In Pursuit of Robust FMEA in the Design Phase

Capella Days 2023 - Session 3

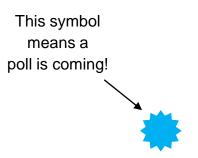
Alice Cellamare (p2m berlin) and Steven Huang (ManTech)

Introduction

Steven Huang (ESEP)

- ManTech International
- Engineering Fellow, Intelligent Systems Engineering

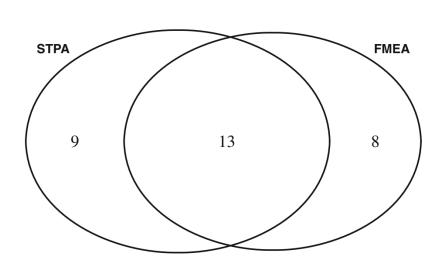
Alice Cellamare

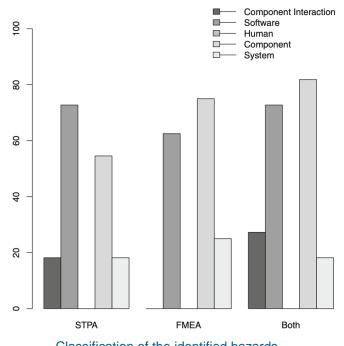

- p2m berlin
- Process and site engineer, systems modeller

Cooperation & Collaboration as part of the INCOSE Mentoring Program

Outline

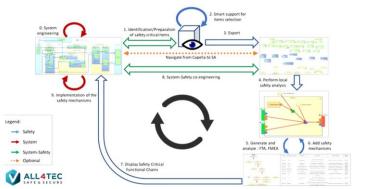
- Safety assessment methods
- Known tools for Capella
- Project scope and workflow
- Developed methods
- Example
- Conclusions

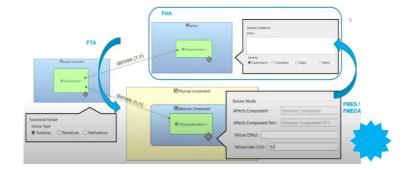



Method	Description	Modeling Elements considered	Approach
FHA (Fault Hazard Analysis)	Evaluates functions to identify and classify potential failures	Functions	top-down
FTA (Fault Tree Analysis)	Deductive analysis focusing on causal relationships, using Boolean logic	Functions and their relationships	top-down
STPA (Systems Theoretic Process Analysis)	A systems approach focusing on unsafe control actions	Control actions	top-down
FMEA (Failure Mode and Effects Analysis)	A multi-perspective approach with focus	Components, subsystems, functions, processes	bottom-up

What about completeness?

Number of common and distinct hazards identified by FMEA and STPA



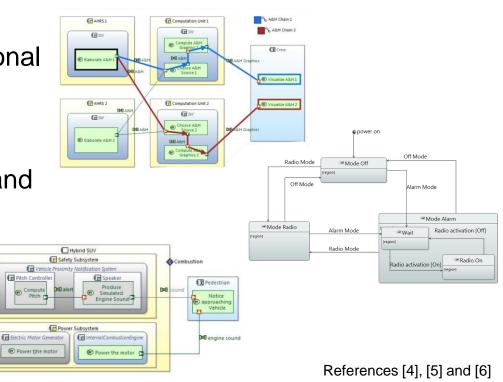

Classification of the identified hazards

Known tools for Capella

Name	Implemented methods	ARCADIA diagrams
Safety Architect	FHA FTA FMEA	[SAB] →"SFBD" [PAB] [PAB]
ATICA4 CAPELLA	FHA FTA FMEA	[SFBD], [SAB] [LAB] [PAB]

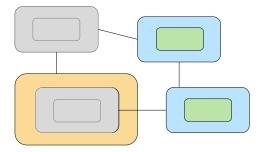
Project scope

- FAILURE IDENTIFICATION (as opposed to EVALUATION) as priority: this
 method does not aim at substituting any safety analysis method, but rather
 at providing the modeller with a model-generated failure list at the start
- "QUANTITY APPROACH": no qualitative criteria is applied in the failure identification phase. All failure which "the model can imagine" are listed
- IGNORING CAUSES at first: this approach does not consider possible failure causes. These will be considered in the evaluation phase.
- Tailoring to PHYSICAL ARCHITECTURE: only this layer was considered

