WI NRIA The ATL Virtual Machine

An introduction to the ATL Virtual

Machine
V1.0 draft

Frédéric Jouault, and Freddy Allilaire

ATLAS group (INRIA & LINA), University of Nantes, France
http://www.sciences.univ-nantes.fr/lina/atl/

-1 - © 2006 ATLAS Nantes

WI NRIA The ATL Virtual Machine

Outline

® Tntroduction

® Structure of the ATL Virtual Machine
® Instruction Set Summary

® ASM File Format

® Compiling for the ATL VM = ACG

%I INRIA The ATL Virtual Machine

Outline

® Tntroduction

® Structure of the ATL Virtual Machine
® Instruction Set Summary

® ASM File Format

® Compiling for the ATL VM = ACG

WI NRIA The ATL Virtual Machine

ATL Development Tools (ADT)

® ATL is accompanied by a set of tools built on top of
the Eclipse platform

® ADT is composed of the ATL transformation engine
(Engine block) and the ATL IDE

Legend ATL Development Tools
— >
Uses ATL Engine API
'y |
—> Engine |« Editor Builder Debug
Uses Eclipse APT I I I I

Y Y Y Y

Eclipse Platform

-4 - © 2006 ATLAS Nantes

WI NRIA The ATL Virtual Machine

ATL Engine

® The ATL engine is responsible for dealing with core ATL tasks:
® Transformation compilation
® Transformation execution

® The ATL compiler and compiled transformations run on top of the
ATL Virtual Machine

ATL Compiler ATL Programs
ATL VM
Model Handler Abstraction Layer

EMF MDR .
XMI z.o‘\ 4/>A<MI 1.2

Model Repository

-5 - © 2006 ATLAS Nantes

WI NRIA The ATL Virtual Machine

ATL VM Introduction - General Steps

® ATL transformations are compiled to programs in
specialized byte-codes stored in the ASM file
format

® This byte-code is executed by the ATL Virtual
Machine (VM)

® The VM is specialized in handling models and provides
a set of instructions for model manipulation.

® The VM may run on top of various model management
systems (e.g., Eclipse EMF, and Netbeans MDR)

® To isolate the VM from their specifics, an intermediate level is
introduced called Mode/ Handler Abstraction Layer

® This layer translates the instructions of the VM for model
manipulation into instructions of a specific model handler

-6 - © 2006 ATLAS Nantes

WI NRIA The ATL Virtual Machine

ATL VM Introduction - Technical Steps

® The ATL VM is an abstract computing machine
® Tt is similar to the Java VM
® Tts instructions operate on an operand stack
® It has its own model-oriented instruction set

® The ATL VM does not depend on ATL

® Other languages can be implemented on fop of it

® Tnstructions are stored in the ASM file format
® This format is based on XML

-7 - © 2006 ATLAS Nantes

%I INRIA The ATL Virtual Machine

Outline

® Tntroduction

® Structure of the ATL VM

® Instruction Set Summary

® ASM File Format

® Compiling for the ATL VM = ACG

WI NRIA The ATL Virtual Machine

Structure of the ATL Virtual Machine

® The following aspects are going to be detailed:
® Data Types
® Runtime Data Structures
® Stack Frames
® Representation of Model Elements

-9 - © 2006 ATLAS Nantes

WI NRIA The ATL Virtual Machine

Datatype

® There are two kinds of datatypes:
® Primitive (Boolean, Integer, Real, String)
® Composite (Tuple, Collections, Map, metamodel elements, etc.)

