF), which implies that a model serialized with MDR can not be 
deserialized with EMF (and inversely). 

3.5 Instruction Set Summary 

An ATL virtual machine instruction consists of an opcode specifying the operation to be performed followed 
an optional inline operand. Additional arguments or data that may be required by an instruction have to be 
fetched from the top of operand stack. Some instructions have no inline operands, but still require operands 
from the operand stack. Some other instructions have no operands at all and consist only of an opcode. 

Instructions of the ATL virtual machine can be grouped into three distinct sets: the stack handling instruction 
set, the control instruction set and the model handling instruction set. 
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3.5.1 Operand Stack Handling Instructions 

The ATL virtual machine provides a number of instructions enabling direct manipulations of the operand 
stack. These instructions may be sorted into three subgroups: the typed constants pushing instructions, the 
untyped handling instructions and the loading/storing instructions: 

• Pushing a constant onto the operand stack: push, pushi, pushd, pusht, pushf. 

• Untyped manipulations of the operand stack: pop, dup, dup_x1, swap. 

• Loading/storing a variable from/onto the operand stack: load, store. 

Pushing instructions are specialized instructions. Except for the push instruction (dedicated to string  
constants), the name of these instructions identifies the data type it applies on: pushi pushes an int  
constant, pushd pushes a double  constant, whereas pusht and pushf respectively push the true and false 
boolean  values. The untyped stack handling instructions provide some basic operations on the operand 
stack. These instructions proceed in the same way on all primitive and composite types. Thus, a dup 
instruction, which duplicates the top value of the operand stack, duplicates indifferently an integral value and 
an operation signature. As the previous instructions, the load and store instructions are untyped instructions. 
They perform transfers of values between local variables of the current frame and the operand stack of an 
ATL virtual machine frame. 

3.5.2 Control Instructions 

Control instructions cause the ongoing execution to continue from an instruction that may be different from 
the instruction that follows the control instruction. The ATL virtual machine defines five different control 
instructions:  

• Conditional branch: if. 

• Unconditional branch: goto. 

• Iterative execution: iterate, enditerate. 

• Method invocation: call. 

In the case of a conditional branch, a boolean argument is checked in order to establish whether the 
execution continues from the next instruction, or whether it is redirected to another instruction. The 
unconditional branch defines a systematic branch of the execution flow to another instruction. 

An iterative execution can be defined by means of the two instructions iterate and enditerate. Iterative 
treatments can be nested, and an enditerate instruction must be specified for each iterate instruction. An 
iterative treatment corresponds to the set of instructions embraced by an iterate and its corresponding 
enditerate instruction. The ATL virtual machine requires iterations to be specified with reference to a 
collection: the iterative treatment is therefore executed for each element of the collection provided as 
argument. 

The last control instruction is the operation invocation instruction. When called operation is a non-native 
operation, this instruction systematically redirects the execution to the first instruction of the called operation. 
Once called operation has completed, execution goes back to the instruction that follows the call instruction. 

3.5.3 Model Handling Instructions 

This last class provides an instruction set dedicated to models and model elements handling. This instruction 
set also enables the ATL virtual machine to handle objects. There exist five model handling instructions: 

• Create a new object: new. 

• Access objects attributes: get, put. 

• Fetch a model element: findme. 
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• Access the ATL context module element: getasm. 

The new, get and put instructions provide objects manipulation facilities. Within the ATL virtual machine, all 
types are considered as objects (see Section 3.1). However, each of these three instructions is only 
supported by a particular subset of existing objects. The new instruction allows allocating both new model 
elements and new composite type objects, but primitive data type are created by simply pushing values onto 
the operand stack. The get and put instructions respectively provides read/write facilities on objects 
attributes. These two instructions should only be defined for composite objects for which they are 
meaningful. In the scope of the ATL virtual machine specification, they are defined for both model elements 
and the ATL context module. Implementors shall note that a custom native type does not have to implement 
the two instructions together (i.e. a type may be associated with the only get instruction). 

Besides get, put and new, which define generic facilities for objects manipulation, the model handling 
instructions set supply two additional instructions, findme and getasm, that are specifically dedicated to 
model elements. The findme instruction is used to get a reference on a model element, based on the name 
of the metamodel it belongs to and its own name. In this context, getasm can be though as a specialized 
version of the findme instruction that returns a reference to the ATL context module element. 
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4 The ATL Virtual Machine Instruction Set 
The instructions the ATL virtual machine supports can be grouped into three classes: the stack handling 
instructions, the control instructions and the model handling instructions. The stack handling instruction set 
defines the instructions enabling to handle a frame operand stack. The control instruction set specifies the 
instructions that provide control (such as iteration) over the execution flow. The model handling instruction 
set provides model elements access facilities. This section gives details about the format of each ATL virtual 
machine instruction and the operation it performs. 

4.1 Format of Instruction Description 
Each instruction description is presented as follows: 

Operation 

Short description of the instruction. 

Format 

mnemonic 

operand 

Operand stack 

…, value1, value2 ⇒ …, result 

This notation shows an operation that begins by having value2 on top of the operand stack, with 

value1 just beneath it. As a result of the execution of the instruction, value1 and value2 are popped 

from the operand stack and replaced by result value, which has been calculated by the instruction. 

The remainder of the operand stack, represented by an ellipsis (…), is unaffected by the execution 

of the instruction. 

Description 

A longer description detailing constraints on operand stack contents or constant pool entries, the 

operation performed the type of results, etc. 

Notes 

Comments not strictly part of the specification of an instruction are set aside as notes at the end of 

the description. 

4.2 Stack Handling Instructions 

4.2.1 The push instruction 
Operation 

Push string  constant. 

Format 

push 

s 

Operand Stack 

… ⇒ …, s 

Description 

Push the string  constant s onto the operand stack. 

4.2.2 The pushi instruction 
Operation 
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Push int  constant. 

Format 

pushi 

i 

Operand Stack 

… ⇒ …, i 

Description 

Push the int  constant i onto the operand stack. 

4.2.3 The pushd instruction 
Operation 

Push double  constant. 

Format 

Pushd 

D 

Operand Stack 

… ⇒ …, d 

Description 

Push the double  constant d onto the operand stack. 

4.2.4 The pusht instruction 
Operation 

Push true boolean  constant. 

Format 

pusht 

Operand Stack 

… ⇒ …, true 

Description 

Push the true boolean  constant onto the operand stack. 

4.2.5 The pushf instruction 
Operation 

Push false boolean  constant. 

Format 

pushf 

Operand Stack 

… ⇒ …, false 

Description 

Push the false boolean  constant onto the operand stack. 

4.2.6 The pop instruction 
Operation 
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Pop the top operand stack value. 

Format 

pop 

Operand Stack 

…, value ⇒ … 

Description 

Pop the top value from the operand stack. 

4.2.7 The store instruction 
Operation 

Store value into local variable. 

Format 

store 

variableref 

Operand Stack 

…, value ⇒ … 

Description 

The value on the top of the operand stack is popped from the operand stack, and the local variable 

referred by variableref is set to value. 

4.2.8 The load instruction 
Operation 

Load value from local variable. 

Format 

load 

variableref 

Operand Stack 

… ⇒ …, value 

Description 

The value of the local variable referred by variableref is pushed onto the operand stack. 

4.2.9 The swap instruction 
Operation 

Swap the two top operand stack values. 

Format 

swap 

Operand Stack 

…, value2, value1 ⇒ …, value1, value2 

Description 

Swap the two top values on the operand stack. 

4.2.10 The dup instruction 
Operation 
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Duplicate the top operand stack value. 

Format 

dup 

Operand Stack 

…, value ⇒ …, value, value 

Description 

Duplicate the top value on the operand stack and push the duplicated value onto the operand stack. 

4.2.11 The dup_x1 instruction 
Operation 

Duplicate the top operand stack value and insert two values down. 

Format 

dup_x1 

Operand Stack 

…, value2, value1 ⇒ …, value1, value2, value1 

Description 

Duplicate the top value on the operand stack and insert the duplicated value two values down in the 

operand stack. 

4.3 Control Instructions 

4.3.1 The if instruction 
Operation 

Branch if boolean value b is true. 

Format 

if 

offset 

Operand Stack 

…, b ⇒ … 

Description 

The value b on the top of the operand stack must be of type boolean , whereas the offset operand 

must be of type int . b is popped from the operand stack and checked. If the value is true, the 

execution proceeds at the offset from the address of the opcode of this if instruction. The target 

address must be that of an opcode of an instruction within the operation that contains this if 

instruction. Otherwise, if the boolean value b is false, execution proceeds at the address of the 

instruction following this if instruction. 

4.3.2 The goto instruction 
Operation 

Branch always. 

Format 

goto 

offset 

Operand Stack 
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No change. 

Description 

The offset operand must be of type int.  Execution proceeds at the offset from the address of the 

opcode of this goto instruction. The target address must be that of an opcode of an instruction 

within the operation that contains this goto instruction. 

4.3.3 The iterate instruction 
Operation 

Delimitate the beginning of iteration on collection elements. 

Format 

Iterate 

Operand Stack 

…, collection ⇒ … 

Description 

collection is popped from the operand stack. Execution proceeds from the opcode following this 

iterate instruction to its corresponding enditerate opcode (iterate instructions can be nested) for 

each element of the popped collection. Before each loop entry, the next element of the popped 

collection is pushed onto the operand stack. After the last loop, execution proceeds from the opcode 

following the enditerate instruction associated with this iterate instruction. Within an operation, 

each iterate instruction has to be associated with an enditerate instruction. 

4.3.4 The enditerate instruction 
Operation 

Delimitate the end of iteration on collection elements. 

Format 

enditerate 

Operand Stack 

No change. 

Description 

Delimitate the end of an iteration previously opened by an iterate instruction. No action is 

associated with an enditerate instruction. Within a given operation, the number of enditerate 

instructions must be equal to the number of iterate instructions. An enditerate instruction may be 

specified only if a non-delimited iterate instruction has been previously declared in the same 

operation. 

4.3.5 The call instruction 
Operation 

Call a method. 

Format 

call 

signature 

Operand Stack 

…, context, [arg1, [arg2 ...]] ⇒ …  when called operation has no return 

value 
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…, context, [arg1, [arg2 ...]] ⇒ result when called operation has a return value 

Description 

signature is a reference to an operation, which gives the name as well as the description of the 

operation (context for which the operation is defined and parameters types). The named operation is 

resolved according to its name, its context and the number, type and order of its parameters. The 

context must be followed on the operand stack by nargs argument values, where the number, type, 

and order of the values must be consistent with the signature of the selected operation. 

The context and the nargs argument values are popped from the operand stack. If the operation is 

not native, a new frame is created on the ATL virtual machine for the method being invoked. The 

context and the argument values are consecutively made the values of local variables of the new 

frame, with context in local variable 0, arg1 in local variable 1, and so one. The new frame is then 

made current, and the ATL virtual pc is set to the opcode of the first instruction of the operation to 

be invoked. Execution continues with the first instruction of the operation. When the operation has 

a return value, it is assigned to the remaining top value of the operand stack once the operation has 

completed. The return value is then pushed onto the operand stack of the calling frame. 

