CHESS - Mobius Integration Guidelines Solutions

¢
"
*
¢

CHESS

(¥

CHESS — Mobius Integration Guidelines

CHESS - Mobius Integration Guidelines | Solutions

the Brainware company

Document History

Version

Change

Current version

Update with respect to the delivery of tool version 1.0.0.

CHESS - Mobius Integration Guidelines

Table of Contents

1 Introduction

2 CHESS modelling language Extensions

2.1

2.2

2.3

3 Mor

SysML Block Modelling
Error Model State Machine
Attack Scenarios Modelling

e about modelling error behaviour in CHESS

4 Generate the Mobius Project

5 CHESS to Mobius Transformation

5.1

5.2

53

6 Curr

Overview
About transformation of failures propagation
SAN Ecore model and traceability information

ent assumptions and possible improvements

7 References

Figure 1:
Figure 2:

Figure 4.
Figure 5:
Figure 6:
Figure 7:
Figure 8:
Figure 9:

Figure 10:
Figure 11:
Figure 12:
Figure 13:
Figure 14:
Figure 15:
Figure 16 :
Figure 17:

List of Figures

Blocks with Vulnerability POrts........cccoveeieiiieiiccieee et
Yy =L o T 1Y To o 1= USRS
Figure 3 - Attack Scenario: Lifelines........occveeiiicieii i

Attack Fragment: Single Attack
Attack Fragment: Alternative Attacks
Attack Fragment: Optional Attack
Attack Fragment: Loop Attack
Attack Fragment: Delay
Attack Scenario and GeneralOrdering of Attack Messages

components iNStances MOlccecvereceeiiieeriee e
F N e T YA T o] o1 =) 4 A SR
adding attack scenarios to the analysis context..........ccccceeevcieeeennnenn.
MARTE HRM Profile......cccecciiiiieieee ettt et
adding component reward Statescccceevvieeeeiiiiee e,
Launch Mobius Project Generation.......cccccccueeeeciieeeeciieeeeciieeeeciieeene
YA\ ele] ¢ o] oo 1Y 1 { TR
direct connected components, same levelccccoeeeeviieeeicieeecennen.

Solutions

the Brainware company

13

14

18

18

19

21

22

25

CHESS - Mobius Integration Guidelines Solutions

Figure 18: direct connected components, different 18Vel.........c.ueeieiii i 20
Figure 19: CHESS Project SAN FOIAEN....cciiuiiiiiiiiie ettt ecttee et e st e e et e e e saae e e s s te e e s ssbeeessnbeeessnsreeesennsens 21
Figure 20: CHESS to SAN ECOre traceability.......cc.ceiiiiiiiiiiiiii ettt e et e e e 22

CHESS - Mobius Integration Guidelines Solutions

the Brainware company

1 Introduction
This document describes the modelling of safety and security concerns in CHESS and the automatic
generation of a Mobius Project composed of SAN and REP/JOIN models.

CHESS is a model based methodology and toolset supporting the design and analysis of cyber-physical
systems. CHESS relies on the UML and SysML modelling languages, which are largely adopted in the industry,
and on ad-hoc and easy to use profile for the modelling and analysis of dependable-related information.

Mobius is a software tool for modelling the behaviour of complex systems which allows studying the
reliability, availability, and performance of computer and network systems. A number of reliability analysis
results can be obtained with probabilistic models built with Mobius using the stochastic activity networks
(SAN) formalism, solved then via Monte-Carlo simulation.

The CHESS-Mobius plugin is conceived to support modeling of fault-tolerant software under cyber-attacks
and facilitate the exploiting of the Mobius capabilities for analysis of reliability Error! Reference source not
found..

Editing Mobius models can be not trivial. To this purpose we have extended the CHESS profile and therefore
the CHESS modelling language capabilities and user-friendly editor as a front-end to fully support the
modelling of system architectures taking in consideration safety and security co-engineering, and using
automatic transformations to SAN model for reliability analysis with MOBIUS. This approach provides a
smooth integration, guarantees the consistency among SysML and SAN models, and drastically reduce the
effort required to construct an appropriate SAN analysis model.

The CHESS-Mobius approach can be applied across several domains.

A detailed description of modelling in the CHESS Toolset is out of the scope of this document. Please refer to
the “CHESS Toolst Guide".

The description of the basic notions of the CHESS dependability profile is available at
https://github.com/montex/CHESS-SBA/wiki/CHESS-SBA-Extensions.

2 Modelling safety and security

2.1 SysML Block Modelling

A Vulnerability is modelled as a UML Port owned by a SysML Block: apply the stereotype <<Vulnerability>>
on a Port. A block can have multiple vulnerabilities. A block with one or more vulnerabilities should be
stereotyped as <<ErrorModelBehavior>>

https://github.com/montex/CHESS-SBA/wiki/CHESS-SBA-Extensions

CHESS - Mobius Integration Guidelines Solutions

the Brainware company

=Block, S:.-!1em|ﬂ
= SampleSystam|
properties

gperations

constraints

lock1_1[1."
Block1.1(1-7 block2_1 block3 1

sBlock, ErroriodelBehaviors ﬂ.l «Block ErrorModelBehaviors 2 «Block, ErngodelBehm-iar—'ﬂ
= Block1 = Block2 = Block3

T properties properties
[E in vuinerabiePorta | & in vulnerablePortX & in vulnerablePorty

= in vulnerablePoril

operations operations

operations

constraints constraints constraints

= Block1
™ Applied stereotypes: TIRETARE AL .1
Comments FE Blegk Ofram SvaML=Blocks]

= ErrorModelBebice (from CHESS: Dependakility: DependableCompanent)

Applbed tereolypes gL i e X

Fhoras]
tndahum;f:.TrvtltsPrnp.lglmn:-I

[ulnerbility (from CHESS: Dep

Figure 1: Blocks with Vulnerability Ports

IM

The property “errorModel” (of an ErrorModelBehavior stereotype) should be set to a state machine
stereotyped as <<ErrorModel>> and described in the following section. Only the first Error Model is taken

III

into account when generating the Mobius Project (despite the fact that the “errorModel” property has

multiplicity *).

