
A Deep Dive Into the Platform
Resource Model

John Arthorne
IBM Rational

The Workspace Tree

John Arthorne
IBM Rational

EclipseCon 2009 Copyright © IBM Corp., 2009. All rights reserved. Licensed under Creative Commons Att. Nc Nd 3.0 license

 public class Workspace {
WorkspaceRoot root;

}
class Resource {

Workspace workspace;
Marker[] markers;
...

}
class Container extends Resource {

Resource[] children;
}
class WorkspaceRoot extends Container {}
class Project extends Container {

Builder[] builders;
}
class Folder extends Container {}
class File {}

Naive resource implementation

EclipseCon 2009 Copyright © IBM Corp., 2009. All rights reserved. Licensed under Creative Commons Att. Nc Nd 3.0 license

Actual resource implementation

public class Workspace {
ElementTree tree;

}
class Resource {

Workspace workspace;
Path path;

}
class Container extends Resource {}
class WorkspaceRoot extends Container {}
class Project extends Container {}
class Folder extends Container {}
class File {}

● This is the grand total of fields on the resource
classes

EclipseCon 2009 Copyright © IBM Corp., 2009. All rights reserved. Licensed under Creative Commons Att. Nc Nd 3.0 license

Resources are handles
● The resources plug-in doesn't hold onto any

IResource objects – they exist only for clients
● IResource objects come and go as clients use

them
● IResource objects are stateless and immutable
● All resource data stored in a single central data

structure: the “element tree”.

EclipseCon 2009 Copyright © IBM Corp., 2009. All rights reserved. Licensed under Creative Commons Att. Nc Nd 3.0 license

Background Motivation
● Typical edit/compile/deploy cycle for a

developer focuses on a small segment of a
potentially very large code base

● Want to aggressively optimize for this common
cycle: make performance cost proportional to
the change, rather than to the size of the
workspace

● Create and manipulate “units of change” that
are passed around to interested parties

EclipseCon 2009 Copyright © IBM Corp., 2009. All rights reserved. Licensed under Creative Commons Att. Nc Nd 3.0 license

Data flow

Tree Delta
Source Control

Image Builder

UI Views

Unchanged
Child changed
Added
Modified
Removed

EclipseCon 2009 Copyright © IBM Corp., 2009. All rights reserved. Licensed under Creative Commons Att. Nc Nd 3.0 license

Additional observations
● Clients want a delta of the workspace state

between two moments in time
● Different clients may want deltas with different

start and/or end points
● How to efficiently represent all these different

deltas in memory?
● How to compute these deltas without traversing

entire workspaces?

EclipseCon 2009 Copyright © IBM Corp., 2009. All rights reserved. Licensed under Creative Commons Att. Nc Nd 3.0 license

Representing two tree states

Tree one Tree two

Unchanged
Child changed
Added
Modified
Removed

EclipseCon 2009 Copyright © IBM Corp., 2009. All rights reserved. Licensed under Creative Commons Att. Nc Nd 3.0 license

Tree one (complete) Tree two (delta)

Parent = null Parent = tree one

Unchanged
Child changed
Added
Modified
Removed

Representing tree states as deltas

EclipseCon 2009 Copyright © IBM Corp., 2009. All rights reserved. Licensed under Creative Commons Att. Nc Nd 3.0 license

Tree state determined by
assembling deltas with parents

Tree =

Unchanged
Child changed
Added
Modified
Removed

+ + =

See the code! DeltaDataTree.lookup(IPath)

EclipseCon 2009 Copyright © IBM Corp., 2009. All rights reserved. Licensed under Creative Commons Att. Nc Nd 3.0 license

Checkpoint...

● There is one “complete” tree, and any number
of “delta” trees that refer eventually to a
complete tree as ancestor

● Each delta only stores changes from parent
● Each delta can act like a complete tree state by

assembling with contents from parents
● We can represent many tree states efficiently
● Making sense so far?

Load resources source

EclipseCon 2009 Copyright © IBM Corp., 2009. All rights reserved. Licensed under Creative Commons Att. Nc Nd 3.0 license

Mapping terms to classes

● Package org.eclipse.core.internal.dtree
● DataTree – A complete tree
● DeltaDataTree – A tree that appears

complete from the outside, but is represented
as a delta against some parent

● A tree is made up of DataTreeNode objects
● Each node contains some “data” DataTreeNode

NoDataDeltaNode
DataTreeNode
DataDeltaNode
DeletedNode

EclipseCon 2009 Copyright © IBM Corp., 2009. All rights reserved. Licensed under Creative Commons Att. Nc Nd 3.0 license

Tree mutability
● Any given tree is either “open” or “immutable”.
● Only the nodes in open trees can be modified
● AbstractDataTree.immutable: makes a tree

immutable
● DeltaDataTree.newEmptyDelta: creates new open

tree
● Immutable trees are very powerful!

– Node objects are freely shared between trees
– Concurrency made easy
– Can still change internal structure but for clients

tree is unchanged

EclipseCon 2009 Copyright © IBM Corp., 2009. All rights reserved. Licensed under Creative Commons Att. Nc Nd 3.0 license

Delta tree calculus

● There are various methods on DataTree for
manipulating lists of trees (possibly trees of
trees)

● These are non-destructive operations: they
have no effect on the contents of the tree
from a client's perspective

● They may alter the internal representation of
one or more trees

EclipseCon 2009 Copyright © IBM Corp., 2009. All rights reserved. Licensed under Creative Commons Att. Nc Nd 3.0 license

● forwardDeltaWith: Create an equivalent tree
represented as a delta against a different
parent

● assembleWithForwardDelta: Inverse of above
● reroot: “flips” a chain of trees around to have a

new parent
● makeComplete: make this tree complete by

copying nodes from parent as necessary
● asBackwardDelta: returns a tree equal to my

parent, but represented as a delta against me

Delta tree calculus

EclipseCon 2009 Copyright © IBM Corp., 2009. All rights reserved. Licensed under Creative Commons Att. Nc Nd 3.0 license

● Forward delta: Represents a tree state as a delta
against a particular parent

● c = a.forwardDeltaWith(b);
● c has same contents as b, but represented as a

delta tree with a as its parent

● a.assembleWithForwardDelta(c) -> b

Forward deltas

EclipseCon 2009 Copyright © IBM Corp., 2009. All rights reserved. Licensed under Creative Commons Att. Nc Nd 3.0 license

Computing forward deltas

Unchanged
Child changed
Added
Modified
Removed

forwardDeltaWith: =

a b c

➔ Nodes shared between trees if possible

Parent = a

EclipseCon 2009 Copyright © IBM Corp., 2009. All rights reserved. Licensed under Creative Commons Att. Nc Nd 3.0 license

Unchanged
Child changed
Added
Modified
Removed

forwardDeltaWith: =

See the code! DeltaDataTree.forwardDeltaWith

a b c
Parent = a Parent = a

Computing forward deltas

EclipseCon 2009 Copyright © IBM Corp., 2009. All rights reserved. Licensed under Creative Commons Att. Nc Nd 3.0 license

Uses for forward deltas
● Used to write incremental snapshots of tree

state to snap file
● Used to quickly determine if a build is need
● Tree garbage collection

– Tree accumulates large number of layers over
time

– Only some of these layers represent tree states
we still care about

– Use forwardDeltaWith to clip out intermediate
states

EclipseCon 2009 Copyright © IBM Corp., 2009. All rights reserved. Licensed under Creative Commons Att. Nc Nd 3.0 license

● Trees are either immutable or open
● Delta trees have a powerful set of methods for

manipulating trees of trees
● An immutable tree can have its representation

completely changed but its external appearance is
frozen

● Making sense so far?

