
© 2006 by IBM, aQute & OSGi; made available under the EPL v1.0 | 2006 | OSGi Alliance & IBM

Programming with Equinox
The OSGi foundation for Eclipse

Jeff McAffer, IBM Rational
Tom Watson, IBM Lotus

1 OSGi Component Programming | © 2006 by IBM, aQute & OSGi; made available under the EPL v1.0

Contents

Setup
Introduction to OSGi
Managing your Target Environment
The Equinox/OSGi Development Model
OSGi Basics
Components
Services
Remoting
Conclusion

2 OSGi Component Programming | © 2006 by IBM, aQute & OSGi; made available under the EPL v1.0

Your Infrastructure

You need to have the following software installed on your machine
in a new workspace:

Eclipse SDK 3.2 (http://eclipse.org)

The tutorial projects from CVS:
Server: bundles.osgi.org
Repository /cvshome/bundles
User apachecon
Password 2006
Projects Select all projects under Tutorial

http://eclipse.org/

3 OSGi Component Programming | © 2006 by IBM, aQute & OSGi; made available under the EPL v1.0

Loading the tutorial projects from CVS

Window > Open Perspective > Other > CVS Repository Exploring
In CVS Repository view context menu: New > Repository Location

Fill in the necessary CVS Repository information
In CVS Repositories view, expand: HEAD/Tutorial
Select all projects under Tutorial and choose Check Out

4 OSGi Component Programming | © 2006 by IBM, aQute & OSGi; made available under the EPL v1.0

Your Workspace (more or less)

5 OSGi Component Programming | © 2006 by IBM, aQute & OSGi; made available under the EPL v1.0

Section I - OSGi Background

6 OSGi Component Programming | © 2006 by IBM, aQute & OSGi; made available under the EPL v1.0

What is the OSGi service platform?

A JavaTM framework for developing remotely deployed service
applications, that require:

Reliability

Large scale distribution

Wide range of devices

Collaborative
Created through collaboration of industry leaders
Spec 4.0 publicly available at www.osgi.org …
The Dynamic Modularity Layer for Java!
Cool!

7 OSGi Component Programming | © 2006 by IBM, aQute & OSGi; made available under the EPL v1.0

Why the OSGi Service Platform?

What problems does the OSGi Service Platform address?

A unified software market:

The limited (binary) software portability problem

The complexity of building heterogeneous software systems
Supporting the myriad of configuration, variations, and
customizations required by today’s software and hardware

Managing the software life-cycle

8 OSGi Component Programming | © 2006 by IBM, aQute & OSGi; made available under the EPL v1.0

Limited Binary Software Portability

Lack of portability causes
Market friction: No large market of reusable components and
applications

Reduced quality
Unnecessary constraints on hardware and software architectures

CPUs differ widely in cost and performance

LinuxTM is nice, but it is sub-optimal for smaller devices
Benefits of the OSGi Platform

Applications run unmodified on different hardware and software
architectures

9 OSGi Component Programming | © 2006 by IBM, aQute & OSGi; made available under the EPL v1.0

Complexity of Software

A DVD player can contain 1 Million lines of code
Comparison: Space Shuttle ~ 0.5 Million

A BMW car can contain up to 50 networked computerized
devices
Eclipse contains 2.5 million lines of code
An average programmer writes an average of 10 lines a day …

Houston … we have a problem

10 OSGi Component Programming | © 2006 by IBM, aQute & OSGi; made available under the EPL v1.0

Complexity of Software
P

ro
du

ct
iv

ity

Complexity and Size

Assembly

Structured
Programming

Service Oriented Programming

11 OSGi Component Programming | © 2006 by IBM, aQute & OSGi; made available under the EPL v1.0

Limits Object Oriented Technology

Objects are great, but oh, the
tangled webs we weaves …
Coupling severely limits
reusability

Using a generic object, can drag
in a large number of other objects

Creates overly large systems
after a certain complexity is
reached
Flexibility must be built in by the
programmer

Plug-in architectures

12 OSGi Component Programming | © 2006 by IBM, aQute & OSGi; made available under the EPL v1.0

Service Oriented Architectures

Separate the contract from the
implementation
Allows alternate implementations
Dynamically discover and bind
available implementations
Based on contract (interface)
Components are reusable
Not coupled to implementation
details

Service Contract

Component
provides

uses

13 OSGi Component Programming | © 2006 by IBM, aQute & OSGi; made available under the EPL v1.0

Framework

Allows applications to share a
single Java VM
Classloading
Isolation/Security
Communication `&
Collaborations between
applications
Life cycle management
Policy free

Policies are provided by
bundles

API is fully self managed
Operating SystemOperating System

Operating SystemOperating System

JavaJava
VMVMJavaJava

VMVM

The ApplicationThe Application

CryptoCrypto--
graphygraphy UPnPUPnP DirecDirec--

toriestories

ImagingImaging

MailMail

MediaMedia
FWFW SQLSQL

GUIGUI

DistriDistri--
butedbuted

CommComm
PortsPorts SecuritySecurity TCP/IPTCP/IP

JTAPIJTAPI 3D3D WebWeb
ServerServer MathMath

SpeechSpeech BlueBlue--
toothtooth XMLXML USBUSB

The ApplicationThe Application

Operating SystemOperating System
Operating SystemOperating SystemOperating SystemOperating System

Operating SystemOperating System

JavaJava
VMVMJavaJava

VMVM
JavaJava
VMVMJavaJava

VMVM

JavaJava
VMVMJavaJava

VMVM
JavaJava
VMVMSystem Class LibrariesSystem Class Libraries

OSGiOSGi
OSGiOSGiOSGiOSGi

OSGiOSGi

ApplicationApplication
ApplicationApplication

ApplicationApplication

ApplicationApplication
ApplicationApplication

ApplicationApplication
ApplicationApplication

LibraryLibrary

14 OSGi Component Programming | © 2006 by IBM, aQute & OSGi; made available under the EPL v1.0

Layering

Module

Life Cycle

Services

S
ec

ur
ity

Execution Environment

A
pp

lic
at

io
ns

15 OSGi Component Programming | © 2006 by IBM, aQute & OSGi; made available under the EPL v1.0

Execution Environment

OSGi APIs only use a subset of
J2SE and J2ME CDC

OSGi Minimum EE
Matches most profiles
Implementations can use more
than the OSGi Minimum EE
Security is not mandatory
CLDC is possible if class loaders
are added in a device specific
way

CLDC/
MIDP

J2SE
CDC/FP

OSGi
Min.

