

ATL/AMW Use Case
Modeling Web applications

JJuuaann MM.. VVaarraa MMeessaa
KKyybbeellee RReesseeaarrcchh GGrroouupp

UUnniivveerrssiittyy RReeyy JJuuaann CCaarrllooss
Detailed Description and User Guide

October 2007 1

Overview

The aim of this Use Case is to implement a set of mappings already defined between a
pair of metamodels using the ATL language. More specifically, we want to implement
the transformation for obtaining a Service Process model from an Extended Use Case
model [2]. Both of them are defined in the framework of the SOD-M methodology, a
model driven method for service-oriented web applications development (SOD-M [1]).
The method starts from a high level business model and allows obtaining a service
composition model that simplifies the mapping to a specific web service technology.
The process is summarized in Figure 1. In this Use Case we focus in the mapping from
the Extended Use Case Model to the Service Process Model.

Business Services Model

Extended Use Case Model

Service Process Model

Services Composition Model

PIM: Behavioral Modeling

Composite and Basic Use Services

Service Process

Basic Use Services and their relationships

Figure 1. Behavioral Modeling process in SOD-M

To implement this transformation, we need to provide with some extra information
about the elements of the source model. These extra data express some relations
between the elements of the source model. So, we use a weaving model to define an
annotation model [3] that contains this additional information. The approach is depicted
in Figure 2.

Extended Use Case
Metamodel

Service Process
Metamodel

AMW Core Weaving
Metamodel

Extended Use Case
Model

Service Process
Model

Extended Use Case
Annotation Metamodel

Extended Use Case
Annotation Model

SOURCE TARGET

SOURCE

ExtendedUseCase2ServiceProcess.atl

Extends

c2 c2c2

Figure 2. Use Case Overview

For each execution of the ATL program, i.e., for each source model considered, we
define a weaving model conforming to a new weaving metamodel. The weaving model
contains the information needed to execute the transformation, that is, the value of the
parameters needed to execute some of the rules of the ATL program. Thus, both the
source and the weaving model are taking as inputs by the transformation in order to
generate the target model.

ATL/AMW Use Case
Modeling Web applications

JJuuaann MM.. VVaarraa MMeessaa
KKyybbeellee RReesseeaarrcchh GGrroouupp

UUnniivveerrssiittyy RReeyy JJuuaann CCaarrllooss
Detailed Description and User Guide

October 2007 2

Installation

This use case requires Eclipse + EMF + ATL + AM3 + AMW to be installed.

• Download ATL/AM3: http://www.eclipse.org/m2m/atl/download/
• Download AMW: http://www.eclipse.org/gmt/amw/download/

If you want to use the latest version, you can download ATL and AMW sources from
eclipse CVS. You can find the instructions on the ATL wiki:
http://wiki.eclipse.org/index.php/ATL/How_Install_ATL_From_CVS/.

After installing the tools, download the archive file containing this use case and unzip it
into a new ATL project.

SOD-M Project Content

The project contains 2 scenarios: one (Simplified.Models folder) being a reduced
version of the other (Complete.Models folder). Both of them are defined during the
development of a Web Information System for conference management. Specifically
they are used to model the behaviour of the Web system. Next, we detail the content of
the ATL downloadable project:

Transformation File

• AnnotatedEUC2ServiceProcess.atl the ATL transformation valid for both
scenarios

Metamodel Files

• Metamodels/ExtendedUseCase.ecore (.km3) The Extended Use Case
metamodel. It is based on the UML2.0 Use Case metamodel.

• Metamodels/ServiceProcess.ecore (.km3) The Service Process metamodel. It is
based on the Activity Diagrams UML 2.0 metamodel.

• Metamodels/EUCAnnot_base_extension.km3 Extension of the core weaving
metamodel for annotating Extended Use Case models.

• Metamodels/AnnotatingEUC.ecore The Weaving metamodel. Later on we will
describe how to use the AMW user interface to obtain this metamodel from the
extension above.

Model Files for Simplified Scenary

• Simplified.Models/Input.xmi Extended use Case model in which just one Service
has been included, the View Submitted Articles service.

• Simplified.Models/AnnotatedEUC.amw Annotation model for the previous model.
• Simplified.Models/Output.xmi Service Process Model. It is the obtained executing

the transformation.

Model Files for Complete Scenary (Complete.Models folder)

• CompleteModels/Input.xmi Extended Use Case model in which the three
services offered by the system have been included: View Subbmitted Articles, Edit
Author Data and Submit Article.

