
Eclipse ESCET™ development
documentation (Incubation)

Copyright (c) 2010, 2023 Contributors to the Eclipse Foundation

Version v0.9

Table of Contents
1. Eclipse ESCET development . 2

1.1. The Eclipse ESCET dev-list . 2

1.2. Development process. 2

1.3. Contributing . 8

1.4. Issue tracking. 12

1.5. Development environment setup. 12

1.6. Git repository. 15

1.7. Coding standards . 17

1.8. Building and testing . 18

1.9. Release process . 19

1.10. Third party tools . 29

1.11. Dependency upgrades . 30

1.12. License year update. 36

2. Application framework. 38

2.1. Introduction. 38

2.2. Stand-alone execution versus Eclipse IDE . 38

2.3. The Application class . 41

2.4. The exception framework . 42

2.5. Exit codes . 43

2.6. The I/O framework . 43

2.7. The option framework . 45

2.8. The compiler framework . 48

2.9. How to implement your own application. 48

2.10. Application registration . 51

2.11. Execution . 52

3. Design Structure Matrix (DSM) library . 54

3.1. Code organization. 54

3.2. Algorithm and code . 55

3.3. Bus detection algorithms . 55

References . 56

4. Multi-value Decision Diagrams library. 57

4.1. Goals . 57

4.2. Variables and relations . 57

4.3. Combining relations. 58

4.4. Computing . 59

4.5. Practical usage. 60

5. Rail diagram generator . 62

5.1. Introduction. 62

5.2. Examples. 62

5.3. Customizing output . 68

5.4. Command-line arguments . 78

5.5. Lexical syntax . 78

5.6. Grammar . 80

5.7. Debugging. 81

6. SeText scanner/parser generator . 85

6.1. SeText lexical syntax . 85

6.2. Specifying lexical syntax using SeText . 85

6.3. Regular expressions . 87

6.4. Terminal descriptions . 88

6.5. Imports . 89

6.6. Scanner hooks . 89

6.7. Specifying grammars using SeText . 90

6.8. Parser hooks . 91

6.9. Usage hints . 93

6.10. Generated scanners/parsers . 94

6.11. Using SeText in an Eclipse Plug-in Project . 94

6.12. Limitations . 95

7. Legal . 96

Index . 97

This documentation concerns the development of the Eclipse Supervisory
Control Engineering Toolkit (Eclipse ESCET) open-source project.

The Eclipse ESCET project and all its tools are currently in the Incubation Phase.

Eclipse ESCET development

This manual includes information related to the development of the Eclipse ESCET toolkit as a
whole, as it applies to all its languages and tools.

The following topics are discussed in more detail:

• The Eclipse ESCET dev-list

• Development process

• Contributing

• Issue tracking

• Development environment setup

• Git repository

• Coding standards

• Building and testing

• Release process

• Third party tools

• Dependency upgrades

• License year update

• Legal

Common libraries and development tools

Furthermore, this manual includes information on various common libraries and development
tools. These libraries and development tools are shared by the various end-user languages and tools
that comprise the Eclipse ESCET toolkit.

Information on the following libraries and development tools is available:

• Application framework

• Design Structure Matrix (DSM) library

• Multi-value Decision Diagrams library

• Rail diagram generator

• SeText scanner/parser generator

https://www.eclipse.org/projects/handbook/#starting-incubation

1. Eclipse ESCET development

1.1. The Eclipse ESCET dev-list
You can contact the Eclipse ESCET developers via the project’s 'dev' list.

• Eclipse ESCET 'dev' list

For other means to interact with the Eclipse ESCET community and its developers, see:

• Eclipse ESCET contact information

1.2. Development process

If you want to contribute to the Eclipse ESCET project, please refer to the specific
contributing information. Most of the information on this page will however also
be applicable to and relevant for contributors, but not all of it.

The Eclipse ESCET project primarily uses GitLab for its development:

• Eclipse ESCET GitLab

1.2.1. Discussion

It is often a good idea to first discuss new ideas and features with the rest of the project developers,
i.e. the project committers and the project community. Discussions can take place on the project’s
'dev' list, especially for radical new ideas and new features that have not been discussed before.

1.2.2. Issue tracking

If the project committers and the community agree that it is a good idea to have the new feature, an
issue should be created in the issue tracker. For improvements where extensive discussion is not
expected, as well as for obvious bugs, an issue can be created directly, without first discussing it on
the 'dev' list. The discussion can also continue in the issue itself, once the issue is created.

When creating an issue, take the following into account:

• An issue must be created in the issue tracker for all development, however small. This ensures
we can link issues can commits to keep track of everything.

• Issues are ideally kept relatively small in scope. Bigger tasks can be split up into multiple issues,
and follow-up issues can be created as needed. This allows to separate concerns, and also to
work in a more agile way, e.g.:

◦ Issues can be addressed more quickly.

https://accounts.eclipse.org/mailing-list/escet-dev
https://eclipse.org/escet/v0.9/contact-and-support.html
https://gitlab.eclipse.org/eclipse/escet/escet

◦ Merge requests can be reviewed more easily as they are not as big.

◦ Merge conflicts are less likely to occur, as branches are smaller and have a shorter lifespan.

• If a new feature is split up into multiple issues, the issues can be linked to each other. Issues can
also be linked together for other reasons, e.g. if an issue requires that another issue is addressed
first. See the Linked issues section of the issue.

• Attach the appropriate predefined labels to the issue:

◦ Either something is broken ('Bug' label) or we want something more, different, better, etc
('Enhancement' label). Removal of deprecated and obsolete functionality, code,
documentation, etc is also considered an enhancement.

◦ Add all relevant component labels (e.g. 'Chi' and 'CIF' labels). Typically at least one such label
should be present, but it is also possible to add multiple labels if the issue involves multiple
components. The components correspond to the directories in the root of our Git repository.

◦ The Eclipse ESCET project committers can add the 'Help Wanted' label to an issue to indicate
that they don’t have the time to work on the issue, and that help from the community is
wanted.

◦ If you don’t have permissions to add the labels, the project committers will add them. If they
forget, you can remind them via a comment.

1.2.3. Releases and milestones

For every software version a GitLab milestone is created, to track its scope and progress. An issue is
assigned to a GitLab milestone (typically the current work-in-progress one) when someone starts
working on an issue, plans to do so shortly, or when someone considers the issue as something that
must be addressed for that software version. Issues being worked on that can’t be resolved before
the final release of that version are moved to the next version.

A single GitLab milestone is used per software version. Each software version has one or more
milestone releases (M1, M2, etc), followed by one or more release candidates (RC1, RC2, etc), and is
completed by a final release.

See also:

• Eclipse ESCET GitLab milestones

• Eclipse ESCET GitLab unassigned issues

1.2.4. Working on issues

The process to work on issues is as follows:

• Unassigned issues can be picked up.

• Assign yourself to the issue when you are working on an issue, such that others won’t start
working on it as well. You then 'own' the issue and nobody should work on the issue without
discussing with you first.

https://gitlab.eclipse.org/eclipse/escet/escet/-/labels
https://gitlab.eclipse.org/eclipse/escet/escet/-/milestones
https://gitlab.eclipse.org/eclipse/escet/escet/-/issues?scope=all&state=opened&milestone_title=None

As a contributor, you can’t assign yourself to an issue. In that case, you can discuss with the
project committers through issue comments, and they can assign you to the issue.

• Set the issue’s milestone to the current work-in-progress version.

• Unassign yourself if you are no longer working on an issue, don’t plan to continue, and the issue
is not finished. A contributor can ask the project committers to be unassigned.

• Don’t unassign yourself after finishing the issue. It is enough to close the issue. The issue may
also be closed automatically when an associated merge request is merged.

1.2.5. Working with branches

The Eclipse ESCET project roughly follows the GitFlow branching model. The master branch is thus
for released content only, and the current development status is captured in the develop branch.

If possible, we approach the somewhat heavy GitFlow branching model in a practical way, reducing
overhead. We may for instance skip release branches, merging develop to master directly.

When creating and working with branches, consider the following:

• Always work in a branch for the issue. Use a merge request from a feature branch to merge
your changes to develop. Direct commits to the develop branch have been disabled.

• Ideally address each issue in a separate branch. This makes it easier to keep track of things. It
also makes it easier for reviewers.

• Branches for work on issues (feature branches) should be relatively short lived. This makes it
easier to keep the overview, allows for more agile development and faster reviews, and reduces
the chance for merge conflicts.

• The GitFlow branching model allows for sub teams that share work but don’t push that to
'origin' (yet). It also allows feature branches that live only locally on a developer’s PC and not on
'origin'. To be transparent, Eclipse Foundation open source projects don’t do this. We push to
our GitLab server regularly, to ensure that the community can see what the project committers
are working on.

• We have no strict branch naming rules. You can let GitLab create the branch for the issue. For
an issue with number #2 named 'Test', it will create a branch named 2-test. This starts with the
issue number, which makes it easy to relate a branch to an issue, without having to look inside
the branch for commits (if there even are any). It also includes the issue name, which is
convenient as it indicates what the branch is about, without having to look up the issue.

• There are many ways to create a branch.

For project committers, one way to create a branch is from the GitLab issue. On the web page
for a GitLab issue, there is a Create merge request button. Select the arrow to the right of it to
show more options. Select Create branch. Adapt the Branch name and Source as needed.
Typically the defaults suffice. Click the Create branch button to create the branch.

For contributors, see the contributing section for the recommended approach.

https://nvie.com/posts/a-successful-git-branching-model/

• We prefer not to create a draft merge request with the creation of the branch, as then commits
in the branch lead to commits on the merge requests, which lead to notification emails. Instead,
work in the branch until it is ready for review, and then create a merge request for it.

• The person that is assigned to an issue 'owns' that issue, and may create branches for it. They
then also 'own' those branches, and nobody should commit in those branches unless discussed
with and agreed to by the branch owner.

• A branch owner may perform a rebase on a branch. However, this should be carefully
considered, taking into account Git’s well-known 'Golden Rule of Rebasing'. Only perform a
rebase if you understand the potential pitfalls of rewriting history. Never rebase a branch that is
shared with others that have been given 'permission' to work on the branch as well. Never
rebase a branch when other branches are based on it. Never rebase a branch once a merge
request is created for it, e.g. to avoid confusion for reviewers, and to prevent rewriting history
in case a snapshot of the merge request is submitted to the Eclipse Foundation IP team as part of
a Contribution Questionnaire (CQ). A safer alternative to rebasing is merging, which leads to an
extra merge commit and a more complicated history. If you fully understand rebasing and
employ it carefully, it can be a powerful to maintain a simpler and cleaner history. Rebasing
local commits that have not yet been pushed to the remote public repository is always at your
own discretion.

1.2.6. Commits

Consider the following regarding commits:

• Project committers working on an issue in a branch must commit regularly, to allow the other
project committers and the rest of the community to see what they’re working on. This is
mandatory as per the Eclipse Foundation transparency principle.

• If a branch involves significant changes, consider using multiple commits that may be easier to
review. This is especially useful when renaming directories, files, methods, etc, or moving them.
Typically renames and moves should be done in separate commits, without any other changes
in them. The same goes for large scale code reformatting, whitespace changes, etc.

• As is standard for Git commits, the first line of the commit message must be a short summary,
and must not exceed 72 characters.

For the Eclipse ESCET project, this line must start with the issue number, to allow GitLab to link
commits to issues. For instance #NNN Commit summary. for issue NNN. In case a commit relates to
multiple issues, list each of them, e.g. #1 #2 Commit summary. for issues 1 and 2. Merge commits
are exempt from this rule.

• All commits must adhere to the requirements as defined by the Eclipse Foundation. See Git
Commit Records in the Eclipse Foundation Project Handbook.

If you are not an Eclipse ESCET project committer with write access to our Git repository, see the
information on contributing to the Eclipse ESCET project.

https://www.eclipse.org/projects/handbook/#resources-commit
https://www.eclipse.org/projects/handbook/#resources-commit

1.2.7. Merge requests

Once the work on an issue is done and pushed to a branch, it must be reviewed before it is merged
back. Reviews are done via merge requests. The process is as follows:

• Create a merge request for merging the branch. You can create a merge request from the Eclipse
ESCET Gitlab Branches page. Select the Merge request button next to the branch to be merged.

◦ Typically a branch is created from and merged back to the develop branch, but this can be
changed if needed.

◦ Start the merge request title with the related issue number(s), to allow easier tracking of
merge requests back to issues.

◦ If you include Closes #NNN in the description of the merge request, with NNN an issue number,
that issue will automatically be closed once the merge request is merged. Use Addresses #NNN
instead, if the merge request addresses part of the issue, but work remains, to prevent the
issue from being closed. Always include either of them to ensure the merge request is
properly linked to the issues it addresses. Include multiple of them if appropriate.

◦ It is not mandatory to select assignees, reviewers, etc.

• The merge request is reviewed by the (other) Eclipse ESCET project committers.

• Improvements are made as necessary, reviewed again, etc, until the branch is considered to be
ready to merge.

• Ensure the merge request is successfully built on Jenkins.

◦ Jenkins builds merge requests separately from branches. It regularly scans the project for
new merge requests and new commits to existing merge requests, but you can also force a
build for the merge request. This may also be necessary if Jenkins seems stuck while
Checking pipeline status.

◦ Ensure the last commit to the merge request is built, to allow merging the merge request.

• Merge the branch:

◦ Make sure the Delete source branch option is selected.

◦ Wait for the builds on Jenkins to successfully complete and press Merge. Alternatively, press
Merge when pipeline succeeds to automatically merge the merge request once the build
succeeds.

• If the branch fully addressed the associated issue or issues, it/they should be closed.

If you are not an Eclipse ESCET project committer with write access to our Git repository, see the
information on contributing to the Eclipse ESCET project.

1.2.8. Collaborating with contributors on a merge request

During a review of a contributor’s merge request, the project committers may provide some
feedback on how to improve the contribution. While contributors could address any review
comments themselves, sometimes it is useful to collaborate with the project committers on a
contribution.

There are two approaches to this. The first approach is simple. It has some restrictions, but suffices

https://gitlab.eclipse.org/eclipse/escet/escet/-/branches

in most cases. The second approach is more advanced and does not suffer from those restrictions. It
is however considerably more complex and cumbersome to apply and should thus only be used if
necessary.

Simple approach

The first and simplest approach is to make sure Allow commits from members who can merge to the
target branch is enabled when creating a merge request as a contributor. This way the Eclipse
ESCET project committers get write access to the source branch of the merge request in the
contributor’s forked repository. As the contributor and project committers then all have write
access to the branch, it is easy to collaborate on the merge request.

Advanced approach

The simple approach is not sufficient if multiple contributors want to collaborate with the project
committers on a single merge request. The contributors will each have write access to their own
forked repositories, but not to the forks of the other contributors. There is no single repository
where the multiple contributors and the project committers have write access.

The second approach resolves this issue, but is much more complex and cumbersome to apply. The
solution is for the project committers to create a new branch in the official Git repository, based on
a contributor’s branch from their forked repository. The project committers can then make changes
and push them to the official Git repository. Multiple contributors can then merge those changes
into their own branches in their own forked repositories. Contributors can then add their own
changes again and push those to their own branches. The project committers can merge those
changes into the branch on the official Git repository, make changes of their own, push those
changes, etc. This can be repeated until the work is done and everything is in the branch used by
the project committers. The project committers can then merge their branch into the develop
branch of the official Git repository, via a merge request. This process works for any number of
contributors. Some alignment between all parties involved is typically desired to e.g. prevent merge
conflicts.

Note that you will get emails about new commits being pushed to merge requests, if you have
notifications enabled for it. For branches without merge requests there is no way to get emails
informing about new commits being pushed. It can thus be useful to have merge requests for all
branches used by committers and contributors. Alternatively, others can be informed by posting
comments on the original merge request created by the original contributor. This can prevent an
overload of related merge requests and discussions being fragmented among them.

Fork collaboration script support

To make it easier to work with branches in forks of the official Eclipse ESCET Git repository in the
Eclipse Foundation GitLab, some scripts are provided:

• misc/fork-collab/fork-checkout-branch <username> <branch_name>

Use this script to fetch and checkout the remote branch named <branch_name> in the GitLab fork
of user <username>.

• misc/fork-collab/fork-push-branch <username> <branch_name>

Use this script to push your local changes back to the remote branch named <branch_name> in the
GitLab fork of user <username>. This assumes you have write access to the branch.

If you are not an Eclipse ESCET project committer with write access to our Git repository, see the
information on contributing to the Eclipse ESCET project.

1.3. Contributing
Interested in contributing to the Eclipse ESCET project? Contributions are always welcome!

The following information may help you get started:

• How to contribute to Eclipse ESCET

• Keeping in sync with the official Eclipse ESCET GitLab repository

• How to become a committer

1.3.1. How to contribute to Eclipse ESCET

It is often a good idea to first discuss your contribution with the project’s community and
committers, before creating the actual code (e.g. patches), documentation, etc of your contribution.
Discussions can take place via an issue in the issue tracker, or on the project’s 'dev' list.

To contribute your actual contribution, e.g. code, documentation, examples, or anything else to the
project, please make sure an issue already exists or create a new issue for it in the issue tracker.

To create issues, reply to issues, contribute patches and merge requests, etc, you need an Eclipse
Foundation account. It can easily be created at https://accounts.eclipse.org/user/register.

The easiest way to contribute the actual contribution, is to use GitLab:

• Create a fork of the official Eclipse ESCET GitLab repository under your own account:

◦ Navigate to https://gitlab.eclipse.org/eclipse/escet/escet.