& Block1
—— ‘

Profile Applied stereotypes: O[5 4| % errorModel LRy 4P
Style Block (from SysML:Blocks) (5 Block_ErrorModel

Appearance v ErrorModelBehavier (from CHESS: Dependability:DependableComponent)
e = errorModel: ErrorModel [*] = [Block1_ErrorModel]

Rulers And Grid

Figure 2: Set Error Model

In a decomposition it makes sense to model vulnerabilities and error models only for blocks which are
“leaves” in the decomposition (no further decomposed) as other blocks are just containers.

CHESS - Mobius Integration Guidelines Solutions

the Brainware company

2.2 Error Model State Machine
1. Create a new state machine diagram in the CHESS model (creates a new UML StateMachine
element) as owned by a SysML block stereotyped as <<ErrorModelBehavior>> (see previous
section).
2. States of an Error Model state machine should be stereotyped with one of the following:

a. <<NormalState>> only one state should have this stereotype applied and it should be
connected with the initial pseudo state. It represents the normal operational conditions of
the Block, unaffected by external Attacks (i.e. Healthy)

b. <<DegradedState>> multiple states can have this stereotype applied. They represent the
operational conditions of the block affected by a successful external Attack (i.e.
Compromised)

c. <<ErrorState>> A state of the component that is considered erroneous, as in [2].

3. Transition of an Error Model state machine should be stereotyped with one of the following:

a. <<Attack>> is used to connect the Healthy state with a Compromised state. It is mandatory
to specify the value of the “vulnerability” property. Only a Port stereotyped as
<<Vulnerability>> and owned by the enclosing Block is a valid value for this property.

b. <<InternalFault>>is used to connect a Compromised or Healthy state to an Error state. The
value of property “occurrence” can be set to model the Rate of the transition to the Error

state, if left unspecified it will be represented by a global variable in the corresponding SAN
model.

c. <<Repair>>is used to connect and ErrorState to the NormalState. The value of property
“probSuccess” can be set to model the Rate of the transition to the Error state, if left
unspecified it will be represented by a global variable in the corresponding SAN model.

«ErrorModels
Block1_ErrorModel

(«DegradedStates)
Compromised1 «IntemalFaults

InternaiFault2

«Attacks

Aw,

«ErrorStates
Error
=ErrorStates

probability

«IntemalFaults

InternalFaultl

Initial1

«Attacks

«IntemalFault»
Attack2

[«DegradedState:
InternalFault3

Compromised2

¥ Attack1
B Apphed stereotypes
Cominents v 2 Attack (from CHESS=Dependability:ThreatsPropagation)

v % vulnerability 3 vulnerablePortA o 2] IR

Profile
Style

Appearance

kind: AttackType [1] = masqueradeAttack
& seventy: Sting (1] = null

fikelihood: String [1] = null
=) M=

Figure 3: Error Model with Attacks

CHESS - Mobius Integration Guidelines Solutions

the Brainware company

2.3 Attack Scenarios Modelling
Before modelling attack scenarios it is needed to add an adversary of the system in the model. In this
context, an adversary is a UML Actor stereotyped as <<Adversary>>.

To model an attack scenario:

Create a new sequence diagram in the CHESS model (creates a new Interaction element)
2. Apply stereotype <<AttackScenario>> on the Interaction
a. Optionally set “frequency” and “probSuccess” properties. If left unspecified -> global
variables.
3. Create an anonymous UML Lifeline for the Adversary, and additional Lifelines for each block
instance involved in the scenario where for instance here we mean a SysML Part of a composed
Block (set the “Represent” property to the corresponding instance in the model)

. Model Explorer 52 = | shttackScenarios J
) sd: SingleAttack

= el B E J
4- 6 +2 O =

B3 «RequirementViews modelRequirementView TET—
v 3 oSystemViews modelSystemiiew m Jabbod? KRork2

e —
v 3 Architecture

£a «CHGaResourcePlatforms SampleSystem_instd

w [«Block, Systems SampleSystem
=1 blockl 1: Blockl [1.7]

]
| :
I I
I I
I I
| |
= block2_1: Block2 ! !
]]
| |
I I
]]
]]

= block3_1: Block3

i blockd_1: Blockd
1= <Block, EmorModelBehaviors Blockl
[E
=

= «Block, ErrorModelBehaviors Block2

= <Block, EmorModelBehaviors Block3
7 Lifeline
UML Mama [Lifeline

Comments | yiibinty prublic v

Profile
Adanced | DECompesed a5 <Undefineds | Represenis AL NP A

Ports Selector <Undefined:

Figure 3 - Attack Scenario: Lifelines

4. Add attack fragments to the scenario. A fragment can be one of:

a. Single Attack: a UML Message stereotyped as <<Attack>> from the lifeline representing the
Adversary to a lifeline of a vulnerable block. It is mandatory to specify the value of the
“vulnerability” property. Only a Port stereotyped as <<Vulnerability>> and owned by the
representing block is a valid value for this property.

