
CHESS - Mobius Integration Guidelines

1

CHESS – Mobius Integration Guidelines

CHESS - Mobius Integration Guidelines

2

Document History

Version Change

Current version Update with respect to the delivery of tool version 1.0.0.

CHESS - Mobius Integration Guidelines

3

Table of Contents

1 Introduction 5

2 CHESS modelling language Extensions 5

2.1 SysML Block Modelling 5

2.2 Error Model State Machine 7

2.3 Attack Scenarios Modelling 8

3 More about modelling error behaviour in CHESS 13

4 Generate the Mobius Project 14

5 CHESS to Mobius Transformation 18

5.1 Overview 18

5.2 About transformation of failures propagation 19

5.3 SAN Ecore model and traceability information 21

6 Current assumptions and possible improvements 22

7 References 25

List of Figures

Figure 1: Blocks with Vulnerability Ports ... 6

Figure 2: Set Error Model .. 6

Figure 3 - Attack Scenario: Lifelines ... 8

Figure 4: Attack Fragment: Single Attack .. 9

Figure 5: Attack Fragment: Alternative Attacks .. 10

Figure 6: Attack Fragment: Optional Attack .. 10

Figure 7: Attack Fragment: Loop Attack .. 11

Figure 8: Attack Fragment: Delay .. 12

Figure 9: Attack Scenario and GeneralOrdering of Attack Messages.. 13

Figure 10: components instances model ... 15

Figure 11: Analysis Context ... 15

Figure 12: adding attack scenarios to the analysis context ... 16

Figure 13: MARTE HRM profile .. 16

Figure 14: adding component reward states .. 17

Figure 15: Launch Mobius Project Generation .. 18

Figure 16 : SAN composite... 19

Figure 17: direct connected components, same level .. 20

CHESS - Mobius Integration Guidelines

4

Figure 18: direct connected components, different level ... 20

Figure 19: CHESS project SAN Folder... 21

Figure 20: CHESS to SAN Ecore traceability ... 22

CHESS - Mobius Integration Guidelines

5

1 Introduction
This document describes the modelling of safety and security concerns in CHESS and the automatic

generation of a Mobius Project composed of SAN and REP/JOIN models.

CHESS is a model based methodology and toolset supporting the design and analysis of cyber-physical

systems. CHESS relies on the UML and SysML modelling languages, which are largely adopted in the industry,

and on ad-hoc and easy to use profile for the modelling and analysis of dependable-related information.

Möbius is a software tool for modelling the behaviour of complex systems which allows studying the

reliability, availability, and performance of computer and network systems. A number of reliability analysis

results can be obtained with probabilistic models built with Mobius using the stochastic activity networks

(SAN) formalism, solved then via Monte-Carlo simulation.

The CHESS-Mobius plugin is conceived to support modeling of fault-tolerant software under cyber-attacks

and facilitate the exploiting of the Mobius capabilities for analysis of reliability Error! Reference source not

found..

Editing Mobius models can be not trivial. To this purpose we have extended the CHESS profile and therefore

the CHESS modelling language capabilities and user-friendly editor as a front-end to fully support the

modelling of system architectures taking in consideration safety and security co-engineering, and using

automatic transformations to SAN model for reliability analysis with MOBIUS. This approach provides a

smooth integration, guarantees the consistency among SysML and SAN models, and drastically reduce the

effort required to construct an appropriate SAN analysis model.

The CHESS-Mobius approach can be applied across several domains.

A detailed description of modelling in the CHESS Toolset is out of the scope of this document. Please refer to

the “CHESS Toolst Guide".

The description of the basic notions of the CHESS dependability profile is available at

https://github.com/montex/CHESS-SBA/wiki/CHESS-SBA-Extensions.

2 Modelling safety and security

2.1 SysML Block Modelling
A Vulnerability is modelled as a UML Port owned by a SysML Block: apply the stereotype <<Vulnerability>>

on a Port. A block can have multiple vulnerabilities. A block with one or more vulnerabilities should be

stereotyped as <<ErrorModelBehavior>>

https://github.com/montex/CHESS-SBA/wiki/CHESS-SBA-Extensions

CHESS - Mobius Integration Guidelines

6

Figure 1: Blocks with Vulnerability Ports

The property “errorModel” (of an ErrorModelBehavior stereotype) should be set to a state machine

stereotyped as <<ErrorModel>> and described in the following section. Only the first Error Model is taken

into account when generating the Mobius Project (despite the fact that the “errorModel” property has

multiplicity *).