◦ If not signed in, click Sign in at the top-right of the page, and sign in with your Eclipse
Foundation account. Then navigate back to https://gitlab.eclipse.org/eclipse/escet/escet.

◦ Click the Fork button at the top-right of the page, and create your fork:

▪ For the Project name and Project slug, use escet.

▪ For the Project URL select your Eclipse Foundation account username as namespace.

▪ For the Project visibility select Public.

▪ Click Fork project.

◦ Ensure the Eclipse ESCET bot has permissions to your fork. This enables the build server to
communicate the build status of your merge requests to your forked repository. It also
enables that your merge requests can be merged into the official Eclipse ESCET GitLab
repository:

https://accounts.eclipse.org/user/register
https://gitlab.eclipse.org/eclipse/escet/escet
https://gitlab.eclipse.org/eclipse/escet/escet
https://docs.gitlab.com/ee/user/project/merge_requests/allow_collaboration.html#pipeline-status-unavailable-from-mr-page-of-forked-project

▪ Navigate to https://gitlab.eclipse.org/<username>/escet/-/project_members, with
<username> replaced by your Eclipse Foundation account username.

▪ Click Invite members.

▪ For Username or email address type escet-bot, and select the escet bot user from the list.

▪ For Select a role select Developer.

▪ Click Invite to finish adding the bot.

• Set up a development environment to work on your contribution:

◦ You can find your fork at https://gitlab.eclipse.org/<username>/escet, with <username>
replaced by your Eclipse Foundation account username.

◦ Click the Clone button near the top-right of the page and observe the https URL.

◦ Follow the development environment setup instructions to set up a properly configured
development environment. You need the https URL of your fork for this.

• Make your changes in the forked repository under your own account:

◦ If you followed the development environment setup instructions, your development
environment contains a clone of your forked repository, all set up to commit and push to the
upstream forked repository.

◦ Make your changes in a branch of your forked repository, rather than in develop. This allows
you to work on multiple contributions at once. It also allows syncing back changes from the
official Eclipse ESCET develop branch to the develop branch of your forked repository, while
you’re working in a branch.

To create branches in your fork, navigate to https://gitlab.eclipse.org/<username>/escet/-
/branches, with <username> replaced by your Eclipse Foundation account username. There
click New branch to create a new branch from develop.

◦ Please start each commit message with the issue number, e.g. #NNN Commit summary. for issue
NNN. See our development process for more information.

• Once you’ve finished work on your contribution, create a merge request for it:

◦ Navigate to https://gitlab.eclipse.org/<username>/escet/-/branches, with <username>
replaced by your Eclipse Foundation account username.

◦ Click Merge request next to the branch for which you which to create the merge request.

◦ On the New Merge Request page that is shown, click on Change branches.

◦ Change for Target branch the repository to eclipse/escet/escet (the official Eclipse ESCET
GitLab repository).

◦ As target branch typically develop should be selected.

◦ Your forked repository (e.g. <username>/escet) and branch should already be selected for
Source branch.

◦ Click Compare branches and continue to confirm.

◦ Select an appropriate title. Ideally it starts with the issue number, similar to the first line of a
commit message.

◦ Describe your changes under Description.

◦ Make sure Allow commits from members who can merge to the target branch is enabled. This
allows collaboration with the Eclipse ESCET committers on the merge request.

◦ You may optionally make other changes to the merge request.

◦ Click Submit merge request to submit the merge request to the Eclipse ESCET project
committers for review.

Before your contribution can be accepted by the project team, you must electronically sign the
Eclipse Contributor Agreement (ECA):

• Eclipse Contributor Agreement (ECA)

The non-committer that authored the commit, must have an Eclipse Foundation Account and must
have a signed Eclipse Contributor Agreement (ECA) on file. The name and email address of the
commits must match the corresponding information on the Eclipse Foundation Account. For more
information, including the specific format of commit messages, please see the Eclipse Foundation
Project Handbook:

• Eclipse Foundation Project Handbook

• Git Commit Records

A contribution by a non-committer will be reviewed by the project committers. This includes
adherence to the project’s coding standards. Discussions regarding the contribution will typically
take place in the associated merge request (or issue).

Align with the project committers on who will address the review feedback. If you address the
feedback yourself, you can commit and push additional commits to the source branch of the merge
request. These will then automatically be picked up by GitLab. Once the committers agree with the
contribution, they will merge the contribution into the project’s official Git repository.

Remember that contributions are always welcome, and contributions don’t have to be perfect. The
project’s developers can help to improve your contribution. If you need any help regarding the
content of your contribution, the steps above, or anything else, just ask the project’s developers via
the issue or the project’s 'dev' list.

See for more information our development process.

1.3.2. Keeping in sync with the official Eclipse ESCET GitLab repository

If you’ve set up a development environment for your forked repository, it will at some point get out
of sync with new developments on the official Eclipse ESCET GitLab repository. To sync those
changes to your forked repository and to the local clone of your forked repository, follow these
steps:

• Navigate in a command prompt or shell to your local Git clone of your forked repository. It is
typically located in the git/escet directory within the directory that contains your development
environment.

https://www.eclipse.org/legal/ECA.php
https://www.eclipse.org/projects/handbook
https://www.eclipse.org/projects/handbook/#resources-commit

• Add the official Eclipse ESCET GitLab repository as upstream remote repository to your local
repository, by executing:

◦ git remote add upstream https://gitlab.eclipse.org/eclipse/escet/escet.git

• You now have upstream as a remote repository that connects to the official Eclipse ESCET GitLab
repository. You will also still have origin as a remote repository that connects to your forked
repository on the Eclipse Foundation GitLab server. Adding the upstream remote repository is a
one-time only step. The remaining steps can be repeated whenever desired, to resync your
develop branch to the develop branch of the official Eclipse ESCET GitLab repository.

• Locally, switch to the develop branch, by executing:

◦ git checkout develop

• Fetch all changes from the upstream repository, by executing:

◦ git fetch upstream

• Update your local develop branch with the changes from the develop branch of the upstream
repository, by executing:

◦ git pull upstream develop

• Push the changes to your forked repository on the Eclipse Foundation GitLab server, by
executing:

◦ git push origin develop

We recommend that you remove feature branches once your contribution has been accepted into
the official Eclipse ESCET GitLab repository’s develop branch. Then, use these steps to resync your
local develop branch and the develop branch of your forked repository with your own contribution.
You are then back in sync and ready to start work on your next contribution. Using this process it is
also possible to work on multiple contributions at once, via separate feature branches.

1.3.3. How to become a committer

The Eclipse Foundation operates on the principle of meritocracy. Anybody can contribute to Eclipse
ESCET as a contributor. But the more that somebody contributes, the more responsibility they will
earn. To earn committer status, a contributor must demonstrate that they understand their
responsibilities, both as an Eclipse Foundation committer in general and as a committer for the
project in particular.

A contributor can be elected to become a committer. This starts with a nomination by an existing
committer. For further details on the process, see the Committer Elections section of the Eclipse
Foundation Project Handbook.

Each project can define the criteria that are considered for nominations. The criteria for the Eclipse
ESCET project are as follows:

• Demonstrate a good grasp of the Eclipse Foundation Development Process, including the Eclipse
Foundation Intellectual Property Policy.

• Provide several high-quality non-trivial contributions that demonstrate a good grasp of the code
base, its structure and the underlying concepts.

https://gitlab.eclipse.org/eclipse/escet/escet.git
https://www.eclipse.org/projects/handbook/#elections-committer
https://www.eclipse.org/projects/dev_process/
https://www.eclipse.org/org/documents/Eclipse_IP_Policy.pdf
https://www.eclipse.org/org/documents/Eclipse_IP_Policy.pdf

• Demonstrate a good grasp of the Eclipse ESCET way of working, including use of issues, merge
requests, code style, build, tests, etc.

• Demonstrate the ability to work together with the current committers and the wider
community, in a positive, open and transparent manner.

The more of these criteria that have been shown the better, but it is not a requirement to show all
of these to the same degree. In the end it is up to the existing committers to judge whether enough
merit has been demonstrated to warrant a nomination.

The Eclipse Foundation also requires that nominations are supported by public evidence that
demonstrates the merit. This ensures that the process of electing new committers is transparent.
Furthermore, nominations and elections must be open, in that anybody that shows merit should be
considered equally for nominations. It must definitely not be based on employment status.

Obviously, the contributor must be willing and able to become a committer, and there must be an
outlook that the contributor will remain active in the future.

For more information, see also the following blog posts:

• Barriers for Entry (Wayne Beaton, Director of Open Source Projects at Eclipse Foundation)

• Make This Person We Hired a Committer (Wayne Beaton, Director of Open Source Projects at
Eclipse Foundation)

1.4. Issue tracking
The Eclipse ESCET project uses GitLab to track ongoing development and issues:

• Eclipse ESCET milestones

• Eclipse ESCET issues

Be sure to search for existing issues before you create another one. Remember that contributions
are always welcome!

To contribute code (e.g. patches), documentation, or anything else, see the contributing section.

To understand how we work with issues, see our development process.

1.5. Development environment setup
Follow these instructions to set up an Eclipse ESCET development environment.

To create a development environment for the first time:

• Get the Eclipse Installer:

◦ Go to https://www.eclipse.org/ in a browser.

https://blog.waynebeaton.ca/posts/opensource/repository/
https://blog.waynebeaton.ca/posts/opensource/hired-a-committer/
https://gitlab.eclipse.org/eclipse/escet/escet/-/milestones
https://gitlab.eclipse.org/eclipse/escet/escet/-/issues
https://www.eclipse.org/

◦ Click on the big [ Download ] button at the top right.

◦ Download Eclipse Installer, 64 bit edition, using the [ Download x86_64 ] button.

• Start the Eclipse Installer that you downloaded.

• Use the hamburger menu at the top right to switch to advanced mode.

• For Windows:

◦ When asked to keep the installer in a permanent location, choose to do so. Select a directory
of your choosing.

◦ The Eclipse installer will start automatically in advanced mode, from the new permanent
location.

• For Linux:

◦ The Eclipse installer will restart in advanced mode.

• Continue with non-first time instructions for setting up a development environment.

To create a development environment for a non-first time:

• Ensure you are using the latest version of the Eclipse Installer:

◦ One option is to download it again, as per the 'first time' instructions above.

◦ Another option is to update your existing Eclipse Installer. In the Eclipse Installer, when in
advanced mode, click the 'Install available updates' button. This button with the two-arrows
icon is located at the bottom-left part of the window, next to the version number. Wait for
the update to complete and the Eclipse Installer to restart. If the button is disabled (grey),
you are already using the latest version.

• In the first wizard window:

◦ Select Eclipse Platform from the big list at the top.

◦ Select 2022-06 for Product Version.

◦ For Java 11+ VM select JRE 17.x.x -
https://download.eclipse.org/justj/jres/17/updates/release/latest.

◦ Choose whether you want a P2 bundle pool (recommended).

◦ Click [ Next ].

• In the second wizard window:

◦ Use the green '+' icon at the top right to add the Oomph setup.

▪ For Catalog, choose Eclipse Projects.

▪ For Resource URIs, enter https://gitlab.eclipse.org/eclipse/escet/escet/-
/raw/develop/org.eclipse.escet.setup and make sure there are no spaces before or after
the URL.

▪ Click [ OK ].

◦ Check the checkbox for Eclipse ESCET, from the big list. It is under Eclipse Projects / <User>.

◦ At the bottom right, select the develop stream.

◦ Click [ Next ].

• In the third wizard window:

◦ Enable the Show all variables option to show all options.

◦ Choose a Root install folder and Installation folder name. The new development environment
will be put at <root_installation_folder>/<installation_folder_name>.

◦ Fill in the Eclipse ESCET Git clone URL:

▪ Committers with write access to the Eclipse ESCET official GitLab repository can use the
default URL https://gitlab.eclipse.org/eclipse/escet/escet.git.

▪ Contributors can use the same URL, but as they don’t have write access, they will not be
able to push to the remote repository. They can instead make a fork of the official Git
repository, as described in the contributing section. Then they can fill in the URL of their
clone instead, i.e. https://gitlab.eclipse.org/<username>/<cloned_repo_name>.git, with
<username> replaced by their Eclipse Foundation account username, and
<cloned_repo_name> replaced by the name of the cloned repistory, which defaults to escet.

◦ For Eclipse Foundation account full name fill in your full name (first and last name) matching
the full name in your Eclipse Foundation account. This will be used as name for Git commits.

◦ For Eclipse Foundation account email address fill in the email address associated with your
Eclipse Foundation account. This will be used as email for Git commits.

◦ Click [ Next ].

• In the fourth wizard window:

◦ Select [ Finish ].

• Wait for the setup to complete and the development environment to be launched.

◦ If asked, accept any licenses and certificates.

◦ If you get a Trust dialog, click [ Select All ] and then [ Trust Selected ].

• Press [ Finish ] in the Eclipse Installer to close the Eclipse Installer.

• In the new development environment, observe Oomph executing the startup tasks (such as Git
clone, importing projects, etc). If this is not automatically shown, click the rotating arrows icon
in the status bar (bottom right) of the new development environment.

• Wait for the startup tasks to finish successfully.

• NOTE: If you don’t open the Oomph dialog, the status bar icon may disappear when the tasks
are successfully completed.

If you have any issues during setting up the development environment, consider the following:

• You can set the following environment variables to force the use of IPv4, in case of any issues
accessing/downloading remote files:

_JAVA_OPTIONS=-Djava.net.preferIPv4Stack=true
_JPI_VM_OPTIONS=-Djava.net.preferIPv4Stack=true

After setting them, make sure to fully close the Eclipse Installer and then start it again, for the
changes to be picked up.

In your new development environment, consider changing the following settings:

• For the Package Explorer view:

◦ Enable the Link with Editor setting, using the icon.

◦ Enable showing resources (files/folders) with names starting with a period. Open the View
Menu () and choose Filters…. Uncheck the .* resources option and click [ OK ].

1.6. Git repository
The Eclipse ESCET project maintains the following source code repositories:

• https://gitlab.eclipse.org/eclipse/escet/escet.git

These can also be accessed via a web interface:

• Eclipse ESCET GitLab

The software is written in the Java programming language, as a collection of Eclipse plugins, and
using the Eclipse Modeling Framework (EMF).

For ease of programming, the Eclipse IDE is recommended. See also the section on setting up a
development environment.

To contribute code (e.g. patches), documentation, or anything else, see the contributing section.

The way we work with our Git repository is explained as part of our development process.

1.6.1. Repository structure

In the Eclipse ESCET source code repository (Git repository), three layers are distinguished:

• The top layer contains user-oriented languages for designing controllers. Currently there are
two modeling languages in this layer, CIF and Chi.

The third language in the top layer is ToolDef, a cross-platform scripting language to run tests,
and to automate the various tools that need to be executed while designing a controller.

• The middle layer contains developer oriented support code. It has a language of its own, named
SeText. This language implements an LALR(1) parser generator with a few twists to make it easy
to use in a Java environment and to connect it to an Eclipse text editor.

The other part of the middle layer is common functionality shared between the languages.

• The bottom layer is mostly configuration to attach the software to the Eclipse platform,
including build and release engineering.

https://gitlab.eclipse.org/eclipse/escet/escet
https://www.oracle.com/java/
https://www.eclipse.org/pde/
https://www.eclipse.org/modeling/emf/
https://eclipse.org
https://eclipse.org/escet/v0.9/cif
https://eclipse.org/escet/v0.9/chi
https://eclipse.org/escet/v0.9/tooldef

This document describes the structure of the top and middle layers. For the bottom layer, standard
Eclipse and Maven/Tycho tools are used, which are described elsewhere.

The three layers are not further distinguished in the repository. Instead, different parts are stored
in different sub-directories from the root.

1.6.2. Language directories

Each language has its own subdirectory in the root, /cif and /chi for the CIF and Chi modeling
languages, /tooldef for the ToolDef language, and /setext for the SeText language.

Within a language directory, a directory exists for each part of the code (often equivalent to a
plugin), with the same name as the plugin. The pattern of a plugin name is
org.eclipse.escet.<language>.<plugin-name> where the plugin-name in different directories has the
same meaning. A non-exhaustive list:

Plugin name Description

documentation User-oriented documentation about the language, such as a user manual or a
reference manual.

documentation.util
s

Support libraries used by the documentation for generating figures.

metamodel Ecore metamodel back bone of the language. Model classes for the central data
structure that all tools of the language use. Often generated using modeling
tools such as Sirius, but manually written classes exist as well.

metamodel.java Generated Java constructor and walker classes for the Ecore metamodel data
structure.

parser SeText input, and generated or manually written code to parse an input file
and convert it to an tree of classes that can be given to the type checker.

typechecker Implementation of the type checker to check the parsed input, and annotate it
with derived information, resulting in an model instance that can be used by
all tools of the language.

io Text file loading, parsing, and type checking, and possibly writing result
specifications.

texteditor Code for editing source files of the language in an text Eclipse editor, with
folding, syntax highlighting, and reporting of errors and warnings in the
specification.

tests Collection of tests to check the tools for the language. Typically a set of input
specifications, a set of expected output files, and a ToolDef script to run the
tests. These tests can be seen as integration tests.

codegen Code generator to convert the input specification to a runnable model.

runtime Support libraries used by the runnable model.

tooldefs Interface definitions to make tools of the language available for ToolDef.

common Common functionality used by many tools of the language.

Other plugin names are often tools with the same name.