CHESS - Mobius Integration Guidelines

Solutions

the Brainware company

«AttackScenario=
] sd: SingleAttack

«Attack=
SingleAttackBlock2

@ SingleAttackBlock2
s Applied stereotypes: PR bty | gl R
Comments v 2 Attack (from CHESS:Dependability:ThrestsPropagation) A

Profile = kind AttackType [1] = masquenadeAttack
severity: String [1] = null
X £1 likelhood: Sring [1] = nedl

=
Figure 4: Attack Fragment: Single Attack

b. Alternative Attacks: modelled as a UML CombinedFragment with operator equal to “alt”.
This CombinedFragment can contain two or more UML elements of type
InteractionOperand:

i. For each InteractionOperand specify its Guard (UML InteractionConstraint): create
a UML LiteralString as “specification” of the InteractionConstraint Guard, the value
of this LiteralString will become a global variable in the SAN model corresponding
to the attack scenario.

ii. A particular keyword can be used for the LiteralString value: “else”. It can be used
only once for each Alternative Attacks fragment and it must be used only for the
last InteractionOperand.

iii. Each InteractionOperand will contain exactly one Single Attack fragment (see case
a.).

CHESS - Mobius Integration Guidelines Solutions

the Brainware company

wAttackScenanios
El]ed: AlthttackFragment

.

T
| | |
| | |
i 1 i
1 | |
Erw | |
Elai_ | |
| | |
|.' | [eonditionT) alttacks I 1
| | |
i AlAttack_Block2 I I
1
| | |
i 1 i
1 1 1
1 1 1
1 1 1
[+ [eonfgition2] i i
1 | |
g pittacis [
| BitAttack Block3 |
r T]
1 1 .
: : “P Edit InteractionCenstraint [m] x
I I
I I
! ! Neme
Visibality public v
[] AttackCondition1
Contest <Undefined> «: o Maxint <Undefined> o=
UML Marne AttackCondition1
Minint <Undefined> s Specification + “eondition]”) |es| | #
Comments | yisibility public
= . 4
Profile ~ Constrained element = K
Appearance Guard 7] <Interaction Constraint>
Advanced Fragment
Ports —
4~ MessageRecy
#— MessageSend
: 2 o0 o

Figure 5: Attack Fragment: Alternative Attacks

c. Optional Attack: modelled as a UML CombinedFragment with operator equal to “opt”. This
CombinedFragment contains one UML element of type InteractionOperand:
i. Specify the Guard of the InteractionOperand as for case b.
ii. “else” keyword cannot be used.
iii. The InteractionOperand will contain a Single Attack fragment.

«AttackScenarios
H1sd: OptFragmentAttack

I block1_1:Block1

opt
[*7] [OptCohdition]
«fttacks

OptAttackBlock1_portA

— e — — —

L R

Figure 6: Attack Fragment: Optional Attack

10

CHESS - Mobius Integration Guidelines

Solutions

the Brainware company

Loop Attack: the semantics of a Loop Attack is to model a Single Attack repeated for each

instance of a vulnerable block. The lifeline target of these attack messages must represent

an instance of a block with multiplicity “*” or “1..*”. This fragment is modelled as a UML

CombinedFragment with operator equal to “loop”. This CombinedFragment contains one

UML element of type InteractionOperand:

The Guard needs no Specification, instead set its property “maxInt” as UML
Literallnt or UML LiteralString and set their value. If using a LiteralString its value
will become a global variable in the SAN model corresponding to the attack
scenario.

The InteractionOperand will contain a Single Attack fragment.

 «AttackScenarios
| sd: LoopAttackFragment

y

o blockl_1[il:Block1 #

| i

I]

L 1

Rlioop Y i

: «Attacks :

i Loophttack_Block]_port® i

i i

: “¥ Edat Interactsont crtraing o S

|

! Marne

! Visibility public v

! - T <Undefined> | | |4 Masint % madoop” % [7] [X
] LoopAttack Minint 1 | ||| 9] Specitication <Undefineds
uML Namae | LoopAttack _ Comstrained element ~YEPS
Comments Visibility public
Profile
Style Guard [7] <Interaction Constraint>
Appearance Fragment
Rulers And Grid . UML | Comamaents | Prefile
4 MessageRecy
achinpcu] = MessageSend 7 [Cox 1| coma
UML Mame Lifeline
Comments Visibility public 2
Prafile
Style Decompased & <Undefined> we | gp Represents B block]_1: Block1 [1.7] LR AR
Appearance Selector W P
Figure 7: Attack Fragment: Loop Attack
e. Additionally it is possible to model delays between attacks. A delay is a UML

DurationConstraint modelled as follows:

Create a UML DurationConstraint in the sequence diagram.
Specify an attack fragment (described in bullets a. to d.) as constrained element of
this DurationConstraint: semantically it is interpreted by the CHESS extended

Toolset as a delay that occurs before the constrained element.