Checkpoint...

Exercise: DeltaTreeSample

EclipseCon 2009 Copyright © IBM Corp., 2009. All rights reserved. Licensed under Creative Commons Att. Nc Nd 3.0 license

Comparison trees
● Now say a client wants to know what changed

between two tree states
● Common case: what is the most recent change?
● This info is baked into our tree representation
● Computing deltas (changes) between two states

can be computed very quickly
● Most common case is nearly free because

current tree is a delta against its parent tree

EclipseCon 2009 Copyright © IBM Corp., 2009. All rights reserved. Licensed under Creative Commons Att. Nc Nd 3.0 license

Comparison tree example

Unchanged
Child changed
Added
Modified
Removed

compareWith: =
+

+
++-

*

EclipseCon 2009 Copyright © IBM Corp., 2009. All rights reserved. Licensed under Creative Commons Att. Nc Nd 3.0 license

Unchanged
Child changed
Added
Modified
Removed

compareWith: =

See the code! DeltaDataTree.compareWith

a b
Parent = a *

*
*

+

Comparison tree example

EclipseCon 2009 Copyright © IBM Corp., 2009. All rights reserved. Licensed under Creative Commons Att. Nc Nd 3.0 license

Comparison tree implementation
● Comparison trees are implemented using the

same class: DeltaDataTree
● Instead of user data in the tree, each node

contains a NodeComparison as its contents
● Comparison trees have no parent
● Comparison between related trees

implemented by assembling forward deltas
● Client passes in a comparator for producing

comparison flags on tree data

EclipseCon 2009 Copyright © IBM Corp., 2009. All rights reserved. Licensed under Creative Commons Att. Nc Nd 3.0 license

● Interesting tree states used as reference
points for comparisons

● Comparison trees created for various kinds of
resource deltas:
– Resource change events
– Builder deltas
– Save participant deltas

● Data copied from comparison trees into
ResourceDelta objects

Uses for comparison trees

EclipseCon 2009 Copyright © IBM Corp., 2009. All rights reserved. Licensed under Creative Commons Att. Nc Nd 3.0 license

● Delta trees play double duty:
– Represent a new tree state by storing

changes from previous state (forward delta)
– Describe differences between two states

(comparison trees)
● Delta trees change algorithmic complexity of

many operations from O(n) to O(δ)
● Store multiple states and compare related

states very efficiently

Checkpoint...

Exercise: DeltaTreeSample

EclipseCon 2009 Copyright © IBM Corp., 2009. All rights reserved. Licensed under Creative Commons Att. Nc Nd 3.0 license

ElementTree, my dear Watson
● DataTree API is very low level and complex
● org.eclipse.core.internal.watson.ElementTree
● ElementTree abstracts away some of the

complexity of data trees
● Element trees have layers that map 1-1 to

underlying data trees
● Adds visitor API
● Workspace implementation works almost

exclusively with ElementTree abstraction

EclipseCon 2009 Copyright © IBM Corp., 2009. All rights reserved. Licensed under Creative Commons Att. Nc Nd 3.0 license

Using trees in the workspace
● At any given time in the workspace, there are

various “interesting” tree states:
– Current tree state (Workspace.tree)
– State at time of last snapshot

(SaveManager.lastSnap)
– State at time of last resource change event

(NotificationManager.lastPostChangeTree)
– State at end of last invocation of each builder

(InternalBuilder.oldState)
– Save participant tree states

EclipseCon 2009 Copyright © IBM Corp., 2009. All rights reserved. Licensed under Creative Commons Att. Nc Nd 3.0 license

Tree state at startup

● If there was an auto-build before shutdown, all
trees are the same

● One tree gets created during restore

Δ Builder 1 == Builder2 == Snapshot == Last post change

Current Δ

EclipseCon 2009 Copyright © IBM Corp., 2009. All rights reserved. Licensed under Creative Commons Att. Nc Nd 3.0 license

Current state
Last post change

Δ

Δ

Δ

Δ

Builder 1

Builder 2

Snapshot

● Each builder that made
changes has its own tree
state

● Builders that didn't make
changes share tree states

● Oldest tree is typically tree
of last snapshot

Tree state after full build

EclipseCon 2009 Copyright © IBM Corp., 2009. All rights reserved. Licensed under Creative Commons Att. Nc Nd 3.0 license

● Common case is that only one builder ran
● Builders before change will have an older tree
● Snapshot will delete unreferenced trees and

move “last snap” pointer to current tree

Δ Some builders

Current == Builders == Snapshot == Last post changeΔ

Tree state with auto-build after
snapshot

EclipseCon 2009 Copyright © IBM Corp., 2009. All rights reserved. Licensed under Creative Commons Att. Nc Nd 3.0 license

Tree garbage problem
● In original design, the oldest

tree was always the
complete tree, and newer
trees were deltas

● Undo implemented by
moving pointer back to older
state

● This creates a problem with
the tree growing indefinitely

● Performance slowdown from
traversing many layers

Δ

Δ

Δ

Δ

Complete tree

Builder 1

Builder 2

Snapshot

Current state

EclipseCon 2009 Copyright © IBM Corp., 2009. All rights reserved. Licensed under Creative Commons Att. Nc Nd 3.0 license

● Now re-root tree at most recent
state at end of top level operation

● Old tree states garbage collected
automatically

● Re-rooting not as expensive as it
seems, since node objects can be
shared between trees

● Comparison trees often need to be
flipped around too

Δ

Δ

Δ

Δ

Builder 1

Builder 2

Snapshot

Current state

(garbage)

Garbage solution: reroot

EclipseCon 2009 Copyright © IBM Corp., 2009. All rights reserved. Licensed under Creative Commons Att. Nc Nd 3.0 license

Handling workspace changes
● Workspace has a notion of “operations” - any

code that modifies the workspace runs in the
context of an operation

● During an operation, Workspace.tree is a
mutable tree

● We need to carefully distinguish workspace-
modifying code from read-only code

● Workspace.getResourceInfo – either reading
or writing depending on “mutable” argument

EclipseCon 2009 Copyright © IBM Corp., 2009. All rights reserved. Licensed under Creative Commons Att. Nc Nd 3.0 license

Trees during an operation

● Current tree is an open delta
● Immediate parent is the

complete tree (fast lookup)
● Older trees also children of

complete tree
● At end of operation,

computing resource change
event delta is trivial Δ

Δ

Δ

Builder 1

Builder 2

Snapshot

Current stateΔ

Last post change

EclipseCon 2009 Copyright © IBM Corp., 2009. All rights reserved. Licensed under Creative Commons Att. Nc Nd 3.0 license