1.6.3. Middle layer common functionality

The common code between all languages is stored in the /common directory, again with full name of
the plugin as sub-directory names. These plugins contain:

Plugin name Description

org.eclipse.escet.common.app.f
ramework

Common application framework.

org.eclipse.escet.common.app.f
ramework.appsview.ui

The Applications view provides a user interface to manage the
active applications.

org.eclipse.escet.common.ascii
doc

Common functionality related to AsciiDoc documentation.

org.eclipse.escet.common.box Library to generate formatted code-like text.

org.eclipse.escet.common.eclip
se.ui

Common Eclipse User Interface code.

org.eclipse.escet.common.emf Common EMF code.

org.eclipse.escet.common.emf.e
core.codegen

Code generators from Ecore files.

org.eclipse.escet.common.emf.e
core.validation

Common EMF validation code.

org.eclipse.escet.common.emf.e
core.xmi

Common EMF XMI serialization code.

org.eclipse.escet.common.java Common Java functions and classes, in particular the Lists, Sets,
Maps and Strings classes.

org.eclipse.escet.common.multi
valuetrees

A pure Java implementation of Multi-value Decision Diagrams
(MDDs).

org.eclipse.escet.common.posit
ion.common

Common functions for (text-file) positions in source files.

org.eclipse.escet.common.posit
ion.metamodel

The Ecore metamodel for (text-file) positions in source files.

org.eclipse.escet.common.raild
iagrams

Rail diagram generator. Produces syntax diagrams.

org.eclipse.escet.common.svg Common SVG library for viewing and manipulating SVG trees.

org.eclipse.escet.common.typec
hecker

Common type checker functionality.

1.7. Coding standards
The Eclipse ESCET development environment has some features that allow developing high quality
contributions:

• A Java formatter profile is included. It allows to automatically format Java code for consistency
and convenience.

• The Eclipse Checkstyle Plugin and a Checkstyle configuration are included. They can be used to
detect various other issues in Java code and other files.

For all contributions to the Eclipse ESCET project, check the following:

• All Java code should be formatted using the provided formatting profile.

• All contributions should be checked using the provided Checkstyle configuration.

• All contributions should be free of warnings and errors, when working with them in the Eclipse
ESCET development environment.

Remember that contributions are always welcome, and contributions don’t have to be perfect. The
project’s developers can help to improve your contribution, and ensure it adheres to these coding
standards.

For any questions regarding these coding standards, please contact the project’s developers.

1.8. Building and testing
The Eclipse ESCET software can be built using Maven/Tycho. The build will build every individual
plugin and feature, as well as the update site, product and all documentation. Manually run it in
one of the following ways:

• In an Eclipse-based development environment, select Run › Run Configurations… to open the
Run Configurations dialog. From the list at the left, under Maven Build, select the build launch
configuration, and click the [ Run ] button to run the build.

Additional launch configurations are available to build documentation projects separately.

• On Windows, in a command prompt, with the root of the Git repository as current directory,
enter .\build.cmd and press Enter . This requires Maven to be available on your system (to be on
your PATH). Make sure to use the same Java and Maven versions as for the Eclipse-based
development environment.

• On Linux/macOS, in a shell, with the root of the Git repository as current directory, enter
./build.sh and press Enter . This requires Maven to be available on your system (to be on your
PATH). Make sure to use the same Java and Maven versions as for the Eclipse-based development
environment.

Builds are in certain cases also automatically executed on our build server:

• Eclipse ESCET Jenkins server

If they are not automatically executed, login to Jenkins, open the desired build and select Scan
GitLab Project Now to force GitLab to scan for new branches, commits, etc.

Run tests in one of the following ways:

https://checkstyle.org/eclipse-cs
https://ci.eclipse.org/escet/

• As part of the build, all tests will be performed as well.

• A single test-all launch configuration to run all tests is available under the Launch Group section
of the Run Configurations dialog.

• Launch configurations to run various subsets of the tests are also available, under the JUnit Test
and JUnit Plug-in Test sections of the Run Configurations dialog.

When a tool has been updated, the test outputs may change. The expected outputs can be updated
as follows.

1. Run the integration test under the JUnit Plug-in Test section of the Run Configurations dialog (e.g.
test-cif-integration).

2. If an output differs from the expected output, the output is saved with a .real postfix.

3. Run the copy all script under JUnit Plug-in Test section to replace the expected outputs with the
test outputs (e.g. test-cif-integration-copy-all).

4. Run the integration test again to ensure that all expected test outputs have been updated.

5. Before committing the changes, check whether the differences are as expected.

1.9. Release process
This page explains step by step the various processes involved from preparing for a release to
actually releasing it. The following topics are covered:

• Release policy

• Planning for a next version

• Preparing Git repository for a next version

• Working on a release

• Preparing a release

• Preparing a release review

• Performing a release

• Removing/archiving old releases

1.9.1. Release policy

The Eclipse ESCET project uses a time-based release policy. We generally release every three
months, at the end of each quarter, typically on its last working day.

We may however deviate from this. For instance, we may release earlier at the end of the year, well
before the Christmas period.

1.9.2. Planning for a next version

For a new version (not milestone or release candidate), follow these steps. Perform them well in
advance of starting work on the version, i.e. while still working on the previous version:

• Create a new release record:

◦ Go to https://projects.eclipse.org/projects/technology.escet.

◦ Log in with your Eclipse Foundation account using the link at the top-right of the page.

◦ Click the Create a new release link in the bar at the right.

◦ Set the planned release date and give the release a name, e.g. 0.1, 0.1.1 or 1.0.

◦ Click Create and edit.

◦ For Description, click the Source button in the toolbar of the editor. Then enter <p>See Eclipse ESCET
GitLab vN.N issues for more information.</p>. Replace NNN by the actual GitLab
milestone number to ensure a correct URL. Replace vN.N by the version, e.g. v0.1, v0.1.1 or
v1.0.

◦ Change the Release type if applicable.

◦ Click Save.

• Create a GitLab milestone:

◦ Go to https://gitlab.eclipse.org/eclipse/escet/escet/-/milestones.

◦ Sign in with your Eclipse Foundation account using the link at the top-right of the page.

◦ Click New milestone.

◦ For Title enter the version, e.g. v0.1, v0.1.1 or v1.0.

◦ For Description enter See also https://projects.eclipse.org/projects/technology.escet/
releases/N.N.. Replace N.N by the actual release record version, e.g. 0.1, 0.1.1 or 1.0.

◦ For Start date select the first day after the Due date of the previous version.

◦ For End date select the same date as the planned release date of the release record.

◦ Click Create milestone.

• Create release issues:

◦ Go to https://gitlab.eclipse.org/eclipse/escet/escet/-/issues.

◦ Sign in with your Eclipse Foundation account using the link at the top-right of the page.

◦ Click New issue.

◦ For Title enter Release vN.N-M1. Replace N.N by the actual release record version, e.g. 0.1,
0.1.1 or 1.0.

◦ For Milestone select the just created GitLab milestone.

◦ For Labels select RelEng/DevOps and Type::Enhancement.

◦ Click Create issue.

◦ Repeat these steps to create issues for the release candidate (Release vN.N-RC1) and final
release (Release vN.N).

◦ Repeat these steps to create an issue for preparing the Git repository for development of the
new version (Prepare Git repo for vN.N development).

◦ If a release review is needed, create an issue for that as well (Release review for vN.N).

https://projects.eclipse.org/projects/technology.escet
https://gitlab.eclipse.org/eclipse/escet/escet/-/milestones
https://projects.eclipse.org/projects/technology.escet/releases/N.N
https://projects.eclipse.org/projects/technology.escet/releases/N.N
https://gitlab.eclipse.org/eclipse/escet/escet/-/issues

1.9.3. Preparing Git repository for a next version

To prepare the Git repository for the next version (not a milestone or release candidate), follow
these steps:

• Run in the root of the Git repository the command ./mvn_escet.sh org.eclipse.tycho:tycho-
versions-plugin:set-version -DnewVersion=<new-version>, where <new-version> is replaced by
the new version, e.g. 0.2.0.qualifier. This replaces most version numbers automatically. Check
all changes to ensure no versions are updated that should not be updated.

• Verify that the product version in org.eclipse.escet.product/escet.product is properly updated.
The old version should no longer be present. This should be automatic.

• Verify that the feature version of the product feature in
org.eclipse.escet.product/escet.product is properly updated. The old version should no longer
be present. This should be automatic.

• Verify that the Bundle-Version of all MANIFEST.MF files in org.eclipse.escet.* projects are
properly updated. The old version should no longer be present. This should be automatic.

• Manually replace in all MANIFEST.MF files the regex org\.eclipse\.escet\.([a-z0-9\.]+);bundle-
version="<old-version>" by org.eclipse.escet.\1;bundle-version="<new-version>", where <old-
version> and <new-version> are replaced by actual versions, e.g. 0.1.0. Check for unintended
changes. Search for the old version in all manifests to ensure none remain.

• In all documentation sets, add a new section to the release notes for the new version, before the
existing versions:

=== Version 0.2

TBD

• Verify that the <version> of a POM and its parent in each pom.xml are properly updated. The old
version should no longer be present. This should mostly be automatic. Manually adapt it where
necessary.

◦ Manually adapt the version in org.eclipse.escet.releng.configuration/pom.xml.

◦ Manually adapt the parent version in org.eclipse.escet.root/pom.xml. Also remove the
version for the pom itself, to prevent a warning that the version of the pom and its parent
are identical.

• Verify that the version of all feature.xml files in org.eclipse.escet.* projects are properly
updated. The old version should no longer be present. This should be automatic.

• Verify that the license-feature-version of all feature.xml files in org.eclipse.escet.* projects
are properly updated. The old version should no longer be present. This should be automatic.

• Manually replace in all feature.xml files the regex <import feature="([^"]+)" version="<old-
version>"/> by <import feature="\1" version="<new-version>"/>, where <old-version> and <new-
version> are replaced by actual versions, e.g. 0.1.0.qualifier. Check for unintended changes.

• Manually search for the old version in all features.xml files to ensure none remain.

• Search the entire Git repository (all projects) for the old version number and update anything

that still requires updating.

• Test that the build works.

1.9.4. Working on a release

The work for the next release (milestone, release candidate, or final release) is done in the develop
branch. See the development process for more information.

Note that for each version at least one milestone release and at least one release candidate are
required before a final release.

1.9.5. Preparing a release

Once the work on develop is done for a release (milestone, release candidate, or final release),
follow these steps to prepare for the release:

• Double check that the release notes of all documentation sets have been updated for all end-
user visible changes.

• For a final release add the release date to the release notes.

• For a final release ensure the TBD indication is removed in the release notes of all
documentation sets.

• For a final release ensure that all IP is accounted for and all relevant CQs and IP Team GitLab
issues have been approved by the Eclipse Foundation IP team.

• For a final release ensure that a release review has been successfully completed no more than
one year ago.

1.9.6. Preparing a release review

For a final release a release review must have been successfully completed no more than one year
ago. Follow these steps to prepare a release review:

• Read the official information on release reviews in the Eclipse Project Handbook. In particular,
note that the Eclipse Foundation "schedule[s] reviews to conclude on the first and third
Wednesdays of the month. Your release date does not have to coincide with the review date
(you can set the release date as necessary). The review must, however, conclude successfully
before you can make the release official."

• Update the release record, including the release review information:

◦ Go to the release record at
https://projects.eclipse.org/projects/technology.escet/releases/N.N. Replace N.N by the
actual release record version, e.g. 0.1, 0.1.1 or 1.0.

◦ Click the Edit tab.

◦ Change the information as desired, using previous release records as inspiration.

◦ For the Description, use the following template:

https://www.eclipse.org/projects/handbook/#release-review

<p>This release [describe the release in a few sentences].</p>

<p>For more information:</p>

 Eclipse ESCET vN.N-NNN release notes

 <a href="https://www.eclipse.org/escet/vN.N-NNN/release-
notes.html">ESCET toolkit release notes
 <a href="https://www.eclipse.org/escet/vN.N-NNN/chi/release-
notes.html">Chi release notes
 <a href="https://www.eclipse.org/escet/vN.N-NNN/cif/release-
notes.html">CIF release notes
 <a href="https://www.eclipse.org/escet/vN.N-NNN/tooldef/release-
notes.html">ToolDef release notes

 <a href="https://gitlab.eclipse.org/eclipse/escet/escet/-
/milestones/NN">Eclipse ESCET GitLab vN.N issues

Replace N.N-NNN by the latest release candidate version of the release to be reviewed, e.g.
0.1-RC1, 0.1.1-RC2 or 1.0-RC1. Replace NN by the actual GitLab milestone number, e.g., 1, 2 or
3. Replace N.N by the final release version, e.g. 0.1, 0.1.1 or 1.0.

◦ Click Save.

• Submit the IP Log:

◦ Go to https://projects.eclipse.org/projects/technology.escet.

◦ Ensure you’re logged in, as an ESCET project committer.

◦ In the right sidebar, click Generate IP Log.

◦ For Respin, select None, this is a new IP Log review request.

◦ For Required by date, select the date one week before the review conclusion date.

◦ For Release select the relevant release.

◦ It is not necessary to write any Comments.

◦ Click Submit for review.

◦ Note the message at the top of the page, indicating that a CQ was created, to track the
approval of the IP Log by the Eclipse Foundation IP team.

• Request PMC approval:

◦ Go to https://accounts.eclipse.org/mailing-list/technology-pmc and subscribe to the
Technology PMC mailing list, if not yet subscribed. Subscription is necessary to post to the
list.

◦ Send an email to technology-pmc@eclipse.org, with a CC to escet-dev@eclipse.org.

▪ As subject, use Request release approval for Eclipse ESCET vN.N release. Replace vN.N

https://projects.eclipse.org/projects/technology.escet
https://accounts.eclipse.org/mailing-list/technology-pmc

by the release version, e.g. v0.1, v0.1.1 or v1.0.

▪ As message, use the following template:

The Eclipse ESCET project hereby requests approval for the vN.N release.

See https://projects.eclipse.org/projects/technology.escet/releases/N.N

Kind regards,
<Your Name>
Eclipse ESCET <your role>

Replace N.N by the release version, e.g. 0.1, 0.1.1 or 1.0. Replace <Your Name> by your full
name (first and last name). Replace <your role> by either project lead or project
committer.

• Ask the EMO to schedule the release review and make it public:

◦ Go to the release record at
https://projects.eclipse.org/projects/technology.escet/releases/N.N. Replace N.N by the
actual release record version, e.g. 0.1, 0.1.1 or 1.0.

◦ Observe how Schedule a review for this release is indicated at the top of the page.

◦ Click the review link as part of that text.

◦ For Review dates select the review conclusion date.

◦ Click Schedule a review.

◦ Observe how the text has changed to This review is pending; contact The Eclipse Management
Organization to make it public.

◦ Send an email to emo@eclipse.org, with a CC to escet-dev@eclipse.org.

▪ As subject, use Please schedule the Eclipse ESCET vN.N Release Review. Replace vN.N by
the release version, e.g. v0.1, v0.1.1 or v1.0.

▪ As message, use the following template:

See https://projects.eclipse.org/projects/technology.escet/reviews/N.N-
release-review

Kind regards,
<Your Name>
Eclipse ESCET <your role>

Replace N.N by the release version, e.g. 0.1, 0.1.1 or 1.0. Replace <Your Name> by your full
name (first and last name). Replace <your role> by either project lead or project
committer.

• Update the release review issue description with the following template:

See the following pages for submitted materials and approval:
* Release record and review materials:
https://projects.eclipse.org/projects/technology.escet/releases/N.N
* IP Log approval issue: https://dev.eclipse.org/ipzilla/show_bug.cgi?id=NNN
* PMC approval request: https://www.eclipse.org/lists/technology-pmc/msgNNNN.html
* PMC approval: https://www.eclipse.org/lists/technology-pmc/msgNNNNN.html
* EMO release review scheduling request: https://www.eclipse.org/lists/escet-
dev/msgNNNNNN.html
* EMO release review tracking issue: https://gitlab.eclipse.org/eclipsefdn/emo-
team/emo/-/issues/NN

Replace N.N by the release version, e.g. 0.1, 0.1.1 or 1.0. Replace NNN by the IP Log CQ issue
number. Replace NNNN, NNNNN, and NNNNNN by the corresponding mailing list message numbers.
Consult the Technology PMC mailing list archive and the Eclipse ESCET dev mailing list archive
to find the messages and their message numbers. Replace NN by the GitLab issue number of the
issue that will be created by the EMO to track the release review.

• Ensure the release review is successful before performing the release.

1.9.7. Performing a release

To perform a release (milestone, release candidate, or final release), i.e. actually release it, follow
these steps:

• Merge develop to master:

◦ Since master is a protected branch for the Eclipse ESCET GitLab, a GitLab merge request is
the only way to update it.

◦ Create a GitLab merge request from develop to master.

◦ For Title enter #NNN develop to master for vN.N. Replace #NNN by the relevant issue number.
Replace N.N by the release version, e.g. 1.0-M1, 1.0-RC1 or 1.0.

◦ Replace the automatically generated but incomplete Description by Addresses #NNN. Replace
#NNN by the relevant issue number.

◦ For Milestone select the relevant milestone.

◦ For Labels select RelEng/DevOps and Type::Enhancement.

◦ Click Create merge request.

◦ Wait for the builds on Jenkins to successfully complete and press Merge. Alternatively, press
Merge when pipeline succeeds to automatically merge the merge request once the build
succeeds.

• Add a tag on the commit in master that is to be released. Only version tags with a specific syntax
will be picked up by Jenkins to be released. For instance, use v0.1, v0.1.1, v2.0, etc for releases,
v0.1-M1 for a milestone build, or v0.1-RC1 for a release candidate.