If the called operation is a native method, the nargs argument values and context are passed to the 

code that implements the method. 

Notes 

The ATL virtual machine instruction set includes no return-like instruction. It is however possible 

to replace it with a goto instruction pointing to the last operation instruction. 

4.4 Model Handling Instructions 

4.4.1 The new instruction 
Operation 

Create new object. 

Format 

new 

Operand Stack 

…, classifier-name, metamodel-name ⇒ …, reference 

Description 

This instruction is used to create new model elements and new composite objects. The type of the 

object (the element) to be created is resolved from classifier-name and metamodel-name. If the 

metamodel name is #native, the classifier is resolved from the set of supported composite native 

types. Otherwise, metamodel-name has to specify the name of a metamodel involved in the current 

transformation. The classifier is then resolved from the target models that conform to the 

metamodel identified by metamodel-name. If resolution completes successfully, memory for the 

new object instance is allocated. As a result, both classifier-name and metamodel-name are popped 

from the operand stack and replaced by a reference to the allocated object. 

Notes 

The current version of the ATL language does not enable to run transformations producing several 

target models that conform to a same metamodel. In such a situation, the model in which the new 

model element is allocated is undefined (among the models sharing the same metamodel). Future 

versions of the ATL virtual machine will include an additional instruction for model element 

allocation. Compared to the new instruction, this instruction will accept an additional parameter in 

order to identify the target model into which the new element will have to be allocated. 
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4.4.2 The get instruction 
Operation 

Fetch field from object. 

Format 

get 

name 

Operand Stack 

…, reference ⇒ …, value 

Description 

The reference is popped from the operand stack. The referenced field is resolved from reference 

and name. The value of the resolved field of the object pointed by reference is then fetched and 

pushed onto the operand stack. 

Notes 

The get instruction must be defined for the object pointed by reference. The ATL virtual machine 

internal types for which get instruction is defined are model elements and the ATL context module. 

4.4.3 The set instruction 
Operation 

Set field in object. 

Format 

set 

name 

Operand Stack 

…, reference, value ⇒ … 

Description 

The referenced field is resolved from reference and name. The type of a value stored by a set 

instruction must be compatible with the referenced field. The value and reference are popped from 

the operand stack. The referenced field of the object pointed by reference is then set to value. 

Notes 

The set instruction must be defined for the object pointed by reference. The ATL virtual machine 

internal types for which set instruction is defined are model elements and the ATL context module. 

4.4.4 The findme instruction 
Operation 

Fetch a classifier. 

Format 

findme 

Operand Stack 

…, classifier-name, metamodel-name ⇒ …, classifier 

Description 

The classifier is resolved from classifier-name and metamodel-name. As a result, both classifier-

name and metamodel-name are popped from the operand stack, and replaced by the resolved 

classifier. 
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4.4.5 The getasm instruction 
Operation 

Fetch the asm element. 

Format 

getasm 

Operand Stack 

… ⇒ …, asm 

Description 

Push asm, a reference to the ATL Context Module element, onto the operand stack. 
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5 The asm File Format 
This section describes the ATL virtual machine asm file format. This format is the one which is interpreted by 
the current reference implementation of the ATL virtual machine. This reference implementation does not 
fully meet the abstract specification provided in Section 3 and Section 4. However, the asm file format 
includes all information that may be required to build an implementation of the ATL virtual machine that 
complies with this abstract specification. ATL virtual machine implementations that aim to execute ATL 
transformations compiled into asm files have to be able to read the asm file format and correctly perform the 
operations specified therein. 

Each asm file contains the definition of either an ATL transformation or an ATL query. This section mainly 
focuses on the asm encoding of ATL transformations. An asm file is an XML-based textual file. Its main 
elements are introduced in Section 5.1. The remaining sections provide a detailed specification of these 
elements. 

5.1 Overview of the asm File Structure 

An asm file is a textual file containing some XML data which encode an ATL transformation. This section 
provides an overview of the main XML elements that may be found in asm files. A complete DTD 
representation of the structure of asm files is provided in Appendix I. 

An asm file is composed of a single asm structure: 
 
<!DOCTYPE asm [ 
  <!ELEMENT asm       (cp, field*, operation+)> 
  <!ELEMENT cp        (constant*)> 
  <!ELEMENT field     (...)> 
  <!ELEMENT operation (...)> 
  ... 
  <!ATTLIST asm name CDATA> 
]> 

The asm structure is an ordered structure that contains the transformation constant pool (cp ), followed by a 
set of field  (that may be empty) and one or more operation . The asm structure also has a name 
attribute. The value of this attribute is a constant pool index pointing to the constant pool entry that stores the 
transformation name (see Section 5.2, The Constant Pool). 

The constant pool can be viewed as a storage space for the constant values that are handled in an asm file. 
It contains a set of constant pool entries. Each constant pool entry encodes a constant value. A single 
constant pool entry can be referred by multiple constant occurrences. Section 5.2 specifies the type and the 
format of the data that are stored in the constant pool. 

Specified fields are those that are associated with the ATL context module. As opposed to constant pool 
entries, fields are not ordered and have to be accessed by their name. The field  elements are described in 
Section 5.3. 

Finally, the asm structure contains a non empty set of operations. The operation set specifies the instructions 
to be executed by the ATL virtual machine in order to carry out the compiled transformation. Each executable 
asm file contains at least one operation, the main operation, which is the entry point of the transformation 
program. The structure of an operation element is described in Section 5.4. 

5.2 The Constant Pool 

The constant pool stores all the constant values, whatever their type and the kind of information they encode 
(transformation name, operation signatures, offset values, etc.), that appear in an asm file. Within the 
constant pool, each constant value is hold by an indexed constant pool entry (a constant  element). In the 
asm file format, constant  tags embed no indexing information. Constant pool entries are therefore indexed 
according to the order in which they are defined within the asm file. Thus, the first constant element is 
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associated with the 0 index, the second with 1 and so on… A constant pool index is considered as valid if it 
is greater than 0 and less than the number of constant pool entries minus one. Note that the constant pool 
size is not specified in the asm file format: it has to be calculated by the ATL virtual machine. 

The constant pool is defined by the following cp  structure: 
 
<!DOCTYPE asm [ 
  ... 
  <!ELEMENT cp (constant*)> 
  <!ELEMENT constant EMPTY> 
  ... 
  <!ATTLIST constant value CDATA> 
]> 

The constant pool is composed of constant  elements. These constant elements have a value  attribute 
that contains the constant value. This value is encoded as a string. The different kinds of constant data 
stored in the constant pool, and the context in which they appear, are: 

• The transformation name (in the asm element). 

• The names of the manipulated ATL virtual machine types (in push  instructions, see Section 5.4.3). 

• The asm encoding of the ATL virtual machine types (in field , context  and parameter  elements, 
see Section 5.4.3). 

• The names of the transformation input and output metamodels (in push  instructions, see Section 
5.4.3). 

• The names of the transformation input and output models (in push  instructions, see Section 5.4.3). 

• The names of the model elements handled by the transformation (in push  instructions, see Section 
5.4.3). 

• The operation signatures (in call  instructions, see Section 5.2.2). 

• The names of locally defined non-native operations (in operation  elements, see Section 5.4). 

• The handled offset values (in goto  and if  instructions, see Section 5.4.3). 

• The local variables names (in lve  elements, see Section 5.4.5). 

• The asm encoding of the location of source code expressions (in lne  elements, see Section 5.4.4). 

Several occurrences of a same constant in an asm file are represented by the single entry in the constant 
pool. Note that a given constant pool entry may represent different data types. For instance, the “3” constant 
can represent both an offset value and a local variable table index. An executable asm file has to include a 
main operation. As a consequence, the constant pool of such an asm file will at least include a constant pool 
entry containing the “main” value. 

The asm file format assumes specific encoding schemes for data types, operation signatures and expression 
locations. The following subsections detail these particular encodings. 

5.2.1 Data Types Encoding 

The asm file format defines an internal encoding for the types of the elements it handles. These values, 
encoded as strings, are used to specify data types (i.e. primitive, composite as well as model elements 
types) for the tags field , context  and parameter . The field  tag defines an attribute of the ATL context 
module. The context  tag specifies the element type for which an operation is defined, whereas the 
parameter  one defines both name and type of an operation parameter. Table 1 summarizes the encoding 
of the data types an ATL virtual machine is required to implement. 
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Type Name Type Encoding 
string S 
int I 
double D 
boolean B 
Model element M<metamodel-name>!<modelelt-name>; 
Collection(<type>)  C<type> 

Table 1. asm encoding of the ATL virtual machine required types 

The ATL virtual machine requires model elements to be handled by means of the modeleltref  composite 
type. Encoding for such elements both includes the name of the pointed model element and the name of its 
metamodel. For instance, a Node model element defined in the scope of the XML metamodel is encoded as 
MXML!Node; . 

The composite variableref  type is implemented, in the asm file format, as an integral value that indexes 
an entry of the local variable table. However, as the other data types, variableref  values are stored as 
strings within the constant pool. 

Encoding of the abstract collection  type includes the type of the elements contained in the collection. 
Thus, a collection of int  value is encoded by CI . In the same way, a collection of XML Node model 
elements is encoded by CMXML!Node;. 

5.2.2 Operation Signatures Encoding 

The ATL virtual machine signature  type is used by the call instructions to identify the operation to be 
invoked. A signature therefore has to encode all information that may be required by the virtual machine to 
match an operation call to its corresponding operation definition. In the asm file format, the signature  type 
is encoded by means of a string and relies on the type encoding scheme specified in the previous section. 

An asm signature encodes the following information: the operation name, the context in which the operation 
is defined, the operation return type and the number, the type and the order of the operation parameters. 
This information is encoded in the following string: 
<context-type>.<operation-name>(<param-type1><param -type2>...<param-
typen>):<return-type> 

Considering this encoding scheme, an operation named toBoolean, which is defined within a string  
context, that returns a boolean  value and that accepts no parameters is encoded by S.toBoolean():B . 
In the same way, the signature of the getAttrVal operation, defined in the context of an XML element, which 
accepts a string parameter (encoding the attribute name) and returns a string is 
MXML!Element;.getAttrVal(S):S . 

5.2.3 Expressions Location Encoding 

Within each defined operation , the linenumbertable  structure encodes the bindings between source 
code expressions and ATL virtual machine instructions. Each linenumbertable  entry binds a set of 
consecutive virtual machine instructions to a portion of the source code (see Section 5.4.4). 

The asm file format defines a specific string encoding to identify source code portions. This encoding defines 
both the portion start line and start column and its end line and end column. An asm expression location 
encoding string respects the following format: 
startline:startcolumn-endline:endcolumn  

Considering this format, the string 21:41-21:57  identifies the source code portion that is comprised 
between the columns 41 and 57 of the line 21 of the source code file. 