16 OSGi Component Programming | © 2006 by IBM, aQute & OSGi; made available under the EPL v1.0

Module Layer

Packaging of applications and
libraries in Bundles

Raw Java has significant deployment
issues

Class Loading modularization
Raw Java provides the Class Path as

an ordered search list, which makes it
hard to control multiple applications

Protection
Raw Java can not protect certain

packages and classes
Versioning

Raw Java can not handle multiple
versions of the same package

bundle

bundle
bundle

bundle

bundle

bundle

bundle

17 OSGi Component Programming | © 2006 by IBM, aQute & OSGi; made available under the EPL v1.0

Life Cycle Layer

System Bundle represents the
OSGi Framework
Provides an API for managing
bundles

Install

Resolve

Start

Stop

Refresh

Update

Uninstall
Based on the module layer

Bundle
X

Bundle
X-v2

Bundle
B

bundle
M

Bundle
A

System
bundle

18 OSGi Component Programming | © 2006 by IBM, aQute & OSGi; made available under the EPL v1.0

Life Cycle Layer

Bundle is started by the Bundle
Activator class
Header in Manifest refers to this
class
Interface has 2 methods

Start: Initialize and return immediate

Stop: Cleanup
The Activator gets a Bundle Context
that provides access to the
Framework functions
Framework provides Start Level
service to control the start/stop of
groups of applications

INSTALLED

RESOLVED

UNINSTALLED

ACTIVE

STOPPING

STARTING

start

stop

19 OSGi Component Programming | © 2006 by IBM, aQute & OSGi; made available under the EPL v1.0

Service Layer

Provides an in-VM service model
Discover (and get notified about) services based on their interface
or properties
Bind to one or more services by

program control,
default rules, or
deployment configuration

SOA Confusion
Web services bind and discover over the net
The OSGi Service Platform binds and discovers inside a Java VM

The OSGi Alliance provides many standardized services

20 OSGi Component Programming | © 2006 by IBM, aQute & OSGi; made available under the EPL v1.0

Evolution

UPnP
Initial Provisioning
Name Space
Jini
Start Level
IO Connector
Wire Admin
XML Parser
Measurement & State
Position
Execution Env.

Application Manager
MIDP Container
Signed Bundles
Declarative Services
Power Management
Device Management
Security Policies
UPnP Exporter
Diagnostics/Monitoring
Framework Layering
Initial Provisioning
UPnP
…

2000 2001 2003 2005

R1

R2

R3

Planned R4

H
om

e
A

ut
om

at
io

n V
eh

ic
le

M
ob

ile

Framework
Http
Log
Device Access

Package Admin
Configuration Admin
Permission Admin
User Admin
Preferences
MetaType
Service Tracker

21 OSGi Component Programming | © 2006 by IBM, aQute & OSGi; made available under the EPL v1.0

Benefits of Using the OSGi Service Platform

Components are smaller
Easier to make

Components are not coupled to other components
Gives reusability

Excellent model for the myriad of customizations and variation
that are required of today’s devices
Collaborative model

Allows reuse of other components for most problems

22 OSGi Component Programming | © 2006 by IBM, aQute & OSGi; made available under the EPL v1.0

Section II – Equinox and Eclipse

23 OSGi Component Programming | © 2006 by IBM, aQute & OSGi; made available under the EPL v1.0

What is Equinox ?

An open source community focused on OSGi Technology
http://www.eclipse.org/equinox/

Develop OSGi specification implementations

Prototype ideas related to OSGi
An OSGi Framework implementation

Core of the Eclipse runtime

Provides the base for Eclipse plug-in collaboration

Fully compatible with the OSGi R4 specification
New for Eclipse 3.2 – Other specification implementations

Device Manager, Declarative Services, Event Admin, HTTP Service, Log
Service, Metatype Service, Preferences Service, User Admin, Wire Admin
– More on the way!!

24 OSGi Component Programming | © 2006 by IBM, aQute & OSGi; made available under the EPL v1.0

The Equinox Target Environment

Eclipse makes it easy to develop for all
OSGi Service Platforms
A target platform

Contains a set of bundles

Defines runtime parameters
To Define the Target Platform, goto:

Preferences ->Plug-in Development -
>Target Platform
Select the target project in your

workspace as location
Advanced target management using
“Target Definitions” (New->Other->Plug-
in Development->Target Definition)

Bundle A
{}

Target
OSGi Framework

(Equinox)

Install

Bundle B
{}

BundleG
{}

Bundle c
{}

Bundle F
{}

Bundle E
{}

Bundled
{}

25 OSGi Component Programming | © 2006 by IBM, aQute & OSGi; made available under the EPL v1.0

Setting up the Target Platform

26 OSGi Component Programming | © 2006 by IBM, aQute & OSGi; made available under the EPL v1.0

What Did We Learn
The OSGi Service Platform is kind of a Java Operating System
It simplifies:

Deployment Problems

Software composition

Software management
Eclipse provides a development environment for OSGi Bundles
Equinox provides open source implementations of the OSGi
specifications in the Equinox project

27 OSGi Component Programming | © 2006 by IBM, aQute & OSGi; made available under the EPL v1.0

Section III - Fundamental OSGi concepts

28 OSGi Component Programming | © 2006 by IBM, aQute & OSGi; made available under the EPL v1.0

Framework Entities

OSGi Framework

Bundle A
{}

= service, java interface

Bundle B
{}

Bundle C
{}

29 OSGi Component Programming | © 2006 by IBM, aQute & OSGi; made available under the EPL v1.0

Bundles

A bundle is the deliverable application
Like a WindowsTM EXE file

Content is a JAR file
A bundle registers zero or more services

A service is specified in a Java interface and may be implemented
by multiple bundles

Services are bound to the bundle life-cycle
Searches can be used to find services registered by other
bundles

Query language

30 OSGi Component Programming | © 2006 by IBM, aQute & OSGi; made available under the EPL v1.0

What is in a Bundle?

A Bundle contains (normally in a JAR file):
Manifest
Code
Resources

The Framework:
Reads the bundle’s manifest
Installs the code and resources
Resolves dependencies

During Runtime:
Calls the Bundle Activator to start the bundle
Manages java classpath
Handles the service dependencies
Calls the Bundle Activator to stop the bundle

Bundle A
{}

31 OSGi Component Programming | © 2006 by IBM, aQute & OSGi; made available under the EPL v1.0

Create the Hello World bundle

Step 1.
Create new plug-in project

Step 2
Project name: helloworld
an OSGi framework: standard

Step 3
Generate an activator

Step 4
Use the Hello OSGi Bundle

template

32 OSGi Component Programming | © 2006 by IBM, aQute & OSGi; made available under the EPL v1.0

Real code! Hello World (and Goodbye)

The wizard has generated the
code on the left
This class implements the
BundleActivator so that the
Framework can start/stop the
class
The activator is referenced in the
manifest

package helloworld
public class HelloWorld

implements BundleActivator {
public void start(

BundleContext context)
throws Exception{
System.out.println(

"Hello world!!");
}

public void stop(
BundleContext context)
throws Exception {

System.out.println(
"Goodbye world!!");

}
}

HelloWorld.java

33 OSGi Component Programming | © 2006 by IBM, aQute & OSGi; made available under the EPL v1.0

Real code! Hello World (and Goodbye)

The Manifest (in META-
INF/MANIFEST.MF) is also
generated by the wizard
Eclipse provides convenient editors
for the manifest

For the source: click on
MANIEST.MF

Notice:
Bundle-Activator (used to notify the

bundle of lifecycle changes)