Specify the duration of the delay: check the “specification” of the
DurationConstraint: it’s a DurationlInterval, it’s “min” and “max” specify the range
of the interval. Set them to the same value using UML LiteralString as expression
(“expr”) of “min” and “max”. This value is again a global variable in the SAN model
corresponding to the attack scenario.

11

CHESS - Mobius Integration Guidelines

5 bleck1_1:Block1

aAttacks
Attack_Block]_portA

{attack_delay}

F o

Attack_Block1_portB

=AttackScenarios
E] sd: AttackDelay
5 :Adversary
T
1
1
! 1
S
%
t
1
]
i
'
{4} AttackDelay
umL Visibility public
Comments Contest 1 AttackDelay
Prefile
Style onstrained element
Appearance &, attack_Block]_port
Rulers And Grid
Advanced

<@ Edit Durstionintercal

~—

| 50 Specification

Mame Durationinterval

Visibility public

Min c*d DurationintervalMin= attack_delay | --— | == & M
Type < Undefined> e

UML | Comments | Profile

)

4 Durationintenal

="d DurationintervalMax= attack_delay

Figure 8: Attack Fragment: Delay

Solutions

the Brainware company

- |
it Ll I
(=] >
-
= | |

Cancel

An Attack Scenario is composed of one or more fragments, to keep the order of the attack messages is

highly recommended to use UML GeneralOrdering by connecting each start message (UML MessageSend)

with the next one in sequence.

12

CHESS - Mobius Integration Guidelines Solutions

the Brainware company

wAttackScenarios
Esd: UAV_AttackScenario

| 'g_'nav_conlr... | | :?:LTE_Contr... | * 'T’swim_nod... !

ahttacks
Attack ADSB_Contraller

T|({initial_delay}
*_. i L
Bt

2] [atrh:l _NAV_condition] «n.n:ac ks
At'ta:c k_NAV Controller

1 [a!{l _LTE_condition]
ahAttacks
Attack_LTE_Controller

«Attacks
|

Attack_SWIM_Node1_Vuln1
|

Y | e ———————————————

Figure 9: Attack Scenario and GeneralOrdering of Attack Messages

3 More about modelling error behaviour in CHESS

CHESS support for error model behaviour allows to model information about incoming and outgoing
failures for a given component; this information if available is translated to SAN during the generation of
the Mobius project.

In particular:

e An error propagation originated as a consequence of incoming external fault are represented as
InternalPropagation transition; the externalFaults string attribute is used to specify the incoming
failure with the following syntax:

<input port name>.<failure type>

while the delay numerical attribute is used to model the time after which propagation occurs.

e The failure of a component with propagation of errors to its external ports is modelled with a
Failure transition the mode string attribute is used to specify the outgoing failures by using the
following syntax

<output port name>.<failure type>

With the aforementioned information, and by having the system architecture described as (possible
hierarchical) components instances connected together through their input and output ports, it is possible
to then derived scenarios of failures propagation between the components instances.

13

CHESS - Mobius Integration Guidelines

4 Generate the Mobius Project
It is possible to generate Mobius models for the Cyber Security elements modelled in CHESS. Make sure to

set Mobius Projects directory in the preferences page (menu: Window -> Preferences -> CHESS -> Mobius

Preferences)

& Preferences

type filter text

General

Acceleo

Acore Diagram

Alf

Ant

ATL

BaseType

[h]e]

~ CHESS

Concerto-FLA
Constraints
Mobius Preferences
OCRA Analysis Preferences
ReqlF Display Preferences
StateBased Preferences
*5AP Analysis Preferences

Constraint

ConstraintWithVSLI

Contract

C55

Eclipse Diagram Layout

EMF Compare

Epsilon

Expression

|/':?> |/§:| |@\'|

i p\-Fy

Then follow these steps:

Mobius Preferences

Preferences page for Mobius project generation

Meobius Project Location:

Figure 11: Preference Page

1. Model analysis context for SAN Analysis:

C\MobiusProject

Restore Defaults

the Brainware company

Browse...

Apply

Cancel

Solutions

a. Build components instances model as in [1] section 9.3.1.2. Note the component instance

model has to be manually regenerated each time a component changes wrt its

decomposition definition (i.e. internal components creation/deletion), ports

creation/deletion, connectors creation/deletion. Figure 10 shows an example of instance
model generated starting from the definition of the SampleSystem Block. The instance

model is generated under a dedicated package (SampleSystem_instSpec) and owns all the

information about the components instances, their hierarchical structure, ports and

connections.

14

CHESS - Mobius Integration Guidelines Solutions

the Brainware company

L @ «CHESS» model
F3 «RequirementViews modelRequirementView
v O «SystemViews modelSystemView
w 3 Architecture
w B3 «CHGaResourcePlatforms SampleSystem_instSpec
[Z] «CHGaResourcePlatforms SampleSystem
[«Resources SampleSystem.blockl_1
[Z «Resources SampleSystem.block2_1
[Z «Resources SampleSystemn.block3_1
£ «Resources SampleSystem.blockd 1
«Block, Systems SampleSystem
«Block, ErrorfModelBehaviors Block
«Black, ErrorfModelBehaviars Block?
«Block, ErrorModelBehaviors Block3
«Block, ErrorfModelBehaviors Blockd

Figure 10: components instances model

b. Create a UML Class stereotyped as <<CyberSecuritySANAnalysis>> in the
DependabilityAnalysisView Package. Set the value of “platform” property as the root of the
instances (UML InstanceSpecification) generated in step a.

