3% CHESS

™

CHESS 1.1.0

Contract-based Analysis,
Model Checking, and
Safety Analysis

=€

% CH

o -
g™

ESS CcHess quick start 1.0

Contents
1. Introduction
2. Setup of External V&V Tools
3. Create a CHESS Project, Model and Diagrams

4
5
6.
7
8
9
10

11
12

13

14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.

31 Import CHESS project from a Git repository
Create Requirements
Create a FunctionBehavior
Create Formal Properties
Edit a Formal Property
Create a Contract
Specify Assumption and Guarantee for a Contract
. Parameterized Architectures
10.1 Set the multiplicity of the elements
10.2 Modeling parameterized architecture
10.3 Instantiating the parameterized architecture
. Perform Trade-off Analysis
. Associate a Contract to a Block/Component
12.1 Contract Refinement
. Specify Component Behavior
13.1 Nominal Behavior
13.2 Faulty Behavior
13.3 Fault injection with probability
Manage Analysis Contexts
Perform Fault Tree Analysis
Perform Failure Mode and Effect Analysis
View Status of System Architecture
Perform Check of Contract Refinement
Perform Check of Component Implementation on Contracts
Perform Consistency Check of Assumption/Guarantee Formal Properties
Perform Consistency Check of Formal Properties
Perform Model Checking on Component Behavior
Generate Contract-based Fault Tree

Modelling Support and Contract-based Verification for Strong and Weak Contracts

I
O 00 N N N u b~ b
U

W W W W W W W W W N NDNNNNIRPRP R R pB R R p @R
© ©® N O 00 b B N RP O OW 0 N O O N N U D W W W N Bk

/\

3% CHESS CHESS Quick Start 1.0 =2 (

o -
g™

25. Import an OCRA File 42
26. Automatic generation of Block Definition and Internal Block Diagrams 43
26.1 Update of diagrams 45
26.2 Auto layout of diagrams 46
27. Generate Documentation 47
Appendix A. CHESS Supported Basic Types 51
Appendix B. OCRA Language to define Formal Properties and Contracts 52
Appendix C. Note about the usage of the <<Contract>> ConstraintBlock in the context of the SysML
language 55
Appendix D. CleanC Language, the imperative language to define transition guards and effects. 55

3% CHESS chess Quick Start 1.0 - (

o -
g™

1. Introduction

This document guides the user through the usage of CHESS for the design and analysis of a system
architecture based con contracts specification, model checking, and safety analysis. These activities are
supported in CHESS with the interaction of backend V&V tools, namely, OCRA, nuXmv, and xSAP.

2. Setup of External V&V Tools
In the subfolder of the bundle \V&VTools, there are builds of the V&V tools.

To enable the tools that are available locally:
e Go to “Window -> Preferences > Model Checking - Tools”, see Figure 1.
o For each V&YV tool (OCRA, nuXmv, xSAP)
o Click on “Browse...” and set the path of the executable
e.g. CHESS directory\V&VTools\OCRA\Ocra-win64.exe
o Click on “Test”, to verify that the tool is compatible with CHESS.

To get access to V&V Tools that are exposed as web services via OSLC:
e Click on the check box “OSLC Enabled”.
e Set the URL of the service catalogue.
e Set the path of the service catalogue.
e Click on “Show services catalogue” to verify that the web service exposes the V&V tools.

3%
~

CHESS

CHESS Quick Start 1.0

& Preferences

type filter text

CHESS
Constraint
ConstraintWithV5LI
Contract
CSs5
Ecore Diagram
EMF Compare
Ernfatic
Epsilon
Expression
Gymnast
Help
Install/Update
Java
JavaScript
Legic Diagrams
v Model Checking
Debug
Tools
Model Editor
Model Validation
Multiplicity Editor
Mwe2
Mylyn
MNuShMV
ocL
Oomph
Opencert
Oss
Papyrus
Plug-in Development
Refframework Diagram
Run/Debug
Server

Sirine

< >

S S A
@@Q

O X
€3 Value must be an existing file =1 v -
~
[J OSLC Enabled
Workspace dir | CA\Windows\Templamass Browse...
OCRA
Executable | jTools\Ocra_FTA\ocra-winGd.exe Browse...
Test
Execution Timeout (seconds) | 3100
nuXmwv
Executable | YTools\nuXmvinuXmy_wintd.exe Browse...
Test
Execution Timeout (seconds)
XSap
Executable Browse...
Test
Execution Timeout (seconds)
Service catalog base url | http://waters: 3080/ |
Service catalog path | /oslcdj-registry |
- I QSLC Demain
Show services catalog
W -
Apply
Cancel

3. Create a CHESS Project, Model and Diagrams

Figure 1. The preferences window to configure the V&YV tools

A CHESS project (i.e. the folder where the model and other artefact are stored) and a model can be created

by using the CHESS dedicated Eclipse wizard (“File & New - Others - CHESS...”).

Please note that currently CHESS projects/models cannot be created in a CDO checkout but only as

folder/file in the

current workspace.

A CHESS project is basically a Papyrus project customized with the CHESS nature (Make sure you use the

Papyrus perspective in Eclipse while working with CHESS projects).

It is possible to change the style of the CHESS diagrams going to the main menu “Window - Preferences
-> Papyrus - CSS Theme”, and then selecting the current theme. It is recommended to use the “CHESS

theme”.

¢

3%
~

CHESS chess uick start 1.0 - :<

A CHESS model is a Papyrus UML+SysML+MARTE model coming with a predefined set of packages/views
and with the CHESS profile automatically applied on it, to allow modelling of contracts, dependability and
real-time concerns. For details on the CHESS model see the “CHESS Modelling Language” guide.

A CHESS profile and tool can also be used to exploit different analysis at system level, and to apply the
CHESS model driven methodology for the design, analysis and implementation of critical SW systems.
More information about the CHESS methodology can be found at the CHESS web sitel. See the “CHESS
Toolset User Guide” as a general toolset use guide.

The CHESS editor is a customization of the Papyrus editor, offering a set of features on top of the CHESS
model. To have an overall understanding of the Papyrus environment, for instance regarding the different
views, commands, diagrams, please check the Papyrus user manual available online2.

Below are some examples of SysML Block Definition Diagram (BDD in Figure 2) and Internal Block Diagram
(IBD in Figure 3) which can be used to model the system hierarchical architecture, i.e. blocks, ports and
connections. Appendix A. CHESS Supported Basic Types itemizes the supported basic types.

«Block, System=»
System
properties
3 in Pedal_Pos1: Boolean
& in Pedal_Pos2: Boolean
El out Brake_Line: Continuous
(= No_Double_Fault: Boolean

operations
constraints
. bM
«Block, SubSystem= + hydraulic
BSCU
properties «Block=
B in Pedal_Pos1: Boolean Hydraulic
= in Pedal_Pos2: Boolean properties
El out Valid: Boolean B out Brake_Line: Continuous
El out CMD_AS: Boolean = in CMD_AS: Boolean
=] No_Double_Fault: Boolean = in Valid: Boolean
operations
operations
constraints
constraints

X

Figure 2. Block Definition Diagram example

! https://www.polarsys.org/chess/

2 https://wiki.eclipse.org/Papyrus User Guide

https://www.polarsys.org/chess/
https://wiki.eclipse.org/Papyrus_User_Guide

3%
~

CHESS cHess quick start 1.0 e,

«Block, System»

System
in Pedal_Pos1: Boolean

«FlowPort»

[>
«part» «parts
ElawDag.05cu: BSCU «FlowPorts hydraulic: Hydraulic
—)j [—‘,j [9] «FlowPorts «FlowPorts «FlowPor
R——1
«FlowPorts «FlowPorts sHonBorts out Brake_ljne: Continuous
. 5

= 2 [?‘

[>

in Pedal_Pos2: Boolean

Figure 3. Internal Block Diagram example

3.1 Import CHESS project from a Git repository

To import an existing CHESS project from a Git repository:
e Select the “Git Perspective”
® In the Git Repositories View, chick on “Add an existing Git repository”

e Select the imported repository, right click and “import projects”.

Note: Be sure to have installed eGit>.

4. Create Requirements

System requirements can be created by using the SysML Requirement diagram. On the “Model Explorer”
view, right click on “CHESS RequirementView package” and create a SysML Requirement diagram. Use
the palette to create Requirement entities.

Papyrus also supports the import of requirements from different sources, e.g. Excel files or ReqlF model.

5. Create a FunctionBehavior

FunctionBehavior represents an uninterpreted function that can be used in formal properties, contracts,
and state machines. To create a FunctionBehavior element:

e Inthe Model Explorer View, select the owner of the FunctionBehavior.
e Right click “New Child - Function Behavior - as OwnedBehavior”

® Select the created element and in the Property View - “UML” tab, set the name of the
FunctionBehavior.

e In the “UML” tab, go to the owned parameters area and click on add elements to create the
input/output parameters of the function (see Figure 4).

3 http://download.eclipse.org/eqgit/updates

4

http://download.eclipse.org/egit/updates

|
q-iii- - (
=2 CHESS chess uick start 1.0 J

] Proper... 52 | 5 Referen... JuJUnit %] Vand.. ©]Emorl.. [Console #] Behavi.. g/ Proble.. % Con
& FunctionBehavior1
UML Name { FunctionBehavior1|
Comments Language | |[& |[4=][%¢][2 Please select a language first.
Profile e -
Advanced
ContractEditor+
Ports
Is abstract Otrue @ false Is active Otrue @ false
Is reentrant ®true (Ofalse
Visibility public
Specification <Undefined>
Owned parameters TAIRVAIE P I
@ inputParam : Integer
@ InputParam2 : Boolean
@ OQutputParam : Boolean

Figure 4. “UML” tab of the selected FunctionBehavior element.

6. Create Formal Properties

Formal properties (i.e. the entities which play the role of Assumption and Guarantee in a Contract) can be
created manually by using the dedicated tool in the “Contracts” palette.

It is also possible to package a FormalProperty in a Contract by creating the former directly in the latter.

To create a FormalProperty in a Block Definition Diagram (BDD)/Component diagram:
e Select FormalProperty from the Contract palette and click on the BDD

o Give a proper name to the FormalProperty

To create a FormalProperty associated to a specific component (i.e. the owner of the FormalProperty), in
a Block Definition Diagram (BDD)/Component diagram:

e Select FormalProperty from the Contract palette and click on the specific component in the BDD
o Give a proper name to the FormalProperty

To create a FormalProperty packaged in a Contract:
e Select FormalProperty from the Contract palette and click on the Contract

o Give a proper name to the FormalProperty

If the FormalProperty is not used to define contracts, but to describe for example a possible scenario, it
can refer to ports and parameters of sub-components of sub-components (e.g. the FormalProperty can

3% CHESS CHESS Quick Start 1.0 =2 (

o -
g™

refer to the port “subcomp.block.subBlock.port”). To enable this aspect, select the FormalProperty, then
in the Property View — Advanced — Visibility - select “Private”.

7. Edit a Formal Property

To edit a FormalProperty:

e Select the FormalProperty from the Project Explorer View or select its graphical element from the
BDD.

e Open the tab “PropertyEditor+” in the Property View and write the formal property in OCRA
Language (Appendix B. OCRA Language to define Formal Properties and Contracts). Pressing
CRTL + SPACE it is possible to have a list of supported keywords of the OCRA Language to define
the formal property. If the owner component is set correctly, the content assist can suggest also
the input/output ports and the attributes of the owner component to type. Moreover, it notifies
whether a typed word does not belong to a keyword/port/attribute, see Figure 5.

[T] Properties 52 | J Model Va.. % Referenc.. & Hierarchi.. [T]Contract.. ! Problems [Console &jProgress 4] Trace = [

. dh ks

{7} FormalProperty1

UML WheelBrakingSystem:modelSystemView::PhysicalArchitecture: System:FormalPropertyl Selected Property
Comments @ UnrecognizedKeyword != bscul_fault_Monitor & always{Peda]_Pos1)
Profile [# Pedal_Posl ~
Style [Pedal_Pos2
Appearance =
= &
Rulers And Grid ..
Advanced =
CustomPropertyEditor =
OpenCert =<

15 -
IF <<

g <=

Figure 5. Property Editor with content assist

To associate an expression to the FormalProperty as shown in Figure 6:

e Select the FormalProperty.
e |n the “UML” tab of the Properties view, edit the current value of the “Specification” field and
provide the expression in the “Value” field.