Import-Package (dependencies)

Manifest-Version: 1.0
Bundle-ManifestVersion: 2
Bundle-Name: Helloworld Plug-in
Bundle-SymbolicName: helloworld
Bundle-Version: 1.0.0
Bundle-Localization: plugin
Bundle-Activator:
helloworld.Activator
Import-Package:
org.osgi.framework;version="1.3.0"

META-INF/MANIFEST.MF

34 OSGi Component Programming | © 2006 by IBM, aQute & OSGi; made available under the EPL v1.0

Eclipse Launch Configuration

The Launch Configuration is prepared for you
Run -> Run … -> EclipseTutorial

Deselect “Workspace Plug-ins” and “Target Platform” checkbox
This removes all possible bundles from the launch configuration

Select the helloworld bundle and Select “Add Required Plug-ins”
This calculates from the dependency information, which bundles
are required to run our helloworld example

35 OSGi Component Programming | © 2006 by IBM, aQute & OSGi; made available under the EPL v1.0

Equinox Launch Configuration

36 OSGi Component Programming | © 2006 by IBM, aQute & OSGi; made available under the EPL v1.0

Run the Hello World bundle

Press Run
The Framework is a console

application
The Framework now runs the
helloworld example

See the printed text
It also runs a Framework console

Equinox specific
Type “ss” (show status)

Look at the active bundles
Notice the number for the helloworld

bundle. This is the bundle id.
Type “stop <symbolic-name>”

37 OSGi Component Programming | © 2006 by IBM, aQute & OSGi; made available under the EPL v1.0

Self-Hosting Bundle Projects

Normally, a bundle is packaged in a
JAR file

The traditional edit-compile-debug
cycle.

Self-Hosting Allows for quick
debugging of bundle code

No packaging steps

No deployment steps

Just code/save/run
Some changes require update of the
bundle in the Framework

Console:

update <symbolic-name>

META-INF/MANIFEST.MF
helloworld/HelloWorld.class

META-INF/MANIFEST.MF
.project
.classpath
src/helloworld/HelloWorld.java
bin/helloworld/HelloWorld.class

Project Layout

JAR file layout

Target Platform

file:c;/…

reference:file:C:/…

bin dir content automatically added to root
Complied into bin directory, non java files copied

38 OSGi Component Programming | © 2006 by IBM, aQute & OSGi; made available under the EPL v1.0

Creating deployable bundles – how it works

The build.properties file specifies the
content of the bundle jar

Specifies the source and output folders of the
different libraries
source.. – The source directory of the project.

Used for compilation and resources.
output.. – The output directory where class

files and resources are copied to
bin.includes – What is included in the JAR

from the project directory

source.. = src/
output.. = bin/
bin.includes = META-INF/,\

.

build.properties

39 OSGi Component Programming | © 2006 by IBM, aQute & OSGi; made available under the EPL v1.0

Export

Export the content of a project into a
bundle jar

Bundle jars can be installed across
multiple OSGi Framework
implementations
The Deployable plug-ins and

fragments wizard can be used to
generate a bundle jar from a project.
File -> Export -> Deployable plug-ins

and fragments

40 OSGi Component Programming | © 2006 by IBM, aQute & OSGi; made available under the EPL v1.0

What Did We Learn

The unit of deployment of an OSGi Service Platform
The Eclipse Target Environment
How to launch an Equinox environment with a defined set of
bundles
How to start/stop bundles
How the Equinox console works
How the classpath is managed for self hosted bundles

41 OSGi Component Programming | © 2006 by IBM, aQute & OSGi; made available under the EPL v1.0

Section IV – Component interaction and collaboration

42 OSGi Component Programming | © 2006 by IBM, aQute & OSGi; made available under the EPL v1.0

Collaborative model

OSGi is more than an Applet, MIDlet, Xlet runner
Bundles can collaborate through:

service objects

package sharing
A dynamic registry allows a bundle to find and track service
objects
Framework fully manages this collaboration

Dependencies, security

43 OSGi Component Programming | © 2006 by IBM, aQute & OSGi; made available under the EPL v1.0

Collaborative model

BundleBundle

JAVA

Operating System

Hardware

OSGi Framework

Service
registry

packages
packages

44 OSGi Component Programming | © 2006 by IBM, aQute & OSGi; made available under the EPL v1.0

Collaborative model

JAVA

Operating System

Hardware

Java Application Manager

Service
registry

packages
packages

Midlet,
Xlet,

or
Applet

Midlet,
Xlet,
or

Applet

No native code

No package management
(versions!)

No collaboration

No management bundles

45 OSGi Component Programming | © 2006 by IBM, aQute & OSGi; made available under the EPL v1.0

Classpath issues

Java applications consists of classes
placed in packages
Java searches for a package or class in
different jar files and directories

These are usually specified in the
CLASSPATH environment variable

An OSGi Framework is a network of
class loaders.

Parameterized by the Manifest headers
Any dependencies between bundles are
resolved by the Framework
It is possible to fetch bundles on demand
Complicated – But an OSGi Framework
makes it painless to use

q

p

r
p

q-1.0

q q-2.0

Bundle

Exported package

Exported package

Wire

Constraint

46 OSGi Component Programming | © 2006 by IBM, aQute & OSGi; made available under the EPL v1.0

OSGi dependency resolution

Bundle A
Export org.osgi.service.log

com.ibm.service.log
com.ibm.j9

Import org.osgi.service.http
javax.servlet.http

Framework
org.osgi.framework
org.osgi.service.http

Bundle B
Export ericsson.osgi

javax.servlet
javax.servlet.http
org.osgi.service.log

Import org.osgi.service.http

B resolved

A resolved

47 OSGi Component Programming | © 2006 by IBM, aQute & OSGi; made available under the EPL v1.0

Package or Bundle Dependencies?

The OSGi Specifications supports both
Require-Bundle and Import-Package
Require-Bundle creates a dependency on
a complete bundle

Simple to use
Imports packages that are not used

Import-Package creates a dependency on
just a package

Creates less brittle bundles because of
substitutability
More cumbersome to use (Tools!)