E AnalysisContex
L Applied stereotypes: 4| % slform a[x7
Comments v & CyberSecurityAnalysis (from CHESS:Dependability:StateBased: StateBased Analysis) @ SampleSystem
Marte [condition: String [1] = null
Pofil B context: NFP_String [*] = []
rone @ waorkload: GaWorkloadBehavior [1.7] = []
Syle B platform: GaResourcesPlatform [1.7] = [SampleSyster]
Appearance & mode: Mode[] =[]
Rulers And Grid

Figure 11: Analysis Context

2. Different attack scenarios can be provided in the same CHESS model; it could be that a particular
subset of scenarios has to be taken into account for the Mobius project generation, and so analysis.
For this goal, in the Cyber Security Analysis ‘workload’ property it is possible to add the scenarios
that have to be considered by the transformation and analysis.

Figure 12 provides an example of ‘workload’ property referring the OptFragmentAttack and
SingleAttack scenarios which are located in the SystemView under the Attack folder (the structure
of the model is visible on the left side of the picture).

To be able to assign a scenario to the workload property, the following steps have to be performed:

o add the registered GQAM MARTE profile to the CHESS SystemView Package, if not still
applied; this step has to be done by selecting the SystemView, and using the Profile tab of
the Properties View (Figure 13 shows the wizard which appears when selecting the
Applying registered profile command in the profile tab and which can be used to select and
apply the GQAM MARTE profile).

15

CHESS - Mobius Integration Guidelines Solutions

the Brainware company

o Add the MARTE GaWorkloadBehavior to the scenario, still by selecting the scenario and by
using the Profile tab in the Properties View.

RECHCREY. |
& Model Explorer &1 = 8 «Cyhaéecu rityAnalysiss FE ContractBasedAn
= b Analysis1
EERE#FBRER < = L £ ContractRefine
= «CHESS» model - = =
E5 «RequirementViews modelRequirsmentView £ Z(Depercabin
v B «SystemViews modelSystemiiew] StateBasedAna
E3 Architecture = 7] FailurePropagz
~ B3 Attacks 5 (Coemponent)
£ whdversary» Adversary 7] xSAP FTA Anal

E] «AttackScenario, GaWorkloadBehaviors SingleAttack
E7] «AttackScenarios AltAttackFragment

[]] wAttackScenario, GaWorkloadBehaviors OptFragmentAtt: [Properties 52 | o Model Validation 557 References [Console # GitStaging 7 Operational QVT Traces /] Error Log [Instance View
] «AttackScenarios LoophttackFragment

(&%) Welcome By CyberSecurity 52 | B SingleAttack % Block1_ErrorModel | B System_Architecture Systemn_|BD | b5 Block2_ErrorModel

] «httackScenarios AttackDelay H Analysis1
¢*d DurationintervalMin Applied st .
pplied stereotypes: 5| X
c*d DurationintervallMax UML workload
7] «httackScenarios EmptyTestAttack Comments ~ [E CyberSecurityAnalysis (fram CHESS:Dependability:StateBased::StateBasedAnalysis) 7] SingleAttack
B Diagram SingleAttack Marte = condition: String [1] =] OptFragmentAttack

Té' Diagram AltAttackFragment = context: NFP_String [*] = [SampleSystem.blockl_1.Error, SampleSystem.block2_1.Erre

T Diagram OptAttackFragment Profile & workload: GaWorkloadBehavior [1.7] = [SingleAttack, OptFragmentAttack]
T Disgram LoopAttackFragment Style = platform: GaResourcesPlatform [1.%] = [SampleSystem]
T Diagram AttackDelay Appearance = mode: Mode [*] =[]

Figure 12: adding attack scenarios to the analysis context

& Choose profile(s) to apply *

w D MARTE
[& MARTE_Foundations
MARTE_DesignModel
~ []EA MARTE_AnalysisModel
GOAM
[z sam
& pam
[& MARTE_Annexes

Select All | Deselect All

Figure 13: MARTE HRM profile

3. Afurther set-up step available for the Cyber Security Analysis context regards the generation of
specific information in the Mobius project which can then be used to facilitate the definition of the
reward function. In particular, the Cyber Security Analysis ‘context’ property is used to add the list
of component instances states on which the given reward function of interest will be built (please

16

CHESS - Mobius Integration Guidelines Solutions

the Brainware company

refer to section 5 about more details on this). The ‘context’ property is a list of String?; each value
has to be provided with the following form:

<instance name>.<error model state name>

where <error model state name> must be the name of a state defined in the error model available
for the component typing the given instance. As alternative, or in addition, a wildcard can be used
in place of the instance name, so by using:

* < error model state name >

meaning that all the instances having a state in the error model with name = <error model state>
will be considered.

Figure 14 shows an example of ‘context’ property referring the Error state of the
SampleSystem.blockl_ 1, SampleSystem.block2 1, SampleSystem.block3 1 component and the
Compomised1 state of the SampleSystem.block3_1 component.

It is worth noting that the usage of components instances allows a great flexibility in the analysis,
and also for what regards the error state list definition; e.g. different states for different instances
of the same component can be provided and then measured.