-I¥-
=2 CHESS chessauickstart 1.0

-5¢

FONDAZIONE
BRUNO KESSLER

odel.di - Eclipse Platform — 0 X
apyrus Project Run CHESS Window Help
,v —»v|.,"n"_l:*?‘_’}_.£vcu%v%-gvEv'ﬁ?v{.>v<—>v . E‘E‘}V]ODGQ #vaQvE .;\,’-\v
lA~®~ .5~ B e
73 *model.di £3 = B8
A | 5s Palette 3
| #% PortAndFlows o
«FormalPropertys N #% DataTypes
{2} FormalProperty1 #% Contracts £
{ — w
v @ ContractProperty
- W
@ Welcome | B3 BDD 52 h
[T] Properties 52 | f Model Validation %’ References = 8
Use this to edit the
s
{2} FormalProperty1 valiE e
! Visibility public v FormalProper A
umL _ perty
Comments Context RootElement |« | 5| | #
Profile
Style } .
Specification s constraintSpec="null" + 7]
s
VD| = / o

Figure 6. Creating a Formal Property

Use the formalize property of the FormalProperty stereotype, available in the “Profile” tab of the Property
View, to link the requirements formalized by the current FormalProperty (see Figure 7).

10

3%
~

CHESS chess uick start 1.0 - :<

FONDAZIONE
BRUNO KESSLER

~J “model.di 3

«FormalProperty= B
{7} FormalProperty1 «FormalProperty»
0 {7} FormalProperty2
i

«constraints
«ConstraintBlock, Contracts
Contractl
parameters

constraints

(&%) Welcome | Bg BDD 22 |] New Requirements Diagram
[T] Properties §2 J Model Validation % References

{7} FormalProperty1

Applied stereotypes:

UML LR

Formalize
Comments v [FormalProperty (from CHESSContract) [#] Requirement]
Profile (=) Formalize: Requirement [*] = [Requirement]1, Requirement2] [#) Requirement2
Style
Appearance
Rulers And Grid
Advanced

Figure 7. Formalizing Requirements

8. Create a Contract

Contracts can be created in a BDD and in a Class/Component Diagram.

To create a Contract:
® Open a BDD/Class diagram.

e Select “Contract” from the Contracts palette and click on the diagram.

o A popup appears to choose if a new contract must be created or if an existing one must
be instantiated (see Figure 8).

o Give a proper name to the Contract.

& Question

Do you want to create a new contract or instantiate an existing one?

-

Figure 8. Popup to create a new contract or instantiate an existing one

11

q-ii-l- - (
=2 CHESS chess uick start 1.0 J

Alternatively, it is possible to create a Contract without the need to create its graphical representation
from a BDD:

e Select the component to assign the contract. The element can be selected in the Model Explorer
View or in the graphical editor.

e Open the “ContractEditor+” tab in the Property View, type the name of the contract in the “new
contract's name” text field and click the “Add Contract” button (see Figure 9). A popup appears
to choose if a new contract must be created or if an existing one must be instantiated.

O] Properties 3 | f Model Validation 77 References & Hierarchical Model View [Console 9 Trace 4] FaultTres [=]Contract Refinement V... [£] Problems =g Progress &1 Synch|

& system

T \WheelBrakingSystem:modelSystemView:PhysicalArchitecture::System Selected Class
v | Contract List

Comments

SysML ‘ new contract's name Add Contract

Profile

Style Assume Guarantee

Appearance

Rulers And Grid] [x]

Advanced
ContractEditor+
Contracts
OpenCert

Figure 9. The Add Contract button in the ContractEditor

9. Specify Assumption and Guarantee for a Contract

To specify an Assume (or Guarantee) FormalProperty for a given Contract:

e Select the Contract, open the “Profile” tab in the Properties View and set the Assume (or
Guarantee) attribute of the Contract stereotype to the (previously created) FormalProperty.

The Assumption and the Guarantee properties for a given Contract can also be specified through the
dedicated “ContractEditor+” tab in the property editor (see Figure 10). To be able to use the
“ContractEditor+” tab:

o Select the Contract to edit, or
e Select the Block/Component and then select the ContractProperty (see below) from the
ContractList in the “ContractEditor+” tab.

Properties ©1 4 Model Validation * References i Trace & Hierarchical Model View Tl Contract Refinement View (= Problems O Console = Progress
¥ System
UML WheslirakingSystemzmaodelSysternViews: PhysicalArchitecture:System Selected Class
Comments contract_system : contract_systemType w | Contract List
SysML contract_system Add Contract
Profile
Style Assume Guarantee
Appearance
Rulers And Grid
Advanced

true always(Brake Lind)

Contracts
CustomContractEditor

OpenCert

Figure 10. Editing the Contract’s Assume and Guarantee

12

3% CHESS CHESS Quick Start 1.0 =2 (

o -
g™

10. Parameterized Architectures

10.1 Set the multiplicity of the elements

It is possible to set the multiplicity of FlowPorts and sub-components to express a list of elements with
the same type.

To set the multiplicity of the selected element:
e Inthe Property View — “UML” tab, in the multiplicity area, click on “Switch editors”, see Figure 11.
e Inthe LowerValue Specification and in the UpperValue Specification, click on “Create new object”
— “LiteralString”, see Figure 12.

e Inthe “Value” text area, write the expression that expresses the number of elements (e.g. “5” or
“numSubComp + 4” where numSubComp is a declared flowport).

[Proper... 2 % Referen.. JuJUnit #] Vand QJEmorl..) Console 3] Behavi.. 5! Proble 1] Contra. 1] Validati... g5 Git Sta. s} History) Console ¥ FmeaT.. 4 Trade- = 8
o E N

In1: event

umL Name In1

Comments | |s behavior Otrue @ false Is derived Dtrue @ false

SysML Is derived union Otrue @ false Is ordered Otrue @ false

Profile -~ ~ - _
Is service @true (Ofalse Is conjugated Otrue @ false

Advanced

Poss Visibility public v
Default value <Undefined> ‘u Multiplicity ! ¥

N

Figure 11. Switch editors to set the multiplicity

Multiplicity <Undefined> & <Undefined> m &
Duration
Durationinterval

) Expression

Required InstanceValue

Interval

LiteralBoolean

Literalinteger

LiteralNull

LiteralReal

LiteralString

LiteralUnlimitedNatural

OpaqueExpression

Figure 12. Select LiteralString for both LowerValue and UpperValue Specification

10.2 Modeling parameterized architecture
To parameterize an existing architecture, perform the following steps:

o Create the parameter: In the Model Explorer View or in the BDD Editor, create a static FlowPort.
The static attribute can be set to “true” in the “SysML” tab of the Properties view.

13

3% CHESS CHESS Quick Start 1.0 =2 (

o -
g™

e Give an assignment to the parameter (optional step). In the Model Explorer View or in the IBD
Editor, select the owner of the parameter, create the “DelegationConstraint” element and set a
value or an expression to the parameter.

e Give a constraint to the parameter (optional step). In the Model Explorer View, select the owner
of the parameter, create the “Constraint” element and write a boolean expression in the 0SS
language.

10.3 Instantiating the parameterized architecture
Note: for this functionality OCRA must be available, go to Section 1 to setup OCRA.
To instantiate a parameterized architecture, perform the following steps:

e Select the root component of the parameterized architecture: Select the root component (in the
“Model Explorer” view) or the corresponding graphical representation (in the diagram editor) and
open the menu using the right-button of the mouse. Select “Instantiate the parameterized
architecture”, then a wizard appears.

e Select the parameters used in existing instantiated architecture (optional step).

® Assign a value to each parameter, see Figure 13. This step may require more iteration; a
parameter may depend on another parameter, so the latter needs to be set first.

e Importtheinstantiated architecture into the project, see Figure 14. Select the destination package
on the right side of the wizard page.

£ Export My Data [m) X

Architecture Instantiation 1. Assign values to parameters

Please assign a value to each parameter

[Select parameters used to instantiate the following architecture:

No parameter is already assigned. Set values:

Parameters Name Parameters Value
n_balise_group El
physical_1.n_balise_group

physical_1.physical_trackside.n_balise_group
linking_system_1.n_balise_group

linking_system_l.train_1.n_balise_group
linking_system_1.train_1.contralsystem _1.n_balise_group

linking_system_1.trackside_1.n_balise_group

@ < Back Next > Finish Cancel

Figure 13. Wizard to set the parameters of the parameterized architecture

14

3%
~

CHESS cHess quick start 1.0 e,

& Export My Data [m] X

Instentiation Completed.

Assigned Parameters at iteration 1: Import the instantiated architecture.

n_balise_group=5 Select the destination package of the instantiated architecture,

Create a nested package in the destination package.

Filter:

~ [«CHESS= model
) «RequirementViews modelRequirementView
3 «SystemViews modelSystemView
£ «ComponentViews modelComponentView
£ «DeploymentViews modelDeploymentView
B wAnalysisViews modelAnalysisView
7 «PSMViews modelPShView

@ b | Conc

Figure 14. Last page of the wizard to import the instantiated architecture into the current project

11. Perform Trade-off Analysis

After having instantiated some architectures as explained in Section 9, it will be possible to compute the
Trade-off Analysis on the instantiated configurations.

This analysis allows to execute a certain check on all the selected configurations and get the results in a
view that simplifies the comparison between them.

To run the Trade-off Analysis, perform the following steps:

e Select the root component of the parameterized architecture (in the Model Explorer View) or the
corresponding graphical representation (in the diagram editor).

e Right click and go to “CHESS -> Trade-off Analysis” (see Figure 15).

e A popup will appear, allowing to select the check to run on the selected configurations (see Figure
16). At least two configurations should be selected. At the moment, only the Check Contract
Refinement check can be applied to the configurations.

e A popup will appear, allowing to select the time model of the architecture.

15

4

-I¥-
=2 CHESS chess uick start 1.0

v =CHESS» model

v [«SystemViews modelSystemVi
E LoopSubComp
B3 ParallelSubComp
~ B MultipleParams

& block_1: Block
& n_sub_comp: Integ
= InstantiateArc_1
[© InstantiateArc_2
Diagram System1_|
[E] «Block» Block
o« A_block_1_system1_1
B Diagram MultiParamsE
F «ComponentViews modelCor
E «DeploymentViews modelDeg
E «AnalysisViews modelAnalysis
B «PSMViews modelPShView
B4 «EPackage, Modell ibrary= UML P|

<

g= Outline 32

—

~ [«Block, Systems Syster *

B ModelBxplorer 33 | = @ 1% 05 Y = O

1 «RequirementViews modelRequirementView

ew

«Block
[Blo
Navigate > propert]
. B in inputPort: Boolea
New SysML Child 4 Bl in outputPort: Boole
New Child >
New Relationship >
New Diagram 4 operatiol
] New Table ’
9 Delete Delete constrai
Undo Ctrl+Z
Redo Ctrl+¥
of Cut Ctrl+ X
B Copy Ctri+C
e ey B3 LoonSubComn BDD 52
Build Instances
Profiles > Basic Operations >
g
iy Import > Validation ’
o
Ly Export > Functional Verifications ’
Enable write Safety Analysis >
J Validation > Safety Case > L
t Create Submedel Compare Analysis Results
= CHESS > Trade-off Analysis

Figure 15.

Trade-off Analysis command

Trade-off Analysis

Check Type

Check Contract Refinement

Ayailable Configurations

Instantiatefrc_1
Instantiatefirc_2

Figure 16. Parameters of the Trade-off Analysis

The results of the analysis will be displayed in a special view called “Trade-off”, as seen in Figure 17.

-5¢

The type of executed check is displayed in the upper-left cell of the table. On the other columns the
contracts found in the analyzed configurations are reported.

The first row of the table reports the concerns specified on the assumption/guarantee formal properties

of each contract. In case of different concerns, they will be both reported.

Each following row of the table reports the results of the check on that specific configuration, making it
easy to visually compare them. To get a detailed report of the check, double-click on a line and the view
will be switched to the Contract Refinement trace for that configuration.

16

[|
<33 — (
= CHESS cHess quick start 1.0 D
ol

D properties J Model validation B Console #. Problems =]V andVResults 3] Contract refinement trace & Git Staging ¥4 Trade-off 32

Contract3Type Contract4Type

‘unspecified

Contract2Type
Esecurity, performance

Check Contract Refinement Contract1Type
‘unspecified

Concerns :safety
InstantiateArc_1 iSuccess iSuccess iSuccess
iSuccess iSuccess iSuccess

InstantiateArc_2

Figure 17. Trade-off Analysis results

12. Associate a Contract to a Block/Component

To associate a Contract to a Block/Component the following actions need to be performed:
Create a ContractProperty inside the Block/Component (see Figure 18). The ContractProperty acts

[]
as a special attribute of the Block/Property.
e Typethe just created ContractProperty with the Contract by using the “UML” tab in the Properties
View.
7)) *model.di 3

«FormalProperty»
{2} FormalProperty1

it

«FormalProperty»
{7} FormalProperty2

{

«constraints
«ConstraintBlock, Contract»| (:)Block»
] Contract1 [%] Block1
parameters properties
operations

constraints

constraints
[“alContractProperty1: Contract1

{9 Welcome | Bg BDD 2 | [§ New Requirements Diagram

[T Properties 52 = J Model Validation = References

@ ContractProperty1 : Contract1
v 2 ContractProperty (from CHESSContract)

& RefinedBy: ContractRefinement [*] = (]

UML
& ContractType: ContractTypes [1] = Strong

Comments
SysML
Profile

Figure 18. ContractProperty

12.1 Contract Refinement
Once a model component that has a contract has been decomposed, it is possible to define the contract’s
refinement. The refinement of a contract can be specified following these steps (see Figure 19):

e Select a ContractProperty of a Block in a BDD or in the Papyrus ModelExplorer View.