5.3 The Fields 

An asm structure can include some field  definitions. Fields can be viewed as local variables that are 
directly associated with the ATL context module. A field  is defined by the following structure: 
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<!DOCTYPE asm [ 
  ... 
  <!ELEMENT field EMPTY> 
  ... 
  <!ATTLIST field name CDATA> 
  <!ATTLIST field type CDATA> 
]> 

Fields have a name and a type  attributes. These attributes contain valid constant pool indexes. Value of the 
name attributes indexes a variable name constant, whereas the type  attribute value points to a data type 
encoding constant. 

5.4 The Operations 

An asm file defines a set of operation . Executable asm files have a program entry point which must be 
implemented by a main operation. Each operation contains a sequence of instructions that will have to be 
interpreted by the ATL virtual machine when the operation will be invoked. An operation is defined by the 
following structure: 
 
<!DOCTYPE asm [ 
  ... 
  <!ELEMENT operation (context, parameters, code, l inenumbertable, 
localvariabletable)> 
  <!ELEMENT context EMPTY> 
  <!ELEMENT parameters (...)> 
  <!ELEMENT code (...)> 
  <!ELEMENT linenumbertable (...)> 
  <!ELEMENT localvariabletable (...)> 
  ... 
]> 

An operation  is an ordered structure in which are specified a context , some parameters , some 
instructions (within the code  element), a linenumbertable  and a localvariabletable . The context  
element defines the context in which the operation is defined. The set of parameters  encodes both type 
and name of the operation parameters. The code  element contains an ordered sequence of instructions that 
implements the treatment associated with the operation. The linenumbertable  structure defines bindings 
between the instructions of the code  element and the expressions that appear in the source code. Finally, 
the localvariabletable  stores the local variables that are defined for the operation. Note that, as 
opposed to the operation signature encoding, the asm file format does not include return type information to 
its operation definition. 

These different elements are detailed in the following subsections: Section 5.4.1 defines the structure of the 
context  element, Section 5.4.2 details the parameters  definition, Section 5.4.3 describes the content of 
the code  element and Section 5.4.4 and 5.4.5 respectively specify the structure of the linenumbertable  
and localvariabletable  elements. 

5.4.1 The Context 

An operation context element specifies the context in which the operation is defined. A context  element is 
defined by the following structure: 
 
<!DOCTYPE asm [ 
  ... 
  <!ELEMENT context EMPTY> 
  ... 
  <!ATTLIST context type CDATA> 
]> 
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Each operation  is associated with a unique context . This context is defined by the type  attribute that 
points to a data type encoding entry of the constant pool. 

5.4.2 The Parameters 

Each operation is associated with an ordered set of parameters. This ordered set encodes the parameter 
declaration order. The parameter set is empty for operations that accept no parameters. A parameter set is 
defined by the following structure: 
 
<!DOCTYPE asm [ 
  ... 
  <!ELEMENT parameters (parameter*)> 
  <!ELEMENT parameter EMPTY> 
  ... 
  <!ATTLIST parameter name CDATA> 
  <!ATTLIST parameter type CDATA> 
]> 

Each parameter entry (encoded by a parameter  element) has a name and a type  attributes. Both 
attributes contain the index of a constant pool entry. The name attribute points to a constant pool entry that 
contains a variable name (the name of the parameter). The entry the type  attribute refers to contains a data 
type encoding constant, which defines the parameter type. Parameter tags embed no ordering information. 
Within an asm file, the parameters order is encoded by the order in which the parameter  tags appear in the 
parameters  element. 

5.4.3 The Code 

The treatments that are performed by an operation are defined within the operation code  element. The code  
of an operation is defined by the following structure: 
 
<!DOCTYPE asm [ 
  ... 
  <!ELEMENT code (push, pushi, pushd, pushf, pusht,  pop, store, load, swap, dup, 
dup_x1, if, goto, iterate, enditerate, call, new, g et, set, findme, getasm)*> 
  <!ELEMENT push       EMPTY> 
  <!ELEMENT pushi      EMPTY> 
  <!ELEMENT pushd      EMPTY> 
  <!ELEMENT pushf      EMPTY> 
  <!ELEMENT pusht      EMPTY> 
  <!ELEMENT pop        EMPTY> 
  <!ELEMENT store      EMPTY> 
  <!ELEMENT load       EMPTY> 
  <!ELEMENT swap       EMPTY> 
  <!ELEMENT dup        EMPTY> 
  <!ELEMENT dup_x1     EMPTY> 
  <!ELEMENT if         EMPTY> 
  <!ELEMENT goto       EMPTY> 
  <!ELEMENT iterate    EMPTY> 
  <!ELEMENT enditerate EMPTY> 
  <!ELEMENT call       EMPTY> 
  <!ELEMENT new        EMPTY> 
  <!ELEMENT get        EMPTY> 
  <!ELEMENT set        EMPTY> 
  <!ELEMENT findme     EMPTY> 
  <!ELEMENT getasm     EMPTY> 
  ... 
  <!ATTLIST push  arg CDATA> 
  <!ATTLIST pushi arg CDATA> 
  <!ATTLIST pushd arg CDATA> 
  <!ATTLIST store arg CDATA> 
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  <!ATTLIST load  arg CDATA> 
  <!ATTLIST if    arg CDATA> 
  <!ATTLIST goto  arg CDATA> 
  <!ATTLIST call  arg CDATA> 
  <!ATTLIST get   arg CDATA> 
  <!ATTLIST set   arg CDATA> 
]> 

The code  part of an operation definition contains a sequence of instructions among those that have been 
defined in the ATL virtual machine instruction set (see Section 4). Each defined instruction has its 
counterpart (in the form of an instruction element) in the asm file format. The instruction tags embed no 
ordering information. Within an asm file, instructions are ordered according to their order of appearance in 
the code  part. They are numbered from 0 to the number of instructions minus one. 

Some instructions tags (push, pushi, pushd, store, load, if, goto, call, get and set) have an arg  attribute. This 
attribute contains the inline parameter of the instruction. Its value is an index that targets a constant pool 
entry. According to the instruction, the attribute points to different kinds of constant pool entries: 

• Push instructions. Identified constant pool entry contains either a string constant (push), an integral 
constant (pushi) or a double constant (pushd). 

• load and store instructions. Identified constant pool entry contains an index value for the local 
variable table. 

• if and goto instructions. Identified constant pool entry contains an offset value. The constant pool 
stores absolute offset values. An offset value refers to the instruction number offset of the local 
instructions stack (instructions are numbered from 0). 

• get and set instructions. Identified constant pool entry contains the name of an object attribute. 

• call instructions. Identified constant pool entry contains an operation signature value. 

5.4.4 The Line Number Table 

The linenumbertable  structure defines the bindings between the stack instructions of an operation and 
the corresponding code within the source file. This structure encodes useful information for implementers 
that wish to provide debugging facilities along with the ATL virtual machine. The linenumbertable  is 
defined by the following structure: 
 
<!DOCTYPE asm [ 
  ... 
  <!ELEMENT linenumbertable (lne*)> 
  <!ELEMENT lne EMPTY> 
  ... 
  <!ATTLIST lne id    CDATA> 
  <!ATTLIST lne begin CDATA> 
  <!ATTLIST lne end   CDATA> 
]> 

The line number table is composed of line number entries (lne  elements). Each entry specifies a binding 
between an instructions sequence from the operation stack and a part of the source code file. 

Each entry has an id id , a begin  and an end  attributes. The id  attribute identifies a source file portion. The 
attribute points to an expression location constant pool entry. The begin  and end  attributes make it possible 
to identify the sequence of instructions that are associated with the identified portion of the source code file. 
They respectively specify the number of the first and the last instructions of this sequence within the code  
element. The code  instructions are numbered from 0 to the number of instructions minus one. The begin  
and end  attributes do not refer to constant pool entries, but directly encode the instruction number values. 
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5.4.5 The Local Variable Table 

The localvariabletable  structure is similar to the Java local variable table. It encodes the visibility of 
each local variable within the operation. It also specifies the bindings between these local variables and the 
variable slots that are used to host them. The localvariabletable  is defined by the following structure: 
 
<!DOCTYPE asm [ 
  ... 
  <!ELEMENT localvariabletable (lve+)> 
  <!ELEMENT lve EMPTY> 
  ... 
  <!ATTLIST lve slot  CDATA> 
  <!ATTLIST lve name  CDATA> 
  <!ATTLIST lve begin CDATA> 
  <!ATTLIST lve end   CDATA> 
]> 

The local variable table is composed of local variable entries (lve  elements). A local variable table contains 
at least one entry: the object that defines the context in which the operation has been called. 

Each table entry is associated with a single local variable defined for the current operation. Each entry has a 
slot , a name, a begin  and an end  attributes. The slot  attribute specifies the slot number the local 
variable is assigned to. The slot is identifies by an integral value (stored as a string). Note that this value is 
not a reference to the asm constant pool. A single slot can successively hold different variables of an 
operation providing that these variables are defined for distinct portions of the operation code. The name 
attribute defines the local variable name. This attribute contains a constant pool index that points to a 
variable name constant. Finally, the begin  and end  attributes make it possible to identify the sequence of 
instructions for which the local variable is defined. They respectively specify the number of the first and the 
last instructions of this sequence within the code  element. The code  instructions are numbered from 0 to the 
number of instructions minus one. As for the slot  attribute, these integral values do not refer to constant 
pool entries. 

Whatever the considered operation, the first slot of the local variable table is associated with the context 
object of the operation. Subsequent slots are associated with the operation parameters in the order they 
have been defined. Thus, the first parameter is associated with slot 1, the second parameter with slot 2 and 
so on… Following additional slots are used to hold the locally declared variables. The number of these 
additional slots has to be at least equal to the maximum number of simultaneously defined variables (i.e. 
variables that are defined over a same sequence of instructions). 
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6 Compiling ATL for the ATL Virtual Machine 
This section aims to introduce compilation techniques for the ATL virtual machine. The ATL virtual machine 
has been primarily designed to support the ATL transformation language. This section therefore 
concentrates on compiling source code written in the ATL transformation language for the asm file format 
described in Section 5. 

However, the ATL virtual machine does not assume that the instructions it executes are generated from ATL 
code. One may be interested in compiling source code written in another programming/transformation 
language to the ATL virtual machine. Understanding how the reference compiler utilizes the ATL virtual 
machine can therefore prove to be useful to prospective compiler writers, as well as to those trying to 
understand the ATL virtual machine itself. 

A large part of this section is devoted to the way ATL code is compiled into the asm format. The compilation 
technique the referenced ATL compiler implementation is based on is also detailed. 

6.1 Format of Examples 

The format of the examples presented in this section should be familiar to anyone who has read assembly 
code. Each instruction takes the form: 
<index> <opcode> [<operand>] [<comment>] 

The <index>  is the index of the opcode of the instruction in the array that contains the bytes of ATL virtual 
machine code for this method. Alternatively, the <index>  may be thought of as a byte offset from the 
beginning of the method. The <opcode>  is the mnemonic for the instruction's opcode. The optional 
<operand>  is the operand of the instruction and the optional <comment>  is given in the XML comment 
format: 
   8 <pushi arg="100">  <!-- Push int constant 100 --> 

The <index>  prefacing each instruction may be used as the target of a control transfer instruction. For 
instance, a <goto arg="8">  instruction transfers control to the instruction at index 8. 