Example: start of operation

● New empty delta
● Complete tree is

parent
● More older trees

below complete tree

Complete tree

Workspace.tree

EclipseCon 2009 Copyright © IBM Corp., 2009. All rights reserved. Licensed under Creative Commons Att. Nc Nd 3.0 license

● ElementTree.createElement
called

● Empty (see-through) parent
nodes

Complete tree

Workspace.tree

Unchanged
Child changed
Added
Modified
Removed

Example: file is created

EclipseCon 2009 Copyright © IBM Corp., 2009. All rights reserved. Licensed under Creative Commons Att. Nc Nd 3.0 license

● openElementData
● Modified node is

“pulled up” (copied)
to the open tree layer

Complete tree

Workspace.tree

Unchanged
Child changed
Added
Modified
Removed

Example: file is modified

EclipseCon 2009 Copyright © IBM Corp., 2009. All rights reserved. Licensed under Creative Commons Att. Nc Nd 3.0 license

● Reroot at current state
● Old tree re-cast in

terms of new tree
● All other descents of

complete tree
unaffected

Old tree

Workspace.tree is
complete

Unchanged
Child changed
Added
Modified
Removed

Example: end operation

EclipseCon 2009 Copyright © IBM Corp., 2009. All rights reserved. Licensed under Creative Commons Att. Nc Nd 3.0 license

● Workspace holds onto all tree states it is still
interested in

● Deltas can be computed between known tree
states for resource change events, build
deltas, etc

● Single open tree layer during operations, all
other trees immutable

● Must always “pull up” any modified resource
into the open tree layer

Checkpoint...

Exercise: element tree spy

EclipseCon 2009 Copyright © IBM Corp., 2009. All rights reserved. Licensed under Creative Commons Att. Nc Nd 3.0 license

● Delta trees allow us to efficiently represent a large
number of different tree states, and efficiently
compute differences between tree states

● Whether a tree is complete, or represented as a delta
against some parent is not evident to tree clients

● Mutable trees used during operations, immutable
trees for old states

● Can manipulate chains of trees without changing their
contents from clients' perspective

Summary

EclipseCon 2009 Copyright © IBM Corp., 2009. All rights reserved. Licensed under Creative Commons Att. Nc Nd 3.0 license

Survey of resource API internals

John Arthorne
IBM Rational

EclipseCon 2009 Copyright © IBM Corp., 2009. All rights reserved. Licensed under Creative Commons Att. Nc Nd 3.0 license

Upper management

● IManager: participation in
workspace startup/shutdown

● FileSystemResourceManager:
manages mapping from
resource layer to file system
layer

● SaveManager: everything to do
with persistence of workspace
and resource metadata

● NotificationManager: resource
change events

EclipseCon 2009 Copyright © IBM Corp., 2009. All rights reserved. Licensed under Creative Commons Att. Nc Nd 3.0 license

Other interesting bits
● LifecycleEvent: magic internal resource events

only for internal use
● OS: Captures platform-specific rules such as

reserved characters and file names
● LocalMetaArea: Abstracts away all interaction

with the workspace metadata location
(workspace/.metadata)

● Policy: trace options, log helper methods

EclipseCon 2009 Copyright © IBM Corp., 2009. All rights reserved. Licensed under Creative Commons Att. Nc Nd 3.0 license

ResourceInfo
● The data stored in tree nodes is ResourceInfo
● Also ProjectInfo, RootInfo
● All resource state in these info objects
● ResourceInfo copied the first time it is modified

in a top-level operation
● ResourceComparator: The delta tree

comparator that compares resource states
(ResourceInfo)

EclipseCon 2009 Copyright © IBM Corp., 2009. All rights reserved. Licensed under Creative Commons Att. Nc Nd 3.0 license

ResourceInfo
public class ResourceInfo implements {
 protected volatile int charsetAndContentId;
 protected FileStoreRoot fileStoreRoot;
 protected int flags;
 protected volatile long localInfo;
 protected volatile int markerAndSyncStamp;
 protected MarkerSet markers;
 protected long modStamp;
 protected volatile long nodeId;
 protected ObjectMap sessionProperties;
 protected ObjectMap syncInfo;
}

EclipseCon 2009 Copyright © IBM Corp., 2009. All rights reserved. Licensed under Creative Commons Att. Nc Nd 3.0 license

ResourceInfo timestamps
● Content ID: Incremented every time content

changes (file contents or project description)
● Local info: The local file system timestamp
● Modification stamp: allows clients to detect

changes (IResource.getModificationStamp)
– Used to support undo
– Also affected by project open/close, existence of

link target

EclipseCon 2009 Copyright © IBM Corp., 2009. All rights reserved. Licensed under Creative Commons Att. Nc Nd 3.0 license

Back doors for team systems
● VCM systems often have unique requirements

different from most other clients
● Rather than opening up special functionality to

everyone, we opted for special “back door”
hooks for team providers:
– FileModificationValidator: pessimistic VCMs
– TeamHook: generic place for team hooks
– MoveDeleteHook: for tracking moves/deletes
– “Team private” resources

EclipseCon 2009 Copyright © IBM Corp., 2009. All rights reserved. Licensed under Creative Commons Att. Nc Nd 3.0 license

IFileModificationValidator
● Some VCM systems require a checkout before

a file is modified (pessimistic model)
● This hook gives VCM's a chance to perform

checkout
● Well-behaved clients of resources should call

validateEdit before making changes to read-
only files

● Safety net: validateSave always called

EclipseCon 2009 Copyright © IBM Corp., 2009. All rights reserved. Licensed under Creative Commons Att. Nc Nd 3.0 license

IMoveDeleteHook
● Clients implementing IMoveDeleteHook can

completely re-implement copy and move
operations

● Or, can just insert special code before or after
the default copy/delete implementations

● IResourceTree: special back door API for
move/delete hooks
– Default move/delete methods
– Methods to update resource tree

EclipseCon 2009 Copyright © IBM Corp., 2009. All rights reserved. Licensed under Creative Commons Att. Nc Nd 3.0 license

TeamHook
● Lesson learned in API design: don't use

interfaces for bits implemented by clients
● All team hook extensions could have been

rooted at a single extension / single base class
● TeamHook is an abstract class, so we can add

future methods without breaking clients

EclipseCon 2009 Copyright © IBM Corp., 2009. All rights reserved. Licensed under Creative Commons Att. Nc Nd 3.0 license

History and properties
● Local history and persistent properties stored

directly on disk (see “persistence” slides)
● Had old b-tree implementation that was replaced

because it was unstable, too complicated
● org.eclipse.core.resources.compatibility contains

the old implementation
● IHistoryStore and IPropertyManager either old or

new implementation
● Compatibility eagerly migrates to new format

EclipseCon 2009 Copyright © IBM Corp., 2009. All rights reserved. Licensed under Creative Commons Att. Nc Nd 3.0 license

Builders
● BuildManager implements build logic
● Determines whether or not each builder

invocation is needed
– Does builder respond to current trigger?
– Is delta non-empty?