17

[]
CHESS Quick Start 1.0 :

3% CHESS

e Right click and select “Contract - Set Contract Refinement”.

7 Battery Multistate.di ~ ~#SSRdi < ParamArchProjectdi |~ WBS.di 5%

=Block, Systems
System
properties

B in Pedal_Pos1: Boolean
[in Pedal_Pos2: Boolean
El out Brake_Line: Continuous
E in bscul_fault_ Monitor: Boclean
Bl in bscu2_fault Monitor: Boolean
B in bscu_fault Command: Boolean
[in bscu2_fault Command: Boolean

operations
constraints
=) —
5
e C‘u!_/_' avigate
Block, SubSystems File 4
BscU Load resource...
(Rl Enable write

B in Pedal_Pos1: Boolean
B in Pedal_Pos2: Boolean

Open textual editor for stereotype applications
E out Valid: Boolean ? TERTE

B out CMD_AS: Baolean 3¢ Delete Selected Element Delete
B in bscu1_fault_Monitor: Boalean [/ Delete From diagram Shift+ Delete
B in bscu2 fault_Monitor: Boolean
Bl in bscu_fault Command: Boolean #= CHESS >
Bl in bscu2 fault Command: Boolean ¥ Contract , Set Contract Refinement
operations 3 Filters >
constraints ~# Format >
{2} {Valid := bscu1.Valid or bscu2.Valid} 3 Filters N
=] emd._time: BSCU_CMD._Time
) safety: BSCU_Safety S Vslidation >
~J Edit >
Wizards ¥
Profiles >
L Layout Selection
bscu2 & Loy
FE Show Layout View
bscgt
«Blocks ocL ’
SubBSCU
properties 1 Show Properties View

[in Pedal_Pos: Boolean

El out Valid: Boolean

El out CMD_AS: Boalean

& in fault_Monitor: Boolean
& in fault_Command: Boolean

<&

Show References View
Properties

Remove from Context Ctrl-+Alt-+Shift Down
Edit Property >

Figure 19. Set Contract Refinement Command

e In the new dialog window select the Contract Properties from the list (see Figure 20). In case
the multiplicity of the Aggregation is defined, the “Range” field allows to specify which
subcomponents refine the contract. This dialog window shows the Contract Properties in the
format: InstanceName.ContractProperty. This allows the selection of instance-based Contract
Properties (instead of type-based).

~¥ Battery_Multistate.di ~P SSR.di #J ParamArchProject.di <P "WBS.di i3

<Block, Systems
Syster £ Set Contract Refinement o X
preperties
Bl in Pedal PosT: Boolean Select Refinements:
B in Pedal_Pos2: Boolean
& out Brake_Line: Continuous contract range
& in bscul_fault Monitor: Boolean O bscu.safety
B in bscu2_fault Monitor: Boolean O bscu.cmd time
3 in bscul_fault Command: Boolean - .
JEE hydraulic[0..(4 - 1)]brake_ti 0.04-1)
3 in bscu2_fault Command: Boolean L ydraulicl0.(4 - 1)} brake fime
operations
constraints
bscu
Block, SubSystems
BSCU hydraulic [4]
properties
Bl in Pedal PosT: Boolean «Blocks
B in Pedal_Pos2: Boolean Hydraulic
El out Valid: Boolean properties

B out CMD_AS: Boalean

B in bscul_fault_Menitor: Boolean
Bl in bscu2 fault_Monitor: Baolean
Bl in bscu1_fault Command: Boolean
Bl in bscu2_fault_Command: Boolean

operations

constraints
bscul.Valid or bscu2 Valid)
= emd_time: BSCU_CMD_Time
(5 safety: BSCU Safety

18

& out Brake_Line: Continuous
B in CMD_AS: Boolean
& in Valid: Boolean

operations

constraints
[5] brake_time: Hydraulic_Brake Time

|
-iiii- - (
=2 CHESS chess uick start 1.0 J

FONDAZIONE
BRUNO KESSLER

Figure 20. Refinement Selection

Be sure that the Aggregation kind of the instances is set to composite as shown in the

bottom-right partin the Figure 21. This is required to let “Set Contract Refinement” command
to work properly.

«Block, System=»

System
in Rl Pogtk Boolean
£
«FlowPort» «parts
«Componentinstance» <Foviborts
- bscu: BSCU 4
al [ln:4) «FlowPorts
=Y
«FlowPort» «FlowPort» -FIO\I:]
!
<Fl E‘Z]
[[

in Pedal_Pos2: Boolean

<
B3 PhysicalArchitect... Hydraulic_lBD SubBSCU_IBD System_IBD 52 | Bl SowtwareComponent...| Bf SoftwareContr
[T Properties 82 | J Model Validation % References

€1 bscu : BSCU
Visibility package v

Type
UML
Comments Multiplicity 1 v & Default value
Profile
Style Aggregation composite] v Subsetted property
Appearance [

Figure 21. Composite Aggregation
e The information about the refinement is set in the “RefinedBy” attribute of the

“ContractProperty” stereotype of a Block and available in the “Profile” tab of the Property view
(see Figure 22):

19

|
q-iii- - (
=2 CHESS chess uick start 1.0 J

«Block, System=» A | 2% palette b
System R — —*

properties EJ ConstraintBlock
& in Pedal_Pos1: Boolean

& in Pedal_Pos2: Boolean
€ out Brake_Line: Continuous

TEL e bR

2% Associations

=) No_Double_Fault: Boolean o« DirectedComposition
Pl PR
7% ModelElements
operations [Package
[E] &, et ERNEENREES

constraints
Sfbrake_time: System_Brake Time
& FlowPort

. bM \ % DataTypes

(@) DataType

#% PortAndFlows

«Block, SubSystem= + hydrz
BSCU = ‘f(Pﬂ Netraibon T
properties «Block= 2% Contracts
= in Pedal_Pos1: Boolean Hydraulic v 2 Contract (ConstraintBlock)
< > = WP P N
By PhysicalArchitect... &2 Hydraulic_IBD | [B% SubBSCU_IBD | B System_IBD B@ SowtwareComponent... Bg SoftwareContracts CD | [B3 Select_Switch CSD| 3
[T Properties 52 e
= brake_time : System_Brake_Time
Profile = Applied stereotypes: & ® RefinedBy ~
Style v 2 ContractProperty (from CHESSContract) . [bscu.cmd_time
Appearance =) RefinedBy: ContractRefinement [*] = [bscu.cmd_time, bscu.safety, hydraulic.brake_time] = bscu.safet;r
Rulers And Grid &l ContractType: ContractTypes [1] = Strong [hydraulic.brake_time
v
= < >

Figure 22. Contract Refinement
13. Specify Component Behavior

13.1 Nominal Behavior

Nominal behavior of a component can be provided by using UML State Machine diagrams. State Machines
are usually expressed in terms of discrete time domain, CHESS supports also the timed time domain. In
the case of a timed UML State Machine, the behavior is described by a timed automaton, a non-
deterministic finite state machine extended by finitely many real-valued clocks, using timed and discrete
transitions. A classic nominal behavior defined in CHESS using state machine comes with the following
restricted elements:

e Aninitial state: The state representing the initial step of the behavior
e Basic states: As many states as necessary to represent the component behavior

e Transitions: A transition comes with a guard and an effect only. The guard is a boolean condition
upon the values of the component properties. The effect must be expressed by using the CleanC
language, to model component properties assignment. The transition coming from the initial
node (i.e. the initial transition) has always its guard true and its effect represents the initial values
of the component properties.

e State invariants: A boolean condition or restriction on the values of the component properties,
expressed using the CleanC language as a state constraint. The property must be fulfilled in order
to be able to remain in the state. In the case of a timed UML State Machine, the condition or

20

3% CHESS CHESS Quick Start 1.0 =2 (

o -
g™

restriction on clocks should be convex, in the sense of a conjunction of inequalities on the clock
(e.g. the condition “x<0 && x>3" is not valid).

Additional restrictions also apply: no UML concurrent regions, history states, choice or junction
transition.

«Block»
Led
properties
= in energy: EnergyType
& out load: EnergyType

operations

constraints

Figure 23. Example of a Led component

An example of a component is given Figure 23. It represents a component Led with two properties: energy
and load.

[true]/load=4; light=true

[energy >= load]/light=true
[energy < load]/light=false

State1

Figure 24. Example of nominal behavior for the Led component

Its nominal behavior is defined in the state machine described in Figure 24. At initialization, load is set to
4 and light is set true. There is only one state in this behavior with two transitions: if energy is greater or
equal to load, the next assignment of light is true; if energy is lower than load, the next assignment of light

is false.

To define the Guard and Effect on a transition in CHESS, the user needs to click on the transition and open
the Properties view as described in Figure 25.

21

-I¥-
=2 CHESS chessauickstart 1.0

Led_NominalBehavior

true]/load=4: light=true

[energy >= load]/light=true

[energy < load]/light=false

@ Welcome % Led_NominalBehavior &

-5¢

FONDAZIONE
BRUNO KESSLER

& Region

© State

® Initial

@ FinalState
®shallowH..
® Dengist...
< Edges ©
“ Transition
i Link

7 Contextli...

I Properties % | ¥ Model Validation %’ References & Problems 1V and V Results ‘i Contract implementation trace ol = v =8
@ Transition0
]
UML Name ‘ ﬁransiticn()
Comments Kind external v
Erofile Trigger + | %
Style
Appearance
Rulers And Grid
Advanced
Guard 1 <Constraint> - |4 | # ||| Effect @ <Opaque Behavior> CPARe 3
[
Figure 25. Properties view
For the Guard, the user needs to define a Constraint as described in Figure 26.
T Properties %+ Model Validation %’ References &! Problems 1V and V Results “ Contract implementation trace el e
@ Transition0
P |
UML Name Transition0
Comments Kind external b
Profile
— | Trgger Constraint *| X~
Style
DurationConstraint
Appearance) .
e InteractionConstraint
Rulers And Grid K
= | IntervalConstraint
Advanced . .
_— TimeConstraint
Guard <Undefined> [:' e acjue Behavior> EANPANE 3

Figure 26. Constraint selection for Guard

The Constraint is defined using an OpaqueExpression, as shown in Figure 27.

22

Lisd

{3

CHESS chess uick start 1.0 - :<

FONDAZIONE
BRUNO KESSLER

Duration

Led_NominalBehavior Durationinterval

Expression

InstanceValue

Interval

F/load=4; light=true

LiteralBoolean

[energy >= load]/light=true

State1 Literallnteger

a - _ i LiteralNull
Create a new Constraint .
LiteralReal
LiteralString
Name I:l Constrained element i el £ LiteralUnlimitecdNatural
Visibility public v OpaqueExpression
Context <Undefined> |« |4 StringExpression
@ Welcome %a Battery_NominalBehavior s Le| Ui Efglessitery
i - 3 Timelnterval
= Properties 2 | Model Validation %’ Refere Specification | <Undefined> |—_|
@ Transition0
UML Name Transitio
Comments Kind external
Profile X UML| Comments
Trigger
Style
Appearance @
@ OK Cancel
Rulers And Grid
Advanced
Guard <Undefined> e Effect ® <Opaque Behavior>

Figure 27. OpaqueExpression selection for Constraint

The OpaqueExpression must be defined in the CleanC language (The user has to manually set it) as
described in Figure 28.

Appendix D. CleanC Language, the imperative language to define transition guards and effects.
describes the rules of the language.

Led_NominalBehavior

[/load=4; light=true]

[energy >= load]/light=true

= 7D

Name l:l Constrained element LI LR (P
‘ Visibility ? Create a new OpaqueExpression
Context [
@ Welcome % Battery_NominalBehavior ‘ele Name ‘
D Properties % | ¥ Model Validation %" Referet Spdineziem ’- Language |it | & |4 % | # true‘
o .
? Transition0 e
UML Name Transitio L
Comments Kind external
Profile Tigger UML| Comments Visibility public v
Style | Behavior <Undefined> |- |4 Type <Undefined> - |4 B
Appearance @
Rulers And Grid
UML| Comments
Advanced 3
Guard <Undefined>
® Cancel

Figure 28. OpaqueExpression definition in CleanC language

23

3%
~

CHESS

-5¢

FONDAZIONE
BRUNO KESSLER

CHESS Quick Start 1.0

For the Effect, the user needs to define an Opaque Behavior as described in Figure 29.