• CompleteModels/AnnotatedEUC.amw Annotation model for the previous model.
• Complete.Models/Output.Test.xmi Service Process model obtained as output of

the transformation.

ATL/AMW Use Case
Modeling Web applications

JJuuaann MM.. VVaarraa MMeessaa
KKyybbeellee RReesseeaarrcchh GGrroouupp

UUnniivveerrssiittyy RReeyy JJuuaann CCaarrllooss
Detailed Description and User Guide

October 2007 3

Build Files

• build.xml ANT project comprising the tasks needed to execute the
transformation. They are parameterized in order to support the two possible
configurations (Simplified and Complete scenarios)

• build.properties value of the parameters for the build file

The Metamodels

Three different metamodels are used in this project: the Extended Use Case and the
Service Process metamodels and a new extension of the core weaving metamodel for
annotating Extended Use Case models.

Extended Use Case metamodel

The Extended Use Case model represents the different services offered by a Web
Information System, as well as the functionalities required to carry out each service. We
use the KM3 language to define a new DSL. It is a simplified version of the UML 2.0
Use Case metamodel in which we add three new concepts.

name : string
NamedElement

UseCase

Actor

* subject
actors 1..*

useCase
 0..*

Extend Include

optional : Boolean
ExtensionPoint

1 extensionLocation extension 1

* include

1 addition

0..1

condition

*

extensionPoint

useCase

1

ExtendedUseCase

Classifier

* useCase

1 extendedCase

includingCase 1

expression : String
Constraint

1
Basic

Use Case
Composite
Use Case

Business Service

1..*0..*

1..*

1..*

name : string
NamedElement

extend * *

Figure 3. Extended Use Case metamodel

We define a Business Service as a complex functionality offered by the system, which
satisfies a specific need of the consumer. The consumers of the system are
represented in this model as actors. To represent the portions of the functionality of a
business service we define the Basic Use Case and the Composite Use Case classes.
The former represents a basic unit of behaviour of the web application, like registering
as a costumer, while the later is an aggregation of either basic or composite use cases.

Service Process metamodel

This metamodel is a simplified version of the UML activity package. In the service
process model we represent the activities that must be carried out for delivering a
business service. The activities of this model are called Service Activities. The service
activities are obtained transforming the basic use cases identified in the previous model

ATL/AMW Use Case
Modeling Web applications

JJuuaann MM.. VVaarraa MMeessaa
KKyybbeellee RReesseeaarrcchh GGrroouupp

UUnniivveerrssiittyy RReeyy JJuuaann CCaarrllooss
Detailed Description and User Guide

October 2007 4

into Service Activities of a given Activity process. So, the services activities represent a
behaviour that is part of the execution flow of a business service. The ServiceActivity
class is shadowed in Figure 4 which shows the Service Process metamodel.

ActivityNodenode

*

Activity

Service Activity

activity

1..*

ControlFlow

ObjectFlow

* outgoing* incoming
target

1 source

1

InitialNode FinalNode ForkNode

ActivityFinalNode

JoinNode

ObjectNodeExecutableNode

name : string
NamedElement

activity

1..*

edge

* description : string
ActivityEdge

Action Pin

ActivityParameterNode

description : string
ControlNode

MergeNode

DecisionNode

ServiceProcess

Figure 4. Service Process metamodel

Extended Use Case Annotation metamodel

If we want to use an Extended Use Case model as input in a model transformation, we
need some extra information. For instance, if a Use Case includes two or more Use
Cases, the order in which they should be executed in the including Use Case should be
specified, since the mapping rule for <<include>> relationships gives the two options
shown in the picture below.

A

BA

B

<<include>>

C

<<include>>

C

A

C

B

XOR

Figure 5. Include Relationships Mapping Rule

These data are not relevant to the model itself, so we use another model to collect
them. More specifically, since these data represents relations between the elements of
the Extended Use Case model, we use a weaving model [4]. This process is known as
annotation and the weaving model is known as the annotation model [3]. Then each
link in the weaving model represents an annotation for the woven model. All this given
we define a new weaving metamodel for annotating Extended Use Case models. It is
shown in Figure 6.