● BuilderPersistentInfo: used to hold data
maintained about each builder across sessions
– Stored in session property until first run

EclipseCon 2009 Copyright © IBM Corp., 2009. All rights reserved. Licensed under Creative Commons Att. Nc Nd 3.0 license

Exercise
● Fix “Resource Spy” and “Project Spy”

File System Synchronization

John Arthorne
IBM Rational

EclipseCon 2009 Copyright © IBM Corp., 2009. All rights reserved. Licensed under Creative Commons Att. Nc Nd 3.0 license

Basic principles

● The file system is king
● When there are conflicts between changes in

workspace and changes in file system, the file
system always wins

● Synchronization is always just updating
workspace tree based on disk state

● Should only ever become out of sync if file
system is modified external to resource API

EclipseCon 2009 Copyright © IBM Corp., 2009. All rights reserved. Licensed under Creative Commons Att. Nc Nd 3.0 license

Basic principles

● Synchronization between workspace and file
system is explicit in the API

● Avoid data loss from workspace being
unexpectedly synchronized

● Prevent accidentally running/testing/releasing
code that doesn't match what user sees in
workspace

● Synchronization can be expensive

EclipseCon 2009 Copyright © IBM Corp., 2009. All rights reserved. Licensed under Creative Commons Att. Nc Nd 3.0 license

Auto-refresh
● Ongoing attempts to implement auto-refresh

over the years
● Jed Anderson's auto-refresh plug-in
● Auto-refresh added to platform in 3.0
● Native implementation on Windows
● Attempted to implement FAM native support on

Linux (bug 52859)
● Polling based auto-refresh outside Windows

EclipseCon 2009 Copyright © IBM Corp., 2009. All rights reserved. Licensed under Creative Commons Att. Nc Nd 3.0 license

Auto-refresh structure
● Completely asynchronous
● Pluggable refresh monitors

can issue refresh requests
● Requests stored in queue
● Refresh job performs actual

refresh in the background
● Refreshes in small chunks to

avoid interference

Refresh
Monitors

Refresh Job

EclipseCon 2009 Copyright © IBM Corp., 2009. All rights reserved. Licensed under Creative Commons Att. Nc Nd 3.0 license

Refresh job tricks
● Workspace is locked during refresh, so we

want background refresh to avoid locking for
too long

● Vast differences in file systems makes this
difficult to optimize

● Refresh job learns refresh speed, and adapts
refresh depth dynamically

● Start by only refreshing to depth 2, keep
doubling depth while longest refresh is < 1s

See the code! RefreshJob#runInWorkspace

EclipseCon 2009 Copyright © IBM Corp., 2009. All rights reserved. Licensed under Creative Commons Att. Nc Nd 3.0 license

Polling job tricks
● The polling job's work is never done
● Want to keep polling unobtrusive, so it only runs

for fixed periods
● Job starts with a collection of roots that need

polling
● Poll the root where recent changes have been

found more frequently (“hot root”)
● Reschedule job based on function of last run's duration:

long delay = Math.max(MIN_FREQUENCY, time * 20);
schedule(delay);

EclipseCon 2009 Copyright © IBM Corp., 2009. All rights reserved. Licensed under Creative Commons Att. Nc Nd 3.0 license

● File system is king
● Synchronization is explicit in API
● Want to make synchronization unobtrusive for

end users using auto-refresh
● Questions on refresh principles and auto-

refresh?

Checkpoint...

EclipseCon 2009 Copyright © IBM Corp., 2009. All rights reserved. Licensed under Creative Commons Att. Nc Nd 3.0 license

UnifiedTree
● UnifiedTree is a data structure that represents

the union of the file system and the workspace
● Used for refresh, for isSynchronized, “forced”

copy, and best-effort deletion
● Uses visitor pattern with breadth-first traversal
● Visitors implement IUnifiedTreeVistor, which

accepts UnifiedTreeNodes
● Each node represents a file/folder in workspace,

file system, or both

EclipseCon 2009 Copyright © IBM Corp., 2009. All rights reserved. Licensed under Creative Commons Att. Nc Nd 3.0 license

Implementing UnifiedTree
● Too expensive to represent entire tree in

memory at once
● Tree representation is a queue
● Only keep nodes in memory for one tree layer

at once
● Use special marker nodes to record current

depth, and distinguish one node's children from
another

EclipseCon 2009 Copyright © IBM Corp., 2009. All rights reserved. Licensed under Creative Commons Att. Nc Nd 3.0 license

UnifiedTree: depth zero

● Start with root in
queue

A

B C

D E F

A Level marker

EclipseCon 2009 Copyright © IBM Corp., 2009. All rights reserved. Licensed under Creative Commons Att. Nc Nd 3.0 license

● After completing A,
its children are added
to queue

● Next is a level
marker, which we
move to back of
queue

A

B C

D E F

B

C

UnifiedTree: depth one

EclipseCon 2009 Copyright © IBM Corp., 2009. All rights reserved. Licensed under Creative Commons Att. Nc Nd 3.0 license

● Process B, add child
to queue

A

B C

D E F

D

C

UnifiedTree: depth one

EclipseCon 2009 Copyright © IBM Corp., 2009. All rights reserved. Licensed under Creative Commons Att. Nc Nd 3.0 license

● Process C, add
children to queue

A

B C

D E F

D

E

F

UnifiedTree: depth one

EclipseCon 2009 Copyright © IBM Corp., 2009. All rights reserved. Licensed under Creative Commons Att. Nc Nd 3.0 license

● Move level marker to
back of queue

● Process remaining
children

A

B C

D E F

D

F

UnifiedTree: depth two

E

EclipseCon 2009 Copyright © IBM Corp., 2009. All rights reserved. Licensed under Creative Commons Att. Nc Nd 3.0 license

● Process remaining
children

A

D E F

E

F

UnifiedTree: depth two

B C

EclipseCon 2009 Copyright © IBM Corp., 2009. All rights reserved. Licensed under Creative Commons Att. Nc Nd 3.0 license

● Process remaining
children

A

D E F

F

UnifiedTree: depth two

B C

EclipseCon 2009 Copyright © IBM Corp., 2009. All rights reserved. Licensed under Creative Commons Att. Nc Nd 3.0 license

● Process remaining
children

A

B C

D E F

UnifiedTree: depth two

EclipseCon 2009 Copyright © IBM Corp., 2009. All rights reserved. Licensed under Creative Commons Att. Nc Nd 3.0 license

Refresh performance
● Refresh needs to be very fast
● Refresh implementation optimized to only

make one file system call per resource
● Aggressive optimizations made to avoid

creating garbage
● Unified tree nodes hold onto all data that is

needed for duration of single resource refresh
● Recycle node objects and reuse them for next

layer

EclipseCon 2009 Copyright © IBM Corp., 2009. All rights reserved. Licensed under Creative Commons Att. Nc Nd 3.0 license

Checkpoint...