6.2 Compiling ATL Code to the asm File Format 

This section aims to introduce some of the basic compilation techniques that are used to build asm files from 
ATL code. For this purpose, some common instruction patterns (such as control instructions, iterative blocks 
and operation invocations) are identified and the way they can be compiled to the asm format is discussed. 

The additional data types are required to compile the ATL language are introduced in a first subsection. 
Sections 6.2.2 to 6.2.5 deal with the compilation of the supported data types. Compilation of conditional 
expression and iterative blocks are respectively detailed in Sections 6.2.6 and 6.2.7. Finally, Sections 6.2.8 
and 6.2.9 illustrate compilation of operation invocations. 

6.2.1 Additional Types 

The ATL virtual machine specification requires implementations to provide support for the set of virtual 
machine data types (specified in Section 3.1). Executing transformations with the ATL virtual machine may 
require this set of virtual machine types to be enriched by means of language specific types. 

The ATL transformation language has been built upon the OCL language [3]. Within ATL, the helpers, but 
also the rules filters and the initializations of allocated elements are expressed by means of OCL 
expressions. Since they appear in ATL transformations, OCL data types have to be supported by ATL virtual 
machines that aim to execute ATL transformations. Besides OCL-related types, ATL also defines its own 
specific types. These custom types, as well as OCL ones, are described in the following paragraphs. 

The OCL language defines four different implementations of the ATL abstract collection . These OCL-
based types are listed in Table 2 along with their respective encoding within the asm file format. Note that, in 
OCL as in ATL, these types all inherit from an abstract collection type. 
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Type Name Type Encoding 
Sequence<type> Q<type> 
Bag<type> G<type> 
Set<type> E<type> 
OrderedSet<type> O<type> 

Table 2. asm encoding of OCL implementations of the collection  type 

The four collection types defined within OCL provide all combinations between ordered/non-ordered and 
with/without duplicates: 

• The bag  type. It defines non-ordered collections with duplicates. 

• The set  type. It defines non-ordered collections without duplicates. 

• The sequence  type. It defines ordered collections with duplicates. 

• The orderedset  type. It defines ordered collections without duplicates. 

Whatever their type, collection types are encoded in asm by their own encoding followed by the encoding of 
the contained elements. As an example, a sequence of integral numerical value is encoded as QI . In the 
same way, an ordered set of Node elements (defined within the XML metamodel) is encoded as 
QMXML!Node;. 

Besides collection types, OCL defines two additional data types. Table 3 lists these remaining OCL-based 
types along with their respective asm encoding. 
 

Type Name Type Encoding 
Tuple(<type1>, …, <typen>)  T<type1>…<typen> 
EnumLiteral Z 

Table 3. asm encoding of OCL types 

The tuple  type defines signatures of multi-typed sequences. A tuple  is encoded by associating its own 
encoding with those of elements that compose it (in the order they are presented by the signature). For 
instance, a tuple respectively containing an integral numerical value, a Node model element and a boolean 
value is encoded as TIMXML!Node;B . 

The EnumLiteral  type corresponds to the ATL enumeration type (see Section 2.1.4). In the scope of ATL, 
enumerations are specified in source and target metamodels, and the properties they define can be referred 
within the ATL code. 

The ATL transformation language also defines some specific types that do not belong to the set of types 
required by the ATL virtual machine to run. These types are listed in Table 4 with their encoding in the asm 
file format. 
 

Type Name Type Encoding 
Model L 
ATL context module A 
Transient Link NTransientLink; 
Transient Link Set NTransientLinkSet;  

Table 4. asm encoding of custom ATL types 

The model  type is associated with models. An ATL transformation mainly deals with its input and output 
models. The ATL context module  type is associated with the transformation itself. For each ATL 
transformation execution, there exists a one and only instance of ATL context module . This element 
makes it possible for a transformation being executed to access elements of the transformation module 
(such as the transformation fields). 

Finally, compilation of ATL code for the asm file format also takes advantage of the transient link type 
(encoded as NTransientLink; ). This last type does not belong of the ATL language definition. This 
means that ATL programmers cannot define transient link variables within their ATL transformations. The 
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transient link type can be viewed as a linkage type internal to this ATL virtual machine implementation. A 
transient link makes it possible to link a given input model element matched by a rule to its previously 
created corresponding output model element(s). Thus, each distinct match of a single rule is represented by 
its own transient link. The transient link type comes along with the transient link set type (which is encoded 
by NTransientLinkSet; ). This internal type defines convenient facilities for handling transient link 
collections. 

6.2.2 Compiling Primitive Literals 

The ATL language handles both primitive and composite data types. The four primitive ATL types are 
Integer , Double , String  and Boolean . On the other hand, collections and model elements form the set 
of composite types. In this section, we introduce the compilation of both collections and primitive data types 
to the asm file format. Compilation of model elements handling is addressed in the next section. 

Compiling primitive data types in achieved in a very simple way. Such data are therefore created and 
initialized by simply pushing, by means of the appropriate virtual machine instruction, a constant of the 
corresponding type onto the operand stack. Thus, the instruction <push arg="10">  creates a new string 
which value is stored by constant pool entry 10. In the same way, assuming that the constant pool entry 11 
contains an integral constant, the instruction <pushi arg="11">  can be used to allocate a new integral 
value. 

6.2.3 Compiling Composite Literals 

Compilation of composite literals, such as collections, is not much more complex. Composite data types are 
required to be created before being initialized. Concerning the collection data type, this means that the ATL 
virtual machine first allocates an empty collection and then initializes it by means of successive element 
insertions. In the scope of the ATL virtual machine, collections are allocated by means of the new instruction. 
Inserting elements into the newly created collection can then be achieved by calling the native including 
operation defined for the collection. As an example, it is possible to consider the following declaration of an 
integer set with the ATL language: 
 
let int_set: Set ( Integer ) = Set {8, 15, 6} 

This simple declaration can be compiled into the following instruction set: 
 
   0 <push arg="78"/>  <!-- Push string constant "S et" --> 
   1 <push arg="9"/>  <!-- Push string constant "#n ative" --> 
   2 <new/>    
   3 <pushi arg="79"/>  <!-- Push int constant 8 -- > 
   4 <call arg="46"/>  <!-- Call CJ.including(J):CJ  operation --> 
   5 <pushi arg="27"/>  <!-- Push int constant 15 - -> 
   6 <call arg="46"/>  <!-- Call CJ.including(J):CJ  operation --> 
   7 <pushi arg="56"/>  <!-- Push int constant 6 -- > 
   8 <call arg="46"/>  <!-- Call CJ.including(J):CJ  operation --> 

The first step consists in allocating a new empty Set . For this purpose, the strings “Set” and “#native” are 
successively pushed onto the operand stack (instructions 0 and 1). Whereas “#native” encodes the 
metamodel of the element to be created, “Set” refers to its classifier type. Instruction 2 uses these two strings 
to create a new empty set. As a result, the set is pushed on top of the operand stack. At this stage, the 
allocated set still requires to be initialized. That is the purpose of the remaining instructions. Each element of 
the declared collection is pushed onto the operand stack in turn and the including operation associated with 
the considered collection type is called for each of them. In the considered example, the considered 
collection is composed of integers. Initialization of the allocated set therefore consists in pushing an integer 
onto the operand stack (instructions 3, 5, 7) and calling the set including operation (instructions 4, 6, 8) with 
the set as context and the pushed integer as argument. Note that an including operation pushes the modified 
collection back onto the operand stack, so that it is still present on top of the stack once the operation has 
completed. 

In the scope of the ATL transformation language, tuples are considered as another composite data type. As 
a collection, a tuple has to be created before being initialized. While a tuple allocation is performed by means 
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of the new instruction, its initialization is achieved by successively assigning values to its elements (with the 
set object handling instruction). As an example, the following declaration of an integer set with the ATL 
language may be considered: 
 
let a_tuple: TupleType (a: Integer , b: String , c: Real , d: Boolean ) = 
 Tuple {a=8, b= 'Hello' , c=15.9, d= true };  

This tuple declaration can be compiled into the following instruction set: 
 
   0 <push arg="121"/>  <!-- Push string constant " Tuple" --> 
   1 <push arg="9"/>  <!-- Push string constant "#n ative" --> 
   2 <new/> 
   3 <dup/> 
   4 <pushi arg="108"/> <!-- Push int constant 8 -- > 
   5 <set arg="122"/>  <!-- Set "a" object property  --> 
   6 <dup/> 
   7 <push arg="123"/>  <!-- Push string constant " Hello" --> 
   8 <set arg="124"/>  <!-- Set "b" object property  --> 
   9 <dup/> 
  10 <pushd arg="125"/> <!-- Push double constant 1 5.9 --> 
  11 <set arg="126"/>  <!-- Set "c" object property  --> 
  12 <pusht/>   <!-- Push true constant --> 
  13 <set arg="127"/>  <!-- Set "d" object property  --> 

The first step aims to allocate a new tuple structure. This is achieved by instructions 0 to 2. They first push 
two string constants, “Tuple” and “#native” (which respectively encode the classifier and the metamodel of 
the object to be created), onto the operand stack. The new instruction is then called with these two 
parameters. 

Once a new tuple object has been allocated, its elements can be initialized. The different elements can be 
initialized in any order. For each of them, the initial value is first pushed onto the operand stack and then 
assign to its corresponding property. In the example considered here, the initial values are provided as 
constants. Thus, assignment of the “a” property is achieved by pushing an integral constant onto the 
operand stack (instruction 4) and assigning it to the tuple “a” property (instruction 5). Initialization of the “b” 
property is achieved in the same way, by pushing a string value onto the operand stack (instruction 7). Note 
that the different dup instructions aim to duplicate the reference to the created tuple (on the operand stack) 
before it is consumed by the set instruction. 

Finally, ATL deals with a last composite data type which corresponds to OCL enumerations. Although 
enumerations can not be defined within an ATL module, the ATL code can refer to enumerated properties. 
As the other composite types, a reference to an enumeration needs to be allocated prior to be initialized. As 
for the tuple data type, these two steps are based on the new and the set object handling instructions. In the 
following example, “sex” is a property of a Person  model element whose possible values are “#male” or 
“#female”. 
 
if aPerson.sex = #female  
 then ' Madam '  
 else ' Sir '  
endif;  

Assuming that the “sex” property of the Person  model element is stored in local variable 1 (see Section 
6.2.4 for further details on model elements compilation), this ATL code can be compiled into the following 
instruction set: 
 
   0 <load arg="28"/>  <!-- Load local variable 1 - -> 
   1 <push arg="144"/>  <!-- Push string constant " EnumLiteral" --> 
   2 <push arg="9"/>  <!-- Push string constant "#n ative" --> 
   3 <new/> 
   4 <push arg="145"/>  <!-- Push string constant " female" --> 
   5 <set arg="58"/>  <!-- Set "name" object proper ty --> 
   6 ... 
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The first instruction loads the model element property onto the operand stack. The enumeration object is 
then allocated. For this purpose, two strings constants, “EnumLiteral” for the classifier name and “#native” for 
the metamodel, are successively pushed onto the operand stack (instructions 1, 2). The enumeration object 
is then allocated with a new instruction that accept the two previously pushed strings as parameters 
(instruction 3). The enumeration can then be initialized: the “female” string constant is pushed onto the 
operand stack (instruction 4) and assigned to the object “name” property (instruction 5). Now the 
enumeration data is initialized, the conditional expression can be further compiled (see Section 6.2.6 for 
details). 