In almost all cases, Import-Package is
recommended because it eases
deployment and version migration
The specifications detail a number of
additional problems with Require-Bundle

r

r

s

r

q

p

Require-Bundle

Import-Package

48 OSGi Component Programming | © 2006 by IBM, aQute & OSGi; made available under the EPL v1.0

Service Specifics

A service is an object registered with the
Framework by a bundle to be used by
other bundles
The semantics and syntax of a service are
specified in a Java interface
A bundle can register a service.
A bundle can use a service (bind to)

1..1
0..1
0..n

A service can be discovered dynamically
Services can go away at any time!

service

bind register

discover

package org.osgi.service.log;
import org.osgi.framework.ServiceReference;
public interface LogService {
public static final int LOG_ERROR= 1;
public static final int LOG_WARNING= 2;
public static final int LOG_INFO= 3;
public static final int LOG_DEBUG= 4;
public void log(int level, String message);
public void log(int level,

String message, Throwable exception);
public void log(ServiceReference sr,

int level, String message);
public void log(ServiceReference sr,

int level, String message,
Throwable exception);

}

49 OSGi Component Programming | © 2006 by IBM, aQute & OSGi; made available under the EPL v1.0

Services continued

The Framework Service Registry is available to all bundles to collaborate with other
bundles
Different bundles (from different vendors) can implement the same interface

Implementation is not visible to users
Allows operator to replace implementations without disrupting service

OSGi defines a standard set of services
Other organizations can define more (AMI-C)

Extensive notifications for service life cycles
Services have a unique id
Services require permission

Under Operator control
Services are associated with properties

Query language to find appropriate service
Bundles can update the properties

50 OSGi Component Programming | © 2006 by IBM, aQute & OSGi; made available under the EPL v1.0

Manipulating Services

The BundleContext provides the
methods to manipulate the service
registry
Service registrations are handled by
ServiceRegistration objects

They can be used to unregister a
service or modify its properties

Service References give access to
the service as well as to the service’s
properties
Access to service objects is through
the getService method. These
services should be returned with the
ungetService method

ServiceRegistration registerService(
String clazz,
Object service,
Dictionary properties)

ServiceReference[]
getServiceReferences(

String clazz,
String filter)

Object getService(
ServiceReference reference)

boolean ungetService(
ServiceReference reference);

51 OSGi Component Programming | © 2006 by IBM, aQute & OSGi; made available under the EPL v1.0

What Did We Learn

The OSGi Service Platform provides a collaboration model that is
based on

Services

Package sharing
Sharing is complicated, but the well defined specifications reduce
the complexity for bundle developers
Services provide a very powerful dynamic programming model

52 OSGi Component Programming | © 2006 by IBM, aQute & OSGi; made available under the EPL v1.0

Section V – Service Components

53 OSGi Component Programming | © 2006 by IBM, aQute & OSGi; made available under the EPL v1.0

Components Simplify Service Programming

The dynamic nature of services make
programming more complicated
The declarative service model simplifies
handling these dynamics

Dependencies are defined in an XML file
Declarative Services:

Optionally Depend on one or more services
Optionally Provide a service
Optionally lazy initialized
Configurable

Example shows a hello world bundle that
logs Hello and Goodbye
First add dependencies by selecting
MANIFEST.MF, on the Dependencies tab

Add the component and log package

Manifest-Version: 1.0
…
Import-Package: org.osgi.framework;version,
org.osgi.service.component,
org.osgi.service.log

Service-Component:
OSGI-INF/component.xml

<?xml version="1.0" encoding="UTF-8"?>
<component name="hello.component.log">

<implementation
class="hello.Component"/>

<reference name="LOG” interface=
"org.osgi.service.log.LogService"/>

</component>

META-INF/MANIFEST.MF

OSGI-INF/component.xml

54 OSGi Component Programming | © 2006 by IBM, aQute & OSGi; made available under the EPL v1.0

Import the necessary packages

Step 1 – Add new Imported Packages

Step 2 – Select the necessary packages

Step 3 – Save the bundle manifest

55 OSGi Component Programming | © 2006 by IBM, aQute & OSGi; made available under the EPL v1.0

Login Component Source Code

A component can be any class
No specific interface

The activate and deactivate methods are
called when the component is
activated/deactivated

Dependencies must be resolved: Log Service
The ComponentContext class provides
access to the referenced services

The locateService methods finds a reference
The component instance can be sure that
at any moment in time between activate
and deactivate there is a valid Log Service

package hello;
import org.osgi.service.component.*;
import org.osgi.service.log.*;
public class Component {
LogService log;
protected void activate(ComponentContext context){
log = (LogService) context.locateService("LOG");
log.log(LogService.LOG_INFO, "Hello World"); }

protected void deactivate(ComponentContext context){
log.log(LogService.LOG_INFO, "Goodbye World");

}}

<?xml version="1.0" encoding="UTF-8"?>
<component name="hello.component.log">
<implementation
class="hello.Component"/>

<reference name="LOG"
interface="org.osgi.service.log.LogService"/>

</component>

OSGI-INF/component.xml

Component.java

56 OSGi Component Programming | © 2006 by IBM, aQute & OSGi; made available under the EPL v1.0

Add Declarative Services, Log, and Component

57 OSGi Component Programming | © 2006 by IBM, aQute & OSGi; made available under the EPL v1.0

Launching

Launch the EquinoxTutorial
launch configuration
You can look in the log with the
log command

Last event is at bottom
Stop the bundle

Stop <symbolic-name>
Run log again

58 OSGi Component Programming | © 2006 by IBM, aQute & OSGi; made available under the EPL v1.0

What Did We Learn

Programming with services is complicated
The Declarative Services model makes service programming
much simpler
How the component XML is constructed
We used the Log Service

59 OSGi Component Programming | © 2006 by IBM, aQute & OSGi; made available under the EPL v1.0

Section VI – Use Case: Developing a Chat Service

60 OSGi Component Programming | © 2006 by IBM, aQute & OSGi; made available under the EPL v1.0

A Chat Service

We will now design a service that
simplifies Chat/Instant Messaging clients

We do the clients later, this is just intended to
support clients.

A Chat client should be able to
communicate with a user through:

A window, telnet session, MSN, AOL, Skype,
etc. interface.

We base the communication between chat
clients on a Channel interface.

We register a service we receive messages
from
The registry contains other channel services

we can send messages to
A property contains the user name

For ease of use, we use a command
based interface for login and listing
buddies

Chat
Service

Channel service
send(from,msg)

Window
Chat

SWT
Chat

Telnet
Chat

Telnet
Connections

Input channelOutput
channel

Jeff
session

Jeff
session

Tom
sessions

Tom
sessions

Channel services

61 OSGi Component Programming | © 2006 by IBM, aQute & OSGi; made available under the EPL v1.0

Channel Service Design

Create a new project to hold our service
interface

Call this project <myname>.chat
This is a Plug-in Project

The Channel service is one way:
Each channel service represents on user
We only receive through a channel service
A client uses a channel service to send a

message to a specific user
The CH_NAME service property

This property must be registered with the
service
The value is the name of the user, e.g. tom

A single method send with the following
arguments

from – The user name that sends the
message
msg – The message to be send

Export the service channel package

package aQute.service.channel;
import java.io.*;
public interface Channel {
String CH_NAME="channel.name";

void send(String from, String msg)
throws IOException;

}

Channel.java

Manifest-Version: 1.0
Bundle-ManifestVersion: 2
Bundle-Name: Chat Plug-in
Bundle-SymbolicName: aQute.chat
Bundle-Version: 1.0.0
Bundle-Localization: plugin
Import-Package:
org.osgi.framework;version="1.3.0"
Export-Package: aQute.service.channel

META-INF/MANIFEST.MF

62 OSGi Component Programming | © 2006 by IBM, aQute & OSGi; made available under the EPL v1.0

White Board Approach

The Channel Service uses the White
Board Approach
The White Board approach is:

Each Event Listeners (Channels) are
registered as Services
Any interested client uses the service to send

events (messages) to
It is an effective approach to reduce the
number of couplings between bundles
There is a white-paper comparing a
whiteboard approach with a non
whiteboard approach.