● UnifiedTree used for operations that require
synchronization with the file system

● Tree represented as a lazily-populated queue
that performs breadth-first traversal

● Exercise: Writing sync state spy

EclipseCon 2009 Copyright © IBM Corp., 2009. All rights reserved. Licensed under Creative Commons Att. Nc Nd 3.0 license

Linked resource history
● Eclipse 1.0 resource design very simple, with

each project having a file system location
● Within projects, resource tree matched file

system tree 1-1
● Project locations not allowed to overlap
● No two resources share the same file system

location

EclipseCon 2009 Copyright © IBM Corp., 2009. All rights reserved. Licensed under Creative Commons Att. Nc Nd 3.0 license

Linked resource motivation
● Users had complex existing file system layouts

that they wanted to use in Eclipse
● Projects sharing a common root directory

(different ideas about what constituted a project)
● Library folders shared between projects
● Want to allow more complex mappings between

workspace and file system

EclipseCon 2009 Copyright © IBM Corp., 2009. All rights reserved. Licensed under Creative Commons Att. Nc Nd 3.0 license

Linked resource principles
● Linked resources don't point to other resources
● Linked resources point to a different file system

location than their parent
● Fundamental difference from sym-links: they do

not introduce cycles in the workspace tree
● Not a special resource type. Apart from the

location, act like regular files and folders
● Exception: links continue to exist when location

does not (file system is not king)

EclipseCon 2009 Copyright © IBM Corp., 2009. All rights reserved. Licensed under Creative Commons Att. Nc Nd 3.0 license

Linked resource overlaps
● Original linked resources only allowed as direct

children of project
● Later relaxed to allow links at any depth
● Later relaxed rule against overlapping project

locations
● Now resource trees overlapping in the file

system are common

EclipseCon 2009 Copyright © IBM Corp., 2009. All rights reserved. Licensed under Creative Commons Att. Nc Nd 3.0 license

Aliases
● Alias: The aliases of a given resource are the

other resources in the workspace that share
the same file system location

● Our principle of not getting out of sync using
resource API means we need to update the
state of all aliases on every resource change

● Need to do this efficiently without expensive
alias search on each change

EclipseCon 2009 Copyright © IBM Corp., 2009. All rights reserved. Licensed under Creative Commons Att. Nc Nd 3.0 license

Aliases
● Three level optimization of alias search:

– Maintain counter of all resources with “non-
default” locations

– Maintain list of projects containing overlaps
– Maintain map of locations to “roots” at that location

(linked resources or projects)
● Minimal added overhead if you have no

overlaps
● Use TreeMap.subMap to find overlaps

See the code! AliasManager.computeAliases

EclipseCon 2009 Copyright © IBM Corp., 2009. All rights reserved. Licensed under Creative Commons Att. Nc Nd 3.0 license

Checkpoint...

● Linked resources allow for more complex
mappings between resource tree and file
system

● More flexibility added over the years based on
community demand

● Introduces problem of overlapping resource
regions and aliases

EclipseCon 2009 Copyright © IBM Corp., 2009. All rights reserved. Licensed under Creative Commons Att. Nc Nd 3.0 license

Persistence

John Arthorne
IBM Rational

EclipseCon 2009 Copyright © IBM Corp., 2009. All rights reserved. Licensed under Creative Commons Att. Nc Nd 3.0 license

Basic principles
● Should be able to unplug computer at any

moment and be able to restart
● State on disk is always consistent
● Critical state written to disk eagerly
● State that can be recomputed written less

frequently
● State stored at project granularity to support

closing projects, and facilitate project
renames: only store project-relative paths

EclipseCon 2009 Copyright © IBM Corp., 2009. All rights reserved. Licensed under Creative Commons Att. Nc Nd 3.0 license

Workspace metadata disk layout

Under workspace/.metadata/.plugins/org.eclipse.core.resources:

 .history
 .projects
 .root
 .indexes

123.tree
 .safetable

org.eclipse.core.resources
.snap

Local history
Project metadata (next slide)

Indexes for workspace root
The workspace tree file

Workspace master table
Workspace tree snapshot file

Indexes are for local history and persistent resource properties

EclipseCon 2009 Copyright © IBM Corp., 2009. All rights reserved. Licensed under Creative Commons Att. Nc Nd 3.0 license

Under workspace/.metadata/.plugins/org.eclipse.core.resources:

 .projects
 com.myproject

 .indexes
 org.eclipse.jdt.core
.location
.markers
.markers.snap
.syncinfo
.syncinfo.snap

Project metadata root
Metadata for a single project
History and property indexes
Project metadata for a plug-in
Private project description
Project markers
Snapshot of marker changes
Project sync info
Snapshot of sync info changes

Project metadata disk layout

EclipseCon 2009 Copyright © IBM Corp., 2009. All rights reserved. Licensed under Creative Commons Att. Nc Nd 3.0 license

Writing files
● Each critical state file is written in steps:

– Write new state to backup file
– Delete real state file
– Copy backup file to real file
– Delete backup file

● At any moment, either the real file or the backup
file is valid

● Reading in steps:
– Attempt to read real file
– On failure, attempt to read backup file

● SafeFileInputStream / SafeFileOutputStream

EclipseCon 2009 Copyright © IBM Corp., 2009. All rights reserved. Licensed under Creative Commons Att. Nc Nd 3.0 license

● Tree file can be very large, so this copying
approach too expensive

● Writing tree:
– Increment tree counter, write file with new tree

counter
– Record new tree counter in “master table” using safe

writer
– After successful save, delete old tree files

● Master table also used for other
miscellaneous persistence state related to the
tree

Writing the tree file

EclipseCon 2009 Copyright © IBM Corp., 2009. All rights reserved. Licensed under Creative Commons Att. Nc Nd 3.0 license

Workspace save API
● Saving workspace is a client responsibility
● Clients can also request a fast incremental

save (snapshot)
● Workspace does snapshot itself based on

policy:
– Every project creation/deletion
– Every five minutes (configured via preference)
– Every 100 non-trivial workspace operations

EclipseCon 2009 Copyright © IBM Corp., 2009. All rights reserved. Licensed under Creative Commons Att. Nc Nd 3.0 license

Tree snapshots
● Each snapshot records changes since previous
● Snapshots appended to the same file in chunks
● On restore, successively read each well-formed

chunk from snapshot, and apply delta to tree
● Chunks in file delineated with special bytes
● SafeChunkyInputStream/OutputStream

EclipseCon 2009 Copyright © IBM Corp., 2009. All rights reserved. Licensed under Creative Commons Att. Nc Nd 3.0 license

BucketTree
● Local history and persistent properties stored

immediately on disk
● Implemented by BucketTree and Bucket
● Bucket tree stores key/value pairs according to

folder path
● BucketTree hierarchy on disk mirrors path

hierarchy, but using two-digit hash of each path
segment (different folders may share a bucket)

EclipseCon 2009 Copyright © IBM Corp., 2009. All rights reserved. Licensed under Creative Commons Att. Nc Nd 3.0 license

BucketTree
● Each bucket is a separate file on disk
● Values in each bucket sorted, binary search

used to look up entries
● For properties, the “value” stored is the actual

property value
● For history, the “value” is the UUID of an entry

in the history blob store

EclipseCon 2009 Copyright © IBM Corp., 2009. All rights reserved. Licensed under Creative Commons Att. Nc Nd 3.0 license

BucketTree disk layout

 .projects
 com.myproject

 .indexes
 a4

history.index
 h9

properties.index
 bd

history.index
properties.index

Bucket for path length 2
History bucket
Bucket for path length 3
Property bucket
Bucket for path length 2
History bucket
Property bucket