® The VM performs runtime type checking

® A compiler may perform compile-time type checking
to catch problems earlier

® The instruction set distinguishes its operand types
using instructions intended to operate on values of
specific types

- 10 - © 2006 ATLAS Nantes

WI NRIA The ATL Virtual Machine

Datatype: Primitive Types

® Primitive types defines the core types the VM relies
on
® Boolean: encodes 7rue and false Boolean values
® Integer: encodes integral humerical values
® Real: encodes real humerical values
® String: encodes string values

® These types support the operations defined in the
OCL standard library

-11 - © 2006 ATLAS Nantes

WI NRIA The ATL Virtual Machine

Datatype: Composite Types

® Tuple
® Represents OCL tuples
® Collections

® Specify collections of elements
® Exist in several versions: Bag, OrderedSet, Sequence, Set

® Map
® Represents associative tables

® Metamodel elements

® Correspond to the types defined in the metamodels of the
source and target models

-12 - © 2006 ATLAS Nantes

WI NRIA The ATL Virtual Machine
Runtime Data Structures

® ATL VM defines various runtime data areas used
during execution

® PC register
® Program counter

® Contains the address of the ATL VM instruction currently
being executed (except when executing native (typically Java)
operations)

® Call Stack

® Created at start-up

® Stores stack frames

® Analogous to the call stack of conventional languages

® Holds variables and partial results (in an operand stack)
® Plays a part in operation invocation and return

-13 - © 2006 ATLAS Nantes

WI NRIA The ATL Virtual Machine

Stack Frames

® Created each time a non-native operation is invoked
® Destroyed when its operation invocation completes
® Stored on the call stack

® Each frame has its own array of local variables and
its own operand stack

® Only one frame is active at anytime and is referred
to as the current frame

® A frame ceases to be the current frame if its
operation completes or invokes another operation

-14 - © 2006 ATLAS Nantes

WI NRIA The ATL Virtual Machine
Stack Frames: Local variables

® Each frame is associated with a set of variables
= Local variables

® Can be hold values of primitive or composite type
® Used to pass arguments to instructions

® Used to pass arguments to invoked operations

® The values of the arguments associated with an operation
invocation are subsequently assigned to local variables of the
new stack frame created for the invoked operation

- 15 - © 2006 ATLAS Nantes

WI NRIA The ATL Virtual Machine

Stack Frames: Operand stack

® Each frame contains a LIFO stack
=> the operand stack

® The instruction set contains instructions to load constants or
values from variables or fields onto the operand stack

® Other instructions take operands from the operand stacks,
operate on them, and push the result back on the operand
stack

® It is also used to prepare arguments to be passed to operations
and to receive operation results

® Each entry on the operand stack can hold a value of any ATL
VM type

® Values from the operand stack must be operated upon in ways
appropriate to their types

-16 - © 2006 ATLAS Nantes

WI NRIA The ATL Virtual Machine

Representation of Model Elements

® The way model elements are internally managed by
ATL virtual machine is not constrained

® Model handler implementers are therefore free to
use some existing model handling facilities or to
provide their own model repository

® Custom implementations may be based on various
underlying technologies

® The current version provides model handlers for
Eclipse/EMF and Netbeans/MDR

-17 - © 2006 ATLAS Nantes

%I INRIA The ATL Virtual Machine

Outline

® Tntroduction

® Structure of the ATL VM

® Instruction Set Summary

® ASM File Format

® Compiling for the ATL VM = ACG

-18 - © 2006 ATLAS Nantes

WI NRIA The ATL Virtual Machine

Instruction Set Summary

® An ATL VM instruction consists of an opcode
specifying the operation to be performed followed an
optional inline operand

® Additional arguments or data that may be required
by an instruction have to be fetched from the top of
the operand stack

® The instructions of the ATL virtual machine can be
grouped into three distinct sefts:
® stack handling
® control
® model handling

-19 - © 2006 ATLAS Nantes

WI NRIA The ATL Virtual Machine

Operand Stack Handling Instructions

® The ATL virtual machine provides a number of
instructions enabling direct manipulations of the
operand Stack

® They may be sorted into three subgroups:

® Pushing a constant onto the operand stack: push, pushi, pushd,
pusht, pushf.

® Untyped manipulations of the operand stack: pop, dup, dup_x1,
swap.