Registry

Bundle A
{ }

register

Server
bundle

Events: register,
unregister,
modified

Bundle C
{ }

Bundle B
{ }

Publisher

get

63 OSGi Component Programming | © 2006 by IBM, aQute & OSGi; made available under the EPL v1.0

Telnet Based Chat Client

The best way to start is to design a small
test program.
The easiest way to a “UI” is a telnet server
that uses the Channel service to
communicate with siblings

This also shows how Internet servers should
be constructed

The telnet Chat server will create a
Handler for each opened session.

The Handler is a thread that waits for input
from the user
The Handler registers a Channel.

The Handler is stopped when the session
closes.

This unregisters the Channel service

TelnetChatTelnetChat

HandlerHandler

ChannelChannel

LogServiceLogService

Activated by
Declarative Services

ThreadThread

User

For each session
1

*

64 OSGi Component Programming | © 2006 by IBM, aQute & OSGi; made available under the EPL v1.0

The TelnetChat Manifest and component.xml

Create a new project for a telnet chat
Call this project <myname>.telnetchat
This is a Plug-in Project

Define the manifest and component
definition
Add the package import dependencies to
the manifest. Either

Direct in the source code
Via the Dependencies tab

Add the reference to the component.xml
The component.xml must reside in OSGI-
INF
We only specify a reference to the Log
Service

Manifest-Version: 1.0
Bundle-ManifestVersion: 2
Bundle-Name: Telnetchat Plug-in
Bundle-SymbolicName: aQute.telnetchat
Bundle-Version: 1.0.0
Bundle-Localization: plugin
Service-Component: OSGI-INF/component.xml
Import-Package: aQute.chat,
aQute.service.channel,
org.osgi.framework;version="1.3.0",
org.osgi.service.component,
org.osgi.service.log

<?xml version="1.0" encoding="UTF-8"?>
<component name="aQute.telnetchat">
<implementation class=

"aqute.telnetchat.TelnetChat"/>
<reference name="LOG" interface=
"org.osgi.service.log.LogService"/>

</component>

META-INF/MANIFEST.MF

OSGI-INF/component.xml

65 OSGi Component Programming | © 2006 by IBM, aQute & OSGi; made available under the EPL v1.0

The TelnetChat Component code

The code does not show the import
packages and field definitions

The source code is provided for you to
further check in aQute.telnetchat
Eclipse will tell you when they miss

The activate method:
Remembers the context for later
Gets the log service
Starts the thread.

The deactivate method:
Sets the quit flag so any loops in the started
Thread will finally end
Closes all created Handlers
Exceptions are ignored because we are
closing
And closes the server socket object, this will
surely quit the main socket accept loop.

protected void activate(ComponentContext context) {
this.context = context;
this.log = (LogService)
context.locateService("LOG");

start();
}

protected void deactivate(ComponentContext context)
throws Exception {

quit = true;
for (Iterator i = handlers.iterator(); i.hasNext();)
try {
Handler h = (Handler)i.next();
h.close();

} catch (Throwable e) {
// We are closing

}
server.close();

}

TelnetChat.java

66 OSGi Component Programming | © 2006 by IBM, aQute & OSGi; made available under the EPL v1.0

The TelnetChat run method

The run method creates a socket and
accepts incoming connections.
For bundles, it is crucial that this loop
never quits, but also not overloads the
system

There is usually no end user watching a
server …

The outer loop therefore catches errors,
sleeps and try again

A lot of problems disappear over time. For
example, an Internet connection can be
temporarily be down

The socket has a timeout to check the flag
regularly
The inner loop

Wait for an incoming socket
Creates a handler
And starts the handler’s thread

public void run() {
while (!quit) try {
server = new ServerSocket(2030);
server.setSoTimeout(1000);
loop();

} catch (Exception e) {
log.log(LogService.LOG_ERROR,

"[TelnetChat] Inner loop", e);
sleep(10000);

}
}

void loop() throws Exception {
while (!quit) try {
Socket socket = server.accept();
Handler handler = new Handler(

context.getBundleContext(), socket, this);
handlers.add(handler);
handler.start();

} catch (SocketTimeoutException e) {
// Just for checking the quit flag
// at a regular basis

}
}

TelnetChat.java

67 OSGi Component Programming | © 2006 by IBM, aQute & OSGi; made available under the EPL v1.0

TelnetChat convenience methods

Convenience methods void remove(Handler handler) {
handlers.remove(handler);

}

void sleep(int ms) {
try {

Thread.sleep(ms);
} catch (InterruptedException e1) {}

}

TelnetChat.java

68 OSGi Component Programming | © 2006 by IBM, aQute & OSGi; made available under the EPL v1.0

The Handler Source Code

The constructor receives the socket
for the session with the end user. It
initializes:

The fields
A Writer object to send text to the end

user
The send method writes the
message in the Write object and
flushes it to ensure the user sees it
The close method closes the different
objects and quits the main loop:

By setting the quit flag
By closing the socket

public Handler(BundleContext context, Socket
socket, TelnetChat activator) throws Exception {

this.ctxt = context;
this.socket = socket;
this.parent = activator;
writer = new PrintWriter(
new OutputStreamWriter(socket.getOutputStream()));

}
public void send(String source,

String msg) throws IOException {
writer.println(source + "> " + msg);
writer.flush();

}
void close() {
try {
quit = true;
writer.close();
socket.close();

} catch (IOException e) {
// Ignore in close

}
}

Handler.java

69 OSGi Component Programming | © 2006 by IBM, aQute & OSGi; made available under the EPL v1.0

The Handler Source Code

The run() method loops as long as
there is input from the user. It quits
when the socket is closed or an error
occurs.
Errors are only logged when the
session has not quit because there
are usually socket errors during
closing
The finally clause is used to
guarantee that the handler is
removed from the parent when it is
closed.
If a valid line is received, it is send to
the process method

public void run() {
writer.println("Welcome … Chat");
writer.print("Enter name: ");
writer.flush();
try {
BufferedReader rdr =
new BufferedReader(
new InputStreamReader(
socket.getInputStream()));

while (!quit && (line=rdr.readLine()) != null) {
line = line.trim();
process(line);

}
} catch (Exception e) {
if (!quit)
parent.log.log(
LogService.LOG_ERROR,
"reading user input", e);

} finally {
if (channel != null)
channel.unregister();

parent.remove(this);
parent = null;
close();

}
}

Handler.java

70 OSGi Component Programming | © 2006 by IBM, aQute & OSGi; made available under the EPL v1.0

The Handler Source Code

The process method handles a
line of input from the user
If we did not have a login name
yet, we assume it is the given
line
If the line starts with /quit, we quit
the program
Otherwise we assume it is a line
we need to send to another user,
which is handled in the dispatch
method

void process(String line) throws IOException,
Exception {

if (user == null) {
user = line;
Hashtable props = new Hashtable();
props.put(Channel.CH_NAME, user);
channel =ctxt.registerService(