Figure 2: Set Error Model

In a decomposition it makes sense to model vulnerabilities and error models only for blocks which are

“leaves” in the decomposition (no further decomposed) as other blocks are just containers.

CHESS - Mobius Integration Guidelines

7

2.2 Error Model State Machine
1. Create a new state machine diagram in the CHESS model (creates a new UML StateMachine

element) as owned by a SysML block stereotyped as <<ErrorModelBehavior>> (see previous

section).

2. States of an Error Model state machine should be stereotyped with one of the following:

a. <<NormalState>> only one state should have this stereotype applied and it should be

connected with the initial pseudo state. It represents the normal operational conditions of

the Block, unaffected by external Attacks (i.e. Healthy)

b. <<DegradedState>> multiple states can have this stereotype applied. They represent the

operational conditions of the block affected by a successful external Attack (i.e.

Compromised)

c. <<ErrorState>> A state of the component that is considered erroneous, as in [2].

3. Transition of an Error Model state machine should be stereotyped with one of the following:

a. <<Attack>> is used to connect the Healthy state with a Compromised state. It is mandatory

to specify the value of the “vulnerability” property. Only a Port stereotyped as

<<Vulnerability>> and owned by the enclosing Block is a valid value for this property.

b. <<InternalFault>> is used to connect a Compromised or Healthy state to an Error state. The

value of property “occurrence” can be set to model the Rate of the transition to the Error

state, if left unspecified it will be represented by a global variable in the corresponding SAN

model.

c. <<Repair>> is used to connect and ErrorState to the NormalState. The value of property

“probSuccess” can be set to model the Rate of the transition to the Error state, if left

unspecified it will be represented by a global variable in the corresponding SAN model.

Figure 3: Error Model with Attacks

CHESS - Mobius Integration Guidelines

8

2.3 Attack Scenarios Modelling
Before modelling attack scenarios it is needed to add an adversary of the system in the model. In this

context, an adversary is a UML Actor stereotyped as <<Adversary>>.

To model an attack scenario:

1. Create a new sequence diagram in the CHESS model (creates a new Interaction element)

2. Apply stereotype <<AttackScenario>> on the Interaction

a. Optionally set “frequency” and “probSuccess” properties. If left unspecified -> global

variables.

3. Create an anonymous UML Lifeline for the Adversary, and additional Lifelines for each block

instance involved in the scenario where for instance here we mean a SysML Part of a composed

Block (set the “Represent” property to the corresponding instance in the model)

Figure 3 - Attack Scenario: Lifelines

4. Add attack fragments to the scenario. A fragment can be one of:

a. Single Attack: a UML Message stereotyped as <<Attack>> from the lifeline representing the

Adversary to a lifeline of a vulnerable block. It is mandatory to specify the value of the

“vulnerability” property. Only a Port stereotyped as <<Vulnerability>> and owned by the

representing block is a valid value for this property.

CHESS - Mobius Integration Guidelines

9

Figure 4: Attack Fragment: Single Attack

b. Alternative Attacks: modelled as a UML CombinedFragment with operator equal to “alt”.

This CombinedFragment can contain two or more UML elements of type

InteractionOperand:

i. For each InteractionOperand specify its Guard (UML InteractionConstraint): create

a UML LiteralString as “specification” of the InteractionConstraint Guard, the value

of this LiteralString will become a global variable in the SAN model corresponding

to the attack scenario.

ii. A particular keyword can be used for the LiteralString value: “else”. It can be used

only once for each Alternative Attacks fragment and it must be used only for the

last InteractionOperand.

iii. Each InteractionOperand will contain exactly one Single Attack fragment (see case

a.).

CHESS - Mobius Integration Guidelines

10

Figure 5: Attack Fragment: Alternative Attacks

c. Optional Attack: modelled as a UML CombinedFragment with operator equal to “opt”. This

CombinedFragment contains one UML element of type InteractionOperand:

i. Specify the Guard of the InteractionOperand as for case b.

ii. “else” keyword cannot be used.

iii. The InteractionOperand will contain a Single Attack fragment.

Figure 6: Attack Fragment: Optional Attack

CHESS - Mobius Integration Guidelines

11

d. Loop Attack: the semantics of a Loop Attack is to model a Single Attack repeated for each

instance of a vulnerable block. The lifeline target of these attack messages must represent

an instance of a block with multiplicity “*” or “1..*”. This fragment is modelled as a UML

CombinedFragment with operator equal to “loop”. This CombinedFragment contains one

UML element of type InteractionOperand:

i. The Guard needs no Specification, instead set its property “maxInt” as UML

LiteralInt or UML LiteralString and set their value. If using a LiteralString its value

will become a global variable in the SAN model corresponding to the attack

scenario.

ii. The InteractionOperand will contain a Single Attack fragment.

