
The ATL Virtual Machine

© 2006 ATLAS Nantes- 1 -

The ATL Virtual MachineThe ATL Virtual Machine
An introduction to the ATL Virtual An introduction to the ATL Virtual

MachineMachine
V1.0 draftV1.0 draft

Frédéric Jouault, and Freddy Allilaire

ATLAS group (INRIA & LINA), University of Nantes, France
http://www.sciences.univ-nantes.fr/lina/atl/

The ATL Virtual Machine

© 2006 ATLAS Nantes- 2 -

Outline

• Introduction
• Structure of the ATL Virtual Machine
• Instruction Set Summary
• ASM File Format
• Compiling for the ATL VM ACG

The ATL Virtual Machine

© 2006 ATLAS Nantes- 3 -

Outline

• Introduction
• Structure of the ATL Virtual Machine
• Instruction Set Summary
• ASM File Format
• Compiling for the ATL VM ACG

The ATL Virtual Machine

© 2006 ATLAS Nantes- 4 -

ATL Development Tools (ADT)

• ATL is accompanied by a set of tools built on top of
the Eclipse platform

• ADT is composed of the ATL transformation engine
(Engine block) and the ATL IDE

Eclipse Platform

Engine DebugBuilderEditor

ATL Development Tools

Uses ATL Engine API

Uses Eclipse API

Legend

The ATL Virtual Machine

© 2006 ATLAS Nantes- 5 -

ATL Engine

• The ATL engine is responsible for dealing with core ATL tasks:
• Transformation compilation
• Transformation execution

• The ATL compiler and compiled transformations run on top of the
ATL Virtual Machine

Model Repository

EMF MDR ...

Model Handler Abstraction Layer

ATL VM

ATL Compiler ATL Programs

XMI 2.0 XMI 1.2

The ATL Virtual Machine

© 2006 ATLAS Nantes- 6 -

ATL VM Introduction – General Steps

• ATL transformations are compiled to programs in
specialized byte-codes stored in the ASM file
format

• This byte-code is executed by the ATL Virtual
Machine (VM)

• The VM is specialized in handling models and provides
a set of instructions for model manipulation.

• The VM may run on top of various model management
systems (e.g., Eclipse EMF, and Netbeans MDR)
• To isolate the VM from their specifics, an intermediate level is

introduced called Model Handler Abstraction Layer
• This layer translates the instructions of the VM for model

manipulation into instructions of a specific model handler

The ATL Virtual Machine

© 2006 ATLAS Nantes- 7 -

ATL VM Introduction – Technical Steps

• The ATL VM is an abstract computing machine
• It is similar to the Java VM
• Its instructions operate on an operand stack
• It has its own model-oriented instruction set

• The ATL VM does not depend on ATL
• Other languages can be implemented on top of it

• Instructions are stored in the ASM file format
• This format is based on XML

The ATL Virtual Machine

© 2006 ATLAS Nantes- 8 -

Outline

• Introduction
• Structure of the ATL VM
• Instruction Set Summary
• ASM File Format
• Compiling for the ATL VM ACG

The ATL Virtual Machine

© 2006 ATLAS Nantes- 9 -

Structure of the ATL Virtual Machine

• The following aspects are going to be detailed:
• Data Types
• Runtime Data Structures
• Stack Frames
• Representation of Model Elements

The ATL Virtual Machine

© 2006 ATLAS Nantes- 10 -

Datatype

• There are two kinds of datatypes:
• Primitive (Boolean, Integer, Real, String)
• Composite (Tuple, Collections, Map, metamodel elements, etc.)