B A SR Ly Ty

«CyberSecuntyAnalysis= #% ContractBasedAnalysis

Q Analysis1
= =] ContractRefinementAnalysis

#% DependabilityAnalysis

=] StateBasedAnalysis (Compot

- =] FailurePropagatienfnalysis
(Component)

=]xSAP FTA Analysis (Compon
&) Welcome | By CyberSecurity 52 | BT SingleAttack | % Block1_Erroriodel | Bg System_Architecture System_IBD | % Block2_ErrorModel

L

= Properties 52 | o Model \alidation =7 References [l Console ¢%; GitStaging 5%: Operational QVT Traces @] Error Log [Instance View 4 =
p ¥ =5 ging zaUp o 9 [|
= Analysis1
ML Applied sterectypes: e [8| context
Comments w CyberSesqrityAnélysis (from CHESS::Dependability::StateBased::StateBasedAnalysis) SampleSystem.block1_1.Error
Marte B condition: String [1] = SampleSystem.block2_1.Error
Profil =1 context: NFP_String [*] = [SampleSystem.blockl_1.Error, SampleSystem.block2_1.Erro SampleSystem.block3_1.Compromised
rofile B N . : -
n =1 workload: GaWorkloadBehavior [1..%] = [SingleAttack, OptFragmentAttack] SampleSystem.blockd_1.Error
tyle =1 platform: GaResourcesPlatform [1.%] = [SampleSystem]
Appearance = mode: Mode [*] =[]

Predone B d

Figure 14: adding component reward states

4. Launch “Generate Mobius Project” from CHESS->Analysis->Dependability Menu and select the
Analysis Context:

1 String is used here because the UML metamodel does not provide a way to model the concept of state at instance

level.
17

CHESS - Mobius Integration Guidelines Solutions

the Brainware company

S Select Security Analysis Context O x

Contexts found in model:

model:modelAnalysisView:modelDependabiltyfnalysisView:AnalysisContex

& Transformation Running O X

6.' operation in progress ...

generating attack scenario models...

[Always run in background

Run in Background Cancel Details > >

& CHESS X

Muobius project SampleSystem has been generated at:
ChAMobiusProject\5ampleSystem

Figure 15: Launch Mobius Project Generation

5 CHESS to Mobius Transformation

5.1 Overview
In order to generate a valid Mobius project a model to model transformation in QVT-O
(http://www.eclipse.org/mmt/gvto) from CHESS to an intermediate Ecore SAN model and a set of

transformation in Acceleo (https://www.eclipse.org/acceleo/) to transform entities from the Ecore SAN

model to SAN or REP/JOIN models in Mobius have been designed and developed. The following list sums up
this transformation process:

1. Atomic Component (SAN Model): SysML Block no further decomposed and stereotyped as
<<ErrorModelBehavior>> with one or more Port stereotyped as “Vulnerability” and StateMachine
stereotyped as <<ErrorModel>> and modelled as in section 2.2 and 3.

2. Reward atomic model (SAN Model): contains the set of component states as specified in the CHESS
Analysis Context

3. Attack Scenario (SAN Model): Interaction stereotyped as <<AttackScenario>> and modelled
following the guidelines of section 3.3

4. Composed model (REP/JOIN Model): contains the representation of the complete hierarchical
structure of the CHESS components instances. Composite instances with number of parts greater
than 1 are mapped to Join nodes. Composite instances with one single inner part are mapped to

18

http://www.eclipse.org/mmt/qvto
https://www.eclipse.org/acceleo/

CHESS - Mobius Integration Guidelines Solutions

the Brainware company

Rep nodes. Rep is also used to represent instances with multiplicity greater than 1. Components
with no error model are mapped only if they contain some internal part with error model.
Submodels are used to represent leaf component instances, with the link to the corresponding
atomic components. Submodels for the reward and the attack scenarios atomic models are also
connected to the top level Join node. Join state variable related to the atomic components, the
attack scenarios and reward states are also created. Figure 16 shows an example of Rep/Join
composed model generated from CHESS for a system with a level of decomposition up to 3; on the
right, the reward and attack scenario submodels linked to the top level Join are also visible.

Additionally the transformation generates a Mobius Project File (.prj) to ensure that the project is
recognized and read by Mobius correctly.

ELE] L

AT TRETImee i L oo

el e T T

RGO golfcart - T e e T
... SEm R EEmETm 00 GEEmETE
.................................. &CT_accContrelappl. - - - - ACC_dep. analysis reward . - - - - .|._|[jarAtta[;|.(Scenang.

3c:t:0r:::: . Join s

............. AT orfrolfenl fusion - . -

MR NG N

ACC accantrmApm fusmn Syngh ... ubmode] [

... ACC_accControkappl_planner

coorro o g :::::::::::: N

...... ACCaccCDntrmApmfugmntrugtaj.\\shmm

..................................... Submodel

ZZZ:ZZZZ:Z:ZZ:Z:ZZ:Z:ZZZ::Z:Z::Z:Z::ACCacccgntmmpp\fugmnn.i;dca{njétécﬁtﬁﬁZ:Z:ZZ:Z:ZZZZ:ZZZ::Z

Figure 16 : SAN composite

5.2 About transformation of failures propagation

For a given terminal/atomic component, i.e. a CHESS SysML Block no further decomposed and stereotyped
as <<ErrorModelBehavior>>, the tool checks its internal propagation transitions; in particular, for any
internal propagation transition (if any), it checks if the propagation can actually occur by looking at the
possible failures that can appear at the input ports of the component. The failures that can appear at the
input ports of the given components are the ones that can be generated by direct connected components;
so in particular the tool checks if a direct connected terminal component can act as a source of the failure
which has been declared to fire the given internal propagation transition.