6.2.4 Compiling Model Elements 

Among composite types, the ATL language provides support for model elements. As composite data, model 
elements are compiled into the asm format similarly to collections. This means that a model element is 
created and initialized during two distinct steps. There is however a significant difference in ATL between 
collections and model elements: whereas ATL allows programmers to create new collections, it does not 
provide any facilities for model element allocation. As a matter of fact, the model element allocations 
implicitly defined within an ATL transformation are made explicit (i.e. encoded into the asm file) at compile 
time. 

In order to illustrate the way model element handling is compiled, we introduce an ATL rule which simply 
copies an input manual BibTeX entry to an equivalent output element: 
 
rule Manual2Manual { 
 from 
        i : BibTeX!Manual 
 to 
   o : BibTeX!Manual ( 
  title <- i.title, 
  id <- i.id 
 ) 
} 

Depending on the way a transformation is compiled into asm, the allocation and the initialisation of a model 
element can be distributed among several operations. This is, for instance, the case with the current 
reference compiler: a first operation allocates a new output element for each matched input elements and a 
second operation is dedicated to the initialization of previously created output elements (see Section 6.3 for 
further details). However, for simplicity sake, we present here both allocation and initialisation steps within a 
single instruction set. Assuming that the input element is stored in local variable 1, the rule can be compiled 
to: 
 
   0 <push arg="22"/>  <!-- Push string constant "M anual" --> 
   1 <push arg="23"/>  <!-- Push string constant "B ibTeX" --> 
   2 <new/> 
   3 <store arg="96"/>  <!-- Store into local varia ble 2 --> 
   4 <load arg="96"/>  <!-- Load local variable 2 - -> 
   5 <load arg="49"/>  <!-- Load local variable 1 - -> 
   6 <get arg="75"/>  <!-- Fetch "title" object pro perty --> 
   7 <set arg="75"/>  <!-- Set "title" object prope rty --> 
   8 <load arg="96"/>  <!-- Load local variable 2 - -> 
   9 <load arg="49"/>  <!-- Load local variable 1 - -> 
  10 <get arg="124"/>  <!-- Fetch "id" object prope rty --> 
  11 <set arg="124"/>  <!-- Set "id" object propert y --> 

Similarly to the composite data types, the first step here consists in allocating a new output model element. 
This allocation follows the same scheme: two strings, respectively encoding the name of the element 
classifier and the name of its metamodel, are successively pushed onto the operand stack before the new 
instruction to be called (instructions 0 to 2). Created model element is then stored in local variable 2 
(instruction 3). The remaining instructions are dedicated to the initialisation of the model element. 

The created output model element is loaded onto the operand stack (instruction 4). The input model element 
is then pushed over it (instruction 5). Its title  attribute is fetched by instruction 6. It is pushed back onto the 
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operand stack. This value can then be set to the title attribute of the previously (by instruction 4) pushed 
output model element (instruction 7). Initialisation of the id  attribute follows the same process. 

Note that initialisation of non-primitive attributes (i.e. links to other model elements) is slightly more complex. 
It requires calling the __resolve__ operation (see Section 6.3.3 for further details). 

6.2.5 Compiling Transient Links 

The transient link type is not part of the ATL language. It represents a virtual machine internal facility to 
encode links between matched source elements and allocated target elements. Transient links explicitly 
capture the relations between the input and output elements of a rule. Explicit definition of transient links is 
performed at compile time. 

In order to illustrate the way this data type may be compiled, we may consider again the Manual2Manual  
rule defined in previous section. This simple rule associates an input model element (i ) to a single output 
model element (o). Each match of the Manual2Manual  rule may lead to the creation of a distinct transient 
link. Assuming the input model element is stored in local variable 1, the creation of such a new element may 
be compiled by the following instruction set: 
 
   0 <push arg="31"/>  <!-- Push string constant "T ransientLink" --> 
   1 <push arg="9"/>  <!-- Push string constant "#n ative" --> 
   2 <new/> 
   3 <dup> 
   4 <push arg="32"/>  <!-- Push string constant "M anual2Manual" --> 
   5 <call arg="33"/>  <!-- Call NTransientLink;.se tRule(MATL!Rule;):V 
operation --> 
   6 <dup> 
   7 <push arg="34"/>  <!-- Push string constant "i " --> 
   8 <load arg="28"/>  <!-- Load local variable 1 - -> 
   9 <call arg="35"/>  <!-- Call NTransientLink;.ad dSourceElement(SJ):V 
operation --> 
  10 <push arg="36"/>  <!-- Push string constant "o " --> 
  11 <push arg="22"/>  <!-- Push string constant "M anual" --> 
  12 <push arg="23"/>  <!-- Push string constant "B ibTeX" --> 
  13 <new/> 
  14 <call arg="37"/>  <!-- Call NTransientLink;.ad dTargetElement(SJ):V 
operation --> 

The first step consists in allocating a new TransientLink . For this purpose, the strings “TransientLink” and 
“#native” are successively pushed onto the operand stack (instructions 0 and 1). Whereas “#native” encodes 
the metamodel of the element to be created, “TransientLink” refers to its classifier type. Instruction 2 uses 
these two strings to create a new transient link. The name of the rule is then pushed onto the operand stack 
(instruction 4) and set to the allocated transient link by calling the setRule operation (instruction 5). 

Next step is to initialize both input and output elements of the transient link. The input element name is 
pushed on top of the operand stack by instruction 7. The input model element can then be loaded from local 
variable 1 (instruction 8) and the addSourceElement operation called with these two data as arguments 
(instruction 9). The name of the output element is in turn pushed onto the operand stack (instruction 10). 
Instructions 11 to 13 then create a new empty output model element and the addTargetElement operation is 
called with both the element name and the allocated model element as arguments (instruction 14). 

The transient link data type is defined along with the transient link set type. It provides a set of facilities for 
storing and retrieving transient links. Assuming that local variable 1 contains an already initialized transient 
link, the following instruction set illustrates the creation and the initialization of such a structure: 
 
   0 <push arg="19"/>  <!-- Push string constant "T ransientLinkSet" --> 
   1 <push arg="9"/>  <!-- Push string constant "#n ative" --> 
   2 <new/> 
   3 <load arg="28"/>  <!-- Load local variable 1 - -> 
   4 <call arg="38"/>  <!-- Call 
NTransientLinkSet;.addLink(NTransientLink;):V opera tion -->  
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This example shows that a transient link set is allocated in the same way collections are. The only difference 
is the classifier name provided to the new instruction (which here is “TransientLinkSet”). One a transient link 
has been loaded on top of the operand stack (instruction 3), it can be inserted into the transient link set by 
calling the addLink operation. 

6.2.6 Compiling a Conditional Expression 

The ATL language provides programmers with a conditional expression represented by the if-then-
else-endif  keywords. As opposed to a traditional programming language (such as Java or C), the ATL if  
instruction corresponds to an expression and, as such, must be associated with a value in any cases (i.e. 
whatever the result of the condition test). As a consequence, ATL if  instructions always have to include an 
else  clause. 

For the purpose of illustrating the compilation of an ATL if-then-else-endif  sequence, we consider a 
simple conditional expression which returns two distinct integral constants according to the value of a given 
integral variable: 
 
if val > 10 
 then 1 
 else 2 
endif; 

This ATL conditional expression can be compiled into the following ATL virtual machine instructions set: 
 
   0 <load arg="21"/>  <!-- Load local variable 1 - -> 
   1 <pushi arg="54"/>  <!-- Push int constant 10 - -> 
   2 <call arg="55"/>  <!-- Call J.>(J):J operation  --> 
   3 <if arg="56"/>  <!—- Conditional branch to ins truction 6 --> 
   4 <pushi arg="32"/>  <!-- Push int constant 2 -- > 
   5 <goto arg="57"/>  <!—- Branch to instruction 7  --> 
   6 <pushi arg="21"/>  <!-- Push int constant 1 -- > 

The first step is here to evaluate the if  boolean expression. Assuming that the val  variable implied in this 
boolean expression is stored within local variable 1, it is loaded on top of the operand stack (instruction 0). 
The integral constant that constitutes the other part of the boolean expression is pushed in its turn onto the 
operand stack (instruction 1). Next instruction can then invoke the > operation with val  as context and 10  as 
parameter (instruction 2). As a result, this operation pushes a boolean value on top of the operand stack. 
Returned boolean value is then tested by a conditional branch (instruction 3). If the value is true (i.e. the 
condition is fulfilled), the execution flow is redirected to instruction 6 which pushes the integral constant 2 
onto the operand stack. Otherwise, if the boolean value is false, the execution proceeds from the next 
instruction (instruction 4) which pushes the integral constant 1 on top of the operand stack. Next instruction 
(instruction 5) then redirects execution to the instruction directly following the true condition block. In this 
example, execution is redirected to instruction 7 which follows the instruction 6 that constitutes the true 
condition block. 

This simple example illustrates that it is possible for a branch (i.e. a goto or an if virtual machine instruction) 
to target the instruction n in an operation composed of n instructions numbered from 0 to n-1. Such a branch 
will result in resuming the operation being executed. If this operation has a return value, the value on top of 
the operand stack when branch is performed is the one to be returned. In the case a conditional expression 
constitutes the body of an iterative treatment, the corresponding branch will target the virtual machine 
enditerate instruction that is associated with the on going iterative treatment (see Section 6.2.7, compilation 
of the select  ATL instruction). 

6.2.7 Compiling an Iterative Block 

As with the OCL language, an iterative treatment is associated in ATL with an iteration over a collection of 
elements. This implies an iterative block to be executed for each element of the collection it refers to. An 
iterative block is typically compiled into a set of ATL virtual machine instructions embraced by the 
iterate/enditerate couple of virtual machine instructions (see Sections 4.3.3 and 4.3.4). As ATL iterations, the 
virtual machine iterate instruction is defined according to a reference collection, which is taken on top of the 
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operand stack. Prior to each iteration, a new element of the reference collection is pushed onto the operand 
stack. The enditerate instruction only aims to mark the end of an iterative block (it is not associated with any 
particular treatment). 

