
Modularity Mechanisms in Flexmi

1 Introduction

To create and edit models conforming to object-oriented metamodels defined us-
ing languages such as MOF and Ecore, users need to be provided with support-
ing tools that offer appropriate concrete (e.g. diagrammatic, textual, table/tree-
based) syntaxes. Such tools can be generic and language-independent, or they
can be bound to a specific metamodel. In the EMF ecosystem, metamodel-
independent tools include the built-in reflective tree-based editor, an implemen-
tation of the Human-Usable Textual Notation (HUTN) [1, 2], and EMF’s built-
in support for the XML Metadata Interchange (XMI) syntax [3]. In terms of
language-specific tools, textual syntaxes can be defined using frameworks such
as Xtext [4] and MontiCore [5], diagrammatic syntaxes can be supported using
frameworks such as Sirius, Graphiti and GMF, and form-based editors can be
constructed using EMF Forms or EMF Parsley [6].

The main advantage of metamodel-specific tools is the ability to precisely tai-
lor the desired concrete syntax(es). However, they require an upfront investment
to develop, and continuous effort to maintain and keep up to date with their
underpinning frameworks (e.g. Xtext, Sirius). Metamodel-independent concrete
syntaxes on the other hand require no tool development and maintenance effort
but can be more rigid and verbose.

Arguably, different approaches are more suitable depending on the expertise
and preferences of the intended users, the maturity, size and nature of the meta-
model in question, and the available resources to develop and maintain bespoke
tooling.

In this line of work we are interested in metamodel-independent textual con-
crete syntaxes. In this niche, the available options in the EMF ecosystem are
currently XMI and the OMG’s Human Usable Textual Notation. In [7] we intro-
duced a new metamodel-independent XML-based textual syntax called Flexmi,
which is supported by a fuzzy parser that does not require exact name corre-
spondence between the names of types and features in the metamodel and the
tag and attribute names used in the XML representation of a model. In this
paper, we report on enhancements to Flexmi with respect to modularity and
reuse.

The rest of the paper is organised as follows. Section 2 provides an overview of
the Flexmi textual concrete syntax and Section 3 discusses extensions of Flexmi
that aim at enhancing modularity and reuse. Section 4 concludes the paper.

2 An Overview of Flexmi

In this section we provide an overview of Flexmi as introduced in [7], using the
Simulink-like component-connector comps metamodel presented in Figure 1 as

a running example, and a minimal model of a speed monitoring component that
conforms to the said metamodel, which is graphically illustrated in Figure 2.

Fig. 1. The comps metamodel

The component in Figure 2 has two input ports (speed and location) and an
output port (warning). The incoming (geo-)location is forwarded to a SpeedLim-
itCalculator component which returns the speed limit for the location. The speed
is then compared against the limit using the nested Comparator component and
if it exceeds it, a warning is produced.

speed
in1 result

in2

Comparator

location

location speedLimit

SpeedLimitCalculator

warning

Fig. 2. A speed monitoring component that conforms to the comps metamodel

Listing 1.1 illustrates a Flexmi representation of the model in Figure 2. As
discussed in [7], line 1 declares that the model is an instance of the comps meta-
model. When the Flexmi parser encounters the comp tag in line 2, it compares
it against the names of all classes in the metamodel, it finds that the closest
match is Component and therefore creates an instance of that type. In line 3,
the parser compares the in tag against the names of all containment references
of Component and all the valid contained types and finds that the best match
is the inPorts reference, hence it creates an instance of Port (which is the only
valid type for this reference) and adds it to the values of the reference. The same

tolerant fuzzy matching approach is used to map XML attributes to attributes
and non-containment references. For example, the n attribute in line 2 is mapped
to the name attribute of Component while the f and t attributes in lines 18-22
are mapped to the from and to non-containment references of class Connector.
The complete parsing algorithm that Flexmi uses is discussed in detail in [7].

1 <?nsuri comps?>
2 <comp n="SpeedMonitor" >
3 <in n="speed"/>
4 <in n="location"/>
5 <out n="warning"/>
6
7 <comp n="SpeedLimitCalculator">
8 <in n="location"/>
9 <out n="speedLimit"/>
10 </comp>
11
12 <comp n="Comparator" a="result = in1 > in2">
13 <in n="in1"/>
14 <in n="in2"/>
15 <out n="result"/>
16 </comp>
17
18 <con f="SpeedMonitor.location"
19 t="SpeedMonitor.SpeedLimitCalculator.location"/>
20 <con f="speed" t="in1"/>
21 <con f="speedLimit" t="in2"/>
22 <con f="result" t="warning"/>
23 </comp>

Listing 1.1. Speed monitor model in Flexmi

3 Adding Modularity to Flexmi

To capture larger models, the ability to split a model over multiple files is often
desirable. To address this need, Flexmi has been extended with two new XML
processing instructions to enable importing and including content from other
EMF models.

