Efficient & Comprehensive FMECAs: Harnessing the Power of MBSE Models in Capella

Capella days 2023 November 16th

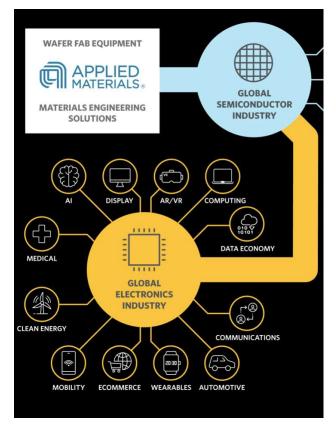
Sushim Koshti

Neela Ayalasomayajula Systems Engineering, Applied Materials

Applied Materials Introduction

Development of Electrostatic chucks using MBSE Methodology

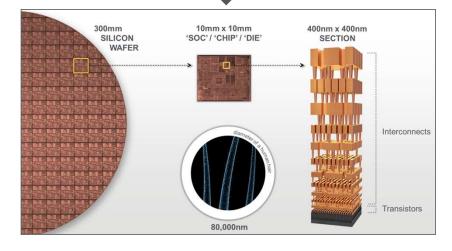
FMECA from MBSE models


Implementation & Advantages

Future work

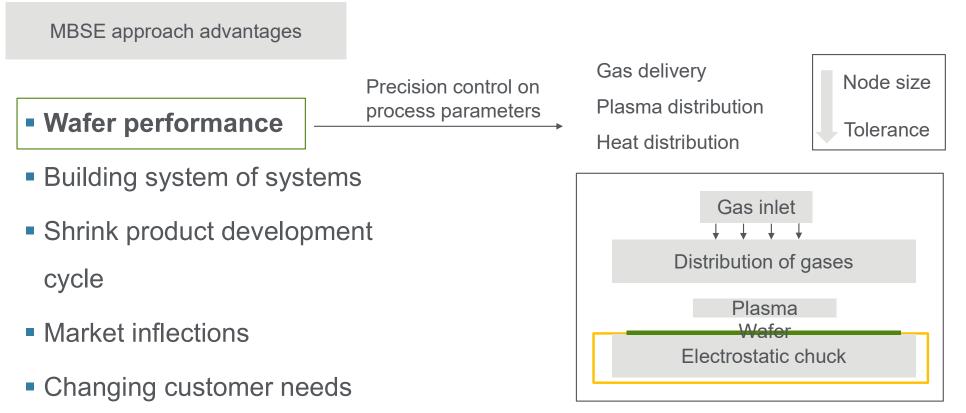
Magic behind chips! | Applied Materials

Applied Materials is the equipment maker for semiconductor and display systems



3 | Applied Materials External

Anatomy of a Manufacturing Tool



Complex multi-disciplinary systems

Product development & MBSE

Schematic of wafer supported by electrostatic chuck

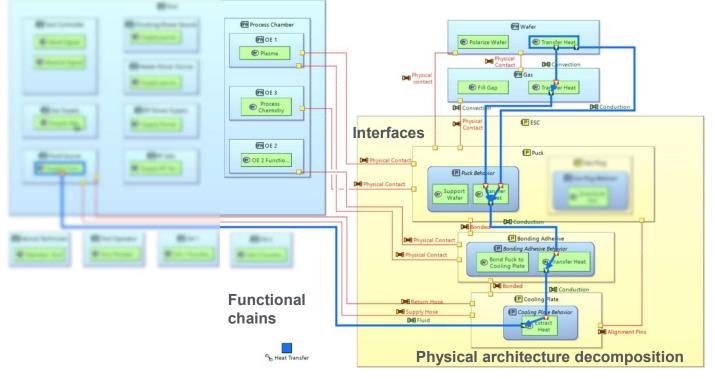
Electrostatic chuck

- Hold the wafer during process
- Heat/cool the wafer
- Support plasma process

Process critical

Wafer thickness uniformity and electrical properties

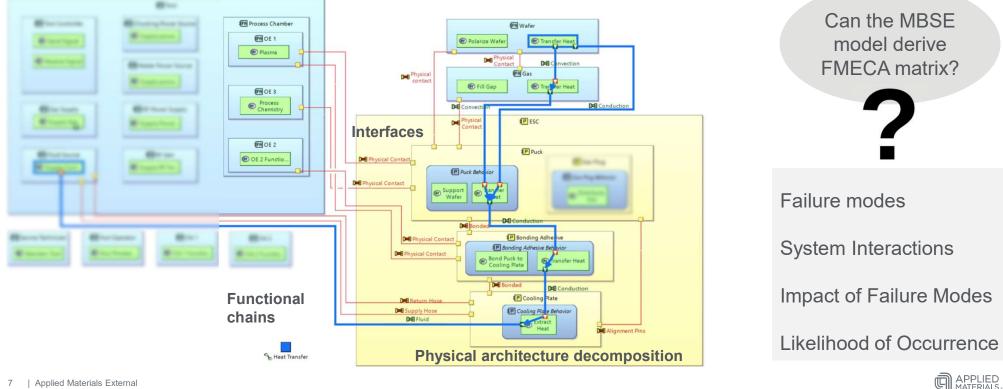
<Electrostatic Chuck Adsorption Mechanism> Materials tobe-adsorbed " 62 0 67 Base plate Base plate Polyimide film electrode layer (Electrode sheet) Single-pole type electrostatic chuck Bipolar type electrostatic chuck cross section cross section