ATL/AMW Use Case
Modeling Web applications

JJuuaann MM.. VVaarraa MMeessaa
KKyybbeellee RReesseeaarrcchh GGrroouupp

UUnniivveerrssiittyy RReeyy JJuuaann CCaarrllooss
Detailed Description and User Guide

October 2007 5

WModel

AnnotationModelAnnotatedModel

WModelRef

contents

*

AnnotationreferencedModel

1

WLink WLinkEnd

AnnotatedModelElementannotatedModelElement

0..1

ActivityComposition IncludeOrder

activity

1

initial

1

final

1fom
er

1 later

1

1

1 1

Figure 6. Weaving metamodel for annotating Extended Use Case models

For instance, the IncludeOrder annotation helps in the mapping of several include
relationships attached to the same Use Case. It relates the two different included Use
Cases, defining which one should be executed first. That is which Service Activity
should precede the other.

The models

The source model

Here we will refer just to the main source model. As a matter of fact there will be two
source models, this one and the annotation model, that can be thought of as an
auxiliary source model. In this case we use part of a case study we have already
developed: a web system for conference management. The corresponding Extended
Use Case model is shown in Figure 7

<<extend>>

Author

Submit Article View
Article Data

<<include>>
Register Article

Data

<<include>>

Log-In

Register

Recover
Password

<<include>>

View Submitted
Articles

Download
File

<<extend>>
View Article

on-line
<<extend>>

<<include>>

Edit Author
Data

View Author
Data<<include>>

<<extend>>

Figure 7. Extended Use Case model of the Web system for conference management

The system offers three different services: Submit an Article, View Submitted Articles
and Edit Author Data. In order to provide with this complex services, some basic
services are needed, as the Log-In or the Register ones. To model the relation between
the different Use Cases two types of associations are used: <<include>> and
<<extend>>. The former implies that the behaviour of the included Use Case is inserted
in the including Use Case, while the later specifies how and when the behaviour
defined in the extending use case can be inserted into the behaviour defined in the
extended use case.

ATL/AMW Use Case
Modeling Web applications

JJuuaann MM.. VVaarraa MMeessaa
KKyybbeellee RReesseeaarrcchh GGrroouupp

UUnniivveerrssiittyy RReeyy JJuuaann CCaarrllooss
Detailed Description and User Guide

October 2007 6

The Target model

The Service Process model for our case study is shown in Figure 8. Each complex
service identified in the previous model is mapped to an activity, while the basic
services that it uses are represented as service activities. This way, we have three
different activities that use a set of service activities. For instance the Log-In service
activity one is used by the three activities.

Log-In

View
Article Data

Submit
Article

Register Recover
Password

Register
Article Data

View
Author Data

Edit
Author Data

View Submitted Articles

View Article
on-line

Download
File

View
Submitted Articles

Initial Node

Edit
Author Data
Initial Node

Submit Article
Final Node

View
Submitted Articles

Final Node

Edit
Author Data
Final Node

Submit Article
Initial Node

Figure 8. Service Process model of the Web system for conference management

Notice that the previous model did not show which the complex services were, those
that had to be mapped to activities. This kind of information is not conceptually relevant
to be part of the corresponding metamodel. So it will be collected in the annotation
model.

ATL/AMW Use Case
Modeling Web applications

JJuuaann MM.. VVaarraa MMeessaa
KKyybbeellee RReesseeaarrcchh GGrroouupp

UUnniivveerrssiittyy RReeyy JJuuaann CCaarrllooss
Detailed Description and User Guide

October 2007 7

Executing the Use Case

Defining the annotation model

As mentioned, we have to annotate the main source model to provide with the
additional information needed to execute the transformation. We will use the Weaver
Wizard (File New Weaving Model) to create a weaving model that will comprise
those annotations. The different steps are shown in the picture below:

Figure 9. Weaver Wizard for new weaving models

• Weaver Wizard (1/3): first of all, you have to select which extensions of the core

weaving metamodel you want to use for defining the new weaving model (in our
case the EUCAnnot_base_extension.km3 extension is used). There are two ways of
loading the extension: using the Browse to select KM3 file(s) button and then
localize the file in your Eclipse workspace, or developing a new plug-in1 that
extends the AMW plug-in (in the org.eclipse.weaver.metamodelextensionID
extension point). Using the later, the new extension of the weaving metamodel will
be directly available in the wizard (as shown in Figure 9).

• Weaver Wizard (2/3): now you must assign a container as well as a name for the
new weaving model.

• Weaver Wizard (3/3): finally, you have to choose which will be the woven model
(that is, the annotated model) and, in case it is not a metamodel, the corresponding
metamodel. To do so, press the Edit Selected Model button that opens the An other
model or metamodel window.