The ATL language defines three main iterative instructions: select , collect  and iterate . The select  
instruction enables to select a subset of the reference collection. Elements of this reference collection are 
filtered according to a boolean expression. A select  instruction produces an output collection which size is 
equal or less than the one of the reference collection. These elements moreover have the same type that 
those of the reference collection. As opposed to the select  one, the collect  instruction produces a 
homogeneous Sequence  of elements whose cardinal is equal to the reference collection one. Although the 
returned sequence is to be homogeneous, the type of its elements may be different from the one of 
reference collection elements. A collect  may, for instance, be used on a model elements collection to 
compile the values of a given property of these elements. It can also be used on any collection of cardinal n 
to easily produce a new Sequence  composed of n identical constant values. 

We propose here to illustrate the compilation of both select  and collect  ATL instructions. We first 
consider an example making use of the select  function. We introduce, in this scope, a set of integral 
values: 
 
let int_set: Set ( Integer ) = Set {8, 15, 6, 3, 19} 

It is now possible to operate a selection on int_set  in order to build the subset of values that are greater 
than 10. This selection corresponds to the following ATL statement: 
 
int_set->select(e | e > 10); 

This simple ATL selection can be compiled into the following ATL virtual machine instructions set: 
 
   0 <push arg="31"/>  <!-- Push string constant "S et" --> 
   1 <push arg="9"/>  <!-- Push string constant "#n ative" --> 
   2 <new/> 
   3 <load arg="21"/>  <!-- Load local variable 1 - -> 
   4 <iterate/> 
   5 <store arg="32"/>  <!-- Store into local varia ble 2 --> 
   6 <load arg="32"/>  <!-- Load local variable 2 - -> 
   7 <pushi arg="46"/>  <!-- Push int constant 10 - -> 
   8 <call arg="47"/>  <!-- Call J.>(J):J operation  --> 
   9 <call arg="48"/>  <!-- Call B.not():B operatio n --> 
  10 <if arg="49"/>  <!-- Conditional branch to ins truction 13 --> 
  11 <load arg="32"/>  <!-- Load local variable 2 - -> 
  12 <call arg="50"/>  <!-- Call CJ.including(J):CJ  operation --> 
  13 <enditerate/> 

Performing a select  operation on an ATL set results in a new set that contains the only elements that fulfil 
the condition specified with the boolean expression. The first step therefore consists in instantiating a new 
empty set. This is achieved with instructions 0 to 2. Assuming that the reference set is stored within local 
variable 1, it can be then loaded on top of the operand stack (instruction 3). The iterate instruction uses this 
set as its reference collection. 

Prior to each iteration, a new element of the collection is implicitly pushed onto the operand stack by the ATL 
virtual machine. This element is saved into local variable 2 and made available again on top of the operand 
stack by instructions 5 and 6. Next step corresponds to the evaluation of the ATL boolean expression (e > 
10). For this purpose, the 10 integral constant is pushed onto the operand stack (instruction 7) and the > 
operation is called with the current element as context and the integral constant as parameter (instruction 8). 
This invocation returns a boolean value on top of the operand stack. Next instruction calls the not  operation 
with the previously returned boolean value as context (instruction 9). This new invocation pushes a new 
boolean value onto the operand stack. This value is then tested by a conditional branch (instruction 10). If 
the value is true  (i.e. the ATL condition is not fulfilled), the execution flow is redirected to instruction 13 
which corresponds to the end of the current iteration. Otherwise, if the ATL condition is fulfilled, execution 
proceeds from the next instruction (instruction 11). This instruction loads the current collection element onto 
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the operand stack. This element can then be inserted into the produced set by calling the including  
operation with the output collection as context and the current element as parameter (instruction 12). Note 
that: 

• The context output collection is initially pushed onto the operand stack by instruction 3. 

• The including  operation pushes the updated collection onto the operand stack so that it is not 
necessary to push it again for the next iteration. 

In order to illustrate the compilation of the collect  instruction, we now introduce another example. For this 
purpose, we consider entry_set , a set of model elements of type TitledEntry  that represent those 
entries of a BibTeX  file that include a title  attribute. It is possible to operate a collect  on this 
entry_set  in order to build a sequence containing the titles that appear in the considered BibTeX file. This 
operation corresponds to the following ATL statement: 
 
entry_set->collect(e | e.title); 

This simple ATL instruction can be compiled into the following ATL virtual machine instructions set: 
 
   0 <push arg="31"/>  <!-- Push string constant "S equence" --> 
   1 <push arg="9"/>  <!-- Push string constant "#n ative" --> 
   2 <new/> 
   3 <load arg="21"/>  <!-- Load local variable 1 - -> 
   4 <iterate/> 
   5 <store arg="32"/>  <!-- Store into local varia ble 2 --> 
   6 <load arg="32"/>  <!-- Load local variable 2 - -> 
   7 <get arg="45"/>  <!-- Fetch "title" object pro perty --> 
   8 <call arg="46"/>  <!-- Call CJ.including(J):CJ  operation --> 
   9 <enditerate/> 

When applied to an ATL collection, a collect  instruction produces a Sequence  that contains as many 
elements as the reference collection. As for a select  compilation, the first step consists in instantiating a 
new empty sequence. This is achieved with instructions 0 to 2. Assuming that the reference set is stored 
within local variable 1, it can be then loaded on top of the operand stack (instruction 3). The iterate 
instruction uses this set as its reference collection. 

Similarly to the select  compilation, a new element of the collection is implicitly pushed onto the operand 
stack by the ATL virtual machine priori to each iteration. This element is saved into local variable 2 and made 
available again on top of the operand stack by instructions 5 and 6. 

Next step aims to retrieve/build the element to be inserted in the sequence to be returned. In our example, 
this element corresponds to the title  of the current BibTeX entry (i.e. the current element of the reference 
collection). This string value is fetched by means of the get instruction (that applies to the model element on 
top of the operand stack) and pushed back onto the operand stack (instruction 7). The title can then be 
inserted into the produced sequence by calling the including  operation with the output collection as 
context and the fetched string as parameter (instruction 8). 

The last iterative instruction provided by the ATL language is the iterate  instruction (which should not be 
confused with its homonym virtual machine instruction). This last instruction is more flexible than the select  
and collect  ones. It therefore allows programmers to: 

• Declare (and initialize) the data type of the value to be returned by the iterative treatement. For 
instance, iterate  makes it possible to return a primitive ATL data type (such as String , 
Integer , etc.) as result of the iterative treatment. 

• Specify what iterative treatment to perform. 

In order to illustrate the compilation of the iterate  ATL instruction, we consider int_set  as a set of 
integral values. It is therefore possible to compute the sum of the values contained in int_set  by means of 
the following ATL instruction: 
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int_set->iterate(e; ret : Integer  = 0 | ret + e); 

As a reminder, e identifies the current element of the reference collection. ret : Integer = 0  
corresponds to the declaration and the initialization of the variable to be returned (ret ). Finally, ret + e  
specifies the operation to be iteratively performed. This ATL instruction can be compiled into the following 
ATL virtual machine instructions set: 
 
   0 <pushi arg="7"/>  <!-- Push int constant 0 -->  
   1 <store arg="32"/>  <!-- Store into local varia ble 2 --> 
   2 <load arg="21"/>  <!-- Load local variable 1 - -> 
   3 <iterate/> 
   4 <store arg="67"/>  <!-- Store into local varia ble 3 --> 
   5 <load arg="32"/>  <!-- Load local variable 2 - -> 
   6 <load arg="67"/>  <!-- Load local variable 3 - -> 
   7 <call arg="68"/>  <!-- Call J.+(J):J operation  --> 
   8 <store arg="32"/>  <!-- Store into local varia ble 2 --> 
   9 <enditerate/> 
  10 <load arg="32"/>  <!-- Load local variable 2 - -> 

Similarly to the previously described ATL iterative instructions, the first step consists in allocating and 
initializing the variable used to store the value to be returned. However, compared to the other iterative 
instructions, this variable can be here of any ATL types. In this example, this step consists in initializing the 
integral value ret  to 0. This is achieved by instruction 0. Initilialized value is then stored in local variable 2 
(instruction 1). Assuming that the reference set is stored within local variable 1, it is then loaded on top of the 
operand stack (instruction 2). The iterate instruction (instruction 3) uses this set as its reference collection. 

A new element of the reference collection is implicitly pushed onto the operand stack at the beginning of 
each iteration. It is saved into local variable 3 by instruction 4. Instructions 5 and 6 respectively load the 
value to be returned and the current element on top of the operand stack. The operation + is then called with 
the value to be returned as context and the current element of the reference collection as parameter 
(instruction 7). As a result, the operation pushes the computed value onto the operand stack. This value is 
stored in local variable 2 as the value to be returned (instruction 8). Once the iteration has completed, the 
content of local variable 2 is loaded onto the operand stack (instruction 10). 

6.2.8 Receiving Arguments 

As opposed to Java, the ATL language does not define context-less operation calls facilities. Whereas 
static  Java methods do not have any instance, all invoked operations in ATL are to be associated with a 
specific context. As a consequence, there exist a one and only way to receive arguments for ATL operations. 

The n arguments that are passed to an invoked operation are stored in the localvariabletable  structure 
of the stack frame created for the new operation. The table entry 0 is reserved to hold a reference to the 
context in which the operation is called and the arguments are stored in local variables numbered from 1 to 
n. The arguments are received in the order they were passed. As an example, consider the code of the 
following ATL helper: 
 
helper 
 def: firstOfTwo(i: Integer , j: Integer ) : Integer  = i; 

This helper is defined in the context of the ATL context module and simply returns the value of its first 
argument. It compiles to: 
 
Operation int firstOfTwo(int,int) 
   0 <load arg="1">  <!-- Load local variable 1 -->  

The value of the operation first argument is loaded on top of the operand stack. This top value is the one to 
be returned when the operation completes. 
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6.2.9 Invoking an Operation 

The ATL language defines a one and only way to invoke operations. ATL invocations are implemented by 
the call instruction (see Section 4.3.5), which takes as argument an index to a constant pool entry containing 
the full signature of the invoked operation. This operation signature provides the type of context for which the 
operation is defined, the operation name, its return type and the number, the order and the type of its 
arguments. The test  helper, defined below, provides an operation invocation example: 
 
helper def: test() : Integer  = 
 thisModule.firstOfTwo(12, 13); 

This new helper, which is also defined in the context of the ATL context module, calls the firstOfTwo  
helper with two integral numerical constants. It compiles to: 
 
Operation test() 
   0 <getasm>   <!-- Push asm module --> 
   1 <pushi arg="31">  <!-- Push int constant 12 -- > 
   3 <pushi arg="32">  <!-- Push int constant 13 -- > 
   4 <call arg="46">  <!-- Call A.firstOfTwo(II):I operation --> 

First step of the operation invocation process is pushing operation context and arguments onto the top of the 
operand stack. This is achieved by first pushing a reference to the ATL context module onto the operand 
stack. Operation invocation's arguments, int  values 12  and 13 , are pushed in their turn onto the operand 
stack. Once the frame associated with the firstOfTwo  operation is created, the context and the arguments 
passed to the operation invocation become the initial values of the new frame's local variables. Thus, the 
local variable 0 of the invoked firstOfTwo  operation will receive the reference to the ATL context module 
whereas local variables 1 and 2 will be respectively initialized to the 12 and 13 int  values. 