Channel.class.getName(), this, props);
send("info", "User set to: " + user);

} else {
if (line.startsWith("/quit"))
writer.println("bye ");

else
dispatch(line);

}
}

Handler.java

71 OSGi Component Programming | © 2006 by IBM, aQute & OSGi; made available under the EPL v1.0

The Handler Source Code

The dispatch method parses the
destination name from the input
For this name , finds a Channel
service
It then sends the remainder of
the line to that service

void dispatch(String line) throws Exception {
String parts[] = line.split("\\W");
ServiceReference channels[] =
ctxt.getServiceReferences(
Channel.class.getName(),
"(" + Channel.CH_NAME + "=" + parts[0] + ")");

if (channels != null) {
Channel to = (Channel)ctxt.getService(channels[0]);
to.send(user, line.substring(parts[0].length()));
ctxt.ungetService(channels[0]);

} else {
send("error", "no such user: " + parts[0]);

}
}

Handler.java

72 OSGi Component Programming | © 2006 by IBM, aQute & OSGi; made available under the EPL v1.0

Run the Telnet Chat

Launch the EquinoxTutorial
Do not forget to check the launch
configuration

The TelnetChat bundle included?
Includes all required bundles from the Target
environment?
Do not forget to start the bundle via the
console

Create 2 telnet sessions:
Open a telnet session into port 2030
Login with your last name
Open a second telnet session into port 2030
Login with another name

See if you can send messages Check the
services, and see that two channel
services are registered

Services (objectclass=*Channel)

73 OSGi Component Programming | © 2006 by IBM, aQute & OSGi; made available under the EPL v1.0

What Did We Learn

How services are designed
White board approach

Developed a simple telnet chat application
Chat sessions use the white board approach to find Channel
services

The Channel service is used to send messages

74 OSGi Component Programming | © 2006 by IBM, aQute & OSGi; made available under the EPL v1.0

Section VII – Service Tracking

75 OSGi Component Programming | © 2006 by IBM, aQute & OSGi; made available under the EPL v1.0

Finishing the Chat Service

The TelnetChat contains code that must
be repeated between different clients
A Chat library that captures the shared
code would be useful

As a bundle, this could run on phones,
Eclipse, etc.

For this example, we create a Chat class
that works on a command line basis

The Chat class will be added to the
<myname>.chat bundle
/xxx are commands

This bundle will therefore act as a library
and exports the chat package
Not all code is shown, however, this is
available in the aQute.chat project

Chat(BundleContext cntxt,Channel user);

void execute(String ln) throws IOException;

String[] getBuddies();

void close();

String getName();

void login(String user, String passwd);

Chat.java

Manifest-Version: 1.0
Bundle-ManifestVersion: 2
Bundle-Name: Chat Plug-in
Bundle-SymbolicName: aQute.chat
Bundle-Version: 1.0.0
Bundle-Localization: plugin
Import-Package:
org.osgi.framework;version="1.3.0"
Export-Package: aQute.service.channel,
aQute.chat

META-INF/MANIFEST.MF

76 OSGi Component Programming | © 2006 by IBM, aQute & OSGi; made available under the EPL v1.0

The Case for the ServiceTracker

Finding services for each message is kind of expensive.
The ServiceTracker in org.osgi.util.tracker package is intended to simplify this
task
A service tracker maintains a list of services based on:

A filter
A specific class

It reports any existing or new services as well as any services that become
unregistered

Object addingService
void modifiedService
void removedService

The service tracker is used to track channels and store them in a Map

77 OSGi Component Programming | © 2006 by IBM, aQute & OSGi; made available under the EPL v1.0

ServiceTracker: create

Framework Bundle
A

Bundle
B

Bundle
C

78 OSGi Component Programming | © 2006 by IBM, aQute & OSGi; made available under the EPL v1.0

ServiceTracker: open

Object addingService(ServiceReference r){…}

Framework Bundle
A

Bundle
B

Bundle
C

addServiceListener

Object addingService(ServiceReference r){…}

ServiceTracker

79 OSGi Component Programming | © 2006 by IBM, aQute & OSGi; made available under the EPL v1.0

ServiceTracker: adding

Framework Bundle
A

Bundle
B

Bundle
C

ServiceListener

Object addingService(ServiceReference r){…}

ServiceTracker

80 OSGi Component Programming | © 2006 by IBM, aQute & OSGi; made available under the EPL v1.0

ServiceTracker: removing

Framework Bundle
A

Bundle
B

Bundle
C

ServiceListener

void removedService(ServiceReference r,Objecto){…}

ServiceTracker

81 OSGi Component Programming | © 2006 by IBM, aQute & OSGi; made available under the EPL v1.0

ServiceTracker: modified

Framework

Bundle
B

Bundle
C

ServiceListener

void modifiedService(ServiceReference r, Object o){…}

Bundle
A

82 OSGi Component Programming | © 2006 by IBM, aQute & OSGi; made available under the EPL v1.0

The Chat Library

The Constructor initializes some
fields and creates the service
tracker
The user is given as a Channel.
The user of this library must
implement this service to get a
callback with any incoming
messages.

public Chat(BundleContext context, final
Channel user) {

this.user = user;
this.cntxt = context;
channels = doChannelTracker(context, user);
channels.open();

}

Chat.java

83 OSGi Component Programming | © 2006 by IBM, aQute & OSGi; made available under the EPL v1.0

The Chat Library Service Tracker

The Service Tracker is used to
track Channel services

The addingService method gets
the Channel and puts the
Channel in a Map under the
given name

The removedService method
just cleans up the Map when a
Channel service is removed

ServiceTracker doChannelTracker(
BundleContext cntxt, final Channel user) {

return new ServiceTracker(
cntxt,
Channel.class.getName(), null) {
public Object addingService(ServiceReference ref) {
Channel buddy = (Channel)context.getService(ref);
if (buddy != user) {
String name =

(String)ref.getProperty(Channel.CH_NAME);
String rn = name;
int n = 0;
synchronized (bdds) {
while(bdds.containsKey(rn))
rn = name + "-" + n++;

bdds.put(rn, buddy);
}

}
return buddy;

}

public void removedService(
ServiceReference ref,Object buddy){

bdds.remove(ref.getProperty(Channel.CH_NAME));
}

});
}

Chat.java

84 OSGi Component Programming | © 2006 by IBM, aQute & OSGi; made available under the EPL v1.0

The Chat Library

The login method registers a new
Channel service
The password is ignored
The result is sent as a message
to the user

public void login(String name,
String password) throws IOException {
if (registration != null)
registration.unregister();

registration = null;
this.name = name;
Hashtable properties = new Hashtable();
properties.put(
Constants.SERVICE_PID,
"pid:chat[" + InetAddress.getLocalHost()
+ "]:" + name);

properties.put(Channel.CH_NAME, name);
registration = cntxt.registerService(
Channel.class.getName(), user, properties);

user.send("", "Logged in as " + name);
}

Chat.java

85 OSGi Component Programming | © 2006 by IBM, aQute & OSGi; made available under the EPL v1.0

The Chat Library: execute

The execute method looks at the
command line and scans for ‘/’
characters, which are commands