Figure 7: Attack Fragment: Loop Attack

e. Additionally it is possible to model delays between attacks. A delay is a UML

DurationConstraint modelled as follows:

i. Create a UML DurationConstraint in the sequence diagram.

ii. Specify an attack fragment (described in bullets a. to d.) as constrained element of

this DurationConstraint: semantically it is interpreted by the CHESS extended

Toolset as a delay that occurs before the constrained element.

iii. Specify the duration of the delay: check the “specification” of the

DurationConstraint: it’s a DurationInterval, it’s “min” and “max” specify the range

of the interval. Set them to the same value using UML LiteralString as expression

(“expr”) of “min” and “max”. This value is again a global variable in the SAN model

corresponding to the attack scenario.

CHESS - Mobius Integration Guidelines

12

Figure 8: Attack Fragment: Delay

An Attack Scenario is composed of one or more fragments, to keep the order of the attack messages is

highly recommended to use UML GeneralOrdering by connecting each start message (UML MessageSend)

with the next one in sequence.

CHESS - Mobius Integration Guidelines

13

Figure 9: Attack Scenario and GeneralOrdering of Attack Messages

3 More about modelling error behaviour in CHESS
CHESS support for error model behaviour allows to model information about incoming and outgoing

failures for a given component; this information if available is translated to SAN during the generation of

the Mobius project.

In particular:

• An error propagation originated as a consequence of incoming external fault are represented as

InternalPropagation transition; the externalFaults string attribute is used to specify the incoming

failure with the following syntax:

<input port name>.<failure type>

 while the delay numerical attribute is used to model the time after which propagation occurs.

• The failure of a component with propagation of errors to its external ports is modelled with a

Failure transition the mode string attribute is used to specify the outgoing failures by using the

following syntax

<output port name>.<failure type>

With the aforementioned information, and by having the system architecture described as (possible

hierarchical) components instances connected together through their input and output ports, it is possible

to then derived scenarios of failures propagation between the components instances.

CHESS - Mobius Integration Guidelines

14

4 Generate the Mobius Project
It is possible to generate Mobius models for the Cyber Security elements modelled in CHESS. Make sure to

set Mobius Projects directory in the preferences page (menu: Window -> Preferences -> CHESS -> Mobius

Preferences)

Figure 11: Preference Page

Then follow these steps:

1. Model analysis context for SAN Analysis:

a. Build components instances model as in [1] section 9.3.1.2. Note the component instance

model has to be manually regenerated each time a component changes wrt its

decomposition definition (i.e. internal components creation/deletion), ports

creation/deletion, connectors creation/deletion. Figure 10 shows an example of instance

model generated starting from the definition of the SampleSystem Block. The instance

model is generated under a dedicated package (SampleSystem_instSpec) and owns all the

information about the components instances, their hierarchical structure, ports and

connections.

CHESS - Mobius Integration Guidelines

15

Figure 10: components instances model

b. Create a UML Class stereotyped as <<CyberSecuritySANAnalysis>> in the

DependabilityAnalysisView Package. Set the value of “platform” property as the root of the

instances (UML InstanceSpecification) generated in step a.

Figure 11: Analysis Context

2. Different attack scenarios can be provided in the same CHESS model; it could be that a particular

subset of scenarios has to be taken into account for the Mobius project generation, and so analysis.

For this goal, in the Cyber Security Analysis ‘workload’ property it is possible to add the scenarios

that have to be considered by the transformation and analysis.

Figure 12 provides an example of ‘workload’ property referring the OptFragmentAttack and

SingleAttack scenarios which are located in the SystemView under the Attack folder (the structure

of the model is visible on the left side of the picture).

To be able to assign a scenario to the workload property, the following steps have to be performed:

o add the registered GQAM MARTE profile to the CHESS SystemView Package, if not still

applied; this step has to be done by selecting the SystemView, and using the Profile tab of

the Properties View (Figure 13 shows the wizard which appears when selecting the

Applying registered profile command in the profile tab and which can be used to select and

apply the GQAM MARTE profile).

CHESS - Mobius Integration Guidelines

16

o Add the MARTE GaWorkloadBehavior to the scenario, still by selecting the scenario and by

using the Profile tab in the Properties View.