® Untyped loading & storing a variable to/from the operand
stack: /oad, store

- 20 - © 2006 ATLAS Nantes

WI NRIA The ATL Virtual Machine
Control Instructions

® Control instructions cause the ongoing execution to
continue from an instruction that may not be the
instruction that follows the current instruction

® The ATL virtual machine defines 4 different control
instructions:

® Conditional branch: /7
® Takes a Boolean value from the operand stack
® Unconditional branch: goto

® Tterative execution: /terate, enditerate
® Operates on Collections

® Method invocation: cal/

-21 - © 2006 ATLAS Nantes

WI NRIA The ATL Virtual Machine

Model Handling Instructions

® These instructions are dedicated to models and
model elements handling

® This instruction set also enables the ATL virtual
machine to handle other composite types like Tuples

® There are 4 model handling instructions:
® Create a new element: new
® Access element properties: get, put
® Find a metamodel element: findme

® Access the ATL context module element: getfasm
® eg., used to called helpers defined in the context of the module

- 22 - © 2006 ATLAS Nantes

%I INRIA The ATL Virtual Machine

Outline

® Tntroduction

® Structure of the ATL VM

® Instruction Set Summary

® ASM File Format

® Compiling for the ATL VM = ACG

- 23 - © 2006 ATLAS Nantes

WI NRIA The ATL Virtual Machine

ASM File Format

® This format is the one which is interpreted by the
current reference implementation of the ATL Virtual
Machine

® An ASM file can contain the compiled version of an
ATL transformation, an ATL query, or an ATL library

® An ASM file can also contain the compiled version of
another language

® The ASM file format is an XML-based textual
format

-24 - © 2006 ATLAS Nantes

WI NRIA The ATL Virtual Machine

ASM Overview

® The asm element is an ordered structure that
contains the transformation constant pool followed
by a set of field and one or more operation

® The asm element also has a name attribute

® The value of this attribute is a constant pool index pointing to
the constant pool entry that stores the transformation name

® The asm element contains a non empty set of
operations

® The operation set specifies the instructions to be
executed by the ATL virtual machine in order to
carry out the compiled transformation
® Execution starts at the main operation

- 25 - © 2006 ATLAS Nantes

WI NRIA The ATL Virtual Machine
The constant pool

® Tt stores all the constant values, whatever their

type,
® Each constant value can be addressed by an index in
the constant pool

® The constant pool is composed of constant elements

® These constant elements have a va/ue attribute that
contains the constant value

® This value is encoded as a string

- 26 - © 2006 ATLAS Nantes

WI NRIA The ATL Virtual Machine

Data Types Encoding

® The ASM file format defines an internal encoding
for the types of the elements it handles

® These values, encoded as strings, are used to specify
data types for the fype attribute elements fie/d,
context, and parameter

® The fre/d element defines an attribute of the ATL context
module

® The context element specifies the element type for which
an operation is defined

® The parameter element defines an operation parameter

- 27 - © 2006 ATLAS Nantes

WI NRIA The ATL Virtual Machine
Operation Sighature

® It is used by the cal/instructions to identify the
operation to be invoked

® It has to encode all information that may be required
by the virtual machine to match an operation call to
its corresponding operation definition

® In the ASM file format, the signature type is
encoded by means of a string and relies on the same
type encoding used to represent types

- 28 - © 2006 ATLAS Nantes

WI NRIA The ATL Virtual Machine
Expressions Location Encoding

® Within each defined operation, the /inenumbertable
element contains the bindings between source code
expressions and ATL Virtual Machine instructions

® Each /inenumbertable entry (element /ne) binds a set
of consecutive virtual machine instructions to a
portion of the source code

® The ASM file format defines a specific string
encoding to identify source code portions:
® (start-line>:<start-column>-<end-line>:<end-column>

® This encoding defines both the portion start line and
start column and its end line and end column

- 29 - © 2006 ATLAS Nantes

WI NRIA The ATL Virtual Machine

The Fields

® An asm element can include some Ffre/d elements

® Fields can be viewed as global variables that are
directly associated with the ATL context module

® Fields have a name and a type attributes
® These attributes contain valid constant pool indexes
® Value of the name attribute indexes a field name