• The VM performs runtime type checking
• A compiler may perform compile-time type checking

to catch problems earlier
• The instruction set distinguishes its operand types

using instructions intended to operate on values of
specific types

The ATL Virtual Machine

© 2006 ATLAS Nantes- 11 -

Datatype: Primitive Types

• Primitive types defines the core types the VM relies
on
• Boolean: encodes true and false Boolean values
• Integer: encodes integral numerical values
• Real: encodes real numerical values
• String: encodes string values

• These types support the operations defined in the
OCL standard library

The ATL Virtual Machine

© 2006 ATLAS Nantes- 12 -

Datatype: Composite Types

• Tuple
• Represents OCL tuples

• Collections
• Specify collections of elements
• Exist in several versions: Bag, OrderedSet, Sequence, Set

• Map
• Represents associative tables

• Metamodel elements
• Correspond to the types defined in the metamodels of the

source and target models

The ATL Virtual Machine

© 2006 ATLAS Nantes- 13 -

Runtime Data Structures

• ATL VM defines various runtime data areas used
during execution

• PC register
• Program counter
• Contains the address of the ATL VM instruction currently

being executed (except when executing native (typically Java)
operations)

• Call Stack
• Created at start-up
• Stores stack frames
• Analogous to the call stack of conventional languages
• Holds variables and partial results (in an operand stack)
• Plays a part in operation invocation and return

The ATL Virtual Machine

© 2006 ATLAS Nantes- 14 -

Stack Frames

• Created each time a non-native operation is invoked
• Destroyed when its operation invocation completes
• Stored on the call stack
• Each frame has its own array of local variables and

its own operand stack
• Only one frame is active at anytime and is referred

to as the current frame
• A frame ceases to be the current frame if its

operation completes or invokes another operation

The ATL Virtual Machine

© 2006 ATLAS Nantes- 15 -

Stack Frames: Local variables

• Each frame is associated with a set of variables
Local variables

• Can be hold values of primitive or composite type
• Used to pass arguments to instructions
• Used to pass arguments to invoked operations

• The values of the arguments associated with an operation
invocation are subsequently assigned to local variables of the
new stack frame created for the invoked operation

The ATL Virtual Machine

© 2006 ATLAS Nantes- 16 -

Stack Frames: Operand stack

• Each frame contains a LIFO stack
the operand stack

• The instruction set contains instructions to load constants or
values from variables or fields onto the operand stack

• Other instructions take operands from the operand stacks,
operate on them, and push the result back on the operand
stack

• It is also used to prepare arguments to be passed to operations
and to receive operation results

• Each entry on the operand stack can hold a value of any ATL
VM type

• Values from the operand stack must be operated upon in ways
appropriate to their types

The ATL Virtual Machine

© 2006 ATLAS Nantes- 17 -

Representation of Model Elements

• The way model elements are internally managed by
ATL virtual machine is not constrained

• Model handler implementers are therefore free to
use some existing model handling facilities or to
provide their own model repository

• Custom implementations may be based on various
underlying technologies

• The current version provides model handlers for
Eclipse/EMF and Netbeans/MDR

The ATL Virtual Machine

© 2006 ATLAS Nantes- 18 -

Outline

• Introduction
• Structure of the ATL VM
• Instruction Set Summary
• ASM File Format
• Compiling for the ATL VM ACG

The ATL Virtual Machine

© 2006 ATLAS Nantes- 19 -

Instruction Set Summary

• An ATL VM instruction consists of an opcode
specifying the operation to be performed followed an
optional inline operand

• Additional arguments or data that may be required
by an instruction have to be fetched from the top of
the operand stack

• The instructions of the ATL virtual machine can be
grouped into three distinct sets:
• stack handling
• control
• model handling

The ATL Virtual Machine

© 2006 ATLAS Nantes- 20 -

Operand Stack Handling Instructions

• The ATL virtual machine provides a number of
instructions enabling direct manipulations of the
operand Stack

• They may be sorted into three subgroups:
• Pushing a constant onto the operand stack: push, pushi, pushd,

pusht, pushf.
• Untyped manipulations of the operand stack: pop, dup, dup_x1,

swap.
• Untyped loading & storing a variable to/from the operand

stack: load, store

The ATL Virtual Machine

© 2006 ATLAS Nantes- 21 -

Control Instructions

• Control instructions cause the ongoing execution to
continue from an instruction that may not be the
instruction that follows the current instruction