D Properties & | ¥ Model Validation ' References &! Problems %V and V Results “ Contract implementation trace slE» o v =0
@ Transition0
UML Name Transition0
Comments Kind external Activity
Profile . FunctionBehavior
Trigger
Style Interaction
Appearance OpaqueBehavior
Rulers And Grid ProtocolStateMachine
Advanced StateMachine
Guard <Undefined> | Effect <Undefined> [.?j

Figure 29. OpaqueBehavior selection for Effect

The OpaqueBehavior must be defined in the CleanC language as shown in Figure 30.

Led_NominalBehavior
& Nodes 3
® Region
©State
7 Create a new OpaqueBehavior o nitial
@
Statel FinalState
Nz | ®shallowH..
® DeepHist...
Language | || & | % || ¢ load=4; Iight:true‘ cp
% Edges ©
Cleant P Transition
7 Link
7 ContextLi..
@ Welcome % Battery NominalBehavior % Ld Is abstract Otrue @ false s active Otrue @ false
D Properties 2 Model Validation 7 Referel I ezt ®true O false A& 7= 8
2 Transition0 Visibility public v
UML Name Transitiq ~ Speification | <Undefined>
Comments Kind external Use case X v
Profile
Trigger &%
Style
Appearance
Rulers And Grid
UML Comments
Advanced E
Guard <Undefi ndefined> %
al

Figure 30. OpaqueBehavior definition in CleanC language

For the State Invariant, the user needs to define a Constraint as described in Figure 31.

£} vand vV Results

B problems B Console

<Undefined>

Name
Comments
Profile
Style
Appearance
Rulers And Grid
Advanced

State invariant <Undefined>

DB activity <Undefined> <Undefined>

Submachine <Undefined>

TimeConstraint
Ports Deferrable trigger

Figure 31. Constraint selection for State invariant.

24

3%
~

CHESS

CHESS Quick Start 1.0

The Constraint is defined using an OpaqueExpression, as shown in Figure 32.

Comments
Profile
Style

Appearance

The OpaqueExpression must be defined in the CleanC language (The user has to manually set

Create a new Constraint

Context <Undefined> +

Specification <Undefined>

ALY Comments

7}

R Problems & Console] Vand V Results

Name

State invariant

D8 activity

Submachine

Deferrable trigger

State1

<Undefined>

<Undefined>

<Undefined>

Initial
© FinalState
1) shallowHist

% Edges
Transition
13

E& Functional vid
Initial
= State
“ Transition
& Prioritized
© FinalState
+MARTE/Coref

s ModeTrans
(Transition)

== Mode (Stat{

LiteralBoolean
Literalinteger
LiteralNull

LiteralReal
Literalstring
LiteralunlimitedNatural
OpaqueExpression
String

TimeExpr

<Undefinec 3
Timelnterval

<Undefined>

Figure 32. OpaqueExpression selection for constraint.

described in Figure 33.

25

-5¢

FONDAZIONE
BRUNO KESSLER

it) as

{3

CHESS chess uick start 1.0 - :<

FONDAZIONE
BRUNO KESSLER

Name _ Constrained element t & + X 7/ ==
= Edges
Visibility - Create a new OpaqueExpression o

Context <Undefine

Name
Sjiecification <Undefine : ;
Language + load<6;

CleanC

| UML} Comments
Visibility

@ welcome ®: bdd 2] Behavior <Undefined> ... <Undefined>

B Problems B Console 5]\ Lly Comments

o

Name
Comments
Profile

State invariant efi Efitry <Undefined>

Style D8 activity <Undefined> <Undefi

Appearance

Rulers And Grid submachine <Undefi

Figure 33. OpaqueExpression definition in CleanC language.

State Invariants can be displayed by dragging the constraint from the Model Explorer View into the state
machine diagram as described in Figure 34.

:Z Outline B TaskList &

Statel

2 «CHESS» model
£ «RequirementView» modelRequirementview
£3 «SystemView» modelSystemView

«Block, System» System1

«Block» Block1 [——

&l flow: Boolean

ycontract: Contract1Type

{?-} «contexts
{{CleanC} load<6;} =

g x: Real

(* StateMachine1
(D Region1

@io

P & Tasks W B Problems B Console #] Vand V Results

Pto

@ [nitial1

& State1 ML Name

~ {7 <Constraint>

=¥ load<6;

&9 Statez

@ welcome *: bdd =

e

7! «Constraint>

Comments
Profile

Visibility

style -t
E «Contract» Contract1Type = Context ™ Statel
. Appearance
& Diagram SmBlock _ .
Rulers And Grid & load<s;

« A block1 1 system1 1 Specification
L Advanced

4. -

26

3% CHESS CHESS Quick Start 1.0 =2 (

-
g
Figure 34. Displaying a state invariant.

The light attribute used in the state machine in Figure 24 is not visible in the Led block in Figure 23. It is a
local attribute of the Led component used only in the state machine. Local attributes to use only in UML
state machine diagrams are created as follows:

In the Model Explorer View, select the owner component of the local attribute.
Right click “New Child - Property”.

Select the Property (that represents the local attribute) and in the Property View — “UML” tab set
the name and the Type of the element.
An example for the Led component is given Figure 35.
= B8
EE#EFEBESE ¥
v E «Block» Led A
= energy : EnergyType

& Model Explorer

2 |oad : EnergyType

& light : Boolean

& Led_NominalBehavior
Diagram LedIBD
«" Association2
« Association3
= Association4
«Block, ErrorModelBehavior» Selec v
< >

Figure 35. Example of local attribute

13.2 Faulty Behavior
Faulty behavior for a component can be provided by using the CHESS dependability profile.
Several possibilities exist in CHESS to model the faulty behavior of a component.

For instance, faulty behavior can be modelled in a dedicated state machine stereotyped with ErrorModel;
the ErrorModel represents a particular kind of state machine containing information about faults, errors
and failure modes and their propagation internal to a given component.

Once defined, the ErrorModel state machine can be attached to a given component by stereotyping the
component with ErrorModelBehaviour.

The ErrorModelBehaviour stereotype comes with the errorModel attribute, which has to be used to
reference the actual ErrorModel state machine to be attached to the component (see Figure 36).

27

3% CHESS CHESS Quick Start 1.0 =2 (

o -
g™

«errorModel»
err_SensorA

«InternalPropagation» { «errorState» «Failure»
«block» «InternalFaults LateDetection il
occurrence=exp(1.0E-4) ,

«errorModelBehavior» =]

«Failure» A

&) !
£2] SensorA [I = mode=[out.late]
«ErrorModelBehavior» healthy «Internalfault» Choicel

errorModel=[err_SensorA]

«errorState» «Failure»

Undetected il
«Failure» N
mode=[out.omission]

LS J

«InternalPropagation»

Figure 36. ErrorModel behavior

The following information can be provided through an ErrorModel state machine:
e Initial state
o lItrepresents the “healthy” state of the component
e Errors
o UML State, with the «ErrorState» stereotype
e Internal faults
o UML Transitions, with the «InternalFault» stereotype
* connecting the initial state and an error state
» occurrence — time to fault occurrence (time distribution)
e Internal propagations
o UML Transitions, with the «InternalPropagation» stereotype
» delay —time after which propagation occur
» weight - relative probability of occurrence

= externalFaults — Boolean expression on the occurrence of external faults (i.e., failures
incoming on input ports of the component)

e Failures
o UML Transition, with the «Failure» stereotype

* mode —the failure mode(s) under which the failure manifest itself on the port(s) of the
component

13.3 Fault injection with probability

As seen before, the faulty behavior for a component is provided through a state machine, the latter tagged
with the «ErrorModel» stereotype defined in the CHESS dependability profile.

In the error model, the information about the error states can be provided by using the «ErrorState»
stereotype. Then, for a given error state, the effect upon a property of the component, and so the effect
on its nominal behavior, can be also provided by using pre-defined effects:

e StuckAt: models the effect of being stuck at a fixed value.

e StuckAtFixed: models the effect of being stuck at a fixed random value.

e Inverted: models the effect of being stuck at the inverted last value.

e RampDown: models the effect of decreasing the value of a property by a certain value.

Configuring the «ErrorState» stereotype it is possible to assign a probability for the fault to happen.

28

3% CHESS CHESS Quick Start 1.0 =2 (

o -
g™

As an example, the state machine shown in Figure 37 represents an error model. In case of an internal
fault, the component enters in an error state where the property “energy” is fixed at O value. The
probability for this fault to happen is set to 0.05.

«ErrorModel»
Battery ErrorModel

«StuckAt, ErrorStates
ErrorStuckAtZero
=StuckAt»

property=energy

«Internalfault» value=0

«EmorStates

probability=0.05

Nominal

Figure 37. An ErrorModel state machine with probability

14. Manage Analysis Contexts

Analysis contexts are used in CHESS to collect information about a given analysis to be run; an analysis
context is used at least to refer to the set of entities that must be considered for the analysis. If needed,
the analysis context can be used to provide analysis specific configuration parameters.

Analysis context can be created in the CHESS Dependability View by using class diagrams.

15. Perform Fault Tree Analysis

Once the system architecture has been provided, by mean of components definition and their nominal
and error models, the Fault Tree Analysis (FTA) can be obtained by invoking the xSAP symbolic model
checker through the CHESS environment.

To obtain the fault tree, perform the following steps:
e Select a package from the Model Explorer View.
e Right click on the package and go to “CHESS - Architecture Verification - Fault Tree Analysis
(FTA)” (see Figure 38).
® A popup will appear. From the list, select the Analysis Context from which the analysis has to be
started and click “OK”.

e Apopup will appear to select the time model of the architecture. Only discrete is supported at the
moment.

29

3% CHESS CHESS Quick Start 1.0 - :<

- Model Explorer 32 | 2 e @ 1% BI[E| ¥ = O

P D)

v B2 «CHESS» model ~ Nominal
E3 «RequirementViews modelRequirementView

v B2 wSy;tem\ﬂp\Mw rndelSuctamfisn
v [«Block, Navigate >

= gen New SysML Child
= ps:

= led New Child

&

«InternalFault=

con Mew Relationship
con New Diagram

<
2N =] New Table
[E3 Dia¢

v E uBlock, Delete Delete

5 pov) Undo Ctrl+Z
B loac

Redo Ctrl+Y
B ene

SEH Ctrl+x

v B Copy CtrleC
[Paste Ctrl+V

Profiles

73 Refactor <

— (#%) Welcome | B BDD | (g BatterySystemIBD | % Battery_ErrorModel 5%
mpo -

]
e Ly Eport

Enable write

& Problems 5%
72 errors, 7 warnings, D others
J Validation > Description

) Contract-based Safety Analysis
8= Outline 32 5 Create Submodel g @ Errors (72 items)

Fault Tree Analysis (FTA)
S8 Failure Mode and Effect Analysis (FMEA)

ﬁ #= CHESS > Basic Operations
o = Validation

~"— #% Contract >
b ==

=] jﬁ Functional Verifications

>

> Check Contract Refinements

>
—_— Safety Analysis > '3 Check Validation on Properties

>

>

3 Check Composite Contract Implementation

Safety Case
Architecture Verification

3 Check Vslidation on Assumption/Guarantee Properties

» Model Checking

Figure 38. FTA command

Once the analysis is executed, the fault tree is automatically shown in a dedicated panel in the frontend;
see Figure 39 as an example of resulting fault tree. Then the fault tree can be examined, in particular the
minimal cut-set and so the basic fault conditions which can lead to the top-level failure. If probabilities
were specified for the faults to happen, they will be computed and reported in the resulting tree.

30

|
q-iii- - (
=2 CHESS chess uick start 1.0 J

Top_Level_Event
(led.light = FALSE)

(0.188)
| 1
fault_cfg_3 fault_cfg_2 fault_cfg_1
(0.1) {0.05) (0.05)
£) E2 E3
(ErrorModel.
nér;se'sle;ef:g;gfifg{gzgz;'._B:ffg‘e (ps.backupBat.Battery_ErrorModel {(ps.primaryBat.Battery_ErrorModel
& o ; e T mode_is_ErrorStuckAtZero) mode_is_ErrorStuckAtZero)

0.4) (0.05) {0.05)

O) O

Figure 39. Fault Tree Analysis result

16. Perform Failure Mode and Effect Analysis
Along with the fault tree generation (see Section 14), it is possible to generate the Failure Model and
Effect Analysis (FMEA) table. FMEA is obtained in a similar mode as the fault tree analysis:

e Select a package from the Model Explorer View.

e Right click on the package and go to “CHESS - Architecture Verification - Failure Mode and
Effect Analysis (FMEA)”.

e A popup will appear. From the list, select the Analysis Context from which the analysis has to be
started and click OK.

e A popup will appear to select the time model of the architecture. Only discrete is supported at the
moment.

Once run, the resulting table is visualized in a specific view inside CHESS, see Figure 40.