Figure 12: adding attack scenarios to the analysis context

Figure 13: MARTE HRM profile

3. A further set-up step available for the Cyber Security Analysis context regards the generation of

specific information in the Mobius project which can then be used to facilitate the definition of the

reward function. In particular, the Cyber Security Analysis ‘context’ property is used to add the list

of component instances states on which the given reward function of interest will be built (please

CHESS - Mobius Integration Guidelines

17

refer to section 5 about more details on this). The ‘context’ property is a list of String1; each value

has to be provided with the following form:

<instance name>.<error model state name>

where <error model state name> must be the name of a state defined in the error model available

for the component typing the given instance. As alternative, or in addition, a wildcard can be used

in place of the instance name, so by using:

*.< error model state name >

meaning that all the instances having a state in the error model with name = <error model state>

will be considered.

Figure 14 shows an example of ‘context’ property referring the Error state of the

SampleSystem.block1_1, SampleSystem.block2_1, SampleSystem.block3_1 component and the

Compomised1 state of the SampleSystem.block3_1 component.

It is worth noting that the usage of components instances allows a great flexibility in the analysis,

and also for what regards the error state list definition; e.g. different states for different instances

of the same component can be provided and then measured.

Figure 14: adding component reward states

4. Launch “Generate Mobius Project” from CHESS->Analysis->Dependability Menu and select the

Analysis Context:

1 String is used here because the UML metamodel does not provide a way to model the concept of state at instance
level.

CHESS - Mobius Integration Guidelines

18

Figure 15: Launch Mobius Project Generation

5 CHESS to Mobius Transformation

5.1 Overview
In order to generate a valid Mobius project a model to model transformation in QVT-O

(http://www.eclipse.org/mmt/qvto) from CHESS to an intermediate Ecore SAN model and a set of

transformation in Acceleo (https://www.eclipse.org/acceleo/) to transform entities from the Ecore SAN

model to SAN or REP/JOIN models in Mobius have been designed and developed. The following list sums up

this transformation process:

1. Atomic Component (SAN Model): SysML Block no further decomposed and stereotyped as

<<ErrorModelBehavior>> with one or more Port stereotyped as “Vulnerability” and StateMachine

stereotyped as <<ErrorModel>> and modelled as in section 2.2 and 3.

2. Reward atomic model (SAN Model): contains the set of component states as specified in the CHESS

Analysis Context

3. Attack Scenario (SAN Model): Interaction stereotyped as <<AttackScenario>> and modelled

following the guidelines of section 3.3

4. Composed model (REP/JOIN Model): contains the representation of the complete hierarchical

structure of the CHESS components instances. Composite instances with number of parts greater

than 1 are mapped to Join nodes. Composite instances with one single inner part are mapped to

http://www.eclipse.org/mmt/qvto
https://www.eclipse.org/acceleo/

CHESS - Mobius Integration Guidelines

19

Rep nodes. Rep is also used to represent instances with multiplicity greater than 1. Components

with no error model are mapped only if they contain some internal part with error model.

Submodels are used to represent leaf component instances, with the link to the corresponding

atomic components. Submodels for the reward and the attack scenarios atomic models are also

connected to the top level Join node. Join state variable related to the atomic components, the

attack scenarios and reward states are also created. Figure 16 shows an example of Rep/Join

composed model generated from CHESS for a system with a level of decomposition up to 3; on the

right, the reward and attack scenario submodels linked to the top level Join are also visible.

Additionally the transformation generates a Mobius Project File (.prj) to ensure that the project is

recognized and read by Mobius correctly.

Figure 16 : SAN composite

5.2 About transformation of failures propagation
For a given terminal/atomic component, i.e. a CHESS SysML Block no further decomposed and stereotyped

as <<ErrorModelBehavior>>, the tool checks its internal propagation transitions; in particular, for any

internal propagation transition (if any), it checks if the propagation can actually occur by looking at the

possible failures that can appear at the input ports of the component. The failures that can appear at the

input ports of the given components are the ones that can be generated by direct connected components;

so in particular the tool checks if a direct connected terminal component can act as a source of the failure

which has been declared to fire the given internal propagation transition.

For instance, let’s suppose to have a terminal component X having an error model with an internal

propagation representing a failure F occurring at a given input port i_X. In order to have the transition

fired, there must exist a terminal component Y with an output port o_Y direct connected to i_X; in addition

the error model of component Y must come with a Failure transition declaring F as output failure for port

o_Y. Two terminal components are direct connected when:

CHESS - Mobius Integration Guidelines

20

• they are the same level of the hierarchical design (see block2_1 and block3_1 in Figure 17)

• they are at different levels of the hierarchy but directly reachable via delegations connectors (e.g.

see block2_1 and block1_2 in Figure 18).