Add the tag via GitLab, at https://gitlab.eclipse.org/eclipse/escet/escet/-/tags/new. Use the Tag
name also as Message. Make sure to select master as branch from which to create the tag. Click

http://www.eclipse.org/lists/technology-pmc
http://www.eclipse.org/lists/escet-dev
https://gitlab.eclipse.org/eclipse/escet/escet/-/tags/new

Create tag to create the new tag.

• Add a GitLab release for the new tag, at https://gitlab.eclipse.org/eclipse/escet/escet/-/releases/
new. Select the tag you just created under Tag name. Set the Release title and Release notes to the
tag name. Select the relevant milestone under Milestones. Click Create release to create the new
release.

• Go to Jenkins, at https://ci.eclipse.org/escet/job/ESCET%20build/. Log in to Jenkins by clicking on
the link at the top-right of the page. Select Scan GitLab Project Now to ensure Jenkins picks up
the new tag.

• Go to https://ci.eclipse.org/escet/job/ESCET%20build/view/tags/ to see the new tag on Jenkins.
Manually trigger a build for the tag, by clicking the Schedule a build for … icon in the row for the
tag. Jenkins will then automatically build and release a new version from that tag.

• All releases are available at https://download.eclipse.org/escet/. For a version v0.1, the
downloads will be located at https://download.eclipse.org/escet/v0.1.

◦ End users should however be referred to https://eclipse.org/escet/download.html instead of
download.eclipse.org. The buttons on this web page serve downloads via a mirror script.
This ensures that a nearby mirror is selected, for faster downloads. It also ensures that
downloads are counted in the download statistics. Furthermore, it transparently handles
files moved from download.eclipse.org to archive.eclipse.org.

◦ According to the Eclipse Foundation Wiki page IT Infrastructure Doc, "Once your files are on
the download.eclipse.org server, they are immediately available to the general public.
However, for release builds, we ask that you wait at least four hours for our mirror sites to
fetch the new files before linking to them. It typically takes a day or two for all the mirror
sites to synchronize with us and get new files." Immediately after the downloads being
available, downloading them may thus be slower, even if the mirror script is used.

• Jenkins will automatically push the website for the new release to the website Git repository, in
a directory for the specific release. For a version v0.1, the website can be accessed at
https://eclipse.org/escet/v0.1. It may take a few minutes for the Git repository to be synced to
the webserver and for the website for the new version to become available.

• If the website for the new release is to be the standard visible website for the project (at
https://eclipse.org/escet), it has to be manually replaced. This is to ensure that a bugfix
release for an older version doesn’t override the standard visible website. The following steps
explain how to 'promote' a website for a specific version to become the standard visible
website:

◦ These steps assume that you’ve set up an Eclipse ESCET development environment, using
the standard instructions, at <path-to-dev-env>.

◦ Open a terminal.

◦ Execute cd <path-to-dev-env>/git to go to the directory of your development environment
with Git repositories.

◦ Clone the Eclipse ESCET website Git repository by executing git clone
https://gitlab.eclipse.org/eclipse/escet/escet-website.git.

◦ Execute cd escet-website to enter the directory that contains the new clone.

◦ Execute ../escet/misc/website/switch-standard-visible-website.bash vN.N "Full Name"

https://gitlab.eclipse.org/eclipse/escet/escet/-/releases/new
https://gitlab.eclipse.org/eclipse/escet/escet/-/releases/new
https://ci.eclipse.org/escet/job/ESCET%20build/
https://ci.eclipse.org/escet/job/ESCET%20build/view/tags/
https://download.eclipse.org/escet/
https://eclipse.org/escet/download.html
https://wiki.eclipse.org/IT_Infrastructure_Doc
https://eclipse.org/escet
https://gitlab.eclipse.org/eclipse/escet/escet-website.git

"some@example.com", with appropriate substitutions, to replace the standard visible website:

▪ Replace vN.N with the website release version that is to become the standard visible
website, e.g., v0.1, v1.0-M1 or v1.1.0-RC1.

▪ Replace Full Name by your full name (first name and last name) as registered in your
Eclipse Foundation account, e.g., John Smith.

▪ Replace some@example.com by your email address as registered in your Eclipse Foundation
account.

◦ As indicated, review the new commit. If it is OK, push it by executing git push.

◦ Check that the changes are correctly registered by GitLab, at https://gitlab.eclipse.org/eclipse/
escet/escet-website/-/commits/master.

◦ Remove the website repository clone, by executing cd .. and rm -rf escet-website.

◦ It may take a few minutes for the Git repository to be synced to the webserver, and for the
new standard visible website to become available. The standard visible website can be
accessed at https://eclipse.org/escet. Depending on browser cache settings and other
factors, it may be necessary to force refresh your browser for it to pick up the changes on
the server.

• Inform others about the new release:

◦ In the relevant GitLab issue, for final releases, post the following comment, where N.N is to
be replaced by the actual release version, e.g. 0.1 or 1.0:

I just released vN.N:

- https://eclipse.org/escet/
- https://eclipse.org/escet/download.html
- https://eclipse.org/escet/release-notes.html

And here are the permalinks:

- https://eclipse.org/escet/vN.N
- https://eclipse.org/escet/vN.N/download.html
- https://eclipse.org/escet/vN.N/release-notes.html

Note that mirrors may still need to sync, so downloads may be a bit slower until
then.

◦ In the relevant GitLab issue, for milestones and release candidates, post the following
comment, where N.N-NNN is to be replaced by the actual release version, e.g. 0.1-M1 or 1.0-
RC1:

https://gitlab.eclipse.org/eclipse/escet/escet-website/-/commits/master
https://gitlab.eclipse.org/eclipse/escet/escet-website/-/commits/master
https://eclipse.org/escet

I just released vN.N-NNN:

- https://eclipse.org/escet/vN.N-NNN
- https://eclipse.org/escet/vN.N-NNN/download.html
- https://eclipse.org/escet/vN.N-NNN/release-notes.html

Note that mirrors may still need to sync, so downloads may be a bit slower until
then.

◦ Also send an email to escet-dev@eclipse.org with similar content.

• Clean up after the release:

◦ Close the GitLab issue for the release.

◦ For a final release, ensure all issues in the GitLab milestone are closed.

◦ For a final release, close the GitLab milestone.

• Remove/archive old releases.

1.9.8. Removing/archiving old releases

To prevent unnecessary disk space usage, old releases can be archived and removed. Below the
policy and steps for both of them are explained. These steps are to be followed after performing a
release.

For every release, including milestones and release candidates:

• Remove the builds for all previously built tags, thus excluding the tag of the release that was
just built:

◦ In Jenkins, while logged in, go to https://ci.eclipse.org/escet/job/ESCET%20build/view/tags/.

◦ Select the tag name in the Name column to go the tag’s page.

◦ There, on the left, the various builds are indicated by #n, with n some number.

◦ In the drop down menu of a build, select Delete build #n to remove it.

◦ When asked to confirm, click Yes.

For every final release, thus excluding milestones and release candidates:

• Identify the milestone and release candidate versions to remove. We remove all milestones and
release candidates of the previous version and older. E.g. for v0.2, we remove v0.1-M1, v0.1-M2,
v0.1-RC1, etc.

• Identify the final release versions to archive. We archive all releases older than the current and
previous release, but never remove them. E.g. for v0.3 we archive v0.1 and older, but keep v0.2.

• Remove the websites of the identified milestone and release candidate versions:

◦ Clone the Eclipse ESCET website Git repository using git clone https://gitlab.eclipse.org/
eclipse/escet/escet-website.git.

◦ In the cloned repository, remove the folders corresponding to the milestone and release

https://ci.eclipse.org/escet/job/ESCET%20build/view/tags/
https://gitlab.eclipse.org/eclipse/escet/escet-website.git
https://gitlab.eclipse.org/eclipse/escet/escet-website.git

candidate versions.

◦ Add all changes to be committed, e.g. by using git add -A.

◦ Commit the changes.

▪ Use as commit message Removed milestone and RC websites of release vN.N., replacing
vN.N by the release version, e.g., v1.0 when removing versions v1.0-M1 and v1.0-RC1.

▪ Use the --author option to specify your full name (first name and last name) and email
address as registered in your Eclipse Foundation account. Make sure to use double
quotes around the entire argument, and < and > around the email address.

▪ E.g. use the following to commit the changes: git commit --author "Full Name
<some@example.org>" -m "Removed milestone and RC websites of release v1.0.".

◦ Push the changes to the Git server. E.g. use git push.

◦ If successful you should see the changes on GitLab, at https://gitlab.eclipse.org/eclipse/escet/
escet-website/-/commits/master.

• Remove the downloads of the identified milestone and release candidate versions:

◦ Go to https://download.eclipse.org/escet/.

◦ Make sure you are logged in. This should make check-boxes appear.

◦ Select the folders to archive (before subsequent removal) and click the Move selected to
archive.eclipse.org button. It may take a few minutes for archiving to complete.

◦ Go to https://archive.eclipse.org/escet/.

◦ Make sure you are (still) logged in. This should make check-boxes appear.

◦ Select the folders to delete and click the Delete selected permanently button. It may take a
few minutes for deleting to complete.

• Archive the downloads of the identified final versions:

◦ Note that links to download.eclipse.org transparently redirect to archive.eclipse.org for
archived files. We can therefore safely archive final versions, without breaking links to
update sites that use download.eclipse.org.

◦ Go to https://download.eclipse.org/escet/.

◦ Make sure you are logged in. This should make check-boxes appear.

◦ Select the folders to archive and click the Move selected to archive.eclipse.org button. It may
take a few minutes for archiving to complete.

◦ Do not remove final versions. They should be kept forever.

1.10. Third party tools
As part of development for the Eclipse ESCET project, several third party tools are used. They are
used to e.g. run scripts, generate files, etc.

The following third party tools are used to run scripts:

• Bash, to run .bash scripts.

https://gitlab.eclipse.org/eclipse/escet/escet-website/-/commits/master
https://gitlab.eclipse.org/eclipse/escet/escet-website/-/commits/master
https://download.eclipse.org/escet/
https://archive.eclipse.org/escet/
https://wiki.eclipse.org/index.php?title=Equinox/p2/p2.mirrorsURL&diff=444984&oldid=370895
https://download.eclipse.org/escet/

• GNU utilities, to use in scripts, e.g. cat, cp, diff, dirname, find, grep, mv, readlink, rm, sed, sort and
wc.

• Perl, to run .pl scripts.

• Python, version 3, to run .py scripts.

• Shell, to run .sh scripts.

• Windows command prompt, to run .cmd scripts.

The following third party tools are used to build:

• Maven, to run the main build from a console.

The following third party tools are used to generate/convert images:

• bbox_add.pl Perl script, used in conjunction with LaTeX, obtained from
https://www.inference.org.uk/mackay/perl/bbox_add.pl.

• eps2png Perl script, used in conjunction with LaTeX, obtained from https://metacpan.org/pod/
eps2png.

• Gnuplot, to generate images.

• ImageMagic, used in conjunction with LaTeX, including convert.

• Inkscape, to convert .svg images.

• LaTeX, to generate images, including dvips, latex, pdfcrop and pdflatex.

• Make, run Makefile builds, to generate images.

The following third party tools are used to build some of the documentation:

• LaTeX, including bibtex and pdflatex.

The following third party tools are used to generate test classes and package them into a JAR file,
for certain tests:

• Java Development Kit (JDK), version 7 or higher, including javac and jar.

Most of these tools are not needed to run a build or run the tests, as the generated files (e.g. images)
are committed into Git.

1.11. Dependency upgrades
The Eclipse ESCET toolset has various dependencies. From time to time, these dependencies need to
be upgraded. This page discusses for some of the major dependencies when to upgrade and how to
upgrade:

• Eclipse Platform/IDE upgrades

• Tycho upgrades

• Java upgrades

https://www.inference.org.uk/mackay/perl/bbox_add.pl
https://metacpan.org/pod/eps2png
https://metacpan.org/pod/eps2png

1.11.1. Eclipse Platform/IDE upgrades

The Eclipse ESCET IDE is based on the Eclipse IDE, which in turn is based on the Eclipse Platform.
The Eclipse IDE is also used as the development environment of choice for Eclipse ESCET
development.

The Eclipse ESCET upgrade policy for the Eclipse Platform/IDE is:

• Considering the overhead, only upgrade if there is a use for it. For instance, if we need a bug fix,
some new feature, or so.

• Upgrade to a new Eclipse version at least once a year, to stay current.

• Consider the interplay between Eclipse and Java versions. Upgrading Eclipse may require
upgrading Java if the new Eclipse version has a higher minimum Java version requirement.
Upgrading Java may require upgrading Eclipse to a newer version that supports that Java
version.

To upgrade to a new Eclipse Platform/IDE version:

• Check out the information for the new version:

◦ Check the Simultaneous Release overview page for the link between platform version (e.g.
4.20) and release name (e.g. 2021-06).

◦ Check https://www.eclipse.org/projects/project-plan.php?planurl=https://
www.eclipse.org/eclipse/development/plans/eclipse_project_plan_N_NN.xml with N_NN
replaced by the platform version (e.g. 4_20), for the project plan of the release, including
detailed information about the supported target environments (operating systems, Java
versions, etc).

◦ Check https://www.eclipse.org/eclipse/development/readme_eclipse_N.NN.php with N.NN
replaced by the platform version (e.g. 4.20), for the README of the release.

◦ Check the New & Noteworthy page for the new release and all intermediate releases since
the previous version. Note that you can switch to the New & Noteworthy pages of previous
releases using the dropdown at the bottom of the page.

• New development environment

◦ Set up a new development environment for the new Eclipse IDE version.

• Version updates

◦ Look up Orbit version for the new Eclipse Platform/IDE release, see
https://download.eclipse.org/tools/orbit/downloads/.

◦ Update Oomph setup (org.eclipse.escet.setup), configuring new Eclipse IDE and Orbit
versions.

◦ Update dev-env-setup.asciidoc to match new Eclipse version.

◦ Update org.eclipse.platform version for the product feature
(org.eclipse.escet.product.feature/feature.xml).

◦ Update Eclipse and Orbit update site URLs in product
(org.eclipse.escet.product/escet.product).

https://wiki.eclipse.org/Simultaneous_Release
https://www.eclipse.org/projects/project-plan.php?planurl=https://www.eclipse.org/eclipse/development/plans/eclipse_project_plan_N_NN.xml
https://www.eclipse.org/projects/project-plan.php?planurl=https://www.eclipse.org/eclipse/development/plans/eclipse_project_plan_N_NN.xml
https://www.eclipse.org/eclipse/development/readme_eclipse_N.NN.php
https://eclipseide.org/release/noteworthy/
https://download.eclipse.org/tools/orbit/downloads/

◦ Update Eclipse and Orbit update site URLs in update site
(org.eclipse.escet.product/category.xml).

◦ Update Maven plugin third party dependency versions to match Orbit versions
(org.eclipse.escet.common.asciidoc/pom.xml).

• Update target platform and address any issues

◦ Let Oomph regenerate the target platform, and commit any changes.

◦ Force a rebuild in Eclipse (Project › Clean…).

◦ Check workspace for any errors/warnings and address them if any.

◦ Check New and Noteworthy (release notes) of the new Eclipse version and relevant
intermediate versions for changes and adapt as necessary.

• Java formatter profile

◦ Right click the org.eclipse.escet.common.java project in the Package Explorer view and
choose Properties.

◦ In the properties dialog, select Java Code Style › Formatter.

◦ Make sure the Unmanaged profile is selected and click [ Edit… ].

◦ Change the Profile name to tmp.

◦ Click [ OK ] to close the profile editing dialog, and then clicking [ Apply and Close ] to close
the properties dialog.

◦ Remove the tmp profile:

▪ Remove the formatter_profile=_tmp line from the .settings/org.eclipse.jdt.ui.prefs
file in the project.

▪ Navigate to Window › Preferences.

▪ In the dialog, navigate to Java › Code Style › Formatter.

▪ Select the tmp profile.

▪ Click the [ Remove ] button and confirm the removal by clicking [ Yes ].

▪ Close the preference dialog by clicking [ Apply and Close ].

▪ If an Oomph preference recorder dialog appears, dismiss it by clicking [ Cancel ].

◦ If in the org.eclipse.escet.common.java project, in the .settings directory, there are changes
to any of the *.prefs files:

▪ Run ./copy_here.bash ../../common/org.eclipse.escet.common.java from misc/java-code-
style to copy the new preferences to the central place.

▪ Run ./copy_there.bash from misc/java-code-style to copy the new preferences to all
relevant projects.

▪ Refresh all projects, and wait until the rebuild completes.

▪ Commit the preference changes.

▪ Reformat all projects.

▪ Commit any code changes.

◦ In case of new formatter preferences, configure them as desired. Apply each preference
change separately, to allow easier reviewing:

▪ Change a single formatter preference on the org.eclipse.escet.common.java project. This
requires giving the unmanaged profile the name tmp again, as before.

▪ Remove the tmp profile, as before.

▪ Run ./copy_here.bash ../../common/org.eclipse.escet.common.java from misc/java-code-
style to copy the changed formatter preference to the central place.

▪ Run ./copy_there.bash from misc/java-code-style to copy the changed formatter
preference to all relevant projects.

▪ Refresh all projects, and wait until the rebuild completes.

▪ Commit the preference changes.

▪ Reformat all projects.

▪ Commit reformatting changes.

◦ If any changes were made to the formatter preferences, manually update the
org.eclipse.escet.*.metamodel projects to have the same formatter settings as the rest of the
projects.

• Java errors/warnings settings

◦ Right click the org.eclipse.escet.common.java project in the Package Explorer view and
choose Properties.

◦ In the properties dialog, select Java Compiler › Errors/Warnings.

◦ Make a dummy change and apply it by clicking [ Apply and Close ].