• The ATL virtual machine defines 4 different control
instructions:
• Conditional branch: if

• Takes a Boolean value from the operand stack
• Unconditional branch: goto
• Iterative execution: iterate, enditerate

• Operates on Collections
• Method invocation: call

The ATL Virtual Machine

© 2006 ATLAS Nantes- 22 -

Model Handling Instructions

• These instructions are dedicated to models and
model elements handling

• This instruction set also enables the ATL virtual
machine to handle other composite types like Tuples

• There are 4 model handling instructions:
• Create a new element: new
• Access element properties: get, put
• Find a metamodel element: findme
• Access the ATL context module element: getasm

• e.g., used to called helpers defined in the context of the module

The ATL Virtual Machine

© 2006 ATLAS Nantes- 23 -

Outline

• Introduction
• Structure of the ATL VM
• Instruction Set Summary
• ASM File Format
• Compiling for the ATL VM ACG

The ATL Virtual Machine

© 2006 ATLAS Nantes- 24 -

ASM File Format

• This format is the one which is interpreted by the
current reference implementation of the ATL Virtual
Machine

• An ASM file can contain the compiled version of an
ATL transformation, an ATL query, or an ATL library

• An ASM file can also contain the compiled version of
another language

• The ASM file format is an XML-based textual
format

The ATL Virtual Machine

© 2006 ATLAS Nantes- 25 -

ASM Overview

• The asm element is an ordered structure that
contains the transformation constant pool followed
by a set of field and one or more operation

• The asm element also has a name attribute
• The value of this attribute is a constant pool index pointing to

the constant pool entry that stores the transformation name
• The asm element contains a non empty set of

operations
• The operation set specifies the instructions to be

executed by the ATL virtual machine in order to
carry out the compiled transformation
• Execution starts at the main operation

The ATL Virtual Machine

© 2006 ATLAS Nantes- 26 -

The constant pool

• It stores all the constant values, whatever their
type,

• Each constant value can be addressed by an index in
the constant pool

• The constant pool is composed of constant elements
• These constant elements have a value attribute that

contains the constant value
• This value is encoded as a string

The ATL Virtual Machine

© 2006 ATLAS Nantes- 27 -

Data Types Encoding

• The ASM file format defines an internal encoding
for the types of the elements it handles

• These values, encoded as strings, are used to specify
data types for the type attribute elements field,
context, and parameter
• The field element defines an attribute of the ATL context

module
• The context element specifies the element type for which

an operation is defined
• The parameter element defines an operation parameter

The ATL Virtual Machine

© 2006 ATLAS Nantes- 28 -

Operation Signature

• It is used by the call instructions to identify the
operation to be invoked

• It has to encode all information that may be required
by the virtual machine to match an operation call to
its corresponding operation definition

• In the ASM file format, the signature type is
encoded by means of a string and relies on the same
type encoding used to represent types

The ATL Virtual Machine

© 2006 ATLAS Nantes- 29 -

Expressions Location Encoding

• Within each defined operation, the linenumbertable
element contains the bindings between source code
expressions and ATL Virtual Machine instructions

• Each linenumbertable entry (element lne) binds a set
of consecutive virtual machine instructions to a
portion of the source code

• The ASM file format defines a specific string
encoding to identify source code portions:
• <start-line>:<start-column>-<end-line>:<end-column>

• This encoding defines both the portion start line and
start column and its end line and end column

The ATL Virtual Machine

© 2006 ATLAS Nantes- 30 -

The Fields

• An asm element can include some field elements
• Fields can be viewed as global variables that are

directly associated with the ATL context module
• Fields have a name and a type attributes
• These attributes contain valid constant pool indexes
• Value of the name attribute indexes a field name
• The type attribute points to a data type encoding

constant

The ATL Virtual Machine

© 2006 ATLAS Nantes- 31 -

The Operations

• An ASM file contains a set of operation
• Executable ASM files (e.g., ATL queries, or ATL

transformations, but not ATL libraries) have a
program entry point which must be implemented by a
main operation