1 You can find the AMW plug-in for using the annotation metamodel for annotating Extended Use Case
models downloads section of this Use Case (download the file)

ATL/AMW Use Case
Modeling Web applications

JJuuaann MM.. VVaarraa MMeessaa
KKyybbeellee RReesseeaarrcchh GGrroouupp

UUnniivveerrssiittyy RReeyy JJuuaann CCaarrllooss
Detailed Description and User Guide

October 2007 8

At the end of the wizard the AMW graphical interface looks like the screen capture of
Figure 10(a). It presents an empty annotation model on the right panel (the weaving
model) and the Extended Use Case model to annotate on the left one (the woven
model).

b)a)
Figure 10. (a) Empty and (b) Final annotation models

From now on, we annotate the woven model by adding new annotations in the weaving
model. Next we describe the steps to add a new IncludeOrder annotation. This
annotation indicates that the Log-In Basic Use Case must precede the View Article
Data Basic Use Case:
• Right click in the weaving panel New Child IncludeOrder
• Drag and drop the Submit Article include Log-In Include from the left panel to the

new annotation you have just created in the right panel
• A menu will ask you if this will be the former or the later AnnotatedModelElement.

Choose the first option since you have to Log-In before being able to View the
article data.

• After doing the same with the Submit Article include View Article Data element, it
is automatically identified as the later AnnotatedModelElement.

You have to follow these steps in order to add an IncludeOrder annotation for each
pair of include relationships attached to a same Use Case. The annotation defines
the order in which the included Use Cases should be executed to carry out the
including Use Case.

In the same way, we add a new ActivityComposition annotation for each service
provided by the system. It serves to identify the complex services provided by the
system, as well as its entry and exit points. Here we add the one corresponding to the
Submit Article service:
• Right click in the weaving panel New Child ActivityComposition
• Drag and drop the Submit Article Basic Use Case to the new link in the right

panel.
• This time, the menu will ask if this Basic Use Case should be identified as the

activity, the init or the final annotated model element. We choose the first option
since we want to a Submit Article activity to be created in the Service Process
model (the output model).

• To define the entry and exit points for this service we drag and drop the Log-In
(init) and Submit Article (final) Basic Use Cases. This way we are indicating that
the Submit Article service starts by log-in the system and finishes by effectively
submitting the article (we can identify this step with the action of pushing the enter
bottom)

ATL/AMW Use Case
Modeling Web applications

JJuuaann MM.. VVaarraa MMeessaa
KKyybbeellee RReesseeaarrcchh GGrroouupp

UUnniivveerrssiittyy RReeyy JJuuaann CCaarrllooss
Detailed Description and User Guide

October 2007 9

Following the described steps for each service provided by the system, as well as for
every pair of include relationships attached to a same Use Case, we obtain the weaving
model (or annotation model) shown in Figure 10(b). Notice that if you click over any
element in the weaving model on the right, the AMW interface points out automatically
the corresponding element/s in the woven model on the left.

Obtaining the annotation metamodel

As we will show later, to execute the transformation we need a metamodel for each one
of the input models. Up to know we have an extension for the core weaving metamodel
(EUCAnnot_base_extension.km3) but it is not a metamodel itself. To obtain a proper
metamodel for the annotation model we use the facilities provided by the AMW plug-in
as shown in Figure 11. We just have to make right click over the root of the weaving
model and choose the Save weaving metamodel in Ecore format option.

Figure 11. Saving weaving metamodels

Coding the transformation

Once we have defined the main input model (the Extended Use Case model) and the
auxiliary input model (the annotation model), it is time to code the model transformation
program. Here we will focus just in showing an example of how to use the information
provided by the annotation model. Obviously, skills in the coding of ATL programs are
supposed to the reader.
The annotation of the input model allows us to add the missing data we need to
execute the transformation. In order to use this information, we just have to include
some helpers in the ATL program. For instance, to map an include object we have to
know if it is related with other include objects (remember the ambiguity about the
mapping of include relationships). Thus, we define the following helper that navigates
the weaving model (the annotation model) looking for IncludeOrder annotations that
refers to the given include object.

helper context ExtendedUseCase!Include def: getIncludeOrderLink() : AMW!IncludeOrder =
AMW!IncludeOrder.allInstances()->asSequence()->

select(link | link.former.element.ref = self.__xmiID__)->first();

ATL/AMW Use Case
Modeling Web applications

JJuuaann MM.. VVaarraa MMeessaa
KKyybbeellee RReesseeaarrcchh GGrroouupp

UUnniivveerrssiittyy RReeyy JJuuaann CCaarrllooss
Detailed Description and User Guide