3.1 Importing Models

Suppose that we wish to specify the types of the ports of the speed monitoring
component in Listing 1.1. To render the type definitions reusable, we opt to
record them in a separate Flexmi file called types.flexmi (the name of the file
has no special semantics), which appears in Listing 1.2. The underscore tag in
line 2 is a placeholder to accommodate models (such as this one) which have
more than one root elements (very similarly to XMI’s xmi root tag).

1 <?nsuri comps?>
2 <_>
3 <type n="boolean"/>
4 <type n="geo"/>
5 <type n="float"/>
6 </_>

Listing 1.2. types.flexmi

We can now import types.flexmi using an import processing instruction (line
2) from the speed monitoring model file and refer to its elements by id as illus-
trated in Listing 1.3.

1 <?nsuri comps?>
2 <?import types.flexmi?>
3 <comp n="SpeedMonitor" >
4 <in n="speed" t="float"/>
5 <in n="location" t="geo"/>
6 <out n="warning" t="boolean"/>
7 ...
8 </comp>

Listing 1.3. Speed monitor model with port types in Flexmi

At this point, it is worth contrasting Flexmi’s file-level model imports to
XMI’s model-element level references. While in Flexmi, types.flexmi needs to be
imported once, in the equivalent XMI presented in Listing 1.4, the path of the
imported file needs to be repeated every time a reference to one of its elements
is made (lines 3, 6 and 9). To the best of our knowledge, HUTN provides no
syntax for file-level imports either.

1 <comps:Component xmlns:comps="comps" name="SpeedMonitor">
2 <inPorts name="speed">
3 <type href="types.xmi#/2"/>
4 </inPorts>
5 <inPorts name="location">
6 <type href="types.xmi#/1"/>
7 </inPorts>
8 <outPorts name="warning">
9 <type href="types.xmi#/0"/>
10 </outPorts>
11 ...
12 </comps:Component>

Listing 1.4. Speed monitor model with port types in XMI

3.2 Including Models

We now wish to specify the internal structure of the SpeedLimitCalculator com-
ponent (see Figure 2 and lines 7-10 of Listing 1.1). The intended inner structure
of the component is shown in Figure 3.

location

location speedLimit

SpeedLimitDatastore speedLimit

 speedLimit

MinimumSpeedLimit

in1 result

in2

Max

Fig. 3. The inner structure of the SpeedLimitCalculator component

If we wish to do this in a separate model file (e.g. slc.flexmi as shown in
Listing 1.5), we can use Flexmi’s include processing instruction – which oper-
ates in a very similar way to LaTeX’s input command – which instructs the
Flexmi parser to parse the contents of slc.flexmi as if they were a part of
the main model file. That is, we can replace lines 7-10 of Listing 1.1 with an
<?include slc.flexmi?> processing instruction.

1 <?nsuri comps?>
2 <?import library.flexmi?>
3 <comp n="SpeedLimitCalculator">
4 <in n="location"/>
5 <out n="speedLimit"/>
6
7 <comp n="MinimumSpeedLimit">
8 <out n="speedLimit"/>
9 </comp>
10
11 <comp n="SpeedLimitDatastore">
12 <in n="location"/>
13 <out n="speedLimit"/>
14 </comp>
15
16 <comp n="Max" a="result = (in1 > in2) : in1 ? in2">
17 <in n="in1"/>
18 <in n="in2"/>
19 <out n="result"/>
20 </comp>
21
22 <!-- connections omitted -->
23
24 </comp>

Listing 1.5. SpeedLimitCaclculator in Flexmi (slc.flexmi)

3.3 Reusable Model Element Templates

The Comparator and Max components in Figures 2 and 3 are very similar in
terms of their structure as both of them contain two input ports called in1 and
in2 and an output port called result. Given that the comps language does not
define a notion of component inheritance, the only option available with a format
such as XMI or HUTN is to tolerate this near-duplication.

To reduce duplication in such cases, without needing to extend the instan-
tiated metamodel, Flexmi introduces a templating mechanism. In Flexmi, tem-
plates are specified using the reserved <_template> XML tag. A template
can have a number of named parameters and a content nested tag under which
its content is defined. With reference to our example, we create a new Flexmi
file (library.flexmi) which contains the definition of a binary_operator template.

1 <?nsuri comps?>
2 <_>
3 <_template name="binary_operator">
4 <parameter name="in"/>
5 <parameter name="out"/>
6 <content>
7 <comp>
8 <in name="in1" type="${in}"/>
9 <in name="in2" type="${in}"/>
10 <out name="result" type="${out}"/>
11 </comp>
12 </content>
13 </_template>
14 </_>

Listing 1.6. The binary-operator template (library.flexmi)

The template has two parameters (in and out in lines 4 and 5) and its content
is a component (line 7) with two input ports (line 8 and 9) and one output port
(line 10). The types of these ports are controlled by the value of the in and out
parameters using string replacement. Templates can be instantiated in models
by name using an underscore prefix. Attributes of template invocations that also
start with an underscore are passed as values for their named parameters, while
all other attributes override the respective attributes of the template content
element. In the context of our running example, we can replace lines 12-16 of
Listing 1.1 with the following line (after importing library.flexmi):