/help – Show short help

/buddies – List the buddies

/login – Login

/<buddy> to send to a buddy
If no / is given the message is
sent to the last used buddy

public void execute(String line) throws IOException {
if (!line.startsWith("/"))
send(line);

else {
String ws[]=line.split("\\s+");
if ("/buddies".startsWith(ws[0]))
doBuddies();

else if("/help".startsWith(ws[0]))
doHelp();

else if("/login".startsWith(ws[0]))
login(ws[1], null);

else {
lastTo = ws[0].substring(1);
send(line.substring(ws[0].length() + 1));

}
}

}

Chat.java

86 OSGi Component Programming | © 2006 by IBM, aQute & OSGi; made available under the EPL v1.0

The Chat Library: send

The send method must transfer
the message to the lastTo buddy.
We maintain all the buddy
Channel services in the bdds
Map field, so it is easy to find
them

void send(String line) throws IOException {
if (lastTo == null)
user.send("", "No buddy");

else {
Channel channel = (Channel) bdds.get(lastTo);
if (channel != null) {
channel.send(name, line);
user.send(name, line);

} else
user.send("?", "Can't find " + lastTo);

}
}

Chat.java

87 OSGi Component Programming | © 2006 by IBM, aQute & OSGi; made available under the EPL v1.0

The Chat Library: doBuddies, getBuddies

The doBuddies method sends
the list of currently logged in
buddies to the user
The getBuddies method returns
the buddies as a String[]

void doBuddies() throws IOException {
StringBuffer sb = new StringBuffer();
String del = "";
for(Iterator i =
bdds.keySet().iterator();
i.hasNext();) {
sb.append(del);
sb.append(i.next());
del = ", ";

}
user.send("", sb.toString());

}

public synchronized String[] getBuddies() {
return (String[])
bdds.keySet().toArray(new String[0]);

}

Chat.java

88 OSGi Component Programming | © 2006 by IBM, aQute & OSGi; made available under the EPL v1.0

The Chat Library: utiltities

The doHelp method sends some
help text to the user
The getName method returns the
currently logged name
The close method uses a careful
way to unregister the associated
Channel service only once

Often it is not easy to control how
many time close is called

void doHelp() throws IOException {
user.send("", "…n as: " + name);
user.send("", "/bdds …");
user.send("", "/help …");
user.send("", "/login …");
user.send("", "/<name> … ");
user.send("", "…");

}

public String getName() {
return name;

}

public void close() {
ServiceRegistration reg;
synchronized (this) {
reg = registration;
if (reg == null)
return;

registration = null;
}
reg.unregister();

}

Chat.java

89 OSGi Component Programming | © 2006 by IBM, aQute & OSGi; made available under the EPL v1.0

What Did We Learn

How to track services and react appropriately on their arrival and
departure
How to use the Service Tracker
The white board pattern as a solution to many dynamic problems

90 OSGi Component Programming | © 2006 by IBM, aQute & OSGi; made available under the EPL v1.0

Section VIII – Finishing Touch

91 OSGi Component Programming | © 2006 by IBM, aQute & OSGi; made available under the EPL v1.0

Using the Chat Library

We now have a library bundle that is easy
to use
We could adapt the Telnet Chat, but that is
old news
Lets make a small SWT program that
shows a simple chat window

Call this project <myname>.swtchat
This is a Plug-in Project

Such a program is provided in the
aQute.swtchat bundle

<?xml version="1.0" encoding="UTF-8"?>
<component name="aQute.swtchat.component">
<implementation class=
"aqute.swtchat.ChatWindow"/>

</component>

Manifest-Version: 1.0
Bundle-ManifestVersion: 2
Bundle-Name: Swtchat Plug-in
Bundle-SymbolicName: aQute.swtchat
Bundle-Version: 1.0.0
Service-Component:
OSGI-INF/component.xml
Bundle-Localization: plugin
Import-Package: aQute.chat,
aQute.service.channel,
org.eclipse.swt,
org.eclipse.swt.events,
org.eclipse.swt.layout,
org.eclipse.swt.widgets,
org.osgi.framework,
org.osgi.service.component

META-INF/MANIFEST.MF

OSGI-INF/component.xml

92 OSGi Component Programming | © 2006 by IBM, aQute & OSGi; made available under the EPL v1.0

Using the Chat Library

The activate method creates a
new Chat instance and starts the
thread
The deactivate method sets a
quit flag and interrupts the
running thread so that it can exit
The run method creates and
opens a new window

Reads quit flag to determine
when to close the application

protected void activate(
ComponentContext context)
throws Exception {

this.chat = new Chat(
context.getBundleContext(), this);
start();

}
protected void deactivate(

ComponentContext context)
throws Exception {
quit = true; interrupt();

}
public void run() {
createShell();
shell.open();
display = shell.getDisplay();
while (!shell.isDisposed() && !quit)
try {
if (!display.readAndDispatch())
display.sleep();

} catch (Exception e) {
error(e);}

if (!shell.isDisposed())
shell.dispose();chat.close();

}

ChatWindow.java

93 OSGi Component Programming | © 2006 by IBM, aQute & OSGi; made available under the EPL v1.0

Using the Chat Library

The usual window verbosity …
The window creates:

A shell (the window itself),

A text field that will contain the
chat output, and

A line field that will contain the
chat input

void createShell() {
shell = new Shell();
shell.setText("SWT Chat");
GridLayout layout = new GridLayout();
layout.numColumns = 1;
shell.setSize(500, 300);
shell.setLayout(layout);
text = new Text(shell,
SWT.MULTI|SWT.BORDER|SWT.MULTI|SWT.V_SCROLL

|SWT.READ_ONLY);
GridData spec = new GridData();
spec.horizontalAlignment = GridData.FILL;
spec.grabExcessHorizontalSpace = true;
spec.verticalAlignment = GridData.FILL;
spec.grabExcessVerticalSpace = true;
text.setLayoutData(spec);
line = new Text(shell,
SWT.MULTI|SWT.BORDER|SWT.V_SCROLL);
spec = new GridData();
spec.horizontalAlignment = GridData.FILL;
spec.grabExcessHorizontalSpace = true;
spec.verticalAlignment = GridData.FILL;
spec.grabExcessVerticalSpace = false;
spec.heightHint = 40;
line.setLayoutData(spec);
line.addKeyListener(this);

}

94 OSGi Component Programming | © 2006 by IBM, aQute & OSGi; made available under the EPL v1.0

Using the Chat Library

The keyReleased method
processes when the new line is
entered
The error method displays an
error to the user
The send method displays a
message to the user from
another client

public void keyPressed(KeyEvent ev){}
public void keyReleased(KeyEvent ev){
switch (ev.keyCode) {
case SWT.CR : try {
String txt = line.getText();
chat.execute(txt.trim());
line.setText("");