EclipseCon 2009 Copyright © IBM Corp., 2009. All rights reserved. Licensed under Creative Commons Att. Nc Nd 3.0 license

BlobStore
● Blob = Binary Large OBject
● Stores (UUID->Blob) pairs
● Each blob stored in a separate file
● Organized into folders based on first two chars

of UUID
● Blobs can be arbitrary length
● Used to store file history

EclipseCon 2009 Copyright © IBM Corp., 2009. All rights reserved. Licensed under Creative Commons Att. Nc Nd 3.0 license

Workspace description
● Historically workspace description written to

xml file in workspace metadata (.workspace)
● Migrated to storing workspace settings in

preference store (WorkspacePreferences)
● Some preference values cached in memory for

performance reasons

EclipseCon 2009 Copyright © IBM Corp., 2009. All rights reserved. Licensed under Creative Commons Att. Nc Nd 3.0 license

Project description
● Historically project description written to xml file

in workspace metadata location (.prj)
● Later moved into project content area

as .project file to facilitate project interchange
● Some parts of project description stay in

metadata (.location file)
– Project location
– Dynamic project reference

EclipseCon 2009 Copyright © IBM Corp., 2009. All rights reserved. Licensed under Creative Commons Att. Nc Nd 3.0 license

Core tools
● Core tools has a metadata browser view
● Point it at a workspace metadata location, and

browse contents of any file
● Extension point for adding support for browsing

other metadata files

EclipseCon 2009 Copyright © IBM Corp., 2009. All rights reserved. Licensed under Creative Commons Att. Nc Nd 3.0 license

Performance

John Arthorne
IBM Rational

EclipseCon 2009 Copyright © IBM Corp., 2009. All rights reserved. Licensed under Creative Commons Att. Nc Nd 3.0 license

Performance principles
● Can never be fast enough or small enough
● Optimize common code paths

– Example: Edit/Save/Compile cycle
● Make costs proportional to magnitude of

change rather than size of workspace
● Heavily optimize code that must traverse entire

workspace
● Don't penalize common cases to handle fringe

cases

EclipseCon 2009 Copyright © IBM Corp., 2009. All rights reserved. Licensed under Creative Commons Att. Nc Nd 3.0 license

● Original representation just stored two strings:
path + device

● This is a memory-efficient representation
● However, most common operation on Path is

to iterate over its segments
● We found during tree lookup, significant

amount of time was taken by String garbage

Path class: problem

EclipseCon 2009 Copyright © IBM Corp., 2009. All rights reserved. Licensed under Creative Commons Att. Nc Nd 3.0 license

● Now represented as an array of strings for
segments, a device string, and a bit-mask int

● More memory-intensive, but zero garbage
creation during path traversal, tree lookup

● Store very few paths so the performance gain
outweighed the memory footprint

● For workspace tree paths, segment strings
taken from tree nodes, so no strings created

● Worse performance for Path.toString()

Path class: solution

EclipseCon 2009 Copyright © IBM Corp., 2009. All rights reserved. Licensed under Creative Commons Att. Nc Nd 3.0 license

Project1

org
eclipse

core

Foo.java

Path instance

Device

● Also use Path.segment(int) to iterate: no garbage
● Lesson: smaller isn't always better – optimize for

common usage

Path class example

EclipseCon 2009 Copyright © IBM Corp., 2009. All rights reserved. Licensed under Creative Commons Att. Nc Nd 3.0 license

Resource tree look-up
● Original resource tree didn't order children
● Tree look-ups required linear search over

children
● Changed to sorted children and binary insertion

of new nodes
● Look-up changes from O(n) to O(log(n))
● Lesson: algorithms matter

EclipseCon 2009 Copyright © IBM Corp., 2009. All rights reserved. Licensed under Creative Commons Att. Nc Nd 3.0 license

● Found very common pattern of multiple
queries on same item (locality of reference)

● Adding a tree look-up cache of just one
element resulted in significant speed-up of
real world scenarios like searches and builds

● Lesson: caches don't have to be fancy, they
just have to be tuned for usage patterns

Resource tree look-up

EclipseCon 2009 Copyright © IBM Corp., 2009. All rights reserved. Licensed under Creative Commons Att. Nc Nd 3.0 license

Fast loops
● Delta trees are built out of arrays
● Lots of array iteration and manipulation in

critical performance paths
● We discovered writing loops backwards was

much faster (compare with zero is typically one
chip-level instruction, whereas comparing a
field value is more expensive

for (int i = children.length; --i >= 0;)
names[i] = children[i].getName();

EclipseCon 2009 Copyright © IBM Corp., 2009. All rights reserved. Licensed under Creative Commons Att. Nc Nd 3.0 license

● BUT: The old assumptions no longer hold:
Normal loop Reverse loop

IBM Java 4 sr9 938ms 984ms

IBM Java 5 sr4 1375ms 2609ms

IBM Java 6 sr3 4468ms 735ms

● Lessons:
– Retest your assumptions.
– JIT-style optimizations rarely hold across VMs.
– Benchmark real scenarios with real VMs.

Fast loops

EclipseCon 2009 Copyright © IBM Corp., 2009. All rights reserved. Licensed under Creative Commons Att. Nc Nd 3.0 license

Resource traversal: problem
● Resource model doesn't hold onto IResource

objects
● We need to instantiate IResource handles

every time a client traverses the tree
● The overhead of creating/gc'ing those handles

was a big chunk of the traversal cost
● We found that most visitors are only interested

in a small number of resources

EclipseCon 2009 Copyright © IBM Corp., 2009. All rights reserved. Licensed under Creative Commons Att. Nc Nd 3.0 license

● Pass a resource proxy object to visitor instead
of real resource

● Create real IResource only if requested by
visitor

● Can update singleton proxy object with new
resource path after each visit

● Traversal up to 23x faster using proxies (27948)
● Lesson: Sometimes a special-purpose variant

of an object is needed (in this case to allow for
a mutable proxy with bounded lifetime)

Resource traversal: solution

EclipseCon 2009 Copyright © IBM Corp., 2009. All rights reserved. Licensed under Creative Commons Att. Nc Nd 3.0 license

● Java collection classes very high quality, but
any general-purpose implementation needs to
make design trade-offs

● In general Java collections optimized for read
speed over write speed and memory overhead

● Not well suited to large numbers of relatively
stable instances with small set of values

● For example, 100,000 HashMaps, each
typically containing 1-10 items

Bloated data structures: problem

EclipseCon 2009 Copyright © IBM Corp., 2009. All rights reserved. Licensed under Creative Commons Att. Nc Nd 3.0 license

● Custom data structures with different design
parameters: small typical size and memory
efficiency

● ObjectMap: map backed by a single array that
alternates keys and values. No hashing.