1 <_binary_operator n="Comparator" a="result = in1 > in2" _in="
float" _out="boolean"/>

Listing 1.7. The Comparator component of Listing 1.1 replaced with an instantiation
of the binary_operator template

and lines 16-19 of Listing 1.5 with the following line:

1 <_binary_operator n="Max" a="result = (in1 > in2) : in1 ? in2"
_in="float" _out="float"/>

Listing 1.8. The Max component of Listing 1.5 replaced with an instantiation of the
binary_operator template

While this form of parametric templates is an improvement over the complete
absence of a similar feature in XMI or HUTN, parameter passing through string
substitution can only serve relatively simple use-cases. To enable more complex
reuse scenarios, we have prototyped support for templates where the body is
specified using a model scripting and a model-to-text transformation language,
instead of XML.

Listing 1.9 shows a more generic implementation of the binary_operator tem-
plate of Listing 1.6, named nary_operator which can produce components with
n input ports (of the same type) and one output port, using the model-to-text
EGL [8] language. Line 7 specifies that the body of the template is a model-to-
text transformation, while lines 9-14 specify the EGL transformation that will
produce the XML of the template instantiation, which will then be parsed by
Flexmi.

1 <?nsuri comps?>
2 <_>
3 <_template name="nary_operator">
4 <parameter name="n"/>
5 <parameter name="in"/>
6 <parameter name="out"/>
7 <content language="EGL">
8 <![CDATA[
9 <comp>
10 [%for (i in 1.to(n.asInteger())){%]
11 <in name="in[%=i%]" type="${in}"/>
12 [%}%]
13 <out name="result" type="${out}"/>
14 </comp>
15]]>
16 </content>
17 </_template>
18 </_>

Listing 1.9. The binary-operator template expressed using an embedded model-to-
text transformation in EGL

Clearly, there are several things that can go wrong with template definition
and instantiation: templates can return elements that are incompatible with
their application context, they can contain syntax errors or they can throw
exceptions at runtime. At this early stage, the prototype implementation does
not attempt to prevent any of this exceptional behaviour; this is left as future
work. Flexmi, including the features discussed in this paper, is available as part of
the latest interim version of the Epsilon open-source model management platform
(eclipse.org/epsilon).

4 Conclusions and Future Work

This paper has presented extensions to the language-agnostic Flexmi textual
concrete syntax and parser that aim at enhancing modularity and reuse. The
import and include processing instructions are straightforward and stable ex-
tensions for splitting models over multiple files. The templating mechanism dis-
cussed in Section 3.3 is more novel, interesting and underdeveloped - and hence
a clear direction for additional work.

References

1. Object Management Group. Human-Usable Textual Notation Specification, 2004.
http://www.omg.org/spec/HUTN/1.0/.

2. Louis M. Rose, Richard F. Paige, Dimitrios S. Kolovos, and Fiona A. C. Polack.
Constructing Models with the Human-Usable Textual Notation. In Krzysztof Czar-
necki, Ileana Ober, Jean-Michel Bruel, Axel Uhl, and Markus Völter, editors, Model
Driven Engineering Languages and Systems, pages 249–263, Berlin, Heidelberg,
2008. Springer Berlin Heidelberg.

3. Object Management Group. XML Metadata Interchange (version 2.5.1), 2015.
http://www.omg.org/spec/XMI/2.5.1/.

4. Moritz Eysholdt and Heiko Behrens. Xtext: Implement Your Language Faster Than
the Quick and Dirty Way. In Proceedings of the ACM International Conference
Companion on Object Oriented Programming Systems Languages and Applications
Companion, OOPSLA ’10, pages 307–309, New York, NY, USA, 2010. ACM.

5. Holger Krahn, Bernhard Rumpe, and Steven Völkel. MontiCore: a framework for
compositional development of domain specific languages. International Journal on
Software Tools for Technology Transfer, 12(5):353–372, Sep 2010.

6. L. Bettini. The EMF Parsley DSL for developing EMF applications. In 4th Interna-
tional Conference on Model-Driven Engineering and Software Development (MOD-
ELSWARD), pages 301–308, 2016.

7. Dimitrios S. Kolovos, Nicholas Matragkas, and Antonio García-Domínguez. Towards
Flexible Parsing of Structured Textual Model Representations. In Proceedings of
the 2nd Workshop on Flexible Model Driven Engineering co-located with ACM/IEEE
19th International Conference on Model Driven Engineering Languages and Systems
(MoDELS 2016), Saint-Malo, France, October 2, 2016., pages 22–31, 2016.

8. Louis M. Rose, Richard F. Paige, Dimitrios S. Kolovos, and Fiona A. C. Polack. The
epsilon generation language. In Ina Schieferdecker and Alan Hartman, editors,Model
Driven Architecture – Foundations and Applications, pages 1–16, Berlin, Heidelberg,
2008. Springer Berlin Heidelberg.