® The type attribute points to a data type encoding
constant

- 30 - © 2006 ATLAS Nantes

WI NRIA The ATL Virtual Machine

The Operations

® An ASM file contains a set of operation

® Executable ASM files (e.g., ATL queries, or ATL
transformations, but not ATL libraries) have a
program entry point which must be implemented by a
main operation

® Each operation contains a sequence of instructions
that will have to be interpreted by the ATL Virtual
Machine when the operation will be invoked

- 31 - © 2006 ATLAS Nantes

WI NRIA The ATL Virtual Machine
The operation element

® Is an ordered structure in which are specified a context, some
parameters, some instructions (within the code element), a line
number table and a local variable table

® The contextelement defines the context in which the
operation is defined

® The set of parameters encodes both type and name of the
operation parameters

® The code element contains an ordered sequence of instructions
that implements the treatment associated with the operation

® The /inenumbertable element defines bindings between the
instructions of the code element and the expressions that
appear in the source code

® Finally, the /ocalvariabletable stores names of the local
variables that are defined for the operation

-32 - © 2006 ATLAS Nantes

WI NRIA The ATL Virtual Machine
The context element

® An operation context element specifies the context
in which the operation is defined

® Each operation is associated with a unique context

® This context is defined by the fype attribute that
points to a data type encoding entry of the constant
pool

- 33 - © 2006 ATLAS Nantes

WI NRIA The ATL Virtual Machine
The parameters element

® Each operation is associated with an ordered list of
parameter elements inside the parameters element

® The parameters element is empty for operations
that accept no parameter

® Each parameter element has a name and a type
attributes

® Both attributes contain the index of a constant pool
entry

® The name attribute points to a constant pool entry
that contains a variable name

® The fype attribute refers to a data type encoding
constant, which defines the parameter type

-34 - © 2006 ATLAS Nantes

WI NRIA The ATL Virtual Machine

The code element

® The freatments that are performed by an operation are defined
within the operation code element

® The code part of an operation definition contains a sequence of
instructions among those that have been defined in the ATL
virtual machine instruction set

® Each defined instruction has its counterpart (in the form of an
instruction element) in the ASM file format

® The optional arg attribute contains the inline parameter of the
instruction, if any

® Its value is an index that targets a constant pool entry

® Depending on the instruction, the arg attribute points to different kinds
of constant pool entries:
® A constant of appropriate type for push instructions

® An integer value for load and store instructions, which identifies an index in the local
variable table

® An integer value representing a brancihng offset for the if and goto instructions
® A field name for the get and set instructions
® An operation signature for the call instructions

- 35 - © 2006 ATLAS Nantes

WI NRIA The ATL Virtual Machine

The Line Number Table

® The /inenumbertable element defines the bindin?s between the instructions of
an operation and the corresponding code within the source file

® This element encodes useful information for implementers that wish to
provide debugging facilities along with the ATL Virtual Machine

® The line number table is composed of line number entries (/ne elements)

® Each entry specifies a binding between an instructions sequence from the
operation stack and a part of the source code file

® Each entry has the following attributes: /d, begin, and end

® The /dattribute contains a constant pool entry index that identifies a source
file portion

® The beginand end attributes make it 1[:oss‘ible to identify the sequence of
msc;rr'L:cc;I’rlons that are associated with the identified portion of the source
code file:

® They respectively specify the address of the first and of the last instructions of this
sequence within the code element

® The instructions are numbered from O to the number of instructions minus one

® The beginand end attributes do not refer to constant pool entries, but
directly encode the instruction number values

- 36 - © 2006 ATLAS Nantes

WI NRIA The ATL Virtual Machine

The Local Variable Table

® The structure is similar to the Java local variable table

® Tt encodes the name and scope of each local variable within the
operation

® A local variable table typically contain at least one entry, which
corresponds to the contextual element (i.e., self in OCL, or this in
Java) on which the operation has been called.