◦ Click [ Yes ] when asked to Rebuild the project now to apply the changes of the Error/Warning
settings?.

◦ Revert the dummy change, using again the same steps.

◦ In case of changes to *.prefs files in the .settings directory of that project, configure the
new preferences as desired.

◦ Run ./copy_here.bash ../../common/org.eclipse.escet.common.java from misc/java-code-
style to copy the new preferences to the central place.

◦ Run ./copy_there.bash from misc/java-code-style to copy the new preferences to all
relevant projects.

◦ Force a rebuild in Eclipse (Project › Clean…) and check for any warnings/errors, addressing
them if any.

• Update Maven version

◦ Check the embedded Maven version, by navigating to Run › Run Configurations…,
selecting the build launch configuration under Maven Build, and observing the Maven
Runtime version.

◦ Ensure the Maven version in Jenkinsfile matches the embedded Maven version.

◦ Ensure the Maven version in misc/license-check-dependencies/Jenkinsfile matches the

embedded Maven version.

◦ Update versions of Maven plugins (maven-plugin-*) to match new Maven version
(org.eclipse.escet.common.asciidoc/pom.xml).

◦ Update version of the maven-plugin-plugin if needed
(org.eclipse.escet.releng.configuration/pom.xml).

• Validation

◦ Run a Maven build.

◦ Ensure no errors or warnings during Maven build.

• Dependency information

◦ Run misc/license-check-dependencies/license-check-dependencies.sh and update
DEPENDENCIES.txt according to the output.

◦ Run misc/license-check-dependencies/license-check-dependencies.sh again, to ensure
DEPENDENCIES.txt is up-to-date.

1.11.2. Tycho upgrades

Eclipse Tycho is used for the Eclipse ESCET build.

The Eclipse ESCET upgrade policy for Tycho is:

• Typically upgrading to a newer version can be done at any time, if it is considered relevant.

To upgrade to a new Tycho version:

• Update version in org.eclipse.escet.root/.mvn/extensions.xml.

• Update tycho.version in org.eclipse.escet.releng.configuration/pom.xml.

• Update maven.minimal.version in org.eclipse.escet.releng.configuration/pom.xml, if the new
Tycho version requires a higher Maven version.

• Check Tycho release notes for changes and adapt as necessary.

• Run a Maven build.

• Ensure no errors or warnings during Maven build.

1.11.3. Java upgrades

Most of the Eclipse ESCET source code is written in Java.

The Eclipse ESCET upgrade policy for Java is:

• Considering the overhead, only upgrade if there is a use for it. For instance, if we need a bug fix,
some new feature, or so.

• Upgrade when a Java version we use is no longer actively supported.

• Only upgrade to a Java LTS release.

• Don’t upgrade to newer Java versions immediately, but only after (industrial) adoption is high

enough. As a general guideline, if at least 50% of developers, users and enterprises use the new
LTS version, consider upgrading. Java usage is regularly surveyed, and reports can typically be
found online. For instance, the 2021 Jakarta EE Developer Survey Report of the Eclipse Jakarta
EE project indicates that in 2021 about 58% of the developers and 11% of the enterprises used
Java 11.

• Consider the interplay between Java and Eclipse versions. Upgrading Java may require
upgrading Eclipse to a newer version that supports that Java version. Upgrading Eclipse may
require upgrading Java if the new Eclipse version has a higher minimum Java version
requirement.

To upgrade to a new Java version:

• For major Java versions (e.g. 17 to 18):

◦ Update all (plugin) projects:

▪ Update Bundle-RequiredExecutionEnvironment for all plug-in manifests.

▪ Update JRE_CONTAINER in all .classpath files.

▪ Update JRE_CONTAINER in all launch configurations (.launch files).

▪ Update Java versions in all org.eclipse.jdt.core.prefs files
(compiler.codegen.targetPlatform, compiler.compliance, and compiler.source).

◦ Update all metamodel projects (org.eclipse.escet.*.metamodel projects):

▪ Update the autofix.py scripts of these projects, by changing the compliance level
resulting from replacements.

▪ Change in all *.genmodel files the complianceLevel.

▪ Regenerate the model code for each metamodel project, by opening the corresponding
.genmodel file, right clicking the root node of the opened generator model, and choosing
Generate Model Code. There won’t always be changes.

◦ Update the product:

▪ Update osgi.requiredJavaVersion in the product
(org.eclipse.escet.product/escet.product).

▪ Update osgi.requiredJavaVersion in the product launch configuration
(org.eclipse.escet.product/*.launch).

◦ Update the build:

▪ Update Java version for escet.java.version in
org.eclipse.escet.releng.configuration/pom.xml.

▪ Update Java version for executionEnvironment in
org.eclipse.escet.releng.configuration/pom.xml.

▪ Update Java version in Jenkinsfile.

▪ Update Java version in misc/license-check-dependencies/Jenkinsfile.

◦ Update all Java code and documentation:

▪ Update Java keywords for org.eclipse.escet.common.java.JavaCodeUtils.JAVA_IDS.

https://outreach.jakartaee.org/2021-developer-survey-report

Update the keywords themselves and the field’s JavaDoc, including the link to the Java
Language Specification (JLS).

▪ Update dev-env-setup.asciidoc to match new Java version.

▪ Update links to specific versions of the Java documentation (search for
https://docs.oracle.com).

◦ Search for the current Java version to find other references (e.g., search for 17).

• For any Java versions (e.g. 17 to 18, or 17.0.1 to 17.0.2):

◦ Update the JustJ version (eclipse.justj.version.* variables) in the Oomph setup
(org.eclipse.escet.setup).

◦ Regenerate the target platform file using Oomph.

◦ Update JustJ version for the product feature (
org.eclipse.escet.product.feature/feature.xml).

◦ Force a rebuild in Eclipse (Project › Clean…) and check for any warnings/errors, addressing
them if any.

◦ Run a Maven build.

◦ Ensure no errors or warnings during Maven build.

◦ Run misc/license-check-dependencies/license-check-dependencies.sh and update
DEPENDENCIES.txt according to the output.

◦ Run misc/license-check-dependencies/license-check-dependencies.sh to ensure
DEPENDENCIES.txt is up-to-date.

1.12. License year update
The source files in the Eclipse ESCET toolset contain license headers. The current year is part of that
license header. Therefore, at the beginning of each new year, the license headers need to be
updated.

To update the license year:

• Change the year in the source file headers, where xxxx is the previous year, yyyy is the new year,
and zzzz the year after that:

◦ In Eclipse, select Search › Search….

◦ For Containg text enter: ([0-9]{4}), xxxx Contributors to the Eclipse Foundation.

◦ Enable Regular expression and disable Case sensitive.

◦ For File name patterns enter *.

◦ For Scope select Workspace.

◦ Click [ Replace… ] and wait for the Replace Text Matches window to appear.

◦ For With enter: ($1), yyyy Contributors to the Eclipse Foundation.

◦ Click [ OK ].

◦

https://docs.oracle.com

Again select Search › Search….

◦ For Containg text enter: xxxx Contributors to the Eclipse Foundation.

◦ Click [ Replace… ] and wait for the Replace Text Matches window to appear.

◦ For With enter: xxxx, yyyy Contributors to the Eclipse Foundation.

◦ Commit the changes of the automatic regular expression replacements, to more easily see
the subsequent changes.

◦ Update the header of
org.eclipse.escet.setext.tests/test_models/models_invalid/char_cls_empty.setext
manually.

• Check if anything was missed by searching for the previous year (Search › Search…).

• Update the desired license-header regular expression in org.eclipse.escet.root/misc/license-
header/license-header-check.bash.

• Run license-header-check.bash and fix the violations if there are any.

• Commit the remaining changes.

• Create a license update issue for next year:

◦ Go to https://gitlab.eclipse.org/eclipse/escet/escet/-/issues.

◦ Sign in with your Eclipse Foundation account using the link at the top-right of the page.

◦ Click New issue.

◦ For Title enter Update license headers for zzzz.

◦ For Labels select RelEng/DevOps and Type::Enhancement.

◦ For Description enter See the development documentation for the steps to follow.

◦ For Due data select the first day of the new year.

◦ Click Create issue.

https://gitlab.eclipse.org/eclipse/escet/escet/-/issues

2. Application framework
The Eclipse ESCET application framework provides common functionality for applications within
the Eclipse ESCET toolkit. The following topics explain the framework in more detail:

• Introduction

• Stand-alone execution versus Eclipse IDE

• The Application class

• The exception framework

• Exit codes

• The I/O framework

• The option framework

• The compiler framework

• How to implement your own application

• Application registration

• Execution

2.1. Introduction
The Eclipse ESCET application framework provides common functionality for applications within
the Eclipse ESCET toolkit. It has several goals:

• Provide a uniform end-user experience, for example in the form of uniform option dialogs.

• Hide technical details from the end user, for example in the form of crash reports and user
friendly error messages, instead of stack traces.

• Provide support for applications to run both as a stand-alone Java program (say, from the
command line), as well as within the Eclipse environment.

• Provide the basic functionality needed by most applications, to reduce the overhead needed for
developers to develop an application.

The documentation for this framework describes the issues that the application framework
attempts to solve, and the way it solves them. It also provides guidance in implementing
applications using the application framework.

2.2. Stand-alone execution versus Eclipse IDE
One of the goals of the application framework is to make it easier to allow applications to run as
stand-alone Java command line applications, as well as run within the Eclipse IDE. The main
problem faced when supporting general applications to run within Eclipse, is that such applications
all run within the same instance of the Java Virtual Machine (JVM). In fact, a single application may

have multiple instances running at the same time, within a single instance of the IDE. The following
sections address the issues that arise when running within the IDE, and how the application
framework handles them.

2.2.1. Application static information

Within Java programs, members can be defined with the static modifier. Since multiple instances
of an application may be running simultaneously, within a single instance of the IDE, one should
avoid using static variables that contain information that is specific to a single instance of the
application. For instance, assume an application that maintains an integer counter, used to
generate unique identifiers. If defined in a class as follows:

public static int count = 0;

and incremented when needed, the first instance of the application will run just fine. Variable count
starts at zero, and is incremented over and over again. When a second instance of the application
starts however, the static variable keeps its value, as the new application is started within the same
Eclipse instance, and thus within the same JVM. The count won’t start from zero, thus leading to
different results for the application.

The conclusion is that one should be careful to avoid static variables that hold information specific
to an application instance.

2.2.2. Application options

Applications often have settings, and they are generally passed as command line arguments. GUI
applications however, often use a dialog to configure the options instead. To allow applications
within the application framework to work in both scenarios, all applications should use the option
framework.

See also the option framework section.

2.2.3. Stdin, stdout, and stderr

Command line applications generally obtain input from stdin, and write output to stdout and/or
stderr streams. For applications running within the IDE, those streams are connected to the Eclipse
application (IDE) as a whole, and not to the applications running within the IDE. To provide a
uniform I/O interface, the application framework includes an I/O framework.

See also the I/O framework section.

2.2.4. Graphical User Interfaces (GUIs) and SWT

The Eclipse IDE uses the Standard Widget Toolkit (SWT) for its graphical user interface (GUI). To be
compatible with the Eclipse IDE, all GUI applications should use SWT as well. In order for GUI
applications to work seamlessly within the Eclipse IDE as well as stand-alone, the application
framework automatically registers the main SWT display thread for stand-alone applications, and
uses the Eclipse SWT display thread when running within the Eclipse IDE. This reduces the burden
of having to register the main SWT display threads, but also avoids blocking and other thread
related issues.

Using the GUI option, the GUI can be enabled or disabled. If disabled, headless execution mode is
used, which disables creation of a SWT display thread, and thus disables all GUI functionality,
including the option dialog.

2.2.5. Application termination

Within Java, the System.exit method can be used to immediately terminate an application, by
terminating the JVM. For applications running within the Eclipse IDE, this not only terminates the
application, but the IDE as well. As such, the System.exit method should never be used in
applications that are intended to be executed within the IDE.

2.2.6. SIGINT

Stand-alone applications can typically be started from a the command line terminal window.
Pressing Ctrl  +  C at such a command line terminal window terminates the currently running
application (on Unix-based systems, this generates a SIGINT). Applications running within the
Eclipse IDE however, don’t run in an actual command line terminal. Instead, they run within the
IDE, and the stdin, stdout, and stderr streams are coupled to the Eclipse console view. The Eclipse
console view does not support termination using the Ctrl  +  C key combination. Instead, Ctrl  +  C is
used to copy console output to the clipboard. To remedy this situation, application framework
applications running within Eclipse get a Terminate button with their console within the IDE, to
allow for easy termination.

Furthermore, the application framework allows termination requests via the AppEnv.terminate
method. Application framework applications and threads should regularly call the
AppEnv.isTerminationRequested method to see whether they should terminate.

See also the termination features of the Applications view.

2.2.7. Exceptions

Exceptions are Java feature that allows applications to report error conditions. Exceptions can
generally be divided into two categories: internal errors, and end-user errors. Internal errors
should generally not happen, and make the application crash. The application framework provides

https://eclipse.org/escet/v0.9/use/apps-view.html

crash reports for end users to report crashes due to internal errors. The application framework also
provides exception classes for end-user errors, to provide nice error messages, instead of stack
traces.

See also the exception framework section.

2.2.8. System properties

Java uses system properties (System.getProperty method etc). Those properties are global to the
entire JVM, meaning they are shared between applications running within the Eclipse IDE. The
application framework provides functionality to maintain system properties on a per application
basis, turning them into application properties. All application framework applications should use
the getProp* and setProp* methods in the AppEnv class instead of the property related methods in the
System class. This ensures that the application properties are used instead of the global system
properties.

2.2.9. File paths and current working directory

One of the standard system properties in Java is the user.dir property, which refers to the current
working directory, or more precisely, the directory from which the JVM was started. Java doesn’t
allow changing the current working directory. The application framework however, maintains the
current working directory on a per application basis. Changing the current working directory is
also supported. Application framework applications should use the methods in the
org.eclipse.escet.common.app.framework.Paths class to get and set the current working directory, to
resolve relative paths, etc. These methods also allow both Windows (\) and Unix (/) separators to be
used in paths, on all platforms, transparently.

Furthermore, within the Eclipse IDE all projects are visible in the Project Explorer and Package
Explorer views. In order to allow importing of resources from other projects etc, it may be nice to
allow end users to specify platform paths (plug-in paths or workspace paths). Eclipse Modeling
Framework (EMF) URIs, besides local file system paths, provide functionality for platform URIs as
well. EMF URIs can for instance be used to load models that are instances of an Ecore. The Paths
class mentioned above features methods to create such EMF URIs, from various sources. Those
methods also feature smart handling of platform:/auto/... paths, an addition to platform URIs,
added by the application framework. Such URIs are first resolved in the workspace, and if they
can’t be found there, they are resolved in the plug-ins. This allows for easier debugging, as the
workspace always overrides the plug-ins.

2.3. The Application class
The org.eclipse.escet.common.app.framework.Application<T> class is the main class of the
application framework. All application should inherit from this abstract class. The generic
parameter <T> is further explained in the section about the I/O framework.

The next sections introduce the specific parts of the application framework. After that, you’ll find a
section on how to implement your own application, using the application framework.

2.4. The exception framework
The application framework contains the exception framework. Its main goal is to hide stack traces
from end users. Exceptions can generally be divided into two categories: internal errors, and end-
user errors.

2.4.1. End-user exceptions

All exceptions that should be presented to the end user are considered end-user exceptions. These
messages should be written in terms that the end user should be able to understand. For end-user
exceptions, the exception framework does not display stack traces (at least not by default). All end-
user exceptions must implement the
org.eclipse.escet.common.app.framework.exceptions.EndUserException interface, and may inherit
from the org.eclipse.escet.common.app.framework.exceptions.ApplicationException class. All
applications that use the application framework must satisfy these requirements when the error
message is to be presented to end users. It is recommended to reuse existing application framework
exceptions whenever possible.

2.4.2. Internal exceptions

All exceptions that are not to be presented to end users are considered to be internal exceptions.
Internal exceptions crash the application and are always considered to be bugs. The application
framework generates crash reports for internal errors, so that end users can easily report them.
Also, stack traces are not shown on the console. They are however present in the crash report,
along with among others information about the system, the Java version used, the application that
crashed (name, version, etc), and if the OSGi framework is running, the available plug-ins etc.

2.4.3. Chained exceptions

Java supports the concept of chained exceptions. The end-user exceptions of the application
framework support this as well. If an uncaught end-user exception needs to be presented to the end
user, the message of the exception is printed to the console, prefixed with the ERROR: text. All the
causes of the exception are printed as well, each on a line of their own. Those messages are
prefixed with the CAUSE: text. For exceptions that provide an end-user readable message, only that
message is printed after the CAUSE: text. For other exceptions, the simple name of the exception
class, enclosed in parentheses, is printed between the CAUSE: text and the exception message. All
end-user exceptions (the ones inheriting from the
org.eclipse.escet.common.app.framework.exceptions.ApplicationException class), as well as all other

exceptions explicitly designed as such (by implementing the
org.eclipse.escet.common.app.framework.exceptions.EndUserException interface) are considered to
provide readable messages. For other exceptions, it is assumed that they don’t. This includes all
exceptions provided by Java itself.

2.4.4. Development mode

Developers can enable the development mode option (DevModeOption class) to always get stack traces
for all internal exceptions (thus for crashes, but not for end-user exceptions), instead of crash
reports. For more information, see the option framework section.

The development mode option is ideal for automated tests, where a stack trace on stderr is much
more ideal than a crash report.

2.5. Exit codes
Application framework applications can terminate with the following exit codes:

• 0: Application finished without errors.