● KeyedHashMap: map backed by a single array.
Uses hashing and linear probing for collisions

● MarkerSet, MarkerAttributeMap: custom set and
maps for storing markers and values

● Use array over ArrayList where valuable

Bloated data structures: solution

EclipseCon 2009 Copyright © IBM Corp., 2009. All rights reserved. Licensed under Creative Commons Att. Nc Nd 3.0 license

ObjectMap HashMap

1 element 48 bytes 150 bytes

5 elements 128 bytes 502 bytes

10 elements 228 bytes 936 bytes

● But space isn't everything!
● HashMap has much better lookup performance in

a large map

Bloated data structures: solution

EclipseCon 2009 Copyright © IBM Corp., 2009. All rights reserved. Licensed under Creative Commons Att. Nc Nd 3.0 license

Hashing: problem
● NodeIDMap tracks resource moves. Map of node

id -> (old path, new path)
● Array-backed hashing map, using linear probing
● Original hash algorithm was (nodeId%

table.length)
● Horrible hash performance with many changes
● Worst case: run several days, crash, delete

60,000 files, restart (bug 30342)

EclipseCon 2009 Copyright © IBM Corp., 2009. All rights reserved. Licensed under Creative Commons Att. Nc Nd 3.0 license

Hashing: solution
● Hash resulted in O(n^2) worst case

performance: 9.6 billion comparisons for
60,000 changes

● Changed to Knuth's multiplicative hash function
(multiply by large prime)

● Prime table sizes to improve hash
● Startup time cut from 106s to 16s
● Lesson: algorithms matter, worst case will

always happen eventually

EclipseCon 2009 Copyright © IBM Corp., 2009. All rights reserved. Licensed under Creative Commons Att. Nc Nd 3.0 license

ResourceInfo: problem
● The one big object that has an instance per

resource
● Size of this object is very important!
● Holds onto all interesting state about a

resource
● 72 bytes per instance with traditional fields

EclipseCon 2009 Copyright © IBM Corp., 2009. All rights reserved. Licensed under Creative Commons Att. Nc Nd 3.0 license

ResourceInfo: solution
● Pack fields together when full range of values

not needed
● Down to 64 bytes per instance
● Also use null for empty collections
● Similar technique used in path to merge hash

code into same field storing leading/trailing
slash data

● Could also use specialized classes:
ResourceInfoNoMarkers, etc

EclipseCon 2009 Copyright © IBM Corp., 2009. All rights reserved. Licensed under Creative Commons Att. Nc Nd 3.0 license

Overall Lessons
● End users will always take things 10-100x

further than you imagined: 10x more resources,
10x slower disks, 100x larger files

● Optimize for real world scenarios using
stopwatch timing

● Constant tension between speed and space
optimization

● The stuff you learned back in algorithm and
data structure courses matters!

Benchmark tests

EclipseCon 2009 Copyright © IBM Corp., 2009. All rights reserved. Licensed under Creative Commons Att. Nc Nd 3.0 license

Introducing EFS

John Arthorne
IBM Rational

EclipseCon 2009 Copyright © IBM Corp., 2009. All rights reserved. Licensed under Creative Commons Att. Nc Nd 3.0 license

Resources circa 2004

● Sacred: must not
break

● Limited: local file
system only

● Christ Church
Cathedral, Montreal

EclipseCon 2009 Copyright © IBM Corp., 2009. All rights reserved. Licensed under Creative Commons Att. Nc Nd 3.0 license

How it used to work
● Resource implementation used a combination

of java.io.File and home-brewed natives for:
– Getting/setting file attributes
– Finer granularity of file timestamps
– Getting multiple values from the file system

with one native call
● Mostly isolated to a single FileSystemStore

class, but other uses of java.io.File scattered
around

EclipseCon 2009 Copyright © IBM Corp., 2009. All rights reserved. Licensed under Creative Commons Att. Nc Nd 3.0 license

Lifting the floor
● Challenge was to unlock

new potential without
breaking the existing
structure

● Want to slide a new layer
underneath that abstracts
away the file system

● A shopping mall under a
church

EclipseCon 2009 Copyright © IBM Corp., 2009. All rights reserved. Licensed under Creative Commons Att. Nc Nd 3.0 license

Exploring the options

● Apache commons VFS
– Broad set of platforms but very shallow

integration
● KDE Input/Output (KIO)

– Both synchronous and asynchronous variants
– Very cool but not in Java

● Java file system API
– JSR 51 -> JSR 203
– May work when it arrives (8 year wait so far)

EclipseCon 2009 Copyright © IBM Corp., 2009. All rights reserved. Licensed under Creative Commons Att. Nc Nd 3.0 license

EFS design principles

● Small, simple replacement for java.io.File
● Stateless
● Honour local file system behaviour as much

as possible
● Add progress monitors, cancelation, better

error reporting
● Models fast, highly available, tree-based file

systems very well

EclipseCon 2009 Copyright © IBM Corp., 2009. All rights reserved. Licensed under Creative Commons Att. Nc Nd 3.0 license

How it hooks in
● Certain resources designated as “file store

roots” (projects or linked resources)
● Resource sub-tree below each file store root

assumed to mimic the EFS
● Typical algorithm: Walk up to nearest file store

root, get EFS location, append
● File system interactions go through IFileStore
● Avoid using URI except as external location

format

EclipseCon 2009 Copyright © IBM Corp., 2009. All rights reserved. Licensed under Creative Commons Att. Nc Nd 3.0 license

End result

● Almost no change to
IResource API

● Generally replaced use
of IPath with URI when
dealing with locations

● To exploit EFS plug-ins
must adapt, but existing
plug-ins will continue
working within old
limitations

EclipseCon 2009 Copyright © IBM Corp., 2009. All rights reserved. Licensed under Creative Commons Att. Nc Nd 3.0 license

Lessons
● Building it was not enough
● API not created in conjunction with real world

implementations
● Took years for plug-ins to adapt to EFS
● There was no “killer app” to encourage plug-ins

to convert quickly
● There are now many implementations, and

plug-in authors are adapting to it
● Silver lining: greatly streamlined interaction with

f/s, centralized workarounds for flakiness of
java.io.File

Concurrency

John Arthorne
IBM Rational

EclipseCon 2009 Copyright © IBM Corp., 2009. All rights reserved. Licensed under Creative Commons Att. Nc Nd 3.0 license

Basic principles
● Lock on write, no locks on read
● Use immutable objects as much as possible:

– Tree nodes
– Immutable trees for all states other than current
– Immutable maps for properties, markers, etc

● Copy on write, to allow non-locking concurrent
reads

EclipseCon 2009 Copyright © IBM Corp., 2009. All rights reserved. Licensed under Creative Commons Att. Nc Nd 3.0 license

Tree for mutable state
● All mutable workspace state stored in the tree

– Resource state
– Project and workspace description
– Builder state

● Data in immutable trees copied into open tree
on first write in operation

● Writes in workspace tree protected by single
workspace lock

EclipseCon 2009 Copyright © IBM Corp., 2009. All rights reserved. Licensed under Creative Commons Att. Nc Nd 3.0 license

Workspace Lock
● Workspace lock only held internally when

updating tree
● Lock never held when calling client code, with

single exception of resource change events
(other threads trying to modify tree at that point
are blocked anyway)

● Lock is “fine-grained” - never held for extended
periods to allow for concurrent modifying
operations in multiple threads

EclipseCon 2009 Copyright © IBM Corp., 2009. All rights reserved. Licensed under Creative Commons Att. Nc Nd 3.0 license