31

<33
CHESS cHess quick start 1.0

o -
g™

-5¢

[Properties f Model Validation 57 References f Problems 5] Vand V Results |3 FmeaTable 52 | & Hierarchical Model View [=] Contrag

Entry ID Failure Mode Failure Effects
i1-1 ps.backupBat.Battery ErrorModel.mode s ErrorStuckAtZero = TRUE led light = FALSE

2-1 ps.primaryBat.Battery_ErrorModel.mode_is_ErrorStuckAtZero = TRUE led.light = FALSE

3-1 ps.selector.Selector_ErrorModel.mode_is_ErrorStuckAtPrimaryBatEnergy = TRUE led.light = FALSE

Figure 40. The FMEA table

17. View Status of System Architecture

CHESS provides a hierarchical view that shows the decomposition of the system component into sub-
components. It shows also the contracts assigned for each component. The system is graphically

represented as the top element of the view, see Figure 41.

To show the view, go to “Window - Show View - Hierarchical Model View”.

Eas

Systern Architectures
v & System
W E bscwBSCU
v 2] bscul:SubBSCU
=] SubBSCU_CMD_Time
(=] SubBSCU_Safety
v 2] bscuZ:SubBSCU
=] SubBSCU_CMD_Time
[=] SubBSCU_Safety
W E switch:Select_Switch_lmpl
[=] Select_Switch_Sell_Time
[=] Select_Switch_Sell_Time
=] BSCU_CMD_Time
[=] BSCU_Safety
W @ hydraulic:Hydraulic
[=] Hydraulic_Brake_Time
E| Systern_Brake_Time

[C] Properties J Model Validation "af‘j’-' References | & Hierarchical Model View &3 mtontract Ri

Mumber of Subcompeonents and Contracts

3
3
2

Figure 41. Hierarchical view of the system decomposed into sub-components and contracts

CHESS also provides a hierarchical view that shows the contracts with their refining contracts. The weak
contracts are graphically represented as a document with a “W” on top, see Figure 42.

To show the view, go to “Window -» Show View - Contract Refinement View”.

32

|
q-iii- - (
=2 CHESS chess uick start 1.0 J

FONDAZIONE
BRUNO KESSLER

T Properties o Model Validation 57 References 2 Hierarchical Model View | [=] Contract Refinement View 52
Refined Contracts Murnber of sub-contracts

v [5] System.brake time
v [od] bscu.cmd_time
[=] bscul.cmd_time

[=] bscul.safety
[=] bscuZ.cmd_time

E| bscul.safety
Er]l switch.sell_time
Eﬂ] switch.sell_time

v E| bscu.safety
E| bscul.safety

E| bscul.safety
E| hydraulic.brake_time

Lid

L= = R = N = R = = R = = =]

Figure 42. Contract Refinement View

A report about contracts status with respect to the assurance can be also generated through CHESS; from
the Model Explorer View coming with Papyrus/CHESS, right click and select “Validation - CHESS -
Validate Contracts for Assurance”, then issues with the defined contracts are reported in the Model
Validation view as shown in Figure 43.

& runtime-New_configuration(1) - Papyrus - WBS/WBS.di - Eclipse Platform - O x
File Edit ~% Diagram Navigate Search Papyrus Project Run VW testFTA CHESS AMASS Window Help
lwil = RIDIB BRI o[RBE R =YD o mH v 100% H 9
D - - - F= v‘ [=] \ - - -
[y Project Explorer £3 = B8 FPWBSdi I -
2G| ~
.1 Online Transactional Checkout ~
[= _ OpenCertAiDATracelModels «FormalProperty= EN
7% > WBS 219 [http://gfconsulting System_Brake Time Guarantee a traints
G ¥ {always ((change(Pedal_Pas1) or change(Pedal_Pos2]) -> cgg;t'r‘:'c”t # Assoc., o
< > T (- « = i
(time_until{ change{Brake_Line)) <=10))} iz Bl e / Directe...
& Model Explorer &2 = O " P —
ERE@ALES «FormalProperty» - #% Mode.. <
; B System_Brake_Time_Assumption B Pack
~ [=CHESSs WheelBrakingSystem o [Nao_Double_Fault and always Pedal_Pos1=Pedal Pos2) ackage
P =RequirementView» modelRequirementView [rsctem
w 7 «SystemView» modelSystemView ZE PortA.. @
~ {23 PhysicalArchitecture & & Flowp...
& «Block, System, CHGaResourcePlatform < > w
S -
v «Blocks Hydraulic SubBSCU_IBD System_|BD | B WBS_Requirements | B& AnalysisContext_CD Select_Switch_CSD |Bg Contracts 52 | ¥
El Brake_Line: Continuous
= CMD_AS: Boolean [T Properties | J Model Validation 53 |5 References %] FaultTree 5] Trace 5] Vand VRequests & Hierarchical Model View = 3
3 Valid: Boolean N ~ ~
Il brake time : Hydraulic_Brake Time Description Element
Diagram Hydraulic_BD % The Contract referred by Hydraulic_Brake_Time does not have any claim associated = <=ContractProperty>> <Property> brake_time
] «Block, SubSystems BSCU % The Contract referred by Hydraulic_Brake_Time does not have any artefact associated = <=ContractProperty>> <Property> brake_time
& Associationl *. The Contract referred by System_Brake_Time does not have any artefact associated =] _<<ContractProperty>> <Property> brake time
« Association2 % The Contract referred by BSCU_CMD_Time does not have any claim associated = <<ContractProperty>> <Property> cmd_time:
1 «Block» SubBSCU % The Contract referred by BSCU_CMD_Time does not have any artefact associated & <<ContractProperty>> <Property> cmd_time:
& A bscul bscu % The Contract referred by SubBSCU_CMD_Time does not have any claim associated & <<ContractProperty>> <Property> cmd_time:
« Association$ % The Contract referred by SubBSCU_CMD_Time does not have any artefact associated = <=ContractProperty>> <Property> cmd_time:
E{ A._hszul_hscu. . % The Contract referred by BSCU_Safety does not have any claim associated = <=ContractProperty>> <Property> safety : BSC
g Diagram PhysicalArchitecture BDD % The Contract referred by BSCU_Safety does nat have any artefact associated E <<ContractProperty>> <Property» safety: BSC
By Diagram PhysicalArchitecture CD Yl e o o i e s - S =S o . o . po ool
< > < >
|

Figure 43. Validating contracts status

33

3%
~

CHESS

CHESS Quick Start 1.0

18. Perform Check of Contract Refinement

To verify that the contract refinements are done correctly, perform the following steps:

Select a component (in the Model Explorer View) or the corresponding graphical representation
(in the diagram editor). The contract refinements considered will be the ones associated to the
selected component and the ones associated to its sub components. This operation includes
recursively all the contracts along the subcomponents, from the root to the leaves of the system.

Perform the check contract refinement: right click on the selected component, then go to “CHESS
= Functional Verification - Check Contract Refinement on selected component” (see Figure
44).

A popup will appear to select the time model of the architecture. Options supported are discrete,
hybrid and timed.

«Block, System, CHGaResourcePlatforms
System
properties
[in Pedal_Pos1: Boolean
2 in Pedal_Pos2: Boolean
&) out Brake: Boolean

Navigate >

File >

Load resource...

Open textual editor for stereotype applications
K Delete Selected Element

Delete From diagram

operations Del
elete

Shift+Delete

constraints
(=) brake: System_Brake_Time

¥ CHESS > Basic Operations >
& 7) Format > Validation >
* D F Check Contract Refinement on selected component l Functional Verifications >
J V Check Contract Implementation on selected component Safety Analysis >
D E Model Checking on selected component ‘ Safety Case >

Wizards >

Edit Class >

Profiles >

Capra >

>

ocCL

] Show Properties View

Show References View

=

Figure 44. Perform the check of the contract refinements

19. Perform Check of Component Implementation on Contracts

To verify that the state machines defined in the model satisfy the contracts, perform the following steps:

Select a component (in the Model Explorer View) or the corresponding graphical representation
(in the diagram editor). The contracts and state machines considered will be the ones associated
to the selected component and the ones associated to its sub components. This operation
includes recursively all the contracts and state machines along the subcomponents, from the root
to the leaves of the system.

Right click on the selected component, then go to “CHESS -» Functional Verifications - Check
Contract Implementation on selected component” (see Figure 45).

34

-5¢

3%
~

CHESS chess quick start 1.0 e,

aBlack, System, CHGaResourcePlatforms
System

Navigate »

properties
& in Pedal_Pos1: Boolsan File N
3 in Pedal_Pos2: Boolean
El out Brake: Boolean Load resource...

Enable write

Open textual editor for sterectype applications

operations

3 Delete Selected Element Delete
S constraints Delete From diagram Shift+Delete
= brake: System_Brake_Time = CHEss 5 Basic Operations N
*_ ~¥ Format » Validation ¥
- “? F Check Contract Refinement on selected component Functional Verifications >
J v Check Contract Implementation on selected companent Safety Analysis >
P E Model Checking on selected component Safety Case >
Wizards >
Edit Class >
Profiles >
Capra >
acL »
] Show Properties View
¥

' Show References View
(Properties
Rernove from Context Ctrl+ Alt+Shift+ Down

Figure 45. Perform the check implementation based on contracts

To verify that the behavior of the entire system defined in the model satisfies all the contracts, perform
the following steps:

Select a root component (in the Model Explorer View) or the corresponding graphical
representation (in the diagram editor). The contracts and state machines considered will be the
ones associated to the selected component and the ones associated to its sub components. This
operation includes recursively all the contracts and state machines along the subcomponents,
from the root to the leaves of the system.

Right click on the selected component, then go to “CHESS -» Functional Verifications - Check
Composite Contract Implementation on selected component”.

A popup will appear to select the time model of the architecture. Options supported are discrete
and timed.

20. Perform Consistency Check of Assumption/Guarantee Formal
Properties

This validation is done by checking if a specific guarantee of the contract satisfies the assumption of
another contract. To verify the formal property, perform the following steps:

Select a component (in the Model Explorer View) or the corresponding graphical representation
(in the diagram editor). The properties available to check will be the assumptions and guarantees
of contracts belonging to the selected component and to its sub components. This operation
includes recursively all the assumptions and guarantee properties from the root to the leaves of
the selected component.

Right click on the selected component, then go to “CHESS - Validation < Check Validation on
Assumption/Guarantee Properties on selected component” (see Figure 46).

A popup will appear to select the time model of the architecture. Options supported are discrete,
hybrid and timed.

35

4

|
q-iii- - (
=2 CHESS chess uick start 1.0 J

e A popup appears to set the parameters of the command (see Figure 47, see OCRA user manual*
for more details).

7P WBS.di | <P WBSdi 2

=Black, System= |

System Navigate >
properties
dal_Pos1: event File ’
dal_Pas2: event
Load resource...
rake: event
Enable write
Open textual editor for stereotype applications
EEFEIEE 9¢ Delete Selected Element Delete
: Delete From disgram Shift+Delete
constraints e
f=System Brake Time | ERPuEEr > Build Instances
#E Filters > Basic Dperations >
Check Validation on Properties on selected compenent Validation >
Check Validation on Assumption/Guarantee Properties on selected companent Functional Verifications >
J Validation > Safety Analysis >
~J Edit > Safety Case >
—— s Compare Analysis Results
Profiles >

@ Layout Selection
FE Show Layout View
ocL >

] Show Properties View

57 Show References View
Properties
Remove from Context Ctrl+ Alt+Shift+ Down
Edit Class >

Figure 46. Perform the consistency check of assumption/guarantee formal properties

Validation Property parameters

Property Type | possibility ~

Expression |
Component | SubBSCU -
SubBSCU_CMD_Time ASSUMPTION A
) SubBSCU_CMD_Time GUARAMTEE
Properties 1D

[] SubBSCU_CMD_Time NORM_GUARANTEE
[] SubBSCU_Safety ASSUMPTION v

Figure 47. Validation Property parameters

21. Perform Consistency Check of Formal Properties

In Section 19 it is described how to check assumptions and guarantees formal properties. Similarly, a
validation can be done to all the formal properties of a component. To verify the formal property, perform
the following steps:

4 https://ocra.fbk.eu

36

https://ocra.fbk.eu/

3%
~

CHESS chess quickstart 1.0 - D<

® Select a component (in the Model Explorer View) or the corresponding graphical representation
(in the diagram editor). The properties available to check will be the formal properties belonging
to the selected component and to its sub components. This operation includes recursively all the
properties from the root to the leaves of the selected component.

e Right click on the selected component, then go to “CHESS - Validation - Check Validation on
Assumption/Guarantee Properties on selected component” (see Figure 48).

e A popup will appear to select the time model of the architecture. Options supported are discrete,
hybrid and timed.

e A popup appears to set the parameters of the command (see Figure 47, see OCRA user manual®
for more details).

rchProject.di ¥ “WBS.di <P WBS.di i

<Black, Systems
System
properties
B in Pedal_Pos: event
B in Pedal_Pos2: event
E out Brake: event Load resource...