When the invoked operation completes, its int  return value is pushed onto the operand stack of the 
invoking operation (test ). Note that the ATL virtual machine does not define any return-like instruction. As a 
consequence, an operation always completes with its last instruction. An early return instruction can however 
be implemented by means of a goto  instruction pointing to the last instruction of the operation. 

If the invoked operation has no return value (i.e. returns a void element), the operand stack of its invoking 
operation remains unchanged when it completes. 

The operand of the call instruction (in the example, the runtime constant pool index #4) is a symbolic 
reference (the operation signature) to a method of an instance. This reference is stored in the constant pool 
and resolved at run time to determine the actual operation location. 

6.3 Compiling an ATL Transformation 

This section describes the way an ATL transformation is compiled into the asm format for the current 
reference implementation of the ATL virtual machine. Compiling an ATL transformation consists in 
generating constant pool, a set of fields and a set of operations from the ATL source code elements (helpers 
and rules). The following subsections describe the way these source elements are compiled into asm 
elements. 

6.3.1 Compiling Helpers 

The ATL language enables to define two different kinds of helpers: attribute and function helpers. An 
attribute helper can be though as a variable global to the ATL module. This variable has to be initialized at 
the transformation start-up. A function helper specifies a treatment which is executed each time it is invoked. 

According to their type, helpers are compiled differently. Thus, two asm elements are generated for each 
attribute helper: a homonym field and an initialization operation. The field aims to store the value associated 
with the attribute helper whereas the operation specifies the code for the field initialization. Such a generated 
operation is named __init<helper-name>.  The context of an attribute helper has to refer to the ATL module 
but the generated operation accepts the same parameters that the helper it is associated with. The following 
attribute helper declaration may be considered as an example: 
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helper def: size_max : Integer  = 15; 

This helper declaration compiles into the following asm field: 
 
<field name="5" type="6"/>  <!-- size_max : I --> 

Moreover, the initialization of the field is performed by this generated operation: 
 
<operation name="21">   <!-- __initsize_max --> 
 <context type="8"/>  <!-- A --> 
 <parameters> 
 </parameters> 
 <code> 
  <load arg="9"/>  <!-- 0 --> 
  <pushi arg="22"/>  <!-- 15 --> 
  <set arg="5"/>  <!-- size_max --> 
 </code> 
 <localvariabletable> 
  <lve slot="0" name="20" begin="0" end="2"/><!-- s elf --> 
 </localvariabletable> 
</operation> 

Note that an attribute helper may accept other attribute helpers as parameters. Cross-references, as well as 
recursivity, are obviously prohibited in attribute helper definitions. However, a compiler should be able to 
manage valid dependencies between among attribute helpers. The reference compiler currently does not 
manage these dependencies. Attribute helpers are therefore required to be declared in the right order (with 
respect to existing dependencies). 

Compared to attribute helpers, function helpers are simply compiled into homonym operations. Generated 
operations are defined with the same context and parameters that their corresponding ATL helpers. An 
example is provided by the firstOfTwo  helper introduced in Section 6.2.8: 
 
helper 
 def: firstOfTwo(i: Integer , j: Integer ) : Integer  = ...; 

The context of this helper is the ATL module (since no context is specified), it accepts two integral 
parameters and returns an integral value. It is compiled into the following asm structure: 
 
<operation name="67">    <!-- firstOfTwo --> 
 <context type="8"/>   <!-- A --> 
 <parameters> 
  <parameter name="34" type="6"/> <!-- 1 : I --> 
  <parameter name="54" type="6"/> <!-- 2 : I --> 
 </parameters> 
 <code> 
  ... 
 </code> 
 <localvariabletable> 
  <lve slot="0" name="20" begin="0" end="0"/><!-- s elf --> 
  <lve slot="1" name="40" begin="0" end="0"/><!-- i  --> 
  <lve slot="2" name="69" begin="0" end="0"/><!-- j  --> 
 </localvariabletable> 
</operation>  

Note that entries 1 and 2 of the local variable table respectively contain to the helper parameters i  and j . 

6.3.2 Compiling Rules 

A rule includes a filter and an instantiation parts. The filter defines a condition that has to be fulfilled by input 
model elements in order to generate output model elements. The instantiation part specifies the way newly 
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allocated output model elements are initialized. Compilation of an ATL rule results in inserting two new 
operations into the asm file. These operations are the rule matching operation and the rule instantiation 
operation. They are respectively named __match<rule-name> and __apply<rule-name>. Both are defined 
within the ATL module context. 

The matching operation checks, for each source model element which has a meta relation with the 
metamodel element associated with the rule source pattern, whether it verifies the filter or not. A target 
metamodel element is instantiated for each source model element validating the filter. Matching operations 
have no parameters. A matching operation is called once for all the input model elements targeted by its 
associated rule. It iterates over this set of input model elements. For each of them, it tests the condition 
specified within the in pattern of the rule. If the current model element fulfils this condition, the matching 
operation allocates a new empty target model element. A new transient link, which associates the rule, the 
input and the output model elements, is then allocated and inserted into the ATL module transient link set. 
The matching operation generated for the Manual2Manual  operation introduced in Section 6.2.4 is provided 
in Appendix II. 

The instantiation operation aims to initialize the properties of the output model elements instantiated by the 
corresponding matching operation. It is called for each generated output model element. The instantiation 
operation accepts a transient link as argument. This transient link is one of the links generated by the 
corresponding matching operation. It associates an empty allocated output model element with its input 
model element. For this purpose, the operation fetches the properties of the input model element and builds 
new values that are assigned to the output model element properties. To this end, the __resolve__ operation 
is invoked to resolve references to other input model elements (see Section 6.3.3 for further details on the 
__resolve__ operation). The instantiation operation generated for the Manual2Manual  operation introduced 
in Section 6.2.4 is provided in Appendix III. 

6.3.3 Compiling a Transformation 

An ATL transformation is composed of helper and rule definitions. Previous sections have introduced the 
way the different elements that compose an ATL transformation are compiled into the asm format. We 
describe here the asm elements that are generated for an ATL transformation. 

Compilation of an ATL transformation module results in two asm fields (links and col) and three new 
operations (main, __matcher__ and __exec__). The links field contains a transient link set which is used by 
the ATL module to store the transient links that are generated by the matching operations. The col field  

The main operation is the transformation entry point. It first initializes the col field. It then calls the attribute 
helper initialization operations (__init<helper-name>), before calling the __matcher__ operation and finally 
the __exec__ one. The __matcher__ operation initializes the links field and calls the __match<rule-name> 
operation associated with each defined rule. Finally, the __exec__ operation invokes the __apply<rule-
name> operations. 

Most internally generated operations have their name escaped in order to avoid name collisions with defined 
helpers and rules. As an exception, the ATL to asm reference compiler does not escape the name of the 
main operation at present time. This behaviour has no incidence on rules naming since the name of 
operations that are associated with rules are either prefixed by __match or __apply. However, since a 
function helper is associated with a homonym operation, ATL programs are assumed not to contain any 
function helper named “main”. Naming of attribute helpers remains unconstrained (names of the operations 
associated with this kind of helpers are prefixed with __init). 

Two additional operations may be generated according to the transformation code: the __resolve__ and 
resolveTemp operations (the reference compiler currently generates them even when they are not required). 
Both are defined within the ATL module context. The __resolve__ is called by instantiation operations, once 
all output model elements have been allocated. It aims to resolve references between input model elements. 
Indeed, at the instantiation stage, the output model elements are initialized by executing the assignments 
specified in the output patterns of each rule. With the ATL language, output model element properties are 
computed from input model element ones. In case the considered input property is a reference to another 
input model element, it has to be resolved into the corresponding allocated output model element. This 
corresponding output model element is the default output element generated by the rule that has matched 
the input model element. 
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The information that is required to achieve the resolution is stored within the transient link set associated with 
the links field of the ATL module. The getLinkBySourceElement operation (defined in the context of a 
transient link set) makes it possible to obtain a transient link from its source model element. The 
getTargetFromSource operation, defined in the context of a transient link, then enables to get the transient 
link default target element from its source element. 

The __resolve__ operation accepts an object as parameter and returns an object. The parameter is a 
property of an input model element whereas the returned value is the corresponding data in the output 
model: 

• When the parameter is a simple attribute (i.e. as opposed to a model element reference), 
__resolve__ returns the value of this parameter. 

• If the parameter is a reference to an input model element, the reference is resolved and the 
corresponding output element is returned. In case the rule that matches the pointed input model 
element produces more than one output model element, the __resolve__ operation returns an 
instance of the first output element of the considered rule (which is considered as the default output 
model element). 

• Finally, if the parameter is an instance of a collection type, the operation returns a collection. The 
returned collection is build by recursively calling the __resolve__ operation on each element of the 
collection provided as a parameter. 

As opposed to the __resolve__ operation, which may only be invoked from the code being generated by the 
compiler, the resolveTemp operation is currently defined in the ATL language. In an ATL file, this operation 
can be called from the instantiation expressions of the rules output patterns (and from helpers invoked from 
such expressions). As __resolve__, the resolveTemp operation aims to resolve references between input 
model elements during the instantiation step. However, compared to __resolve__, this new operation also 
allows resolving references to non-default output model elements of the rules. For this purpose, it accepts an 
additional string parameter that identifies the output model element the reference has to be resolved to. This 
parameter is passed to the getNamedTargetFromSource operation (defined in the context of a transient link) 
in order to get an identified output model element (as opposed to the default one) of the transient link. 
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7 Future developments 
In this document, we have presented the ATL virtual machine specification along with an XML-based byte 
code file format (the asm file format). In order to illustrate these specifications, we detailed in Section 6, a 
possible compiling scheme of the ATL language to the asm file format. 

In this section, we introduce a set of possible future evolutions for both the ATL virtual machine and the asm 
file format. These possible evolutions have been sorted into two groups: those concerning the ATL virtual 
machine instruction set and those that are related to the asm file format. 

7.1 Evolving the ATL Virtual Machine Instruction Set 

The ATL virtual machine instruction set was primarily designed to provide an execution support for the ATL 
transformation language. This has obviously influenced the initial design of the virtual machine instruction set 
which is not large enough to support a broad set of languages. In particular, the ATL virtual machine 
instruction set does not define any object deletion facilities. On the other hand, some other instructions, 
which are supported in an inefficient way, should be redefined to improve performance. We describe, from 
these observations, a couple of possible future evolutions for the ATL virtual machine instruction set. 

7.1.1 Support for Object Deletion 

Since the ATL language does not require any object deletion facilities, the virtual machine instruction 
presently does not define any deletion instruction. However, object removal facilities are required by many 
other languages specifications and a delete instruction should be added soon to the ATL virtual machine 
instruction set. This delete instruction will most likely follow the following specification: 
 

Operation 

Delete an object. 

Format 

delete 

Operand Stack 

…, reference ⇒ … 

Description 

The object to be removed may be either a model element or an instance of a composite data type. 

The referenced object is deleted. The reference is popped from the operand stack. 