® Each entry (/ve element) is associated with a single local variable
defined for the current operation

® The beginand end attributes respectively specify the address of the
first and the last instructions for which the variable exists (directly,
not as constant pool indexes)

® The s/ot attribute contains the slot number (directly)

® The name attribute contains a constant pool entry index specifying
the name of the variable

® The first slot of the local variable table (i.e., slot O) corresponds to
the contextual element of the operation

® Subsequent slots are associated with the operation parameters in the
order they have been defined

- 37 - © 2006 ATLAS Nantes

%I INRIA The ATL Virtual Machine

Outline

® Tntroduction

® Structure of the ATL VM

® Instruction Set Summary

® ASM File Format

® Compiling for the ATL VM = ACG

- 38 - © 2006 ATLAS Nantes

%I INRIA The ATL Virtual Machine

Compiling for the ATL VM = ACG

® ATL Code Generation (ACG) language
® A transformation DSL with fixed target: ATL Virtual Machine
® Directly supports generation of ATL VM bytecodes

® Automatically fills /ine number and /ocal variable tables (i.e.,
debug information)

® Source model (i.e., program to compile) navigation is faster
compared to old compiler and uses a simplification of OCL

® Example:
code IntegerkExp {
pushi self.integerSymbol

}
® AC62VM.acg is the ACG compiler: ACG is bootstrapped

® ATL2VM.acgis the new ATL compiler (for ATL 2006)

-39 - © 2006 ATLAS Nantes

%I INRIA The ATL Virtual Machine

ATL Compiler Written in ACG

ATLZVM.acg ATL VM ATL ATLZVM.asm ATL VM

ATL > bytecode| | T --mmme-- > bytecode

Acez2VMasm ATL VM | ATL VM

ACG ACG . > bytecode | bytecode
ATL VM ATL VM
bytecode

ATL VM

-40 - © 2006 ATLAS Nantes

%I INRIA The ATL Virtual Machine

Bootstrapping ACG Compiler

AcG2VM.acg ATL VM Acc2VM.asm ATL VM

ACG

ACG > bytecode| | 77 --mmmee- > bytecode

Acez2VMasm ATL VM | ATL VM

ACG ACG . > bytecode | bytecode
ATL VM ATL VM
bytecode

ATL VM

The first version of ACG2VM.asm was obtained by interpreting AC62VM.acg with an ATL program.

-41 - © 2006 ATLAS Nantes

WI NRIA The ATL Virtual Machine

Why ACG and not directly bootstrapping ATL

® ATL is:
® A Domain Specific Language (DSL) for the domain of model
transformation,
® But in this domain, it is a General Purpose Transformation Language,
=> An ATL compiler in ATL is possible.
® ACGis:
® A DSL for the domain of ATL VM bytecode generation,
® Specifically tuned for this purpose,
= An ATL compiler in ACG is simple.

® Additional benefits:
® ACG can be used to compile any model transformation DSL,

® Such a DSL then runs on top of ATL VM:

® It works on every model handler for which there is an ATL VM (and/or
driver),

® It can be source-level debugged like ATL, with the same tools,
® Etc.

-42 - © 2006 ATLAS Nantes

%l INRIA
ATL2VM. acg excerpts

-— Primitive Literal
code IntegerExp {

pushi self.integerSymbol
+

-- Collection Literal
code SequenceExp {
push "Sequence*
push “#native®
new
analyze self.elements {
call "CJ.including(Jd):CJ-
by
by

-- Conditional
code IfExp {
analyze self.condition
1T thn
analyze self._elseExpression
goto eoi
thn:
analyze self.thenExpression

eoln:

The ATL Virtual Machine

-- Variables
code LetExp {
analyze self.variable.initExpression
variable self.variable named
self.variable.varName {
analyze self.in_

}

by
code VariableExp {

load self.referredvariable
by
-- Iterator
code lteratorExp |
self.name = "exists® and
self.iterators.size() = 1 {
pushf
analyze self._source
iterate
variable self.i1terators.first() named
self.i1terators.first().varName {
analyze self.body
call "B.or(B):B*
by

enditerate

-43 - © 2006 ATLAS Nantes

%I INRIA
End of the lesson

B Thanks
B Questions?
B Comments?

The ATL Virtual Machine

ATLAS group, INRIA & LINA, Nantes

- 44 -

© 2006 ATLAS Nantes