For instance, let’s suppose to have a terminal component X having an error model with an internal
propagation representing a failure F occurring at a given input port i_X. In order to have the transition
fired, there must exist a terminal component Y with an output port o_Y direct connected to i_X; in addition
the error model of component Y must come with a Failure transition declaring F as output failure for port
o_Y. Two terminal components are direct connected when:

19

CHESS - Mobius Integration Guidelines Solutions

the Brainware company
e they are the same level of the hierarchical design (see block2_1 and block3_1 in Figure 17)

e they are at different levels of the hierarchy but directly reachable via delegations connectors (e.g.
see block2_1 and block1_2 in Figure 18).

Block1

=) block2_1: Block2 [=] block3_1: Block3

= iniPort
&l out oPort

Figure 17: direct connected components, same level

@ System|

=] block1_1: Block1

= block1_2: Block0

&l out oTopPort

(= block2_1: Block2 5 iniTopPort

&l out olnnerPort

Figure 18: direct connected components, different level

In case a propagation between a source and target components, Y and X respectively in the example above,
is found, then the transformation generates:

e an atomic model connected to the root Join node of the Mobius project representing the failure
propagation model of the two components and having:
o one place P_F_O representing the failure in output
o one timed activity T
o one place P_F_l representing the failure in input
o the connections betweenP_F O > T > P_F_|I
o the atomic model of the source and target components are enriched with the information
regarding the failure in output and input. Currently
o one place representing the failure in output (P_Y_O) is generated in the atomic model of
the source component
o one place representing the failure in output (P_X_I) is generated in the atomic model of the
target component
e theplaces(P_Y_O,P_F O)and (P_X_I, P_F_I) are then joined in the mail model by using the Mobius
shared variables mechanisms.

20

CHESS - Mobius Integration Guidelines Solutions

the Brainware company

5.3 SAN Ecore model and traceability information

The intermediate SAN Ecore model derived from the CHESS model and finally used to generate the Mobius
model is automatically saved in the SAN folder located under the current CHESS project (the file has
.sanmodel as extension). The model can be navigated in the CHESS Eclipse environment by using the
default tree editor (double click on the file to open it).

In addition, the traceability information about the CHESS entities and the entities generated in the Ecore
SAN model is saved in the SAN folder as .qvtoTrace file. The file has a dedicated editor which can be used to
check the mappings.

The structure of the SAN Ecore model is very close to the Mobius generated one, so e.g. given one entity in
the Mobius model, it is quite easy to retrieve the corresponding one in the SAN Ecore and vice versa. By
navigating the traceability model, it is possible to have a better understanding of the CHESS entity(ies)
which generate an entity in Mobius.

W :{*j = SarmpleAttacksModel [mygit master]
v [= > SAN
@) = = SampleModel.sanmodel
7'z SampleModel.sanmodel.qvtoTrace
<} SampleModel

Figure 19: CHESS project SAN Folder

Figure 20 shows an example of traceability model (on the right side), related to a specific CHESS-Mobius
model generation, with the list of the mapping rules applied. In particular, a mapping rule between UML
instance and atomic node has been expanded. The rule owns the detail of the source (in) and target (out)
entities, UML instance component and SAN atomic node respectively: it is possible to double click on one
entity to open the associated tree editor to then check it in the owning resource (UML model on the top
right side and SAN Ecore model on bottom right side of the figure). In particular Figure 20 shows the
traceability between the SampleSystem.block2_1 SAN atomic node and the homonym component instance
in CHESS.