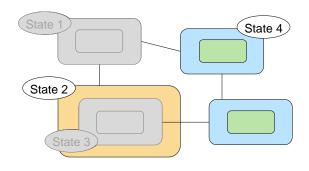

Relevant model elements

 Functional exchanges, functional chains, exchange scenarios

 Modes / States with triggers and entry/do/exit functions


Configurations / Situations

The VPMS Viewpoint



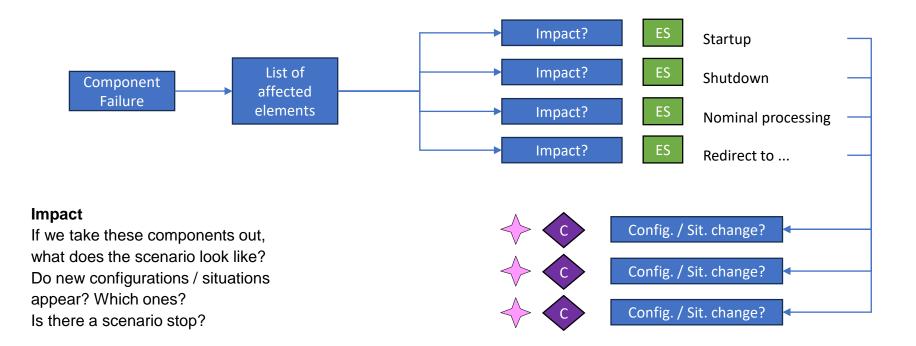
Configuration

= subset of the system

Situation

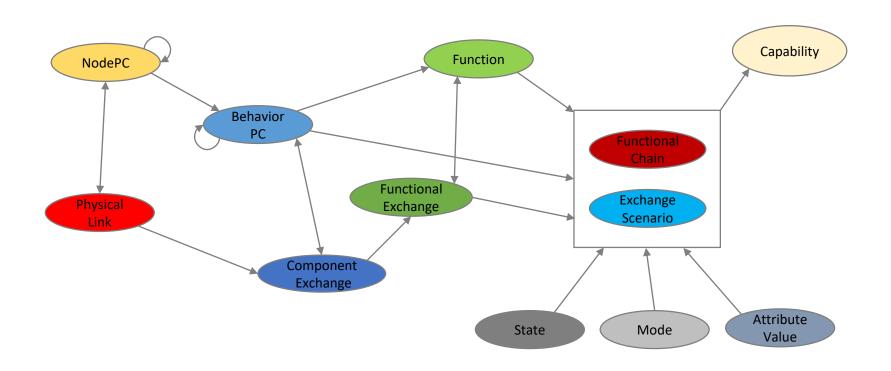
= collection of states

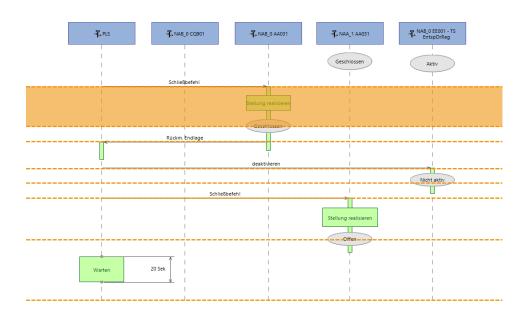
Project activities



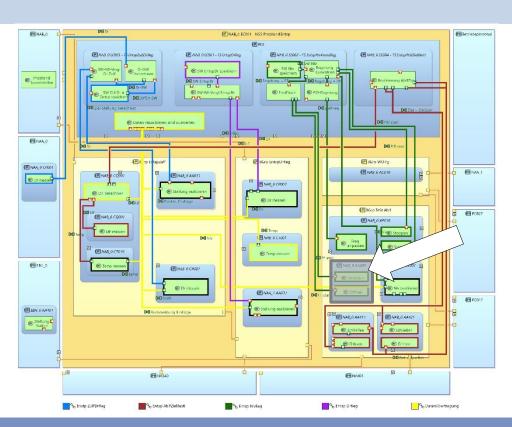
- Determine failure types
- Define ways of identifying failures (depending on type)
- Define ways of assessing the consequences of each failure
- Define ways of rendering the analysis results to a human evaluator
- Code this procedure in python (py-capellambse)
- Test the results on a company model