• 1: Application finished after reporting an error to the end user.

• 2: Application crashed after running out of memory.

• 3: Application crashed for any reason other than running out of memory.

Note that applications themselves should always return a zero exit code. The other exit codes are
generated automatically by the exception framework when applicable.

Any exceptions to these rules should generally be avoided, but otherwise must be clearly
documented for end users.

2.6. The I/O framework
To provide a uniform I/O interface, the application framework includes an I/O framework. This
framework is sometimes also called the output framework, as it mainly handles output. The main
goals of this framework are:

• Provide uniform stdin, stdout, and stderr support for applications running on the command
line, or within the Eclipse IDE.

• Provide a general framework for output, based on output components that can be registered
and unregistered.

2.6.1. Output components

The I/O framework works with output components. All output that the application generates, is
given to the output components. Each output component can decide for itself what to do with that
output. All applications include at least a StreamOutputComponent, that redirects stream output to the
console. For stand-alone applications, this means redirection to stdout and stderr. For application
running within the Eclipse IDE, this means redirection to a Console view.

Applications that only need to provide error, warning, normal, and debug textual output, the
default output component interface (IOutputComponent) suffices. Applications that want to provide
additional (typed) output, should create a derived interface that inherits from IOutputComponent, and
extends the interface with additional callback methods. For an example of this, see the
org.eclipse.escet.cif.simulator.output.SimulatorOutputComponent interface.

The OutputComponentBase class can be used as a base class for output components. It implements the
full IOutputComponent interface, but does nothing with the output that is generated by the
application. Derived classes can easily override one or more methods to process output.

2.6.2. Output provider

Each instance of an application has its own output provider. The output provider keeps track of the
output components that are registered, and allows sending of output to the output components
through static methods.

If an application uses the default IOutputComponent as its output interface, an instance of
OutputProvider<IOutputComponent> can be used. This will suffice for most applications. If an
extended output component interface is defined, the OutputProvider class should be extended to
provide additional static methods. For an example of this, see the
org.eclipse.escet.cif.simulator.output.SimulatorOutputComponent class.

For details on how and where to create an instance of the output provider for an application, see
the section on how to implement your own application.

2.6.3. Stdout and stderr

Command line applications generally write output to stdout and/or stderr streams. For applications
running within the Eclipse IDE, those streams are connected to the Eclipse IDE as a whole, and not
to the applications running within Eclipse. The I/O framework solves this issue, by providing a
uniform I/O interface.

The org.eclipse.escet.common.app.framework.output.OutputProvider<T> class provides several static
methods that can be used to generate output. Several forms of output are supported by default:

• Error output is automatically generated by the exception framework, for uncaught exceptions.
It is however possible to manually generate error output, by using the OutputProvider.err
method. This could for instance be useful if multiple error messages are to be outputted.

• Warning output can be generated by applications, by using the OutputProvider.warn method. The
application framework counts the number of warnings generated by an application, and the
count can be retrieved using the OutputProvider.getWarningCount method.

• Normal output can be generated by applications, by using the OutputProvider.out method. To
support structured output, the I/O frame maintains an indentation level, which can be increased
and decreased one level at a time.

• Debug output can be generated by applications, by using the OutputProvider.dbg method. To
support structured output, the I/O frame maintains an indentation level, which can be increased
and decreased one level at a time.

One of the default options of the application framework is the output mode option
(OutputModeOption class). It can be used to control what output gets forwarded to the output
components. For performance reasons, it may be useful to query whether certain output gets
forwarded. The OutputProvider class provides the dowarn, doout, and dodbg methods for this.

It should now be clear that application should never access System.out and System.err directly.
Instead, they should use the output provider.

2.6.4. Stdin

There is no equivalent to the OutputProvider for stdin. Instead, use the AppEnv.getStreams() method
to obtain the streams for the current application. The AppEnv.getStreams().IN streams can be used
to read data from the stdin stream associated with the current application.

2.6.5. Buffering and flushing

The I/O framework buffers all input and output streams by default, and also automatically
performs line based flushing for output and error streams.

2.7. The option framework
Applications often have settings, and they are generally passed as command line arguments. GUI
applications however, often use a dialog to configure the options instead. To allow applications
within the application framework to work in both scenarios, the application framework provides
the option framework.

2.7.1. The option class

All options of applications that use the application framework, should be specified as application
framework options. Each option is a derived class of the
org.eclipse.escet.common.app.framework.options.Option<T> class. The generic type parameter <T>
indicates that options are strongly typed with respect to their values.

2.7.2. Command line options and the option dialog

The option framework requires all options to work via the command line, but options can also
support the option dialog. It is recommended for all options to support the option dialog. The option
framework process options as follows:

• All registered options are first initialized to their default values.

• The pre-options hook for the application is fired.

• The command line options are parsed.

• If the command line options enabled the option dialog option (a standard application
framework option that controls whether the option dialog is to be shown), the option dialog is
shown. The option values as processed so far, are shown to the user in this dialog. The user can
modify the options via the dialog and choose [ OK ] to continue.

◦ If the user chose [ Cancel ] in the option dialog, terminate the application.

◦ All registered options are reset to their default values. This also clears the remaining
arguments option, if any.

◦ The options set in the dialog are parsed. This overwrites the values of all options.

• The post-processing hook is fired for all options that have it.

• All option values are checked (validated).

• The post-options hook for the application is fired.

2.7.3. Option categories

Options can be ordered into categories. Categories can be combined into a hierarchical structure.
This allows the option dialog to show options per category, and allows the command line help
message to show command line option help per category. In both cases, this adds structure to the
possibly large amount of options, and makes it easier for end users to find the option they are
looking for.

2.7.4. Instantiating options

For every option, there may be at most one instance. Therefore, never use the constructors of
options directly. Instead use the following:

Options.getInstance(MyOption.class)

to get an instance of an option.

2.7.5. Getting and setting option values

Applications don’t have access to the command line arguments. The option framework
automatically process the command line arguments based on the options registered for the
application. Applications always retrieve the values of options through static methods defined in
the option classes.

Options are usually set via command line arguments, or via the option dialog. It is however also
possible to set option values at run-time:

Options.set(MyOption.class, <value>);

2.7.6. Option processing order

If possible, options should not depend on the order in which they are parsed. If the value of one
option depends on the value of another option, use the post-processing hook to achieve consistency.

2.7.7. Command line option syntax

All options have a long form (--option), optionally with a value (--option=VALUE). They can also have
short form (-o), optionally with a value (-oVALUE or -o VALUE). All arguments that do not start with a
dash symbol (-) are considered to be the 'remaining arguments'. It is possible to register one option
that processes those remaining arguments. Such special options have * as long option name.

2.7.8. Implementing your own options

Simply derive from the Option class, and study its API to implement your own options. You can also
look at existing options for best practices. Furthermore, the option framework provides several
options that can be used in applications:

• BooleanOption: convenience base class for boolean options.

• FilesOption: multiple remaining arguments input file paths option.

• InputFileOption: single remaining argument input file path option.

• OutputFileOption: output file path option (--output / -o).

2.7.9. Standard options

The application framework provides several options that must be registered for every application:

• DevModeOption: option to enable/disable development mode. Developers can enable this option to

get stack traces in case of internal exceptions, instead of crash reports. See also the chapter on
the exception framework.

• HelpOption: option to show the application help text at the console.

• LicenseOption: option to print the license text of the application at the console, and terminate
the application.

• OptionDialogOption: option to show the option dialog.

• OutputModeOption: option to control the amount of output produced by the application. See also
the I/O framework section.

• GuiOption: option to disable the GUI (enabled headless execution mode). See also the section on
GUIs and SWT.

See also the section on how to implement your own application.

2.8. The compiler framework
For performance reasons, it can be better to generate and compile code at runtime, than to use an
interpreter. The Java compiler supports this. However, in an Eclipse/OSGi environment, some
additional effort is required to make it all work. The application framework contains a compiler
framework in the org.eclipse.escet.common.app.framework.javacompiler package. It supports in-
memory compilation of in-memory code, with full transparent OSGi support. That is, whether used
from inside the Eclipse IDE, or from a stand-alone application, the compiler framework takes care
of the details. The framework supports various representations of in-memory code, and can be
extended with additional representations.

The compiler framework requires the use of a Java Development Kit (JDK). A Java Runtime
Environment (JRE) is not sufficient.

2.9. How to implement your own application
This section more or less explains step by step how to implement your own application, by using
the application framework.

• Decide whether it is enough to use the IOutputComponent interface, or that you need more. See
also the I/O framework section.

• Create a new class, deriving from Application.

• Add a main method to your application class. For instance:

/**
 * Application main method.
 *
 * @param args The command line arguments supplied to the application.
 */
public static void main(String[] args) {
 MyApp app = new MyApp();
 app.run(args);
}

This allows for standalone execution.

• Add constructors as needed. You’ll probably want to implement some or most of the
constructors provided by the Application class. In order to support standalone execution, the
following constructor is required:

/** Constructor for the {@link MyApp} class. */
public MyApp() {
 // Nothing to do here.
}

In order to support the ToolDef app tool, which can be used to run application framework
applications from ToolDef scripts, the following constructor is required:

/**
 * Constructor for the {@link MyApp} class.
 *
 * @param streams The streams to use for input, output, and error streams.
 */
public MyApp(AppStreams streams) {
 super(streams);
}

This constructor is also required by the ChildAppStarter class, to support starting one
application framework application from another application framework application.

• Implement the mandatory methods getAppName and getAppDescription.

• Implement mandatory method getProvider. If you use IOutputComponent, then you can
implement it as follows:

return new OutputProvider<>();

If you don’t use IOutputComponent, return a new instance of a derived class of OutputProvider that
implements the derived interface of IOutputComponent.

• If you don’t use IOutputComponent, override the getStreamOutputComponent method, and return a
new instance of a derived class of StreamOutputComponent that implements the derived interface
of IOutputComponent. Such a class usually ignores all other output, and thus behaves exactly as
StreamOutputComponent, but implements the full output interface of the application.

• Implement mandatory method getAllOptions. You’ll need to return an option category that
wraps the actual option categories of the application. Use the getGeneralOptionCategory to obtain
the default application options category, which must always be the first category of options for
your application. An example of an implementation of this method:

@Override
@SuppressWarnings("rawtypes")
protected OptionCategory getAllOptions() {
 OptionCategory generalOpts = getGeneralOptionCategory();

 OptionCategory debugOpts =
 new OptionCategory("Debug", "Debugging options.", list(),
 list(Options.getInstance(DebugOption.class)));

 OptionCategory options =
 new OptionCategory("My Application Options",
 "All options for My Application.",
 list(generalOpts, debugOpts), list());

 return options;
}

• Implement mandatory method runInternal with the actual application code.

• Override optional method getHelpMessageNotes if applicable.

• Override optional methods preOptions and postOptions if applicable.

• Override optional method getAppVersion if applicable.

2.9.1. The runInternal method

Some things to consider when implementing the runInternal method:

• If you want to support stand-alone execution, register all Eclipse Modeling Framework (EMF)
metamodels with the EMF metamodel registry. Also register any parsers, constraints, etc. For
instance:

if (!Platform.isRunning()) {
 // Register languages and parsers for stand-alone execution.
 LanguageRegistry.register...(...)
}

• The start of the runInternal method is a good place to add output components, as all options
have been fully processed at this point. Output components can be registered by using the

application’s output provider (though static methods).

• The code in this method and all code directly or indirectly executed by this method, should
regularly call the AppEnv.isTerminationRequested method, to find out whether the application
should be terminated.

• For the return code of this method, always use value zero, to indicate successful termination.
Other exit codes are automatically generated by the exception framework, if applicable. See also
the exit codes section.

2.10. Application registration
Applications that use the application framework maintain their own data. This includes options,
output components (via an output provider), streams, etc. Only a single application can be
registered for each thread. Only once the application terminates and automatically unregisters
itself, can a new application register itself in that thread. To run multiple applications in parallel,
simply run them on different threads.

2.10.1. Multi-threaded applications

All data stored for the application is wrapped in the AppEnvData class, and stored by the AppEnv class,
on a per-thread basis. If your application uses multiple threads, you need to register each thread
with the application framework. Use the AppEnv.registerThread method for this. This method
requires the current application environment data as parameter, which may be obtained by using
the AppEnv.getData method. To avoid managed memory leaks, always unregister threads once they
are no longer used, by using the AppEnv.unregisterThread method.

2.10.2. Unit tests

If unit tests use methods that depend on the application being registered, then the unit test will
need to register an application. Examples of method using the application framework are methods
that use options, or produce output via the application framework. Especially for unit tests, the
AppEnv.registerSimple method can be used to register a dummy application. This method uses a
default application environment, without an actual application, registers a default stream output
provider, sets the output mode to errors and warnings only (no normal or debug output), and
disables development mode. It can be used in a unit test class as follows:

/***/ @BeforeClass
public static void oneTimeSetUp() {
 AppEnv.registerSimple();
}

/***/ @AfterClass
public static void oneTimeTearDown() {
 AppEnv.unregisterApplication();
}

If any options are used, they will need to be available as well. For instance, one could add the
following to the oneTimeSetUp method, or at the start of the actual unit test method:

Options.set(SomeOption.class, <value>);

2.10.3. Running an application from another application

As noted above, only a single application can be registered for a single thread. To start one
application from another application, simply run the second application in a fresh thread. In the
new thread, do the following:

• Construct the child application, using a constructor with the AppStreams argument, to pass along
the streams from the parent application.

• Set the current working directory to the current working directory of the parent application.

• Obtain the Eclipse IDE console (if any) from the parent application, and couple it the child
application.

• Run the child application.

After the child application thread finishes, make sure you:

• Restore the coupling between the Eclipse IDE console (if any) and the parent application.

• If the child application finished due to a termination request, request termination for the parent
application.

• Decide what to do with the exit code of the child application. If it is non-zero, you’ll probably
want to terminate the parent application.

To make it easier to follow this approach, the ChildAppStarter.exec methods can be used.

2.11. Execution
Application framework applications can be executed in the following ways:

• As plain Java application, from the command line.

Using the GUI option, the application can be executed either with full GUI support, or as
headless application.

The OSGi framework will not be running, and the Eclipse workbench will not be available.

• As application within the Eclipse IDE, with full GUI support.

The OSGi framework will be running, and the Eclipse workbench will be available.

• As headless Eclipse application.

Using the GUI option, the application can be executed either with full GUI support, or as
headless application.

The OSGi framework will be running, but the Eclipse workbench will not be available.

The org.eclipse.escet.common.app.framework.AppEclipseApplication application can be provided
to the -application command line argument of Eclipse to start any application framework
application. This functionality is implemented by the
org.eclipse.escet.common.app.framework.AppEclipseApplication which provides a generic
implementation of Eclipse’s IApplication interface that supports execution of any application
framework application.

The following command line arguments are expected:

• The name of the plug-in (OSGi bundle) that provides the application.

• The full/absolute name of the Java class that implements the application. Must extend the
Application class and have a parameterless constructor.

• The remaining command line arguments are the command line arguments for the application
itself.

3. Design Structure Matrix (DSM) library
One way to find structure in a graph is by seeing it as a collection of clustered nodes, where two
nodes within a single cluster are more connected to each other than two nodes in different clusters.
In addition, in a lot of cases, there is a set of nodes that connect to many other nodes in the graph
(or in terms of clusters, one cluster connects with many other clusters). Such a set of nodes is
named a bus.

This library documentation describes how to perform such clustering and bus-detection at Java
method level.

The following topics explain the library in more detail:

• Code organization

• Algorithm and code

• Bus detection algorithms

• References

3.1. Code organization
For a user, the entry point is the DsmClustering.flowBasedMarkovClustering method which takes the
following parameters:

Table 1. Markov clustering function parameters

Parameter Algorithmic
name

Empirical
useful range

Description

RealMatrix
adjacencies

- - Adjacency matrix between the nodes, non-negative
element (r,c) denotes the weight of the connection
from node r to node c.

Label[]
labels

- - Labels of the nodes.

double evap μ Between 1.5
and 3.5

Influence factor of distance between nodes.

int
stepCount

α Normally 2 Number of steps taken each iteration in the Markov
clustering.

double
inflation

β Between 1.5
and 3.5

Speed factor of deciding clusters.

double
epsilon

ε - Convergence limit.

Parameter Algorithmic
name

Empirical
useful range

Description

BusDetection
Algorithms
busDetection
Algorithm

- - The bus detection algorithm to apply.

double
busInclusion

- - Tuning factor for selecting bus nodes. Interpretation
depends on the chosen bus detection algorithm.

The function computes how to group the nodes into a bus and hierarchical clusters by shuffling the
nodes into a different order.

The result is a Dsm instance, which contains how the original nodes were shuffled to obtain the
result, a shuffled version of the provided adjacency matrix and labels, and a tree describing the
nested clustering hierarchy, with the getShuffledBase and getShuffledSize methods providing the
node offset and length of each group in the shuffled version.

3.2. Algorithm and code
The algorithm is defined in [Wilschut et al. (2017)]. The link between names of parameters in the
algorithm and the code is listed in the Markov clustering function parameters table.

The algorithm finds a bus, and performs bottom-up clustering of both the bus nodes and the non-
bus nodes. The bus detection algorithm is coded in the BusComputing class, while a clustering step is
handled in the ClusterComputing class.

All these operations work on or produce subsets of nodes. A subset is represented by a BitSet
instance in code, over nodes in its associated matrix. The clustering hierarchy is stored in Group
instances.