Enable write

Navigate >

File >

Open textual editor for stereotype applications

operations

3 Delete Selected Element Delete
T Delete From diagram Shift+Delete
(& brake: System_Brake Time :
FCHESS > Build Instances
| & F Filters > Basic Operations >
Check Validation on Properties on selected component Validation >
Check Validation on Assumption/Guarantee Properties on selected component Functional Verifications >
J Validation ¥ Safety Analysis »
7P Edit > Safety Case »
Wizards N Compare Analysis Results
Profiles > [
& Layout Selection
B3 Show Layout View
ocL >
5] Show Properties View
%7 Show References View
Properties
Remove from Context Ctrl+ Alt+Shift+Down

Edit Class > }

Figure 48. Perform the consistency check of formal properties

22. Perform Model Checking on Component Behavior

To execute the model checking, perform the following steps:

® Select a component (in the Model Explorer View) or the corresponding graphical representation
(in the diagram editor). The components behavior to check will be the behavior of the selected
component and the behavior of its sub components. This operation includes recursively all the
behaviors from the root to the leaves of the selected component.

e Right click on the selected component, then go to “CHESS - Functional Verification - Model
Checking on selected component” (see Figure 49).

e A popup appears to set the parameters of the command (see Figure 50, see huXmv user manual®
for more details).

5 https://ocra.fbk.eu

6 https://nuxmv.fbk.eu

37

https://ocra.fbk.eu/
https://nuxmv.fbk.eu/

-I¥-
=2 CHESS chess uick start 1.0

-5¢

e A popup will appear to select the time model of the architecture. Options supported are discrete

and timed.

System

«Block, System, CHGaResourcePlatforms

properties
[in Pedal_Pos1: Boolean
3 in Pedal_Pos2: Boolean
B out Brake: Boolean

operations

B constraints
(& brake: System_Brake_Time

——=x

=
?
]
J

]

< m

B Console 52

Navigate b3

File >
Load resource...

Enable write

Open textual editer for stereotype applications

Delete Selected Element Delete

Delete From diagram Shift+ Delete

CHESS > Basic Operations.
Format > Validation

Filte Check Contract Refinement on selected component Functional Verifications
Valic Check Contract Implementation on selected component Safety Analysis

Edit Model Checking on selected component Safety Case

Wizards
Profiles
Capra
ocL

Show Properties View
Show References View

Properties

Remove from Context Ctrl+Alt+Shift+ Down

Edit Class ¥

Figure 49.

Perform the model checking of system behavior

nuXmv parameters

Check Type invar ~
Algerithm Type | bmc ~
Property ||

Figure 50. Model Checking parameters

23. Generate Contract-based Fault Tree

The contract-based safety analysis identifies the component failures as the failure of its implementation
in satisfying the contract. When the component is composite, its failure can be caused by the failure of

one or more subcomponents and/or the failure of the environment in satisfying the assumption.

As result, this analysis produces a fault tree in which each intermediate event represents the failure of a
component or its environment and is linked to a Boolean combination of other nodes; the top-level event
is the failure of the system component, while the basic events are the failures of the leaf components and
the failure of the system environment.

To execute the contract-based safety analysis, perform the following steps:

38

3% CHESS CHESS Quick Start 1.0 - D<

o -
g™

® Select a component (in the Model Explorer View) or the corresponding graphical representation
(in the diagram editor). The contracts considered will be the ones associated to the selected
component and the ones associated to its sub components. This operation includes recursively all
the contracts along the subcomponents, from the root to the leaves of the system.

e Right click on the selected component, then go to “CHESS - Safety Analysis - Contract-based
Safety Analysis on selected component” (see Figure 51).

When the analysis is completed, the fault tree is shown. The representation is the same as the ones used
for the Model-based Safety Analysis, see Figure 39, but with the probabilities set to 0.

=Block, System= ' i @ Malobin A
System Mavigate > l
= properties .
*
= in Pedal_Pos1: Boolean 7= |
B in Pedal_Pos2: Boolean Load resource...
El out Brake_Line: Continuous Enable write
= in bscul_fault Monitor: Boolean 1
= in bscu2_fault_Monitor: Boolean Open textual editor for stereotype applications |
= in bscul_fault Command: Boolean o
- Delete Selected EI t Delet
= in bscu2_fault Command: Boolean x FliE sElected Hemen siete
Delete From diagram Shift+Delete
B operations
= - AMASS 1] Basic Operations b
constraints
= brake_time: System_Brake_Time ~J Format > Validation >
é’ i #J Filters H Functional Verifications H
el
J Validation > Safety Case >
lr I Fault Tree Viewer 3 Safety Analysis »
q Compute Contract-based Fault Tree on selected component [
— Profiles 3
El out ocL 3 |
Hin{ ick)
B in\ &= Show Properties View
7 Show References View .
inthe
5D Properties r
¥
Remove from Context Ctrl+Alt+5Shift+Down | = H
Edit Class > e o

Figure 51. Dedicated menu to perform the compute the contract-based fault tree

24. Modelling Support and Contract-based Verification for Strong and
Weak Contracts

The ContractProperty stereotype comes with the attribute “ContractType” which can be used to set the
Strong or Weak property of the Contract associated to the architectural entity; While the strong
assumptions and guarantees must be satisfied always in order for component to be used, the weak pairs
offer additional information in some specific contexts where besides the strong assumptions, the weak
assumptions are to be met as well.

39

3%
~

CHESS chess uick start 1.0 - :<

FONDAZIONE
BRUNO KESSLER

~P *model.di 3

«FormalProperty»
{7} FormalProperty1 «FormalProperty»
0 {7} FormalProperty2

i

«constraint»

«ConstraintBlock, Contracts ::,Bloc k=
E7] Contract1 = Bloc.k1
parameters properties
operations
constraints .
constraints
[=afContractProperty 1: Contractl

(&%) Welcome |Bg BDD 22 | [f New Requirements Diagram
[C] Properties 52 | J Model Validation %" References

& ContractProperty1 : Contracti
v 4 ContractProperty (from CHESSContract)

umML [=] RefinedBy: ContractRefinement [*] = []
Comments [ContractType: ContractTypes [1] = Strong
SysML

Profile

Figure 52: set Strong/Weak property for contract

While a Strong contract associated to a Block/Component (must) hold for all the instances of the
Block/Component, a Weak contract associated to a Block/Component can hold for a given instance of
the Block/Component if the environment where the instance is placed met the assumption. So, for a
given instance it must be possible to specify the set of weak contracts specified for the typing
Block/Component (if any) which holds for the instance. To do so, the following steps must be
performed:

o Select the Block/Component instance in the SysML Internal Block Diagram / UML Composite
Structure Diagram.

o Apply the Componentinstance stereotype to the instance.

o Select the “Contract” tab in the Properties editor (see figure below): The “Contract” tab shows

the strong and weak contract inherited by the classifier typing the instance. In particular the Weak
Contract area can be used to check the weak contracts that hold for the current instance.

40

3%
~

CHESS chess uick start 1.0 -2 (

h@ail-B-
«Block, Systems + +
System 7 Nodes

@ Port
& FlowPort (IN)

in REdal Postk Boolean

«FloPorts «part»
«Componentinstance» SFRPOS
bscu: BSCU
N
4

5 Edges
& Connector

" Dependency
«FlowPort» v

2% Nod
ol e
= FlowPort (IN)

ol

«FlowPort» «FlowPort»

« ﬁﬁ
>

in Pedal_Pos2: Boolean

& FlowPort (INOUT)

cn Bk

FL Edges
& Connector

v

/., Comment / Constraini

B PhysicalArchitect... Hydraulic_IBD SubBSCU_IBD System_lBD 2 | Bg SowtwareComponent... | B@ SoftwareContracts_CD Select_Switch_CSD 2

[T] Properties §2 | J Model Validation %" References a
= bscu : BSCU
T [WheelBrakingSystem::modelSystemView::PhysicalArchitecture::System::bscu Selected Property
= Weak Contracts Strong Contracts
Rulers And Grid r
Advanced cmd_time safety
Contracts

Figure 53. “Contract” tab for instances

The information about the weak contracts which hold for the given instance is automatically set in the
“WeakGuarantees” attribute of the “Componentinstance” stereotype.

Strong and weak contracts are introduced to support out-of-context reasoning and component reuse
across variety of environments. While strong contracts must hold in all environments, the weak ones are
environment-specific. Prior to performing the refinement check using strong and weak contracts,
contracts must be created and allocated to the component types, which represent out-of-context
components. At the component type level, the user indicates if a contract is strong or weak. When the
component type is instantiated in a particular system to a component instance, all the strong, and a
subset of weak contracts can be identified as relevant in the particular system in which the component
is instantiated. As discussed previoulsy, identifying which are those relevant weak contracts can be done
manually on the component instance level. For example, Figure 101 depicts the selected weak contracts
for the Select_Switch_Impl component instance.

To perform the refinement check with strong and weak contracts, the user first creates a class diagram
in the “DependabilityAnalysisView”, which is a part of the “AnalysisView”. Then, the user creates a new
“ContractRefinementAnalysisContext” by selecting it from the Palette. She selects the newly created
“ContractRefinementAnalysisContext” and go to the properties view, in particular the Profile tab. There,
the user can select the platform that should be analysed (e.g., the system block), and set the attribute
“checkAllWeakContracts” to true or false (Figure 98): during the analysis, all weak contracts will be
included in the generated .oss file such that they will be transformed to implications within the strong
guarantees. To identify which contract is relevant in the particular system context, the user needs to run
the command “CHESS->FunctionalVerification->Automatic Selection of Weak Contract”. This command
will check validity of each weak contract assumption and identify which weak contracts are relevant in
the given system. Upon running the weak contract assumption validity check, the contract status is

41

q-ii-l- - (
=2 CHESS chess uick start 1.0 J

updated accordingly. It should be noted that the “Automatic Selection of Weak Contract” command can
be run only with discrete-time specification, hence the usage of continuous variables or operators in the
contracts disables the validity property check.

= B [Properties 53

«DelegationConstraints - . .
il g Define Valid 1 = switch: Select_Switch_Impl
Valid := bscul Valid or bscu2. Valid -
{] |: UML WheelBrakingSystem
«ComponentInstances T Weak Contracts
L + SW|tch: Select_Switch_Impl [1] Profile 7] seld time
internal structure)
\[] + Inl: Boolean [1] Style ¥ sell_time
Appearance
+ Out: Be ES -
\[] + Select: Boolean [1] = Rulers And Grid
I: Advanced
Contracts
,_,_.—I:] + In2: Boolean [1]
internal structure
Figure 54. Weak contract selection for a component instance
e Activate RailwayView | == Ll =
Activate DependabilityView “4| <] ocra analysis
UML Applied stereotypes: \E’ \E’
«Fomponent» . Comments 4 ContractRefinementAnalysisContext (from CHESSContract) :
«C0ntractl’i_e:flmoeCmRZntAnlaI)fsmContad:» Marte . & checkAllWeakContracts: Boolean [1] = true
= analysis = . * =
«=ContractRefinementAnalysisContexts Profile = CU”:ﬁ-dl\I]EP_\i‘F”llg[;E L] ior [1.4] =
checkAllWeakContracts=true Sty B workload: GaWorkloadBehavior [1.7] =]
platform=[System] tyle = platform: GaResourcesPlatform [1..%] = [System]
Appearance = mode: Mode [*]=[]
= Rulers And Grid
Z] Advanced
= Contracts
Figure 55. Aanalysis context for strong and weak contracts

25. Import an OCRA File

CHESS is able to import an architecture described in the OCRA language Appendix B. OCRA Language to
define Formal Properties and Contracts, contained in a .oss file. Components will be generated, along
with their structural description (ports, contracts, refinements, connections, etc.) and imported in the
selected package. In Section 24 it will be described how to automatically generate diagrams for the
imported components.

To import a OCRA file, perform the following steps:

e From the Model Explorer View, select the SystemView package or create a sub package below it.

e Right click on the package, then go to “CHESS -» Basic Operations = Import <<SystemView>>
components from .oss file” (see Figure 52).

o Select a file with .oss extension and click “OK”.