• Each operation contains a sequence of instructions
that will have to be interpreted by the ATL Virtual
Machine when the operation will be invoked

The ATL Virtual Machine

© 2006 ATLAS Nantes- 32 -

The operation element

• Is an ordered structure in which are specified a context, some
parameters, some instructions (within the code element), a line
number table and a local variable table

• The context element defines the context in which the
operation is defined

• The set of parameters encodes both type and name of the
operation parameters

• The code element contains an ordered sequence of instructions
that implements the treatment associated with the operation

• The linenumbertable element defines bindings between the
instructions of the code element and the expressions that
appear in the source code

• Finally, the localvariabletable stores names of the local
variables that are defined for the operation

The ATL Virtual Machine

© 2006 ATLAS Nantes- 33 -

The context element

• An operation context element specifies the context
in which the operation is defined

• Each operation is associated with a unique context
• This context is defined by the type attribute that

points to a data type encoding entry of the constant
pool

The ATL Virtual Machine

© 2006 ATLAS Nantes- 34 -

The parameters element

• Each operation is associated with an ordered list of
parameter elements inside the parameters element

• The parameters element is empty for operations
that accept no parameter

• Each parameter element has a name and a type
attributes

• Both attributes contain the index of a constant pool
entry

• The name attribute points to a constant pool entry
that contains a variable name

• The type attribute refers to a data type encoding
constant, which defines the parameter type

The ATL Virtual Machine

© 2006 ATLAS Nantes- 35 -

The code element

• The treatments that are performed by an operation are defined
within the operation code element

• The code part of an operation definition contains a sequence of
instructions among those that have been defined in the ATL
virtual machine instruction set

• Each defined instruction has its counterpart (in the form of an
instruction element) in the ASM file format
• The optional arg attribute contains the inline parameter of the

instruction, if any
• Its value is an index that targets a constant pool entry
• Depending on the instruction, the arg attribute points to different kinds

of constant pool entries:
• A constant of appropriate type for push instructions
• An integer value for load and store instructions, which identifies an index in the local

variable table
• An integer value representing a brancihng offset for the if and goto instructions
• A field name for the get and set instructions
• An operation signature for the call instructions

The ATL Virtual Machine

© 2006 ATLAS Nantes- 36 -

The Line Number Table

• The linenumbertable element defines the bindings between the instructions of
an operation and the corresponding code within the source file

• This element encodes useful information for implementers that wish to
provide debugging facilities along with the ATL Virtual Machine

• The line number table is composed of line number entries (lne elements)
• Each entry specifies a binding between an instructions sequence from the

operation stack and a part of the source code file
• Each entry has the following attributes: id, begin, and end
• The id attribute contains a constant pool entry index that identifies a source

file portion
• The begin and end attributes make it possible to identify the sequence of

instructions that are associated with the identified portion of the source
code file:
• They respectively specify the address of the first and of the last instructions of this

sequence within the code element
• The instructions are numbered from 0 to the number of instructions minus one

• The begin and end attributes do not refer to constant pool entries, but
directly encode the instruction number values

The ATL Virtual Machine

© 2006 ATLAS Nantes- 37 -

The Local Variable Table

• The structure is similar to the Java local variable table
• It encodes the name and scope of each local variable within the

operation
• A local variable table typically contain at least one entry, which

corresponds to the contextual element (i.e., self in OCL, or this in
Java) on which the operation has been called.