21

CHESS - Mobius Integration Guidelines

the Brainware company

Solutions

541 SampleModel.sanmodel.qvioTrace 52 #] SampleModel.uml 5%
<4 UMLInstance2SANModel (SELF: InstanceSpecification, RESULT: SANModel) ~ v B2 «<CHES5>> <Model> model
4 UMLInstance2Join (SELF: InstanceSpecification, PARAMS: true, RESULT: Join) B3 <<RequirementView>» <Package> modelRequirementView
v 4 UMLInstance2AtomicNode (SELF: InstanceSpecification, RESULT: AtomicMode) v B3 <<SystemView>> <Package> modelSystemView
w4 inself : InstanceSpecification = Instancebpecification v B2 <Package> Architecture
[Z] <<Resource>> <Instance Specification> SampleSystem.block2_1 v B3 <<CHGaResourcePlatform>> <Package> SampleSystem_instSpec
w < put result : AtemicMNode = AtomicMode [Z <<CHGaResourcePlatform>» <Instance Specification> SampleSystem
4 Atomic Node SampleSystem.block2_1 £ <<Resource>> <Instance Specification> SampleSystem.block]_1
4 UMLInstance_Vertex2Place (PARAMS: Tuple[2], RESULT: Place) =] <<Resource>> <Instance Specification> SampleSystem.block?_1
4 UMLInstanceVertex2Place (SELF: Tuple[2], RESULT: Place) [Z <<Resource>> <Instance Specification> SampleSystem.block3_1
<4 UMLInstance_InternalFaultTransition2 TimedActivity (PARAMS: Tuple[2], RESULT: T [<<Resource»> <Instance Specification> SampleSystern.blockd_1
4 UMLInstance_Vertex2Place (PARAMS: Tuple[2], RESULT: Place) H «<Block, System>> <Class> SampleSystem
<+ UMLInstanceVertex2Place (SELF: Tuple[2], RESULT: Place)
< UMLAttackTransition2InstantanecusActivity (SELF: Transition, RESULT: Instantanec @ SIS S TR B
<4 UMLAttackMessage2InputGate (SELF: Message, PARAMS: AtomicMode, Place, RES |-—[\21 Resource Set
4 UMLAttackMessage2 AttackSuccessPlace (SELF: Message, PARAMS: AtomicMode, w @ platform:/resource/SampleAttacksModel/SAN/SampleModel.sanmodel
<4 UMLAttackMessage2AttackConfirmedPlace (SELF: Message, PARAMS: AtomicMNo ~ < SAN Model SampleSystem
<+ UMLInstanceVertex2Place (SELF: Tuple[2], RESULT: Place) v < loin SampleSystem
< UMLInstance_InternalPropagationTransition2InstantanecusActivity (PARAMS: Tup 4 Shared State SampleSystem.block2_1.Error
< UMLInternalPropagationTransition2IncomingFailureX3C (SELF: Transition, RESULT: 4 Shared State SampleSystem.block3_1.Compromised]
<4 UMLInstance_InternalFaultTransition2TimedActivity (PARAMS: Tuple[2], RESULT: T <4 Shared State SampleSystem.block1_1.Error
< UMLInstance2AtomicMode (SELF: InstanceSpecification, RESULT: AtomicMode) 4 Shared State SampleSystem.block4_1.Error
<4 UMLInstance_Vertex2Place (PARAMS: Tuple[2], RESULT: Place) 4 Shared State OptAttackBlock1_portA_success
4+ UMLInstanceVertex2Place (SELF: Tuple[2], RESULT: Place) 4 Shared State SingleAttackBlock?_success
< UMLInstance_InternalFaultTransition2 TimedActivity (PARAMS: Tuple[2], RESULT: T < Atomic Node SampleSystern.block2_1
4 UMLInstanceVertex2Place (SELF: Tuple[2], RESULT: Place) <4 Atomic Node SampleSystemn.block3_1
< UMLAttackTransition2InstantaneousActivity (SELF: Transition, RESULT: Instantanec ¥ 4 Atomic Mpde SamnleSvstem. blockd 1
< > Selection| Parent | List| Tree | Table | Tree with Columns

Figure 20: CHESS to SAN Ecore traceability

6 Current assumptions and possible improvements

e Regarding transformation of failure propagation: input failure expressions attached to the internal

propagation transitions must have a single fault on a single input port. Output failure expression

attached to failure transitions must have a single fault on a single output port. So complex failures

propagations (like an internal propagation enabled by a boolean condition of failures occurring on

different input ports) are not currently supported.
e A CHESS component having an ErrroModel state machine attached (through the

ErrorModelBehaviour stereotype) is mapped to an atomic SAN node and is considered as terminal

in CHESS even if it is decomposed. Given a composed components having and error model
attached, internal components parts could also be checked and mapped to SAN.

7 Example

7.1 Failure Propagation
Let’s consider a system composed by two parts connected as in the following figure.

22

CHESS - Mobius Integration Guidelines

the Brainware company

SampleFailurePropSystem

=] block?: Block2

=] block3: Block3

5 iniPort
El out oPort

Block2 is able to generate an omission failure on its output port.

i «ErrorModel» N
Block2_ErrorModel
«NormalState» «ErrorStates «Failures
0K InternalFault] ErrorStatel mode=[oPort.omission]
«InternalFault» =
Failurel
«Failure»
" J

Block3 can switch to an error state when an omission failure is available at its input port.

«ErrorModel»
Block3_ErrorModel

«InternalPropagation»
externalFaults=iPort.omission

I
«NormalState) IntemaIPrlbpagatioM

0K

«InternalPropagation»

«ErrorState»

ErrorStatel

Solutions

So considering the error models and the components input and output ports binding, a failure propagation

between block2 and block3 can happen.

The error model of the block2 component is mapped to the following SAN model:

23

CHESS - Mobius Integration Guidelines Solutions

the Brainware company

. ipgrt_.gmjs.s

#AllumeP pgystem

Information available in CHESS (error model) currently not considered by the mapping, to be considered for
possible extensions:

e The delay (i.e. the time after which propagation occurs) of the InternalPropagation transition
e |n CHESS, <<propagation>> stereotype can be added to the connector which binds the
components; <<propagation>> comes with the following attributes:
24

CHESS - Mobius Integration Guidelines Solutions

the Brainware company

Attribute

Description
prob - . .
. Probability that propagation actually occurs. Default valueis 1.8 .
foptional)
propDelay Delay after which propagation will occur, specified as a probability distribution.
{optional) Default value is deterministic(®) , i.e., immediate propagation.

8 References

[1] https://www.polarsys.org/chess/publis/CHESSToolset_UserGuide.pdf.
[2] https://www.polarsys.org/chess/publis/CHESSMLprofile.pdf.

[3] Popov, P., Models of reliability of fault-tolerant software under cyber-attacks in The 28th IEEE
International Symposium on Software Reliability Engineering (ISSRE'2017). 2017, IEEE: Toulouse, France.
p. 228-239. Available from: https://doi.org/10.1109/ISSRE.2017.23.

25

https://doi.org/10.1109/ISSRE.2017.23