Workspace Lock
● Lock management found in WorkManager
● Acquire: Workspace.prepareOperation
● Release: Workspace.endOperation
● Precondition checking done after acquiring lock
● Calls to third party code surrounded with

WorkManager.begin/endUnprotected

EclipseCon 2009 Copyright © IBM Corp., 2009. All rights reserved. Licensed under Creative Commons Att. Nc Nd 3.0 license

Scheduling rules
● Until Eclipse 3.0, we just had the workspace

lock for any modifying operation
● Lock often held for long periods, while calling

client code
● Result was zero concurrency, poor application

responsiveness

EclipseCon 2009 Copyright © IBM Corp., 2009. All rights reserved. Licensed under Creative Commons Att. Nc Nd 3.0 license

Scheduling rules
● Scheduling rules introduced as client-facing

notion of resource locking
● Clients can “lock” portions of the workspace

using the corresponding scheduling rule using
IWorkspace.run

● Obtaining resource rule locks all children
● Clients now never hold workspace lock (except

during POST_CHANGE events)

EclipseCon 2009 Copyright © IBM Corp., 2009. All rights reserved. Licensed under Creative Commons Att. Nc Nd 3.0 license

Rule factories
● How to specify scheduling rule requirements for

various workspace-modifying operations?
● Want to allow freedom to change actual rules
● Those pesky back doors for VCM systems

means they need to be able to override rules

EclipseCon 2009 Copyright © IBM Corp., 2009. All rights reserved. Licensed under Creative Commons Att. Nc Nd 3.0 license

Rule factories
● IResourceRuleFactory – abstracts rules used

for particular resource change operations
● For complex operation can combine multiple

rules with MultiRule
● Via TeamHook, VCM system can set rule

factory for a given project

EclipseCon 2009 Copyright © IBM Corp., 2009. All rights reserved. Licensed under Creative Commons Att. Nc Nd 3.0 license

Copy on write
● Tree nodes copied into mutable layer when

modified
● On node create/delete, parent nodes are

copied
● This happens “for free” via delta tree

representation

EclipseCon 2009 Copyright © IBM Corp., 2009. All rights reserved. Licensed under Creative Commons Att. Nc Nd 3.0 license

Copy on write

ObjectMap temp = sessionProperties;
if (temp == null)

temp = new ObjectMap(5);
else

temp = (ObjectMap) sessionProperties.clone();
temp.put(name, value);
sessionProperties = temp;

● Data structures never modified once reachable
● Reads far more frequent than writes
● Write methods still synchronized to ensure

propagation of thread-local caches

EclipseCon 2009 Copyright © IBM Corp., 2009. All rights reserved. Licensed under Creative Commons Att. Nc Nd 3.0 license

Copy on write - readers
● Readers don't require synchronization at all
● Just need a stable reference

public Object getSessionProperty(QualifiedName name) {
Map temp = sessionProperties;
if (temp == null)

return null;
return temp.get(name);

}

EclipseCon 2009 Copyright © IBM Corp., 2009. All rights reserved. Licensed under Creative Commons Att. Nc Nd 3.0 license

Locking problem: aliases
● Scheduling rules require strict rule tree
● Otherwise have deadlock or multiple threads

owning same lock
● Resource tree is a strict tree, so it maps well to

rule requirements
● However resources can overlap in the file

system, so multiple threads can “lock”
resources that share same location

EclipseCon 2009 Copyright © IBM Corp., 2009. All rights reserved. Licensed under Creative Commons Att. Nc Nd 3.0 license

Locking problem: aliases
● Resource rules protect against other threads

owning overlapping rule
● File system can still change out from under you
● This is an open problem with no good solution

EclipseCon 2009 Copyright © IBM Corp., 2009. All rights reserved. Licensed under Creative Commons Att. Nc Nd 3.0 license

Summary
● Lock on write, no locks on read
● Use immutable objects as much as possible
● Copy on write, to allow non-locking concurrent

reads
● Single workspace lock to protect tree
● Scheduling rules add client-facing mechanism

for managing concurrent modifications

	A Deep Dive Into the Platform Resource Model
	The Workspace Tree
	Naive resource implementation
	Actual resource implementation
	Resources are handles
	Background Motivation
	Data flow
	Additional observations
	Representing two tree states
	Representing tree states as deltas
	Tree state determined by assembling deltas with parents
	Checkpoint...
	Mapping terms to classes
	Tree mutability
	Delta tree calculus
	Delta tree calculus
	Forward deltas
	Computing forward deltas
	Computing forward deltas
	Uses for forward deltas
	Checkpoint...
	Comparison trees
	Comparison tree example
	Comparison tree example
	Comparison tree implementation
	Uses for comparison trees
	Checkpoint...
	ElementTree, my dear Watson
	Using trees in the workspace
	Tree state at startup
	Tree state after full build
	Tree state with auto-build after snapshot
	Tree garbage problem
	Garbage solution: reroot
	Handling workspace changes
	Trees during an operation
	Example: start of operation
	Example: file is created
	Example: file is modified
	Example: end operation
	Checkpoint...
	Summary
	Survey of resource API internals
	Upper management
	Other interesting bits
	ResourceInfo
	ResourceInfo
	ResourceInfo timestamps
	Back doors for team systems
	IFileModificationValidator
	IMoveDeleteHook
	TeamHook
	History and properties
	Builders
	Exercise
	File System Synchronization
	Basic principles
	Basic principles
	Auto-refresh
	Auto-refresh structure
	Refresh job tricks
	Polling job tricks
	Checkpoint...
	UnifiedTree
	Implementing UnifiedTree
	UnifiedTree: depth zero
	UnifiedTree: depth one
	UnifiedTree: depth one
	UnifiedTree: depth one
	UnifiedTree: depth two
	UnifiedTree: depth two
	UnifiedTree: depth two
	UnifiedTree: depth two
	Refresh performance
	Checkpoint...
	Linked resource history
	Linked resource motivation
	Linked resource principles
	Linked resource overlaps
	Aliases
	Aliases
	Checkpoint...
	Persistence
	Basic principles
	Workspace metadata disk layout
	Project metadata disk layout
	Writing files
	Writing the tree file
	Workspace save API
	Tree snapshots
	BucketTree
	BucketTree
	BucketTree disk layout
	BlobStore
	Workspace description
	Project description
	Core tools
	Performance
	Performance principles
	Path class: problem
	Path class: solution
	Path class example
	Resource tree look-up
	Resource tree look-up
	Fast loops
	Fast loops
	Resource traversal: problem
	Resource traversal: solution
	Bloated data structures: problem
	Bloated data structures: solution
	Bloated data structures: solution
	Hashing: problem
	Hashing: solution
	ResourceInfo: problem
	ResourceInfo: solution
	Overall Lessons
	Introducing EFS
	Resources circa 2004
	How it used to work
	Lifting the floor
	Exploring the options
	EFS design principles
	How it hooks in
	End result
	Lessons
	Concurrency
	Basic principles
	Tree for mutable state
	Workspace Lock
	Workspace Lock
	Scheduling rules
	Scheduling rules
	Rule factories
	Rule factories
	Copy on write
	Copy on write
	Copy on write - readers
	Locking problem: aliases
	Locking problem: aliases
	Summary