https://www.tomoegawa.co.jp/english/product/electro/seiden_chaku.html

- Multi-physics functionalities
- Different operating mechanisms
- Complex structure

MBSE driven design for E-chuck

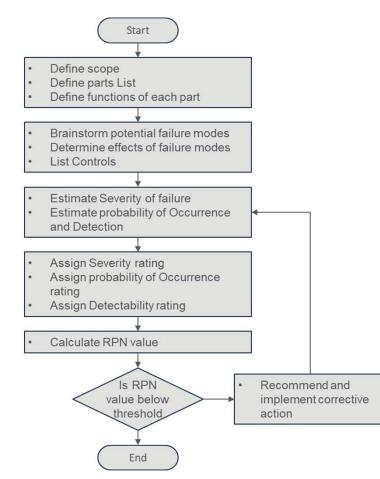
MBSE model for E-chucks is built for


- Process requirements traceability
- Library of Standardized of E-chucks
- Knowledge Capture for future iterations

MBSE driven design for E-chuck

MBSE model for E-chucks is built for

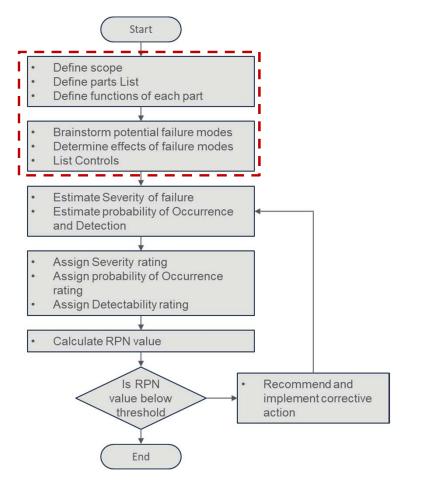
- Process requirements traceability •
- Library of Standardized of E-chucks ٠
- Knowledge Capture for future iterations •



FMECA: Failure Modes, Effects, & Criticality Analysis

- What is a FMEA / FMECA?
 - » FMEA / FMECA is a **systematic and structured approach** used to identify and prioritize potential failure modes of a system, process, or product, assess their effects on system performance or safety, and determine their criticality based on severity, occurrence, and detection.
- FMECAs were first used by the US Military in the 1940s and adopted by NASA in the 1960s for the Apollo missions.
- Today, the use of FMECAs has expanded to other industries like Semiconductors, Energy, Aviation, Automotive, Electronics, Railways, Medical Devices, Pharmaceuticals, and even Banking and Financial Services.
- Common types of FMECAs:

Typical Design FMECA Process

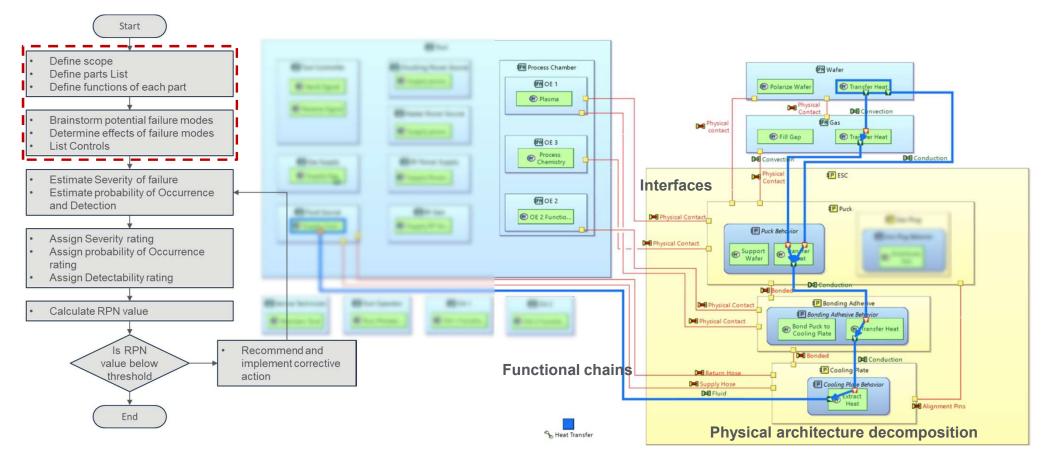


Parts	Functions	Potential Failure Mode	Effects of Failure Mode	Possible Causes of Failure/Defect	Severity (S)	Occurrence (O)	Criticality = (S X O)	Recommended Preventive Actions	Action Owner and Commit Date

Example of a FMECA Template

9 | Applied Materials External

Shortcomings of Current Process



Impact of not identifying all failure modes

- Incomplete risk assessment
- Uncertain mitigation actions
- Increased probability of system failure
- Inadequate & missed opportunities for design improvements
- Cost and time overruns
- Safety and liability risks

Leveraging MBSE Models for FMECAs

11 | Applied Materials External

Building FMECA matrix from MBSE model

- Select the applicable diagram to export information from
- Identify the scope of the system
- Identify FMECA template and modify as needed for new information being added to it
- Report out
 - » List of Physical Components
 - » Functions for each physical component
 - » Functional exchanges
 - » Physical Links
- Get feedback from team and edit reported information or template as needed
- Python libraries used:
 - Openpyxl
 - Python4capella libraries

Components	Functions; Functional Exchange; Physical Links	Part 1	Part 2	Potential Failure Mode	Effects of Failure Mode	Possible Causes of Failure/Defect
Puck	Support Wafer					
	Transfer Heat					
	Conduction	Puck	Wafer			
	Convection	Puck	Backside Gas			
	Conduction	Puck	Bonding Adhesive			
	Physical Contact	Puck	Wafer			
	Physical Contact	Puck	Backside Gas			
	Physical Contact	Puck	Plasma			
	Physical Contact	Puck	Process Chemistry			
	Bonded	Puck	Bonding Adhesive			
Bachusik-Gas	Gas/Fox	Chamber-Ges	0-Kingdehavior			
	Barrar.	0-King Behavior	Bond layer Behavior			
	Gas/Filmer	Beckside Geo	Exhaust Value			
	Convection	Puck Behavior	Bachuide Gas			
	Conduction	Puck Behavior	Waler			
	Conduction	Mesas Behavior	Waler			
Cooling Plate	Conduction	Bond layer Behavior	Cooling Pale Behavior			
	Convection	Cooling Fate Behavior	Cooling Pale Behavior			
	Gastine	Puck Behavior	Bachside Cas			
	Canduction	Water	Puck Behavior			
	Convection	Recharde Cas	Puck Behavior			
	Convection	Waler	Bachuide Cas			
	Convection	Bachuide Cas	Waler			
	Gastillow	Cathode	Cooling Plate Behavior			
	Poster	Power Supply	Cathode			
	PudPas	Cathoda	Cooling Plate Behavior			
	FuldFile	Cooling Pate Behavior	Cathode			
	PuidFiles	Chiller	Cathoole			
	PudPise	Cathode	Chiller			
	Conduction	Puck Behavior	Thermocougie			

Advantages & Next steps

- A comprehensive list of failure modes that includes component-level functions as well as system-level interactions
- Increased efficiency by pre-populating failure modes for the project team to analyze
- Leverages the MBSE benefit of "knowledge capture" and reduces reliance on undocumented expertise
- Ability to customize the export from MBSE model into an existing FMECA template
- Existing Python libraries make the export process more efficient

- Leverage the feature of Functional Chains to auto-populate the *Effects of Failure Mode* column
- Use the *Description* tab for other Capella objects to document Severity ratings
- Expand the use of this methodology to create other types of FMECAs (eg: Safety FMECA)
- Import relevant information from other sources into the FMECA (as part of an org-level Digital Thread) –
 - » Failure rates
 - » Part Numbers
 - » Validation data

Thank You!

- Thank You for attending!
- Reach out to us for more information!
 - » Sushim_Koshti@amat.com
 - » Neela_Ayalasomayajula@amat.com

Make Possible® a Better Future