42

3%
~

CHESS

CHESS Quick Start 1.0

B ModelBplorer 32| = @ 1R B8 ¥ = O
v [«CHESS» WheelBrakingSystem
£ «RequirementViews modelRequirementView

hydr

5 brake: System_Brake_TTme
bscu

Delete

Undo

Redo

Delete

Ctrl+Z

Ctrl+Y

operations

constraints
& cmd: BSCU_Cmd

|

~ B «Syster ~ <Block, SubSystems ¥ out Brake,
Capm e ! BsCU Bl in CMD_A
£ Col New SysML Child > properties B in Valid: B|
B3 «Comy Moo Child X B in Pedal_Pos1: event
= Deple = B in Pedal_Pos2: event
New Relationship > &l out Valid: Boolean
B3 «hnaly © out CMD_AS: event
B b New Diagram >
[New Table >

=) brake: Hyl

—

o Cut Ctri+X = valid: BSCU_Valid
B Copy Ctri+C
Paste Ctrl+V T
Profiles > () Welcome | Bg PhysicalArchitecture_BDD 52
3 >
) Refactor [0 Propertes 2
£ Import »
G B 5 B3 «SystemView: modelSystemView
Enable write ML Name [modelsystemView
J Vslidation > | E— - ‘
55 Qutine 57 & Creste Submodel |E- O |eeEm :
= FCHESS > Basic Operations > Export model 5 .oss file
Fos Contrmct N Validation > Create the IBD diagrams for all the package components (raw version)
T — Functional Verifications > Create the BDD diagram for the selected package
= Jl - J‘ Safety Analysis > Import < <SystemViews> components from .oss file L
- f‘\ e Safety Case > Export state machines of selected component or its sub-components as smv files
T T '\ - Architecture Verification > Export model to 3 manolithic SMY file
M : T

Figure 56. Import of an OCRA file

The import feature allows to reimport an OCRA file: if the selected package already contains some
components, they will be updated to reflect the content of the new OCRA definition. BDD and IBD
diagrams will be updated accordingly. See Section 24.1 to get more details on diagram updates.

26. Automatic generation of Block Definition and Internal Block
Diagrams

The canonical way to add elements to a model is by editing diagrams, e.g., creating a Block Definition
Diagram and adding components and relations graphically using the Palette. But it is also possible to edit
the model from the Model Explorer View, right clicking and adding children. In the latter case, no diagrams
are created or updated. In general, changes in the diagrams are reflected in the model, but changes in the
model are not reflected in the diagrams.

CHESS offers the possibility to automatically generate BDDs and IBDs starting from the model.

To create a BDD, perform the following steps:

e Select a package from the Model Explorer View. The package should be the SystemView package
or one of its sub packages.

e Right click on the package and go to “CHESS -» Basic Operations -» Create the BDD diagram for
the selected package” (see Figure 53).

e A new BDD diagram will be created and added to the model. Graphical components will be
automatically arranged.

Similarly, right clicking the package, it is possible to create the IBDs for all the components of that package.
To obtain the diagrams, select “CHESS -» Basic Operations -» Create the IBD diagrams for all the package

43

4

3%
~

CHESS

CHESS Quick Start 1.0

-5¢

components” (raw version). Differently from the BDD creation, no automatic arrange will run on the
diagrams. See Section 24.2 to run the automatic layout on a specific diagram.

B Model Explorer 3

(= «Bloc
= «Blac
-+ <Dep
=] «Bloc
o« Assoc
o« Assoc
[«Blac
o Absc
o Absc

o select
event
BE Diagr

~ B aSystemViews
~ B2 Physicalp -

& «Bloc ¢~

Bg Diagr

B3 Contract:
B3 test

E3 «Componen:

E3 <Deploymen .

£ =AnalysisVie

FE®BBE - -0

~ F «CHESS» WheelBrakingSystem
[«RequirementViews modelRequirementView

modelSystemView

Navigate >
New SysML Child
New Child

New Relationship
Mew Diagram
E] New Table

% Delete

Delete

Ctrl+Z
Ctrl+Y

Undo

Redo

of Cut Ctrl+X
Ctrl+C

Ctrl+V

5 Copy
Paste
Profiles >

2y Import >

Export >

Enable write

J Validation >

& Create Submedel

FCHESS >

=

= Contract >

bscu

(5] brake: System Brake Time

hydr

d

=Block, SubSystems
BsCU

properties
H in Pedal_Pos1: event
B in Pedal_Pos2: event
& out Valid: Boolean
& out CMD_AS: event

operations

constraints
=l cmd: BSCU_Cmd
= valid: BSCU_Valid

{7%) Welcome | By PhysicalArchitecture BDD 5%

72 errors, 7 warnings, 0 others

Description

@ Errors (72 items)

5 Wan

Basic Operations

Validation
Functional

Safety Ana

Safety Case

Architectul

nings (7 items)

Verifications

lysis

re Verification

18 Problems 12

Resource Path

Export model as .oss file

Create the BDD diagram for the selected package

Import < <SystemView>> components from .oss file

Export model to a menalithic SMV file

«Blq|
Hydr|

prope
E out Brake: event
E in CMD_AS: even|
& in Valid: Boolean

opers|

const)|

) brake: Hydraulic

Location

Create the [BD diagrams for all the package compenents (raw version)

Export state machines of selected component or its sub-components as .smy files

Type

Figure 57. Creation of a BDD from the Model Explorer View

To create a single IBD for a single component, perform the following steps:
® Select the component from the Model Explorer View or the corresponding graphical
representation (in the BDD diagram editor).

e Right click on the component and go to “CHESS - Basic Operations - Create the IBD diagram

for the selected component” (see Figure 54).

e A new IBD diagram will be created and added to the component. Graphical elements will be
automatically arranged.

44

3%
~

CHESS

CHESS Quick Start 1.0

BinF
BinF
E out

®

s
Navigate

File

Load resource...

Enable write

Open textual editor for stereatype applications

Delete Selected Element

Delete From disgram

[l bra |#5 CHESS

Export model as .05 file

Export state machines of selected component or its sub-components as smv files Functional Verifications

'stems

Create the IBD diagram for the selected component Validation

Delete
Shift+Delete
> Build Instances

Basic Operations

7

“?

Sl 5

<& m

Validation
Edit

Wizards

Profiles

Layout Selection
Show Layout View
ocL

Show Properties View

Show References View

Properties

Remove from Context

Edit Class

5 Safety Analysis
> Safety Case

Compare Analysis Results

Ctrl+ Alt Shift+ Down
>

Figure 58. Creation of a IBD from a BDD diagram

—

It should be noted that multiple diagrams could be created for a single component or package. They do
not substitute the already existing diagrams.

26.1 Update of diagrams

As stated before, it could happen that the diagrams and the model are not aligned. As an example, the
creation of a port in a BDD is reflected in the model inside the Model Explorer View, but the IBD diagram
of that component will not be affected.

To improve the usability, CHESS allows to update BDD and IBD diagrams. Perform the following steps:

S D o B O

A}
-

Select the diagram to be updated and click anywhere on the background. Do not select a graphic

element.

Right click and go to “CHESS -> Basic Operations - Update the current BDD (or IBD) diagram”

(see Figure 55).

Add
Navigate

File

Load resource...

Enable write

Edit
Open textual editor for stereotype applications
Delete Selected Element

Delete From diagram

CHESS
Filters
Select
Arrange All
Format
Filters
Validation
Edit

Wizards
Profiles

Layout Selection

«Block, System=

>

>

>

Delete
Shift+Delete

Es

hydr

Y «Blocks

Basic Operations > Export model as .oss file
Validation > Create the IBD diagrams for all the package components (raw version)
Functional Verifications > Create the BDD diagram for the selected package
Safety Analysis > Updste the current BDD diagram
Safety Case > Import < <SystemViews > components from .oss file
>

Architecture Verification Export state machines of selected component or its sub-components as smv files

Export model to a monolithic SMV file

[l 1 —
= brake: Hydraulic_Brake_Time

Figure 59. Update of a BDD diagram

45

4

-|-$$-I- - (
=2 CHESS chess uick start 1.0 J

The diagram will be updated according to the model present in the Model Explorer View. To give emphasis
on elements that have been added to the diagrams, they will be depicted in particular positions. New
components will be displayed in the upper-left corner while new ports will be displayed in the lower-left
corner. The diagram can be later automatically arranged as explained in the next sub section. In Figure 52
it is possible to see an IBD diagram with two new added elements.

System

in Pedal_Pos1: event

=) block1_1: Block1

«Componentinstance» «Componentinstance»
bscu: BSCU hydr: Hydraulic

out Brake?\,:ln(\ﬂ

in Pedal| Pos2~event

& inout flowport1

kAl
et

Figure 60. An IBD diagram after the update

26.2 Auto layout of diagrams

When the BDD and IBD diagrams are generated, a routine will automatically rearrange the graphic
elements. If a user does not like the layout, he/she can manually move the elements.

There are cases where the user may need to force the auto layout to run again, i.e., after the update of
the diagram. It can be done right clicking on the diagram and selecting “Layout Selection” or clicking on
the icon in the upper-left corner, as seen in Figure 53.

46

3%
~

CHESS

CHESS Quick Start 1.0

~3 WBS.di <P WBS.di B2

Delete
Shift+Delete

Ctrl+Alt+5hift+Down

£ workspace - Papyrus - WBS_SM_Multi_State/WBS.di - Eclipse Platform
File Edit ~7 Diagramy=Thwjgate Search Papyrus Project Run CHESS Window Help
C-E@ vﬁivgrav@av\ [Bivwclvlas S Woisr o~
[Project Explorer 52 = B ~PBattery Multistate.di ~ ~# SSRdi P ParamArchProject.di
S-S =
I AIRG110 ~
LI AIRG110Arch2
[J AIRE110Arch3
[J AIRE110ARCHS —
[J AIRE110ARCHS Navigate
24 > Battery_Multistate [CHESS_SystemArchitectureProjects
L Battery_new File
. Bl inpe
L CHESS_SystemArchitectureProjects v Load resource...
< > Enable write
B ModelBxplorer 2 £ T @ 1% B % ¥ = 0O - Edit
3 in Pe
~ 2 PhysicalArchitecture A Open textual editor for stereotype applications
v [Block, Systema System Delete Selected Element
= hydr: Hydraulic Selete From d
o becu. 35CU elete From diagram
Bl Pedal_Posl : event . =
B Ped "p 5 N & inout floy = CHESS
edal_Fosc : even F Filters
E Brake: event
=3 brake: System_Brake_Time i Select
= block!_1: Blockl o5 Armange Al
© flowport1 : Boolean “» Format
gmnnectnﬂ ~3 Filters
connector2
Validati
A connectord 7B Edit
A connector3 Wizards
«ContractRefinements hydr.brake oroi
«ContractRefinements bscu.cmd roties
«ContractRefinements bscu.valid - Layout Selection
& «Contracts System_Brake_Time [z, Show Layout View
Diagram System_IED acL
Diagram System_IED
[«Blocks Hydraulic = Show Properties View
" <Dependency> Dependencyl %7 Show References View
[<Block, SubSystems BSCU Properties
o Association
o Association2 v | @ Welcome | B3 Physic Remove from Context
Edit Class
- ~ [2= =
9 Outline 52 B 7T B [properties 3

>

It Valid: Boolear|

CMD_AS: event|

Wrchitecture BDI|

Figure 61. Auto layout of a diagram

27. Generate Documentation

—

CHESS can generate a document summarizing the model architecture and the results of various analyses
executed on the model. Output format is an HTML document or a LaTeX source code.

The generated document is composed by two main sections: Components and V&V Results; an example
can be seen in Figure 58.

The first section describes the structure of the model: it includes the diagrams that are not associated to
a specific component, such as the Block Definition Diagram, and a subsection for each of the components.
Each subsection contains:

Name of the component and its type

Diagrams (Internal Block Diagrams, nominal and error State Machine Diagrams)

Table of input ports with name and type

Table of output ports with name and type

Table of subcomponents with instance name and type name

Table of interface assertions

Table of refinement assertions
Table of connectors between ports
Table of contracts

47

4

3%
~

CHESS

CHESS Quick Start 1.0

Table of contract refinements
Table of uninterpreted functions
Table of parameters

Table of parameters assumptions

-5¢

FONDAZIONE
BRUNO KESSLER

Project: test

Components

= Fault tree Analysis Results
= Failure Modes and Effects Analysis Results

Model

Model

System
Hydraulic
Bscu
SubBSCU

Select Switch Impl

V&V Results

= Properiy Validation Results

= Assume/Guaraniee Properties Validation Resulls
= Check Contract Refinement Results
= Check Contract Ci ite I

= Conftract-based Fault Tree Analysis Results
= Model Checking Results

1 Results

«Block, Systemx
[system

‘properties
B in bscu2_fault Monitor: Boolean
B in Pedal_Pos2: Boolean

B in bscu2_fault_Command: Boolean
B in Pedal_Pos!: Boalean

B in bscul_fault_Command: Boolean
B in bscul_fault Monitor: Boolean
El out Brake_Line: Continuous

operations

constraints
= system_brake_time: System_Brake_Time

\l/ hydraulic

]

«Blocks «Block»
= Hydraulic E Bscu

‘properties
B in Valid: Boolean

B in CMD_AS: Boolean

[l out Brake_Line: Continuous

properties
B in Pedal_Pos2: Boolean
B in bscuz_fault_Monitor: Boolean
B in Pedal_Posl: Boolean
B in bscul_fault_Monitor: Boolean

‘operations

B in bscul_fauk_Command: Boolean
B in bscu2_faukt_Command: Boolean

constraints

5] hydraulic_brake_time: Hydraulic_Brake_Time

El out Valid: Boolean
El out CMD_AS: Boolean

operations

constraints
{2} {Valid := bscu1.Valid or bscu2. Valid}
= bscu_cmd_time: BSCU_CMD_Time
(= bscu_safety: BSCU_Safety

¢ ¢

(]

Figure 62. Part of a generated report

The second section of the report lists the results of the checks and analyses run on the model. An example
can be seen in Figure 59. Reported analyses are the ones executed on the totality of the model, i.e., on
the root component (stereotyped with «System»). To run an analysis that should be reported in the
documentation, it should be run from a specific menu at package level. Details will be explained later in
this subsection.