} catch (IOException e1) {
error(e1);

}
break;

}
}

void error(Exception e) {
if (!quit) {
text.append("error> ");
text.append(e + "");}}

public void send(String from, String str) {
display.asyncExec(new Runnable() {
public void run() {
text.append(from + "> " + str
+ "\r\n");

}
});

}

95 OSGi Component Programming | © 2006 by IBM, aQute & OSGi; made available under the EPL v1.0

Running the SWT Chat

Run the SWT Chat in the normal
way

Verify the target bundles

96 OSGi Component Programming | © 2006 by IBM, aQute & OSGi; made available under the EPL v1.0

Remoting

The chat is kind of boring because it only
works on our own laptop. Missing is
discovery of each other’s bundles! Rescue
is on the way …
Enable the aQute.remoting project

This project can export services to other
participating machines

The only requirement is that you have a
property remote=* on your service. See
code
The aQute.remoting project will then
export this service to any participating
machine
Our Channel objects will therefore be
spread all over the place
Enable the aQute.remoting bundle, launch,
and test with your buddies.

public void login(String name,
String password) throws IOException{
if (registration != null)
registration.unregister();
registration = null;
this.name = name;
Hashtable properties =
new Hashtable();

properties.put(“remote”, “*”);
properties.put(
Constants.SERVICE_PID,
"pid:chat[“ +
InetAddress.getLocalHost()
+ "]:" + name);
properties.put(
Channel.CH_NAME, name);

registration = cntxt.registerService(
Channel.class.getName(),
user, properties);

user.send("", "Logged in as "
+ name);

}

97 OSGi Component Programming | © 2006 by IBM, aQute & OSGi; made available under the EPL v1.0

Remoting

Machine A

Machine B

Machine E

Machine D

Machine C

network

Real Channel

Proxy of Channel

Broadcast +p2p

98 OSGi Component Programming | © 2006 by IBM, aQute & OSGi; made available under the EPL v1.0

What did we learn?

That the OSGi Service Registry is a surprisingly powerful model
for collaboration
The decoupling that it promotes allows additional functionality
without influencing existing functions

99 OSGi Component Programming | © 2006 by IBM, aQute & OSGi; made available under the EPL v1.0

What We Did Not Learn

Security Architecture
Permission Management
Signed Bundles
Package Management
Bundle Life Cycle Management
Configuration Management and
Preferences
Servlet Support/Web Server
Device Access
Event Manager

UPnP
User Admin
Wire Admin
Application Model
Deployment Admin and Autoconf
Device Management Tree
Initial Provisioning
Position, Measurement, State
MetaType
And much, much, more

100 OSGi Component Programming | © 2006 by IBM, aQute & OSGi; made available under the EPL v1.0

Conclusion

The OSGi R4 Specifications consists of considerable more details than
elucidated in this tutorial
There are many independent OSGi implementations on the market, both
commercial and open source

Apache Felix, Atinav, Eclipse Equinox, Espial, IBM®

SMF, Knopflerfish/Ubiserv of Gatespace, ProSyst, …
The OSGi specifications are running today on mobile phones, PDAs,
embedded computers, desktops, and mainframes
Both in managed and unmanaged configurations
The OSGi specifications solve real world problems
The OSGi Alliance is working on making the OSGi specifications the
standard for portable applications. Join us!

© 2006 by IBM, aQute & OSGi; made available under the EPL v1.0 | 2006 | OSGi Alliance & IBM

The End

Further reading:

http://www.eclipse.org/equinox/
http://www.osgi.org
http://bundles.osgi.org
http://www.aqute.biz

102 OSGi Component Programming | © 2006 by IBM, aQute & OSGi; made available under the EPL v1.0

Legal Notices

IBM is a registered trademark of International Business
Machines Corp. in the United States, other countries, or both.
Java and all Java-based trademarks are trademarks of Sun
Microsystems, Inc. in the United States, other countries, or both.
Linux is a registered trademark of Linus Torvalds in the United
States, other countries, or both.
Microsoft, Windows, Windows NT, and the Windows logo are
trademarks of Microsoft Corporation in the United States, other
countries, or both.
Other company, product, or service names may be trademarks
or service marks of others.

	Programming with Equinox�The OSGi foundation for Eclipse
	Contents
	Your Infrastructure
	Loading the tutorial projects from CVS
	Your Workspace (more or less)
	Section I - OSGi Background
	What is the OSGi service platform?
	Why the OSGi Service Platform?
	Limited Binary Software Portability
	Complexity of Software
	Complexity of Software
	Limits Object Oriented Technology
	Service Oriented Architectures
	Framework
	Layering
	Execution Environment
	Module Layer
	Life Cycle Layer
	Life Cycle Layer
	Service Layer
	Evolution
	Benefits of Using the OSGi Service Platform
	Section II – Equinox and Eclipse
	What is Equinox ?
	The Equinox Target Environment
	Setting up the Target Platform
	What Did We Learn
	Section III - Fundamental OSGi concepts
	Framework Entities
	Bundles
	What is in a Bundle?
	Create the Hello World bundle
	Real code! Hello World (and Goodbye)
	Real code! Hello World (and Goodbye)
	Eclipse Launch Configuration
	Equinox Launch Configuration
	Run the Hello World bundle
	Self-Hosting Bundle Projects
	Creating deployable bundles – how it works
	Export
	What Did We Learn
	Section IV – Component interaction and collaboration
	Collaborative model
	Collaborative model
	Collaborative model
	Classpath issues
	OSGi dependency resolution
	Package or Bundle Dependencies?
	Service Specifics
	Services continued
	Manipulating Services
	What Did We Learn
	Section V – Service Components
	Components Simplify Service Programming
	Import the necessary packages
	Login Component Source Code
	Add Declarative Services, Log, and Component
	Launching
	What Did We Learn
	Section VI – Use Case: Developing a Chat Service
	A Chat Service
	Channel Service Design
	White Board Approach
	Telnet Based Chat Client
	The TelnetChat Manifest and component.xml
	The TelnetChat Component code
	The TelnetChat run method
	TelnetChat convenience methods
	The Handler Source Code
	The Handler Source Code
	The Handler Source Code
	The Handler Source Code
	Run the Telnet Chat
	What Did We Learn
	Section VII – Service Tracking
	Finishing the Chat Service
	The Case for the ServiceTracker
	ServiceTracker: create
	ServiceTracker: open
	ServiceTracker: adding
	ServiceTracker: removing
	ServiceTracker: modified
	The Chat Library
	The Chat Library Service Tracker
	The Chat Library
	The Chat Library: execute
	The Chat Library: send
	The Chat Library: doBuddies, getBuddies
	The Chat Library: utiltities
	What Did We Learn
	Section VIII – Finishing Touch
	Using the Chat Library
	Using the Chat Library
	Using the Chat Library
	Using the Chat Library
	Running the SWT Chat
	Remoting
	Remoting
	What did we learn?
	What We Did Not Learn
	Conclusion
	The End
	Legal Notices