Figure 17: direct connected components, same level

Figure 18: direct connected components, different level

In case a propagation between a source and target components, Y and X respectively in the example above,

is found, then the transformation generates:

• an atomic model connected to the root Join node of the Mobius project representing the failure

propagation model of the two components and having:

o one place P_F_O representing the failure in output

o one timed activity T

o one place P_F_I representing the failure in input

o the connections between P_F_O → T → P_F_I

• the atomic model of the source and target components are enriched with the information

regarding the failure in output and input. Currently

o one place representing the failure in output (P_Y_O) is generated in the atomic model of

the source component

o one place representing the failure in output (P_X_I) is generated in the atomic model of the

target component

• the places (P_Y_O, P_F_O) and (P_X_I, P_F_I) are then joined in the mail model by using the Mobius

shared variables mechanisms.

CHESS - Mobius Integration Guidelines

21

5.3 SAN Ecore model and traceability information
The intermediate SAN Ecore model derived from the CHESS model and finally used to generate the Mobius

model is automatically saved in the SAN folder located under the current CHESS project (the file has

.sanmodel as extension). The model can be navigated in the CHESS Eclipse environment by using the

default tree editor (double click on the file to open it).

In addition, the traceability information about the CHESS entities and the entities generated in the Ecore

SAN model is saved in the SAN folder as .qvtoTrace file. The file has a dedicated editor which can be used to

check the mappings.

The structure of the SAN Ecore model is very close to the Mobius generated one, so e.g. given one entity in

the Mobius model, it is quite easy to retrieve the corresponding one in the SAN Ecore and vice versa. By

navigating the traceability model, it is possible to have a better understanding of the CHESS entity(ies)

which generate an entity in Mobius.

Figure 19: CHESS project SAN Folder

Figure 20 shows an example of traceability model (on the right side), related to a specific CHESS-Mobius

model generation, with the list of the mapping rules applied. In particular, a mapping rule between UML

instance and atomic node has been expanded. The rule owns the detail of the source (in) and target (out)

entities, UML instance component and SAN atomic node respectively: it is possible to double click on one

entity to open the associated tree editor to then check it in the owning resource (UML model on the top

right side and SAN Ecore model on bottom right side of the figure). In particular Figure 20 shows the

traceability between the SampleSystem.block2_1 SAN atomic node and the homonym component instance

in CHESS.

CHESS - Mobius Integration Guidelines

22

Figure 20: CHESS to SAN Ecore traceability

6 Current assumptions and possible improvements
• Regarding transformation of failure propagation: input failure expressions attached to the internal

propagation transitions must have a single fault on a single input port. Output failure expression

attached to failure transitions must have a single fault on a single output port. So complex failures

propagations (like an internal propagation enabled by a boolean condition of failures occurring on

different input ports) are not currently supported.

• A CHESS component having an ErrroModel state machine attached (through the

ErrorModelBehaviour stereotype) is mapped to an atomic SAN node and is considered as terminal

in CHESS even if it is decomposed. Given a composed components having and error model

attached, internal components parts could also be checked and mapped to SAN.

7 Example

7.1 Failure Propagation
Let’s consider a system composed by two parts connected as in the following figure.

CHESS - Mobius Integration Guidelines

23

Block2 is able to generate an omission failure on its output port.

Block3 can switch to an error state when an omission failure is available at its input port.

So considering the error models and the components input and output ports binding, a failure propagation

between block2 and block3 can happen.

The error model of the block2 component is mapped to the following SAN model:

CHESS - Mobius Integration Guidelines

24

The error model of the block3 component is mapped to the following SAN model:

An atomic model representing the failure propagation flowing between the componets is also generated:

Finally the composite SAN model is generated by joining the blocks and failure propagation atomic models:

Information available in CHESS (error model) currently not considered by the mapping, to be considered for

possible extensions:

• The delay (i.e. the time after which propagation occurs) of the InternalPropagation transition

• In CHESS, <<propagation>> stereotype can be added to the connector which binds the

components; <<propagation>> comes with the following attributes:

CHESS - Mobius Integration Guidelines

25

8 References

[1] https://www.polarsys.org/chess/publis/CHESSToolset_UserGuide.pdf.

[2] https://www.polarsys.org/chess/publis/CHESSMLprofile.pdf.

[3] Popov, P., Models of reliability of fault-tolerant software under cyber-attacks in The 28th IEEE
International Symposium on Software Reliability Engineering (ISSRE'2017). 2017, IEEE: Toulouse, France.
p. 228-239. Available from: https://doi.org/10.1109/ISSRE.2017.23.

https://doi.org/10.1109/ISSRE.2017.23