Reported analyses are the following:

Properties Validation

Assume/Guarantee Properties Validation
Check Contract Refinement

Check Contract Composite Implementation
Model Checking

Fault Tree Analysis

Failure Modes and Effects Analysis

48

3%
~

CHESS

CHESS Quick Start 1.0

—

Components

Model
System
BScu
SubBSCU
Select Switch Impl
Hydraulic

V&V Results

= Property Validation Results
« Assume/Guarantee Properties Validation Results
= Check Contract Refinement Results

» Check Contract Composite Implementation Resulis

= Contract-based Fault Tree Analysis Results
» Model Checking Resulis

» Fault tree Analysis Results

= Failure Modes and Efiects Analysis Results

Validation and Verification Results

Properties Validation Results:

Main class: System

Type of validation: consistency

Selected component: ALL

Selected properties: ALL

Property Status
[System.all]

[Hydraulic.all]

[BSCU.all]

[Select_Switch_Impl.all]

[SubBSCU.all]

Main class: System

Type of validation: possibility

Selected component: BSCU

Selected properties: BSCU_CMD_Time.NORM_GUARANTEE, BSCU_Safety ASSUMPTION, BSCU_Safety GUARANTEE, BSCU_Safety NORM_GUARANTEE
Conditions: 'FALSE'

Property Status

[Input_validation_prop]

Assume/Guarantee Properties Validation Results:

Main class: System

Type of validation: possibility

Selected component: System

Selected properties: Sysiem_Brake_Time.NORM_GUARANTEE, bscu.BSCU_CMD_Time.ASSUMPTION, bscu.BSCU_CMD_Time.NORM_GUARANTEE
Conditions: TRUE'

Property Status

[Input_validation_prop]

Main class: System

Type of validation: entailment

Selected component: Select_Switch_Impl

Selected properties: Select_Switch_Sel0_Time ASSUMPTION, Select_Switch_Sel0_Time.GUARANTEE, Select_Switch_Sel0_Time. NORM_GUARANTEE, Selec
Select_Switch_Sel1_Time.NORM_GUARANTEE

Conditions: 'FALSE'

Property Status

[Input_validation_prop] NOT OK

Figure 63. Analysis results section of the generated report

To automatically generate the documentation, perform the following steps:

Select the root component (in the Model Explorer View) or the corresponding graphical
representation (in the Diagram editor). It is also possible to select the whole package in the Model
Explorer View. The information used to generate the documentation will be related to the
selected component and to its sub components. This operation includes recursively the
information from the root to the leaves of the selected component.

Right click on the selected component, then go to “CHESS -» Safety Case - Document Generation
-» Generate documentation on selected component”.

A popup appears to select the folder that will contain the document and the diagrams.

A popup appears to set the options related to the format of the document and to the style of the
diagrams (see Figure 60).

A popup will appear to select the time model of the architecture. Options supported are discrete,
hybrid and timed.

Analyses that should be reported in the documentation, i.e., executed on the root component, are
grouped in a specific menu. To execute them, perform the following steps:

Select the package containing the architecture from the Model Explorer View.

49

¢

|
q-iii- - (
=2 CHESS chess uick start 1.0 J

e Right click and go to “CHESS ->Architecture Verification”.
e Select one of the available analyses to be run on the root component of that package.
It is possible to select any component from the model and generate the report. In this case, no results

from the root-level analyses will be reported in the documentation as they are valid for the whole model
only. Analyses executed on subcomponents will not be reported either.

Document format html w
Show all components Show sub compenents table
Show input ports table Show output ports table
Show interface assertions table Show refinement assertions table
Show contracts table Show connections table
Show uninterpreted functions table Show parameters table
Show contract refinements table Show parameter assumptions table
Show diagrams Show local attributes table
Cancel

Figure 64. Popup to set the preferences of the generated document

50

|
-I-Ei-l- | (
=2 CHESS chess uick start 1.0 D
Appendix A. CHESS Supported Basic Types
The basic types that can be assigned to ports, local attributes, parameters, functions behavior are:

e Primitive types: the following types are available on the package “UML Primitive types”

o Integer
o Boolean
o Real

e Continuous: this type is available on the package “CHESS Contract - DataTypes”. If this type is not
available, in the Model Explorer View, select the model — right click — import — import registered
profile, and select “CHESS Contract”. Continuous type is available only in the hybrid time domain.

e IdealClock: this type is available in the package “MARTE_Library - TimeLibrary”. If the type is not
available, in the Model Explorer View, select the model — right click — import — import registered
package, and select “MARTE_Library”. IdealClock type is available only in the timed time domain.

e Range: To create this type:

o Inthe Model Explorer View, select the owner of the type to define.
o Right click — New Child — DataType

o Select the new DataType, in the Property View — Profile tab, Add Profile -
BoundedSubtype

o inthe Property View — Profile tab, select the BoundedSubtype and set the minValue and
maxValue
e Enumerative: To create this type:
o Inthe Model Explorer View, select the owner of the type to define.
o Right click = New Child — Enumeration

o Select the new DataType, in the Property View — UML tab — Owned literals, add the
enumerative values

o Inthe Model Explorer View, select the owner of the type to define
o Right click — New Child — Signal

51

3% CHESS CHESS Quick Start 1.0 - D<

o -
g™

Appendix B. OCRA Language to define Formal Properties and Contracts

OCRA constraint language can be interpreted over discrete traces (in this case, it coincides with LTL) or
over hybrid traces. The relevant syntax of the language has been summarized in Figure 61 together with
the corresponding mathematical formulation in HRELTL.

constraint = atom | ¢ = al
not constraint | - |
constraint and constraint | PN |
constraint or constraint | oV |
constraint implies constraint | o — ¢ |
always constraint | Go |
never constraint | G—¢ |
in the future constraint | F¢ |
constraint until constraint, ¢ Ud;
then constraint | X |
historically constraint | Ho |
in the past constraint | P |
constraint since constraint; ¢ So¢;
term at next constraint; t QF ¢,
term at last constraint, t QPg;

atom = true | a = T|
false | dL |
term relation term | txit |
time_until(term) relation term | Dt l |
time_since(term) relation term | <patt |
change(term) | v |
fall(boolean_term) | ¢ NAN-Xg |
rise(boolean_term) | N X |
boolean_term ; (7

term = port | t = |
constant | c |
term function term | txt|
der(port) | v |
next(port) ; v';

Figure 65. The OCRA language grammar

In case of discrete time, der, time_until, and time_since are not allowed.

52

3% CHESS CHESS Quick Start 1.0 - D<

o -
g™

Basic formulas are defined with linear arithmetic predicates over the variables or their derivatives. For
examples, x-e<limit and der(x)<0 are well-defined formulas. Predicates can be combined with Boolean and
temporal operators. For example, x-e<limit and der(x)<0 and always x-e<limit are well-defined formulas.

In temporal logic, a formula without temporal operators is interpreted in the initial state. Thus, x=0
characterizes all traces that start with a state evaluating x to 0, and then x can evolve arbitrarily. Instead,
to express that a predicate holds along the whole evolution, one may use the always operator as in always
x=0.

Another classical example of properties is the response to a certain event. The formula always (p implies
in the future q) defines the set of traces where every occurrence of p is followed by an occurrence of g.
Note that g may happen with a certain delay (although there is no bound on such delay). The formula
always (p implies g) instead forces g to happen at the instant of p.

The above formulas do not constrain the time model of the traces. Therefore, they can be interpreted
either as discrete traces or as hybrid traces. However, the logic is suitable to characterize specific sets of
hybrid traces, constraining when there should be discrete events and how the continuous variables should
evolve along continuous evolutions.

The der(.) operator is used to specify constraints on the derivative of the continuous evolution of
continuous variables. For example, the following OCRA constraint:

always (train.location<=target implies der(train.location)>=0)

characterizes the set of hybrid traces where in all states, if the train has not yet reached the target
location, its speed (expressed as the derivative of the location) is greater than or equal to zero.

The next(.) operator is used to specify functional properties requiring discrete changes to variables. For
example, we can express the property that the warning variable will change value after the train’s speed
passes the limit with the following constraint:

always (speed>limit implies in the future next(warning)!=warning)
The expression change(x) can be used instead of next(x)!=x.
The expression fall(x) is an abbreviation for x and then(not x), i.e. a Boolean term x becomes false.
The expression rise(x) is an abbreviation for (not x) and then x, i.e. a Boolean term x becomes true.

In order to constrain the delay between two events, we use the time_until(.) and time_since(.) operators,
which denote respectively the time that will elapse until the next occurrence of an event and the time
that elapsed since the last occurrence of an event. For example, the formula always (p implies
time_until(q)<max_delay) defines the set of hybrid traces where p is always followed by q in less than
max_delay time units.

The operator at next has a similar but more general purpose. It denotes the value of the left expression,
known as the sample, at the next step in which the right expression, known as the trigger, will be true. For
example, the formula always (p implies (((time at next q)- time)< max_delay)) is the discrete time
equivalent of the previous example, using an explicit user defined time variable. There is also an at /ast.
operator, which denotes the value of the sample at the last step in which the trigger was true.

53

|
-iiii- - (
=2 CHESS chess uick start 1.0 J

FONDAZIONE
BRUNO KESSLER

For further information see OCRA user manual’.

7 https://ocra.fbk.eu

54

https://ocra.fbk.eu/

3% CHESS CHESS Quick Start 1.0 - D<

o -
g™

Appendix C. Note about the usage of the <<Contract>> ConstraintBlock
in the context of the SysML language

The SysML ConstraintBlock is a package for Constraints that can be used to bind the latter to a given
block. One of the main features of the ConstraintBlock construct is that it allows the reuse of constraints
in different blocks; in particular this is possible in SysML:

1. by using the ConstraintBlock parameters to represent the parameters addressed by the
packaged constraints,

2. by using the Parametric diagram which allows to bind the ConstraintBlock parameters to the
Block parameters, so as to specify which are the Block parameters that are interested by the
constraints packaged in the ConstraintBlock.

In FoReVer the aforementioned SysML support for ConstraintBlock can be applied to Contracts also, so
the design and then the reuse of pattern of Contract are available.

However, in case the support of Contract-pattern is not needed, the SysML procedure regarding the
binding of the ConstraintBlock to a given Block can be simplified by allowing the modeler to omit the
parameters of the Contract itself and so to omit the modeling of the Parametric diagram for the given
Contract usage.

So the following semantic regarding the binding of Contract to Block is adopted in the FoReVer profile:

e |[f the Parametric diagram is not provided for the given instantiation of the Contract inside the
Block, then an implicit binding is assumed between the parameters considered in the Assume and
Guarantee of the Contract and the properties (e.g. ports) of the Block where the Contract has
been instantiated. The implicit mapping is performed by comparing the string of the Assume/
Guarantee parameters with the name of the Block properties.

e |[f instead the Parametric diagram is provided for the given instantiation of the Contract inside the
Block, then the mapping of the Assume/ Guarantee parameters to the Block properties are
derived from the mapping provided through the Parametric diagram itself.

Appendix D. CleanC Language, the imperative language to define
transition guards and effects.

CleanC is a sub-set of the C language that is enriched with additional rules.
Each transition guard can be expressed in CleanC with a boolean expression (e.g. 'portl < 5').

Each transition effect can be expressed in CleanC with a sequence of assignments (e.g. 'port1=5;
port2=true;').

CleanC rules:

® Subset of C:
o Supported types: boolean, integer, real, enum.

o Assignment Statement, the supported operator is '=".

55

3% CHESS chess Quick Start 1.0 =2 (

o -
g™

(0]

Logical Expressions.
* The supported binary operators are: '| |', '&&', '==', 'l=".
* The supported unary operators is: 'l".

LI |
) .

o Arithmetic Expressions, the supported operators are: '*','/', '%', '+
o Relational Expressions, the supported operators are: '<', '>', '<=', '>="
o Bitwise Expressions.
* The supported binary operators are '&','|', 'V','<<!, '>>'.
» The supported unary operators is: '~'.
e Additional rules:
o Boolean Literals: 'true','false’.

o Specific Function Call Expressions, the supported operation calls are abs(__),
count(_ ,..),min(__,),max(__,).

56