7.1.2 Improvement of new and findme instructions 

The new and findme instructions have a very similar behaviour. Both return an object reference. With the 
findme instruction, the returned object is to be a model element. Both accept two parameters which define 
the metamodel and the classifier (or type) of the object to be allocated/fetched. These parameters must be 
available on the top of the operand stack of the current frame. As a consequence, executing a new or a 
findme instruction implies the former execution of at least two additional instructions in order to 
compute/push/load the new/findme parameters onto the operand stack. Providing the instruction with the full 
type of the object to be allocated/fetched as an inline parameter would be a more efficient solution. The 
instructions of the ATL virtual machine instruction set are however limited to an only inline argument. The 
proposed solution then requires both the object metamodel and type to be encoded within a single argument. 
This could be achieved by means of a string-based type encoding similar to the data type encoding scheme 
defined for the asm file format (see Section 5.2.1). Thus, with respect to the asm type encoding scheme, the 
allocation a new Node model element of the XML metamodel would be performed by means of a single 
instruction: <new arg="MXML!Node;"> . This new instruction will most likely follow the following 
specification: 
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Operation 

Create new object. 

Format 

New 

type-encoding 

Operand Stack 

… ⇒ …, reference 

Description 

This instruction is used to create new model elements and new composite objects. The type of the 

object (the element) is resolved from the inline type-encoding argument. If resolution completes 

successfully, memory for the new object instance is allocated. As a result, type-encoding is popped 

from the operand stack and replaced by a reference to the allocated object. 

7.2 Evolving the asm File Format 

As the ATL virtual machine instruction set, the asm file format has been primarily designed to encode 
compiled ATL transformations. At the present time, it is already generic enough to support the encoding of 
different languages. However, some points may still be improved in order to provide language compilers with 
even more encoding options. 

The asm format makes it possible to define a set of fields. These fields are used to store variables. As 
opposed to the operations, they currently cannot be associated with a specific context. As a matter of fact, 
they all have to be associated with a default context. In the scope of the ATL language, this context is the 
ATL module. It may be interesting to allow the declaration of fields in different context. For this purpose, the 
context in which a field is defined has to be encoded into the asm format. This context may be encoded in 
the same way that the operation context, as illustrated by the following extract of then asm structure: 
 
<!DOCTYPE asm [ 
  ... 
  <!ELEMENT field (context)> 
  <!ELEMENT context EMPTY> 
  ... 
  <!ATTLIST field name CDATA> 
  <!ATTLIST field type CDATA> 
  <!ATTLIST context type CDATA> 
]> 

With such a definition, the col field generated for an ATL transformation (see Section N) would be encoded 
by the following asm structure: 
 
<field name="3" type="4">  <!-- col : J; --> 
 <context type="8"/>  <!-- A --> 
</field> 

Encoding the context of fields into the asm format would provide support for some possible ATL language 
extensions. We may, for instance, allow ATL programmers to associate attribute helpers with input model 
elements. These attribute helpers would therefore be encoded in asm as fields that would be defined into the 
context of input model elements. 

Finally, the asm format does not encode the operations return type. As this kind of information may be useful, 
it is possible to include it into the operation definition along with the operation context and parameters. As for 
the context element, the only required information is the type of the returned value. This information could be 
encoded in the asm structure in the following way: 
 
<!DOCTYPE asm [ 
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  ... 
  <!ELEMENT operation (context, parameters, return,  code, linenumbertable, 
localvariabletable)> 
  <!ELEMENT context EMPTY> 
  <!ELEMENT parameters (...)> 
  <!ELEMENT return EMPTY> 
  <!ELEMENT code (...)> 
  <!ELEMENT linenumbertable (...)> 
  <!ELEMENT localvariabletable (...)> 
  ... 
  <!ATTLIST return type CDATA> 
]> 
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I. asm File DTD 
 

 
<!DOCTYPE asm [ 
 
  <!ELEMENT asm (cp, field*, operation+)> 
  <!ELEMENT cp (constant*)> 
  <!ELEMENT constant EMPTY> 
  <!ELEMENT field EMPTY> 
  <!ELEMENT operation (context, parameters, code, l inenumbertable, 
localvariabletable)> 
  <!ELEMENT context EMPTY> 
  <!ELEMENT parameters (parameter*)> 
  <!ELEMENT parameter EMPTY> 
  <!ELEMENT code (push, pushi, pushd, pushf, pusht,  pop, store, load, swap, dup, 
dup_x1, if, goto, iterate, enditerate, call, new, g et, set, findme, getasm)*> 
  <!ELEMENT push EMPTY> 
  <!ELEMENT pushi EMPTY> 
  <!ELEMENT pushd EMPTY> 
  <!ELEMENT pushf EMPTY> 
  <!ELEMENT pusht EMPTY> 
  <!ELEMENT pop EMPTY> 
  <!ELEMENT store EMPTY> 
  <!ELEMENT load EMPTY> 
  <!ELEMENT swap EMPTY> 
  <!ELEMENT dup EMPTY> 
  <!ELEMENT dup_x1 EMPTY> 
  <!ELEMENT if EMPTY> 
  <!ELEMENT goto EMPTY> 
  <!ELEMENT iterate EMPTY> 
  <!ELEMENT enditerate EMPTY> 
  <!ELEMENT call EMPTY> 
  <!ELEMENT new EMPTY> 
  <!ELEMENT get EMPTY> 
  <!ELEMENT set EMPTY> 
  <!ELEMENT findme EMPTY> 
  <!ELEMENT getasm EMPTY> 
  <!ELEMENT linenumbertable (lne*)> 
  <!ELEMENT lne EMPTY> 
  <!ELEMENT localvariabletable (lve+)> 
  <!ELEMENT lve EMPTY> 
 
  <!ATTLIST asm name CDATA> 
  <!ATTLIST constant value CDATA> 
  <!ATTLIST field name CDATA> 
  <!ATTLIST field type CDATA> 
  <!ATTLIST context type CDATA> 
  <!ATTLIST parameter name CDATA> 
  <!ATTLIST parameter type CDATA> 
  <!ATTLIST push arg CDATA> 
  <!ATTLIST pushi arg CDATA> 
  <!ATTLIST pushd arg CDATA> 
  <!ATTLIST store arg CDATA> 
  <!ATTLIST load arg CDATA> 
  <!ATTLIST if arg CDATA> 
  <!ATTLIST goto arg CDATA> 
  <!ATTLIST call arg CDATA> 
  <!ATTLIST get arg CDATA> 
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  <!ATTLIST set arg CDATA> 
  <!ATTLIST lne id CDATA> 
  <!ATTLIST lne begin CDATA> 
  <!ATTLIST lne end CDATA> 
  <!ATTLIST lve slot CDATA> 
  <!ATTLIST lve name CDATA> 
  <!ATTLIST lve begin CDATA> 
  <!ATTLIST lve end CDATA> 
 
]> 
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II. asm code of __matchManual2Manual operation 
 

 
<operation name="27"> <!-- __matchManual2Manual -->  
  <context type="8"/> <!-- A --> 
  <parameters> 
  </parameters> 
  <code> 
 <push arg="28"/> <!-- Manual --> 
 <push arg="29"/> <!-- BibTeX --> 
 <findme/> 
 <push arg="30"/> <!-- Sequence --> 
 <push arg="11"/> <!-- #native --> 
 <new/> 
 <swap/> 
 <dup_x1/> 
 <push arg="31"/> <!-- IN --> 
 <call arg="32"/> <!-- MMOF!Classifier;.allInstance sFrom(S):QJ --> 
 <call arg="33"/> <!-- CJ.union(CJ):CJ --> 
 <swap/> 
 <pop/> 
 <iterate/> 
 <store arg="34"/> <!-- 1 --> 
 <pusht/> 
 <call arg="35"/> <!-- B.not():B --> 
 <if arg="36"/> <!-- 37 --> 
 <load arg="9"/> <!-- 0 --> 
 <get arg="1"/> <!-- links --> 
 <push arg="37"/> <!-- TransientLink --> 
 <push arg="11"/> <!-- #native --> 
 <new/> 
 <dup/> 
 <push arg="38"/> <!-- Manual2Manual --> 
 <call arg="39"/> <!-- NTransientLink;.setRule(MATL !Rule;):V --> 
 <dup/> 
 <push arg="40"/>  <!-- i --> 
 <load arg="34"/>  <!-- 1 --> 
 <call arg="41"/> <!-- NTransientLink;.addSourceEle ment(SJ):V --> 
 <dup/> 
 <push arg="42"/> <!-- o --> 
 <push arg="28"/> <!-- Manual --> 
 <push arg="29"/> <!-- BibTeX --> 
 <new/> 
 <call arg="43"/> <!-- NTransientLink;.addTargetEle ment(SJ):V --> 
 <call arg="44"/> <!-- NTransientLinkSet;.addLink(N TransientLink;):V --> 
 <enditerate/> 
  </code> 
  <localvariabletable> 
 <lve slot="1" name="40" begin="14" end="36"/><!-- i --> 
 <lve slot="0" name="20" begin="0" end="37"/><!-- s elf --> 
  </localvariabletable> 
</operation> 
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III. asm code of __applyManual2Manual operation 
 

 
<operation name="161">  <!-- __applyManual2Manual - -> 
  <context type="8"/>  <!-- A --> 
  <parameters> 
 <parameter name="34" type="162"/><!-- 1 : NTransie ntLink; --> 
  </parameters> 
  <code> 
 <load arg="34"/>  <!-- 1 --> 
 <push arg="40"/>  <!-- i --> 
 <call arg="163"/>  <!-- NTransientLink;.getSourceE lement(S):J --> 
 <store arg="54"/>  <!-- 2 --> 
 <load arg="34"/>  <!-- 1 --> 
 <push arg="42"/>  <!-- o --> 
 <call arg="164"/>  <!-- NTransientLink;.getTargetE lement(S):J --> 
 <store arg="100"/> <!-- 3 --> 
 <load arg="100"/>  <!-- 3 --> 
 <dup/> 
 <load arg="9"/>  <!-- 0 --> 
 <load arg="54"/>  <!-- 2 --> 
 <get arg="79"/>  <!-- title --> 
 <call arg="55"/>  <!-- A.__resolve__(J):J --> 
 <set arg="79"/>  <!-- title --> 
 <dup/> 
 <load arg="9"/>  <!-- 0 --> 
 <load arg="54"/>  <!-- 2 --> 
 <get arg="165"/>  <!-- id --> 
 <call arg="55"/>  <!-- A.__resolve__(J):J --> 
 <set arg="165"/>  <!-- id --> 
 <pop/> 
  </code> 
  <localvariabletable> 
 <lve slot="2" name="40" begin="3" end="21"/><!-- i  --> 
 <lve slot="3" name="42" begin="7" end="21"/><!-- o  --> 
 <lve slot="0" name="20" begin="0" end="21"/><!-- s elf --> 
 <lve slot="1" name="172" begin="0" end="21"/><!-- link --> 
  </localvariabletable> 
</operation> 

 