October 2007 10

The helper shown above navigates the weaving model to find an IncludeOrder
annotation, whose former element is the same that was being mapped when the helper
was invoked. To identify the link, the _xmiID_ property is used.
Then we define two different rules for mapping include objects and we include a guard
in one of them to distinguish which one should be used in each specific case. The
guard invokes the helper we have just shown.

rule IncludeSimple2ServiceProcess {
from

inc : ExtendedUseCase!Include(inc.getIncludeOrderLink().oclIsUndefined())
to

edge : ServiceProcess!ControlFlow (
name <- ('[' + inc.addition.getFinalActionName() + ' to '+ inc.includingCase.name + ']'),
source <- inc.addition.getFinalAction(),
target <- inc.includingCase

)
}

Executing the transformation

To launch the transformation we have opted for using an ANT project [5]. An ANT
project is basically a way of automation the execution of business processes using
XML. Each one is coded in a build.xml file. Next, we detail its content for the present
Use Case (you can find it in the downloadable Eclipse project).
• First, we give a name to the project using the corresponding attribute of the project

element. This element also comprises a default attribute that points to the task that
will be executed by default whenever the project is launched. We will go deep into
this matter later.

Figure 12. Summarized build file

• Then, the description element allows adding a short description of the aim of this
project

• We can define some parameters or properties for the project and store then in
something akin to a parameter file: the property file (build.properties for this project).
Here we use this feature to support the execution of the transformation for two
different sets of input models as well as for modularize the build file. (see the
Readme.txt file in the downloadable Eclipse project).

• Next, two target elements are found. Each target is a set of tasks you want to be
executed.

Figure 13. Content of the transformation and loadModels targets

http://wiki.eclipse.org/index.php/AM3_Ant_Tasks

ATL/AMW Use Case
Modeling Web applications

JJuuaann MM.. VVaarraa MMeessaa
KKyybbeellee RReesseeaarrcchh GGrroouupp

UUnniivveerrssiittyy RReeyy JJuuaann CCaarrllooss
Detailed Description and User Guide

October 2007 11

• The first one, so-called transformation is the model transformation we want to carry
out. It will be the task executed by default, as it is stated by the default attribute of
the project element. Moreover, the transformation task depends on other task: the
loadModels task. This is due to the fact that you can only execute the transformation
when you have already loaded the models.

o The transformation target includes two tasks: the first one defines which
will be the ATL program executed and the second one allows storing the
result in a newly created file.

• A loadModel task is added in the loadModels target for each model (and
metamodel) involved in the transformation. The value of the name attribute is the
one that should be used whenever the corresponding model has to be referred in
any other part of the build file.

Finally, we can launch the ANT project. Right click in the build file and select Run as
Ant Build. Go to the JRE tab and choose the Run in the same JRE as the worspace

Figure 14. Running ANT tasks

References

[1] De Castro, V., Marcos, E., López Sanz, M. A Model Driven Method for Service Composition
Modeling: A Case Study. International Journal of Web Engineering and Technology, Vol. 2(4), Eds:
Inderscience Enterprise Ltd, pp. 335-353, 2006.

[2] De Castro, V., Vara, J.M., Marcos, E. Model Transformation for Service-Oriented Web Applications
Development. Workshop Proceedings of 7th International Conference on Web Engineering. July
2007, pp. 284-198.

[3] Didonet Del Fabro, M., Metadata Management Using Model Weaving and Model Transformation.
Ph D Thesis. Université de Nantes. September 2007.

[4] Didonet Del Fabro, M., Bézivin, J. and Valduriez P. Weaving Models with the Eclipse AMW plugin.
In: Eclipse Modeling Symposium, Eclipse Summit Europe 2006, Esslingen, Germany.

[5] Holzner, S., Ant: the definitive guide (2º Ed.). O’Reilly (2005).

	Overview
	 Installation
	SOD-M Project Content
	Transformation File
	Metamodel Files
	Model Files for Simplified Scenary
	Model Files for Complete Scenary (Complete.Models folder)
	Build Files

	The Metamodels
	Extended Use Case metamodel
	Service Process metamodel
	Extended Use Case Annotation metamodel

	The models
	The source model
	 The Target model

	 Executing the Use Case
	Defining the annotation model
	Obtaining the annotation metamodel
	Coding the transformation
	Executing the transformation

	References