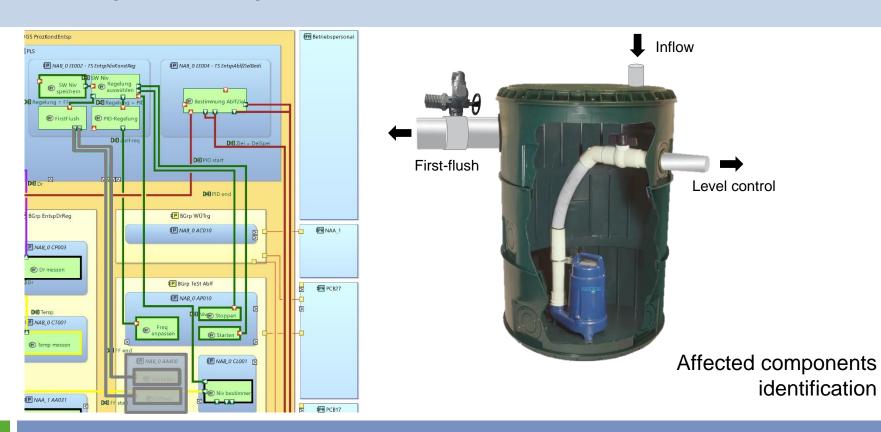
Name	Description	ARCADIA "translation"	Reference diagram (PA)	
Component A component becomes unavailable		A component, a function, a links or an exchange are not available	[PAB]	
Function or process failure	A function or process becomes unavailable	A function or state/mode is realized at an unwanted time; An expected function or state/mode realization does not occur	[ES], [PFCD]	
Content failure	A message, result or parameter becomes wrong	A component attribute is set to an unexpected value; An exchange item attribute is set to an unexpected value	[ES],	


Component failure analysis


Analysis of affected elements

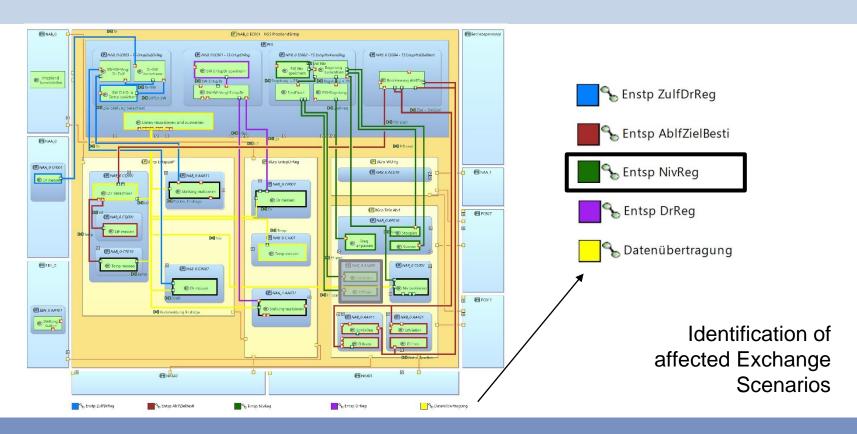
Scenario breakdown

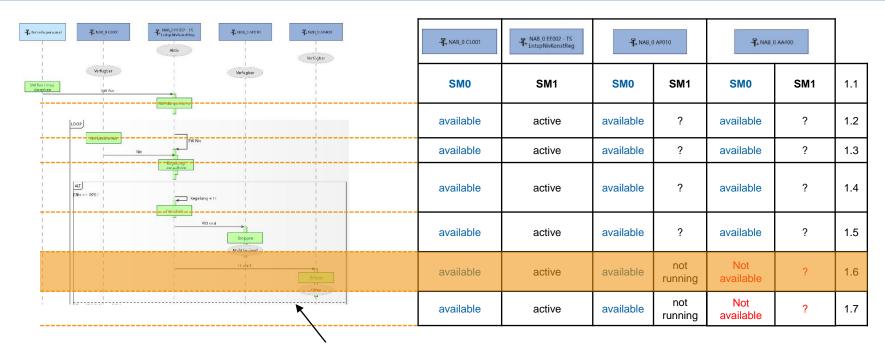




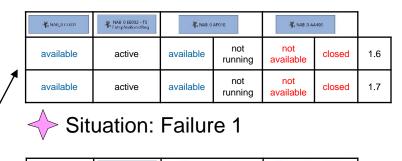
Failure identification:

"NAB_0 AA400" is not available


Example: component failure



Example: component failure


Control action: activate firstflush when >90% full

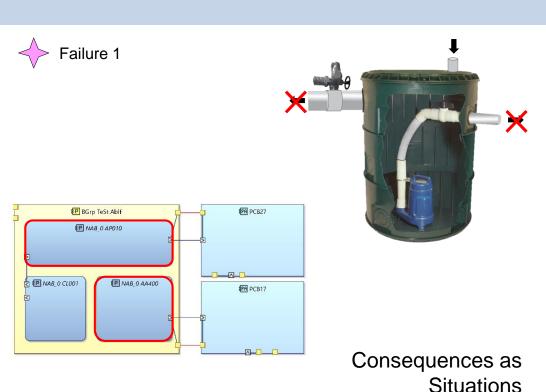
[ES] analysis

Example: component failure

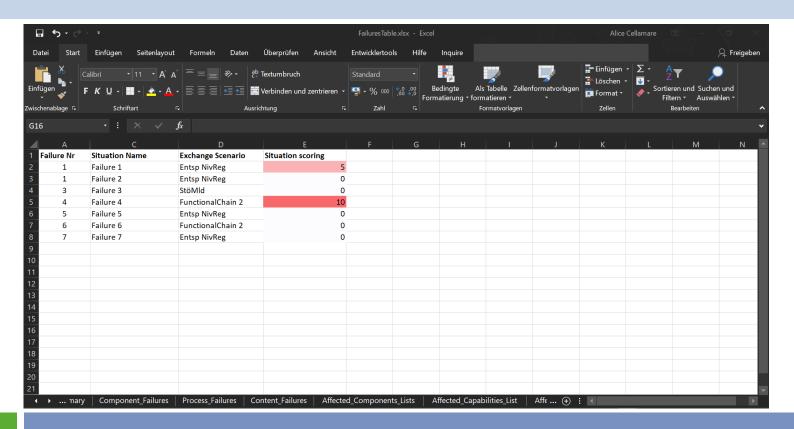
- NAB_0 CL001	NAB_0 FE002 - TS EntspNivKonstReg	-न्-} NAB_0 AP010		- ∓, NAB_0 AA400		
SM0	SM1	SM0	SM1	SM0	SM1	1.1
available	active	available	?	available	?	1.2
available	active	available	?	available	?	1.3
available	active	available	?	available	?	1.4
available	active	available	?	available	?	1.5
available	active	available	not running	not available	?	1.6
available	active	available	not running	not available	?	1.7

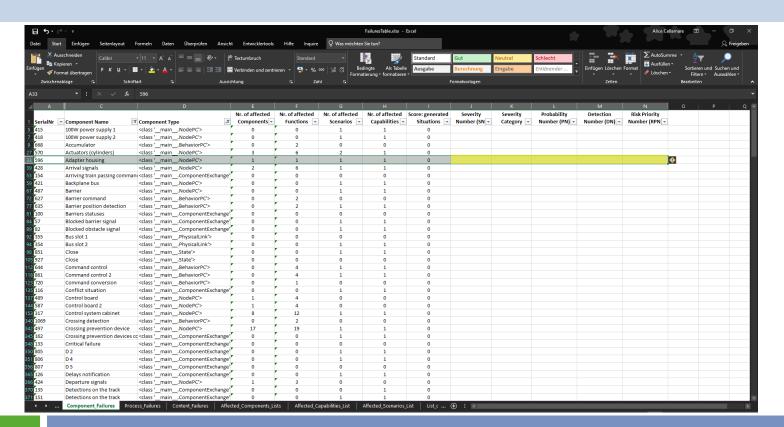
-\$\tag{1}, NAB_0 C1001	NAB 0 EE002 - TS EntspNivKonstReg	AL NAB 0	AP010	AL NAB_O AA	4400	
available	active	available	not running	not available	open	1.6
available	active	available	not running	not available	open	1.7




Situation: Failure 2

[ES] analysis





Situation scoring

Failure Evaluation

Conclusions

- Overall project impression
- Feasibility
- Critique

We welcome your feedback to improve our evolving approach for holistic fault analysis for Arcadia users

Stay tuned for session 4! →

Efficient and Comprehensive FMECAs: Harnessing the Power of MBSE Models in Capella

Thank you for your participation!

If you have any questions or would like to connect, please contact:

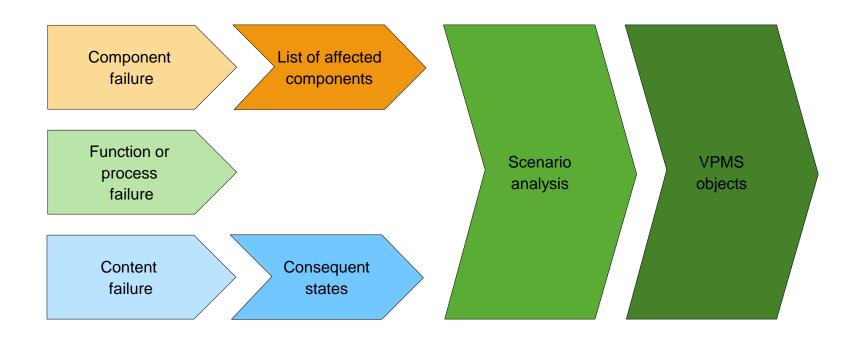
steven.huang@mantech.com

alice.cellamare@p2mberlin.de

References

- 1. Baklouti, Anis & Nguyen, Nga & Mhenni, Faïda & Choley, Jean-Yves & Mlika, A.. (2019). Improved Safety Analysis Integration in a Systems Engineering Approach.pplied Sciences. 9. 10.3390/app9061246
- 2. Lai, K, Robert, T, Shindman, D & Olechowski, A 2021, 'Integrating Safety Analysis into Model-Based Systems Engineering for Aircraft Systems: A Literature Review and Methodology Proposal', INCOSE International Symposium, Vol. 31, No. 1, pp. 988–1003
- 3. Sulaman, S., Beer, A., Felderer, M. et al. Comparison of the FMEA and STPA safety analysis methods–a case study. Software Qual J 27, 349–387 (2019)
- 4. Voirin, Jean-Luc & Bonnet, Stéphane & Exertier, Daniel & Normand, Véronique. (2016). Simplifying (and enriching) SysML to perform functional analysis and model instances. INCOSE International Symposium. 26. 253-268. 10.1002/j.2334-5837.2016.00158.x
- 5. Duhil, Christophe & Babau, Jean-Philippe & Lepicier, Eric & Voirin, Jean-Luc & Navas, Juan. (2020). Chaining Model Transformations for System Model Verification: Application to Verify Capella Model with Simulink. 279-286. 10.5220/0008902302790286

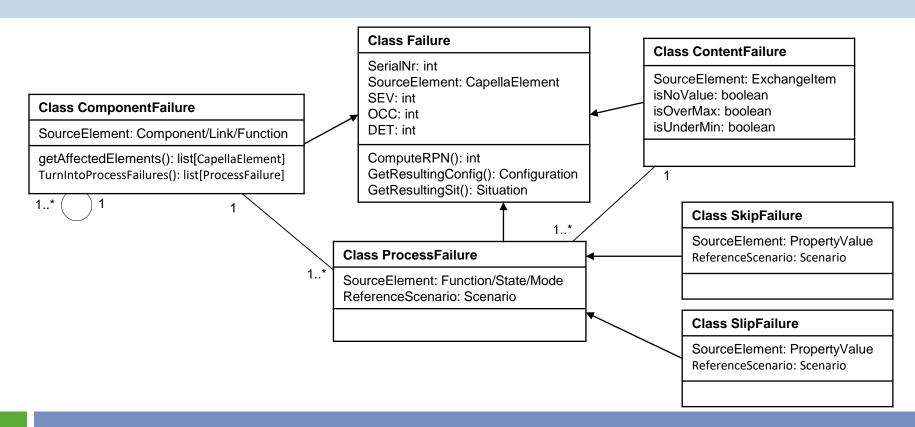
References



- 6. Modeling states and modes with Arcadia and Capella: method and tool perspectives | Webinar Capella: https://www.youtube.com/watch?v=74eKWrSs8hI
- 7. https://github.com/eclipse/capella-vpms/
- 8. https://www.anzenengineering.com/mbse-mbsa/
- 9. https://www.all4tec.com/en/safety-architect-fmeca-fta-sofware/

EXTRA SLIDES

Analysis output


Points to expand

- Failure combinations
- Situation diagrams?
- Limits of the approach: any failure modes that would only come up through, for example, physical modelling?
- Other

Failure classes

Scenario breakdown w. ALT

				2 4 2 7 4	Sens NAA10	
	Sens NAA10 CP001	- BetrPers	₽ PLS	RegKr Dr Zulf Entsp	The Bettrers The PLS The Entsp	
1.1.1	available		available	?	bestimmen MesWt	1.1.1
1.1.2	available		available	?	MesWt NAA10 CP001 [Dr-Wt]	1.1.2
1.1.3	available		available	?	visualisieren /	1.1.3
1.1.4	available		available	?	speichern MesWt	1.1.4
1.1.5	available		available	?	SW DiffDr ü Tro [Dr-Wt]	1.1.5
1.1.6	available		available	?		1.1.6
1.1.7	available		available	?	SysDr	1.1.7
1.1.8	available		available	?		1.1.8
1.1.9	available		available	?	ALT aktivieren [Befehl]	1.1.9
2.1.1	available		available	?		
2.1.2	available		available	Active	Aktiv 2.1.2	
2.1.3	available		available	Active	2.1.3	
			•		[SW DiffDr ü Tro >= IW Dr NAA10 CP001]	
					deaktivieren [Befehl]	
						2.2.1
					Inaktiv	2.2.2
						T '
						2.2.3