• Each entry (lve element) is associated with a single local variable
defined for the current operation

• The begin and end attributes respectively specify the address of the
first and the last instructions for which the variable exists (directly,
not as constant pool indexes)

• The slot attribute contains the slot number (directly)
• The name attribute contains a constant pool entry index specifying

the name of the variable
• The first slot of the local variable table (i.e., slot 0) corresponds to

the contextual element of the operation
• Subsequent slots are associated with the operation parameters in the

order they have been defined

The ATL Virtual Machine

© 2006 ATLAS Nantes- 38 -

Outline

• Introduction
• Structure of the ATL VM
• Instruction Set Summary
• ASM File Format
• Compiling for the ATL VM ACG

The ATL Virtual Machine

© 2006 ATLAS Nantes- 39 -

Compiling for the ATL VM ACG

• ATL Code Generation (ACG) language
• A transformation DSL with fixed target: ATL Virtual Machine
• Directly supports generation of ATL VM bytecodes
• Automatically fills line number and local variable tables (i.e.,

debug information)
• Source model (i.e., program to compile) navigation is faster

compared to old compiler and uses a simplification of OCL
• Example:
code IntegerExp {

pushi self.integerSymbol
}

• ACG2VM.acg is the ACG compiler: ACG is bootstrapped
• ATL2VM.acg is the new ATL compiler (for ATL 2006)

The ATL Virtual Machine

© 2006 ATLAS Nantes- 40 -

ATL Compiler Written in ACG

ATL VM
bytecode

ATL VM
bytecode

ACG2VM.asm

-------->ACG ATL VM
bytecode

ATL VM
bytecode

ATL2VM.asm

-------->ATL

ACG

ATL VM
bytecode

ATL2VM.acg

-------->ATL

ATL VM

ATL VM

The ATL Virtual Machine

© 2006 ATLAS Nantes- 41 -

Bootstrapping ACG Compiler

ATL VM
bytecode

ATL VM
bytecode

ACG2VM.asm

-------->ACG ATL VM
bytecode

ATL VM
bytecode

ACG2VM.asm

-------->ACG

ACG

ATL VM
bytecode

ACG2VM.acg

-------->ACG

ATL VM

ATL VM

The first version of ACG2VM.asm was obtained by interpreting ACG2VM.acg with an ATL program.

The ATL Virtual Machine

© 2006 ATLAS Nantes- 42 -

Why ACG and not directly bootstrapping ATL

• ATL is:
• A Domain Specific Language (DSL) for the domain of model

transformation,
• But in this domain, it is a General Purpose Transformation Language,

An ATL compiler in ATL is possible.
• ACG is:

• A DSL for the domain of ATL VM bytecode generation,
• Specifically tuned for this purpose,

An ATL compiler in ACG is simple.
• Additional benefits:

• ACG can be used to compile any model transformation DSL,
• Such a DSL then runs on top of ATL VM:

• It works on every model handler for which there is an ATL VM (and/or
driver),

• It can be source-level debugged like ATL, with the same tools,
• Etc.

The ATL Virtual Machine

© 2006 ATLAS Nantes- 43 -

ATL2VM.acg excerpts

-- Primitive Literal
code IntegerExp {

pushi self.integerSymbol
}
-- Collection Literal
code SequenceExp {

push 'Sequence'
push '#native'
new
analyze self.elements {

call 'CJ.including(J):CJ'
}

}
-- Conditional
code IfExp {

analyze self.condition
if thn

analyze self.elseExpression
goto eoi

thn:
analyze self.thenExpression

eoi:
}

-- Variables
code LetExp {

analyze self.variable.initExpression
variable self.variable named

self.variable.varName {
analyze self.in_

}
}
code VariableExp {

load self.referredVariable
}
-- Iterator
code IteratorExp |

self.name = 'exists' and
self.iterators.size() = 1 {

pushf
analyze self.source
iterate

variable self.iterators.first() named
self.iterators.first().varName {

analyze self.body
call 'B.or(B):B'

}
enditerate

}

The ATL Virtual Machine

© 2006 ATLAS Nantes- 44 -

End of the lesson

Thanks
Questions?
Comments?

ATLAS group, INRIA & LINA, Nantes