The Markov clustering algorithm however assumes a complete matrix rather than a subset of it,
where previously found clusters are compressed into a single node. This conversion is handled by
the submatrix.SubMatrixFunctions functions that construct and use a SubNode translation table to
convert the overall matrix to a sub-matrix, and convert clustering results in the sub-matrix back to
groups in the overall matrix.

After all computing steps are finished, a Group hierarchy describes which nodes and groups belong
to which cluster. From this information a shuffle array is constructed, relating result nodes back to
originating nodes. That array is then used to construct the resulting labels and the resulting
adjacency matrix.

3.3. Bus detection algorithms
The original bus detection mechanism, as introduced in [Wilschut et al. (2017)], is named the fixed-
point algorithm. When this algorithm is selected, double busInclusion corresponds to the parameter
ɣ in the paper.

The top-k bus detection algorithm selects the nodes with the highest connectivity, where the
number of nodes to select as bus nodes is supplied by the user.

References
▪ [Wilschut et al. (2017)] T. Wilschut, L.F.P. Etman, J.E. Rooda and I.J.B.F. Adan, "Multilevel Flow-

Based Markov Clustering for Design Structure Matrices", Journal of Mechanical Design, volume
139, issue 12, 2017, doi:10.1115/1.4037626

https://doi.org/10.1115/1.4037626

4. Multi-value Decision Diagrams library
This library provides a user-friendly pure Java implementation of Multi-value Decision Diagrams
(MDDs).

The following topics explain the library in more detail:

• Goals

• Variables and relations

• Combining relations

• Computing

• Practical usage

4.1. Goals
Decision trees are a useful data structure to store a large amount of relations. Most software
libraries in this area aim for maximum storage and efficiency, implement them with binary
decision diagrams (BDDs) and leave all details of handling nodes to the end-application for
maximum flexibility.

This library uses multi-value decision diagrams (MDDs) instead, and attempts to keep details of
handling nodes away from the application programmer. The advantage of these choices is that
using the library is simpler, in particular with variables that have more than two possible values.
The downside is that this implementation is less feature rich, and is less efficient.

As a result, this library works well for applications that need to manipulate relations with many
variables with a larger domain, where usage of the application is not expected to go near the limits
of the computer running it.

4.2. Variables and relations
The elementary relation in a decision diagram is equality between a variable and a value in its
domain, for example i == 5.

Normally, there is more than one variable, and relations use combined equalities through
conjunction (the and operator) and disjunction (the or operator).

Example:

X ::= (i == 5 and j == 1)
 or (i == 2 and j == 1)

The example shows a relation named X that holds when j is equal to 1, and i must be either 2 or 5.

The library itself provides constant relations ONE to express true (the relation that always holds),
and ZERO to express false (the relation that never holds).

4.3. Combining relations
You can have more than one relation at the same time and combine them. For example if you also
have relations

X ::= (i == 5 and j == 1)
 or (i == 2 and j == 1)

Y ::= i == 5 and k == 3

then Z ::= X and Y becomes

Z ::= i == 5 and j == 1 and k == 3

The i == 2 alternative of X does not occur in the new relation since Y does not hold for that value of
i. Also note that all equalities are preserved from both relations, the j == 1 equality and the k == 3
equality are part of Z even though only one of the input relations stated them. The reason is that if
an alternative in a relation does not say anything about a variable, it is assumed it may have any
value (the not mentioned variable is independent).

This also works if both relations are a disjunction. For example P ::= X and Q with

X ::= (i == 5 and j == 1)
 or (i == 2 and j == 1)

Q ::= (i == 5 and k == 5)
 or (i == 5 and k == 3)
 or (i == 3 and k == 1)
 or (i == 2 and j == 1 and k == 4)

gives

P ::= (i == 5 and j == 1 and k == 5)
 or (i == 5 and j == 1 and k == 3)
 or (i == 2 and j == 1 and k == 4)

All combined alternatives of X and Q that are not trivially false due to conflicting equalities become
part of the result.

From a logical point of view the above is simple Boolean algebra, but if you change your view on
what X and Q express you can see the hidden power of decision diagrams.

Instead of X holds when j is equal to 1 and i must be either 2 or 5, read X as a function from i to j,
that is, when i equals 2 then j equals 1 or when i equals 5 then j equals 1. Similarly, relation Q can be
read as a function from i and j to k, that is, when i equals 5 then k becomes 5 or 3, if i equals 3 then k

becomes 1, if i equals 2 and j equals 1 then k equals 4.

If you look at what P contains in the function view, you can see you get the conjunction of both
functions. In one X and Q step you computed the combined function for all values of all variables at
the same time!

An example of this property is used below, computing the result of an assignment.

4.4. Computing
So far, relations just say when they hold or how input and output of functions relate. However, you
can also use relations to compute new values by being creative with the variables.

For example, say you want to flip an integer variable between 0 and 1 in an assignment (if it is 0 it
becomes 1, if it is 1 it becomes 0). You would normally write i := 1 - i but how to express this
assignment as a relation?

The key point is to understand that the i value at the left-hand side is not the same as the i value at
the right-hand side. The right-hand side value exists until performing the assignment, the value of
the left-hand side exists only after the assignment. For clarity, the left-hand side i is written as i+,
and we get i+ := 1 - i. Now this can be expressed as a function between variables i+ and i:

A ::= (i+ == 0 and i == 1)
 or (i+ == 1 and i == 0)

You can read the first line of the A relation as ‘when i equals 1, i+ must equal `0’. With another
relation that represents the value of all current variables like

C ::= i == 0 and j == 3

you select the correct line in A with A and C, yielding relation U that says

U ::= i+ == 1 and i == 0 and j == 3

Almost there, except i+ must become i and the existing i should be removed. This is what variable
replacement does. Apply replace(i+, i) on U and you get a new D relation

D ::= i == 1 and j == 3

This relation is just like the C relation, it contains all variables with their existing values. In other
words we computed i := 1 - i from state C, resulting in state D.

While this example is quite easy, there is no inherent upper limit to what you can consider to be an
‘assignment’. Basically anything that you can describe as a function between input and output
works.

Thus if you construct a relation E that expresses the input - output relation of all edges of an
automaton, and you have a relation C expressing the current state, then C and E followed by replace
for all variables (assuming that E is complete for all variables), you get a new state C' containing the
combined result of taking one of the edges.

4.5. Practical usage
After this short and possibly mind-blowing introduction on decision diagrams in particular in the
multi-valued variation, below some practical information on using the common.multivaluetrees
library.

4.5.1. Variables

As you typically work with variables in several use-kinds, like i and i+ in the explanation above,
this has to be defined first. The core functionality provided for that is in
common.multivaluetrees.VarInfoBuilder. The class is generic over the type of variables. As a
convenience, the common.multivaluetrees.SimpleVarInfoBuilder class has been created using
common.multivaluetrees.SimpleVarVariable variables (with a name, a lower bound, and a number of
valid values).

After creating an instance providing the number of use-kinds that you have, add the variables as
you like. The order of adding is also the order of the variable nodes in the tree from the root
towards the bottom ONE or ZERO terminator nodes. The elementary function is
addVariable(<variable>, <use-kind>) which adds a node level for variable <variable> and usage
index <use-kind> (running from 0 to the number of use-kinds excluding the upper bound).

As you usually want to have all use-kinds for a variable, and often want them on consecutive node
levels in the tree, addVariable(<variable>) adds all use-kinds in one call. For a list of variables,
addVariablesGroupOnVariables(<list-variables>) does the same for each variable in the list. First N
use-kinds for the first variable, then N use-kinds for the second variable, and so on. If you want the
same use-kinds near each other instead, addVariablesGroupOnUseKind(<list-variables>) exists.

Each call adds one or more VarInfo instances to the builder. A VarInfo instance is the equivalent of
e.g. i and i+ above. The VarInfoBuilder instance also stores the relation between variables and their
VarInfo instances. With a variable you can ask it for all related VarInfo instances (or just one
instance), with a VarInfo instance you can ask for the associated variable.

4.5.2. Trees and relations

The VarInfo instances from the builder are used to construct multi-value nodes, and eventually
trees of such nodes. This is done in the common.multivaluetrees.Tree class, the work horse in multi-
value diagram computations. Constructing it is a simple Tree t = new Tree(); which gives you an
empty tree.

Constructed relations in t are represented by common.multivaluetrees.Node objects. These objects
should be considered to be read-only. They can be stored anywhere in the application. Modifying a
Node object is not possible, but you can create a new (updated) object and store that.

You can read the information inside a Node. The only somewhat useful operation that you can

perform on Node n is n.dumpGraphLines("a-description-of-n"); which dumps a human-readable
representation of the relation expressed in the node. You may however also want to check out
t.dumpGraph(Node n) which should provide better output.

The Tree t object is where nodes are created and stored. It provides the following features:

Feature Description

Node Tree.ZERO Constant expressing the false relation.

Node Tree.ONE Constant expressing the true relation.

Node
t.buildEqualityValue(VarInfo
varInfo, int value)

Construct the elementary var == value relation, see also below.

Node t.conjunct(Node a, Node
b)

Construct a conjunction (‘and’ operator) of relations a and b.

Node t.multiConjunct(Node…
nodes)

Construct a conjunction (‘and’ operator) of one or more relations.

Node t.disjunct(Node a, Node
b)

Construct a disjunction (‘or’ operator) of relations a and b.

Node t.multiDisjunct(Node…
nodes)

Construct a disjunction (‘or’ operator) of one or more relations.

Node t.invert(Node n) Construct an inverted relation (‘not’ operator) of relation n.

Node t.replace(Node n, VarInfo
oldVar, VarInfo newVar)

Construct a new relation from relation n, where the equality over
oldVar is replaced by the equality over newVar, see also below.

Node t.abstract(Node n,
VarInfo[] abstractions)

Abstracts from the supplied variables. The variable is replaced by
a disjunction of its children.

String t.dumpGraph(Node n) Output a human readable description of relation n.

• The fool-proof way to build a relation from the ground up is to use Node
t.buildEqualityValue(VarInfo varInfo, int value), combined with Node t.conjunct(Node a,
Node b) (‘and’ operator) and Node t.disjunct(Node a, Node b) (‘or’ operator) calls.

There is also Node t.buildEqualityIndex(VarInfo varInfo, int index) and Node
t.buildEqualityIndex(VarInfo varInfo, int index, Node sub). These calls are more efficient, but
ignore the lower bound (internally, the variable range is shifted to make the lower bound equal
to 0), and the latter function assumes you build the relation bottom up (VarInfo instances of last
to first calls in the VarInfoBuilder).

• The Node t.replace(Node n, VarInfo oldVar, VarInfo newVar) is simple and has few
requirements, but it is not very efficient variable replacement. For mass-replacement, Node
t.adjacentReplacements(Node n, VariableReplacement[] replacements) is better where the
variable replacement instances are constructed with VariableReplacement(VarInfo oldVar,
VarInfo newVar). The oldVar and newVar variables should be on adjacent levels in the tree, and
replacements must be ordered top-down.

• A somewhat exotic method is Node t.assign(Node n, VarInfo varInfo, int index). It selects the
relation where the varInfo variable has the index value (with shifted lower bound), and
eliminates that variable as well.

5. Rail diagram generator
The Eclipse ESCET rail diagram generator makes it easy to generate pretty and simple to
understand syntax specifications. The following topics explain the rail diagram generator in more
detail:

• A short introduction about the use of rail diagrams can be found in Introduction.

• Hands-on examples are in the Examples section.

• How to Fine-tune the output is described in Customizing output.

• Using the application from the command line is explained in the Command-line arguments
section.

• The formal definition of the rail diagram input language is shown in Lexical syntax and
Grammar.

• And finally, helpful tips on debugging problems in the generator can be found in Debugging.

5.1. Introduction
Making pretty syntax specifications easy.

For languages, an often used specification of the grammar of the language in a user manual is some
form of (E)BNF rules. However for people not used to reading them, it may be hard to understand
what the rules say.

An alternative is to use syntax diagrams also known as railroad diagrams. These diagrams are often
easier to understand for users that do not know (E)BNF.

A disadvantage of the syntax diagrams is that the diagrams have to be created. For a full language
the number of diagrams can grow to over 50 pictures. To reduce the effort in creating them, tools
have been developed by several persons. The tools vary in required program environment,
accepted input, and quality of the output.

We are very fond of the CTAN rail package. It is written in TeX, and uses a C program to parse its
input. We used it for all our languages. It is very good for creating diagrams in PDF documents, but
much less useful in an Eclipse environment with online help web pages. Competitors did not seem
to fit much better either, so the decision was made to make a Java program that behaves in much
the same way as the CTAN rail package.

Files containing input for the Eclipse ESCET rail diagram generator use a .rr file extension by
convention.

5.2. Examples
A number of examples are provided for those that hate reading. The input of the program is similar
to EBNF with an extra feature for repetition.

https://en.wikipedia.org/wiki/Syntax_diagram
https://www.ctan.org/pkg/rail

5.2.1. Diagrams and sequences

DiagramName : A B C
 ;

A diagram starts with its name, a colon, the syntax that should be shown (in this case the sequence
A, B, C), and finally, a semicolon as terminator. This gives the following result.

As rail diagrams are read from left to right, following a line without taking a sharp turn, the
resulting image is not a surprise.

5.2.2. Choices

The second primitive is choice, where you pick one of the given alternatives. As with EBNF, this is
written with the pipe symbol |, like:

OneOfThem : A | B C | D ;

This results in:

Note that as sequence has higher priority than choice, the B and C sequence forms one alternative.
You can use parentheses to break the priority chain, e.g.:

SequentialChoice : (A | B) (C | D) ;

This gives a sequence of choices:

5.2.3. Optional

An optional part of the syntax can be described in multiple ways:

OptionalA1: () | A;

OptionalA2: A? ;

This results in:

The dedicated optional syntax (?) is often more convenient than using the choice syntax.

5.2.4. Repetition

The core repetition primitive is alternating between two nodes:

Alternating : A + B ;

This results in:

You can make one (or both) of the paths empty, which results in the normal EBNF repetition
semantics. Below, node A must occur at least once, while node B may also be skipped.

EmptyAlternating : (A + ())
 (() + B)
 (() | (B + ())) ;

This gives:

The third repetition is an alternative for the B sequence. It avoids the caveat with repetition due to
the right-to-left visiting order of the bottom path, made more clearly visible in the following
example:

ABCD : (A B) + (C D) ;

It results in:

It describes EBNF AB(CDAB)*, and the tool translates it correctly, but the bottom path does not read
nicely, as you have to read that part from right to left.

It is advised to avoid this case by changing the diagram. Limit the second part of the + operator to
one node, possibly by introducing an additional non-terminal.

5.2.5. Splitting long sequences

For rules that have a long sequence, the width of the diagram grows quickly beyond the width of
the page. The best way to deal with that is to change the diagram, for example by moving a part of
the sequence to a new non-terminal.

The program however does offer a quick fix around the problem at the cost of a less readable
diagram. An example is shown below:

Abcdefgh : A B \\
 D E F \\
 G \\
 H
 ;

This gives:

The double backslash breaks the ‘line’ and it continues below on the next line. You cannot break the
empty sequence, and each row must have at least one node.

5.2.6. Referencing a path in the diagram

When explaining a diagram, it can be useful to refer to a path in the diagram. The program has a
bracketed string for that:

Recursion : [nest] Recursion
 | [exit] ()
 ;

Now you can say that the [nest] path recursively applies the rule, while the [exit] path ends the
recursion.

5.2.7. Terminals

Until now, all names in the diagrams have a rectangular box around them which means (by default)
it is a non-terminal. The name used in the diagram input file is also the name displayed in the
output.

Terminals in the diagram do not have a name, but show the concrete syntax instead. The simplest
way to write a terminal is shown in the first and second alternative. They state the literal concrete
syntax of the terminal surrounded by single or double quotes. The third alternative introduces the
internal name OTHER for the terminal and uses the properties file to translate the name to the actual
syntax for that name.

Terminals : 'single'
 | "double"
 | OTHER
 ;

Fragment of the properties file related to this diagram that says the terminal named OTHER should
display else in its box:

terminal.token.OTHER: else

And the generated output is then:

5.2.8. Meta-terminals

While grammars only have terminals and non-terminals, we found use for a third form in
explaining the syntax of a language. In almost every language a few non-terminals are too trivial or
too large to define precisely in a rail diagram. Common cases include literal numbers, literal strings,
and sets of names that can be used for identifiers. Instead of defining the syntax of such a non-
terminal in a diagram in full detail, the accompanying text of a diagram can define it in a few
compact sentences. Such non-terminals thus have no defining rule and also no concrete syntax. We
name these hybrid forms meta-terminals.

They are added in the diagram much like the third alternative above. A name is given to it in the
diagram input file, and the properties file defines the associated displayed text. For example:

MetaTerminals : Identifier
 ;

Fragment of the properties file related to this diagram stating the displayed text should be
VariableName:

meta-terminal.token.Identifier: VariableName

And the generated output is then:

The text around the diagram should describe the allowed syntax of VariableName.

Meta-terminals have a rounded box around the name indicating lack of a definition elsewhere, but
use the non-terminal font for its name indicating the written name is not taken to be as the literal
text.

5.2.9. Further reading

In this section a hands-on explanation was given to get started making diagrams without spending
a lot of time grasping all the details.

In the Grammar section the grammar of the rail diagram is explained in more detail.

If default behavior is not to your liking, layout and many other settings can be overridden in a
properties file, see the Customizing output section for details.

5.3. Customizing output
The program can take a properties file to translate terminals and non-terminals. The same file can
also contain settings to modify shape, color, fonts, and spacing of almost everything.

5.3.1. Syntax of the properties file

The properties file used by the program is a normal Java properties file. Its syntax is described in
the Java 17 API Specification.

In short:

• It is a file format that consists of lines of text.

• Empty lines are allowed and are skipped.

• Lines beginning with # or ! are considered to be comment lines and are ignored.

• Data lines contain key/value pairs.

• By convention, properties files use the .props extension to their name.

Here, a key of a data line is a sequence of words, separated by a dot, for example,
terminal.token.Identifier. The key is followed by an optional but recommended separator
character, either : or =. The remainder of the line is the value part, where leading and trailing white
space is removed.

The properties file format uses \ as continuation character to the next line and also as escape
character.

https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util/Properties.html#load(java.io.Reader)

5.3.2. Kinds of values

In the tables below, the properties keys recognized by the program are listed along with an example
and an expected value.

This table lists the used expected values, and gives some more information about them.

Type name Examples Description

Boolean yes, `false' Boolean value to enable or disable a flag.

RGB color 151 7 230 Three integer numbers between 0 and 255 inclusive,
separated by spaces.

Integer 10 Integer value, usually with ‘pixel’ unit.

Font name Serif Name of the font to use. The program currently supports
the Dialog, DialogInput, Monospaced, Serif, and SansSerif
fonts.

Font height 12 Integer number specifying the point size of the font.

Font style plain Style of the font. The program currently supports plain,
bold, and italics styles.

Text literal Arbitrary text to display for a token.

5.3.3. Global settings

The following settings affect background and the rail line.

Property name Value type Description

diagram.background
.color

RGB color Color of the background of the generated image.

rail.linewidth Integer Width of the rail line.

rail.color RGB color Color of the rail line.

5.3.4. Diagram settings

The diagram settings configure the global layout of an image. At the top is a header line with the
name of the rule, below it are one or more railroad pictures with some additional rail at both ends.

Property name Value type Description

rule.padding.top Integer Amount of space above the header line.

rule.padding.left Integer Amount of space left of the header line.

rule.padding.bottom Integer Amount of space between the last railroad
picture and the bottom of the diagram.

rule.padding.right Integer Minimum amount of space right of the header
line.

Property name Value type Description

rule.diagram.padding.top Integer Amount of space above each railroad picture.

rule.diagram.padding.left Integer Amount of space left of each railroad picture.

rule.diagram.lead.width Integer Horizontal length of the rail line before the
railroad picture.

rule.diagram.trail.width Integer Horizontal length of the rail line after the
railroad picture.

diagram-header.text.color RGB color Color of the diagram header text.

diagram-header.text.font Font name Font of the diagram header text.

diagram-header.text.font.size Font height Font size in points of the diagram header text.

diagram-header.text.font.style Font style Style of the diagram header text.

5.3.5. Empty node

Each kind of node has a number of settings as well, starting with the simplest node, ().

Property name Value type Description

empty.width Integer Horizontal length of the empty node.

5.3.6. Branch label

The bracketed string [refname] node configuration settings are listed below.

Property name Value type Description

branch-label.padding.left Integer Amount of space at the left of the label text.

branch-label.padding.right Integer Amount of space at the right of the label text.

branch-label.padding.top Integer Amount of space above the label text.

branch-label.padding.bottom Integer Amount of space between the label text and the
rail line.

branch-label.min-width Integer Minimum horizontal length of the label node.

branch-label.text.color RGB color Color of the label text.

branch-label.text.font Font name Font used for the label text.

branch-label.text.font.size Font height Font size in pt of the label text.

branch-label.text.font.style Font style Font style of the label text.

5.3.7. Name node

A name node is a string of text within a box. The text is often a single name, and the box may have
rounded corners. At the left and right of the box, a rail line is connected.

First the configuration of the rail lines, followed by the configuration settings of the box and the

text.

Property name Value type Description

name.rail.entry.width Integer Horizontal length of the rail line at the left of the
box.

name.rail.exit.width Integer Horizontal length of the rail line at the right of
the box.

There are three configurations for name and box. One for terminals, one for meta-terminals, and
one for non-terminals. The structure of the settings is the same for all three, their default values are
a little different, in particular in choices of corner radius and font.

Terminal text and box properties

Property name Value type Description

terminal.name.padding.horizont
al

Integer Amount of horizontal space between the text
and the box around the text.

terminal.name.padding.vertical Integer Amount of vertical space between the text and
the box around the text.

terminal.corner.radius Integer Radius of the corners of the box. 0 means a
rectangular box.

terminal.box.color RGB color Color of the line of the box.

terminal.box.linewidth Integer Width of the line of the box.

terminal.text.color RGB color Color of the terminal text.

terminal.text.font Font name Font used for the terminal text.

terminal.text.font.size Font height Height of the terminal text.

terminal.text.font.style Font style Style of the terminal text.

Meta-terminal text and box properties

Property name Value type Description

meta-
terminal.name.padding.horizont
al

Integer Amount of horizontal space between the text
and the box around the text.

meta-
terminal.name.padding.vertical

Integer Amount of vertical space between the text and
the box around the text.

meta-terminal.corner.radius Integer Radius of the corners of the box. 0 means a
rectangular box.

meta-terminal.box.color RGB color Color of the line of the box.

meta-terminal.box.linewidth Integer Width of the line of the box.

meta-terminal.text.color RGB color Color of the meta-terminal text.

Property name Value type Description

meta-terminal.text.font Font name Font used for the meta-terminal text.

meta-terminal.text.font.size Font height Height of the meta-terminal text.

meta-terminal.text.font.style Font style Style of the meta-terminal text.

Non-terminal text and box properties

Property name Value type Description

nonterminal.name.padding.horiz
ontal

Integer Amount of horizontal space between the text
and the box around the text.

nonterminal.name.padding.verti
cal

Integer Amount of vertical space between the text and
the box around the text.

nonterminal.corner.radius Integer Radius of the corners of the box. 0 means a
rectangular box.

nonterminal.box.color RGB color Color of the line of the box.

nonterminal.box.linewidth Integer Width of the line of the box.

nonterminal.text.color RGB color Color of the non-terminal text.

nonterminal.text.font Font name Font used for the non-terminal text.

nonterminal.text.font.size Font height Height of the non-terminal text.

nonterminal.text.font.style Font style Style of the non-terminal text.

Token text translations

In the diagram input files, token names may be used, but terminals often contain other symbols.
The translation between the token name and the text it should display can also be configured.

There are three groups of settings. Different settings within a group only differ in the name of the
token that they translate. Such a name is listed here as <token-name>.

Property name Value type Description

terminal.token.<token-
name>

Text The literal text to display in the diagram for terminal
token <token-name>.

meta-terminal.<token-name> Text The literal text to display in the diagram for meta-
terminal token <token-name>.

nonterminal.token.<token-
name>

Text The literal text to display in the diagram for non-
terminal token <token-name>.

All tokens must have a different name. Both terminals and meta-terminals token lists are assumed
to be complete. The non-terminal list is fully optional, and the default choice if a token name cannot
be found. All missing entries use the token name as their text.

Note that the property file reader applies some interpretation to the text as well so what you enter

in the file may not be what you get. Please check the property file syntax section for details.

5.3.8. Sequence

A sequence connects one or more child diagram nodes in one or more rows such that they are all
visited in sequential order.

Its configuration settings cover the elements around the child nodes.

Property name Value type Description

sequence.padding.first-
row.prefix

Integer Amount of space before the first child at the first
row.

sequence.padding.other-
row.prefix

Integer Amount of space left of the left connecting
vertical line to a next row.

sequence.padding.row.suffix Integer If there is more than one row, the minimal
amount of space between the right vertical line
connecting a next row, and the vertical line up
to the exit.

sequence.padding.interrow Integer Minimal amount of space between the bottom of
a row, and the connecting horizontal line to the
next row beneath it. Also, the minimal amount
of space between the same horizontal line and
the top of the next row.

sequence.arc-radius Integer Radius of the arcs connecting horizontal lines
with vertical lines.

5.3.9. Choice

The choice node expresses a choice between one of the child diagram nodes.

Its configurable properties are:

Property name Value type Description

choice.arc-radius Integer Radius of the arcs connecting horizontal lines
with vertical lines.

choice.padding.vertical Integer Minimal amount of vertical space between two
child diagrams.

Note that the space between the first and second child is not only influenced by the
choice.padding.vertical setting, but also influenced by the choice.arc-radius, as two arcs have to fit
vertically as well.

5.3.10. Repetition

The repetition node A + B expresses an alternating execution sequence A(BA)*. The A child node is
referred to as forward, as its execution runs normally from left to right in the diagram, while the B

child is referred to as backward as its execution normally runs from right to left. The repetition is
also known as loop due to the circular shape of the node.

Its configuration settings are:

Property name Value type Description

loop.arc-radius Integer Radius of the arcs connecting horizontal lines
with vertical lines.

loop.padding.vertical Integer Amount of vertical space between the nodes of
the forward and backward sequences.

loop.padding.left Integer Amount of space left of the left vertical line.

loop.padding.right Integer Amount of space right of the right vertical line.

The loop.padding.left and loop.padding.right become important when a diagram contains a
sequence of repetitions. If you set the left and right padding to 0, the following may happen:

SequenceLoops : (A + B) (C + D) ;

This results in:

Other nodes all have some space at either end, making it less apparent in those cases.

5.3.11. Debugging properties

A diagram is actually a tree of simpler diagrams where at each node in the tree a set of position
equations is solved for positioning all elements in its sub-tree. This happens in two sweeps through
the tree. First a bottom-up computation of size and relative position of elements in their sub-tree is
performed. In the second top-down sweep assignment of horizontal and vertical absolute offsets to
all nodes is performed, giving all elements their final absolute position in the diagram. Output is
produced by a walk over all nodes in the tree, and copying the elements with their absolute
positions to the output.

There are several flags for generating detailed output of the above process to support debugging at
several points in the computations.

Hierarchy

To view the tree hierarchy in the diagram, the debug.structure flag can be used.

Property name Value type Description

debug.structure Boolean Dump internal structure of the diagram.

Constraint solving

Positions are computed by solving two sets of constraint equations at each node in the tree, one for
horizontal positioning, and one for vertical positioning. The debug.equations flag shows the
variables and equations, the debug.solver shows the solving process. Due to the large number of
variables and equations in a typical diagram, enabling these settings produces a lot of detailed
debug output.

Property name Value type Description

debug.equations Boolean Dump positioning equations for the graphical
elements.

debug.solver Boolean Dump reasoning and deciding edge position
values for the graphical elements.

Coordinates

To debug problems in produced output, the following flags are useful. The debug.rel_coordinates
flag shows position information at each level of the tree separately, this is mostly useful to find
problems at a single level of a diagram. The debug.abs_coordinates flag shows the same position
information, except all coordinates use the same top-left origin, enabling verification of positions
between different levels in the hierarchy.

Property name Value type Description

debug.rel_coordinates Boolean Dump coordinates of the graphical elements and
child node positions within each element.

debug.abs_coordinates Boolean Dump absolute coordinates of the graphical
elements and child node positions of the
diagram.

Note that positions are stated as inclusive horizontal and vertical edge positions everywhere. This
means that element x[1—1], y[1—2] is one unit wide horizontally, and two units vertically. Also, an
element x[2—7], y[1—2] is directly next to the previous element, there is no space between them.
Zero width or height is shown as an interval with the first value larger than the second value, for
example x[4—3].

5.3.12. Default property values

The default values for the various properties are as follows:

Background.
diagram.background.color: 255 255 255

Rail.

rail.linewidth: 1.0
rail.color: 0 0 0

Diagram rule.
rule.padding.top: 10
rule.padding.left: 10
rule.padding.bottom: 10
rule.padding.right: 10
rule.diagram.padding.top: 10
rule.diagram.padding.left: 10
rule.diagram.lead.width: 20
rule.diagram.trail.width: 20

Choice.
choice.arc-radius: 10
choice.padding.vertical: 5

Loop.
loop.arc-radius: 10
loop.padding.vertical: 5
loop.padding.left: 5
loop.padding.right: 5

Sequence.
sequence.padding.first-row.prefix: 0
sequence.padding.other-row.prefix: 5
sequence.padding.row.suffix: 5
sequence.padding.interrow: 8
sequence.arc-radius: 10

Branch label.
branch-label.padding.left: 5
branch-label.padding.right: 5
branch-label.padding.top: 5
branch-label.padding.bottom: 5
branch-label.min-width: 5
branch-label.text.color: 0 0 0
branch-label.text.font: SansSerif
branch-label.text.font.size: 16
branch-label.text.font.style: plain

Empty node.
empty.width: 10

Name node, width of the entry and exit connections.
name.rail.entry.width: 5
name.rail.exit.width: 5

Header font and text.
diagram-header.text.color: 0 0 0
diagram-header.text.font: SansSerif

diagram-header.text.font.size: 16
diagram-header.text.font.style: bold

'terminal' name properties.
terminal.name.padding.horizontal: 5
terminal.name.padding.vertical: 5
terminal.corner.radius: 12
terminal.box.color: 0 0 0
terminal.box.linewidth: 1.0
terminal.text.color: 0 0 0
terminal.text.font: Monospaced
terminal.text.font.size: 18
terminal.text.font.style: plain

'meta-terminal' name properties.
meta-terminal.name.padding.horizontal: 5
meta-terminal.name.padding.vertical: 5
meta-terminal.corner.radius: 12
meta-terminal.box.color: 0 0 0
meta-terminal.box.linewidth: 1.0
meta-terminal.text.color: 0 0 0
meta-terminal.text.font: SansSerif
meta-terminal.text.font.size: 16
meta-terminal.text.font.style: plain

'nonterminal' name properties.
nonterminal.name.padding.horizontal: 5
nonterminal.name.padding.vertical: 5
nonterminal.corner.radius: 0
nonterminal.box.color: 0 0 0
nonterminal.box.linewidth: 1.0
nonterminal.text.color: 0 0 0
nonterminal.text.font: SansSerif
nonterminal.text.font.size: 16
nonterminal.text.font.style: italic

Token text properties:
terminal.token.<tokname>: <toktext>, should always be fully specified.
meta-terminal.<tokname>: <toktext>, should always be fully specified.
nonterminal.token.<tokname>: <toktext>, with <toktext> optional, default value is
<tokname>.

Debugging support, ordered by topic.
debug.structure: false
debug.equations: false
debug.solver: false
debug.rel_coordinates: false
debug.abs_coordinates: false

5.4. Command-line arguments
The railroad diagram application has several command line arguments. The following command
line arguments can be specified, in the given order:

• The path to the input file that should be processed by the generator. The file should contain a
railroad diagram specification, like shown in Examples.

• The path to the output image file.

• The requested output format. Specify images for a normal rail diagram PNG image. Instead, dbg-
images can be used to debug the diagram generator.

• Optionally, the path to the configuration file to use, as explained in the Customizing output
section. If provided, the configuration file is used for customizing diagram layout. If not
provided, the default configuration is used.

5.5. Lexical syntax

5.5.1. Whitespace

Spaces, tabs, and new line characters are supported as whitespace. Whitespace is ignored (except in
the literals described below), but can be used to separate tokens as well as for layout purposes. The
use of tab characters is allowed, but should be avoided if possible, as layout will be different for text
editors with different tab settings. You may generally format the input as you see fit, and start on a
new line when desired.

Examples:

Normal layout.
DiagramName : A B C
 ;

Alternative layout.
DiagramName
 : A
 B C
 ;

5.5.2. Comments

Comments start with a hash symbol (#) and end at the end of the line. Comments are ignored.

Examples:

DiagramName : A B C ; # Comment

5.5.3. Terminals

The following terminals are defined:

Identifier

An identifier. Defined by the regular expression: [\-A-Za-z0-9_]+. They thus consist of dashes (-),
letters, digits and underscores (_).

Examples:

Expression
ABC_DEF
ABC-DEF

BracketedString

A bracketed string. Defined by the regular expression: \[([^\\\]\n]|\\[\\\]])*\]. They are thus
enclosed in square brackets ([and]). They must be on a single line and must thus not include
new line characters (\n, Unicode U+0A). To include a closing bracket (]), it must be escaped as \].
Since a backslash (\) serves as escape character, to include a backslash it must be escaped as \\.

Examples:

[literal]
[line-break]
[abc\]def]
[abc\\def]

SingleQuotedString

A single-quoted string literal. Defined by the regular expression: '([^\\'\n]|\\[\\'])*\'. These
literals are enclosed in single quotes ('). They must be on a single line and must thus not include
new line characters (\n, Unicode U+0A). To include a single quote (') in a string literal, it must be
escaped as \'. Since a backslash (\) serves as escape character, to include a backslash in a string
literal it must be escaped as \\.

Examples:

'hello world'
'abc\'def'
'abc\\def'

DoubleQuotedString

A double-quoted string literal. Defined by the regular expression: \"([^\\\"\n]|\\[\\\"])*\".
These literals are enclosed in double quotes ("). They must be on a single line and must thus not
include new line characters (\n, Unicode U+0A). To include a double quote (") in a string literal, it
must be escaped as \". Since a backslash (\) serves as escape character, to include a backslash in
a string literal it must be escaped as \\.

Examples:

"hello world"
"abc\"def"
"abc\\def"

5.6. Grammar
The toplevel grammar rule of the application is Specification. It is a sequence of rules, each
terminated by a semicolon. One specification creates one output file.

A Rule is a possibly named railroad.

A Railroad is one or more choice alternatives.

The BracketedString like [a] can be used to denote specific points in the diagram allowing you to
refer to such points from the explanatory text.

An Alternative has a sequence of one or more factors. The optional ? character makes a factor
optional. By appending the [loop] part, the sequence can be repeated. The + requires at least one
sequence, the * also allows 0 repetitions, resulting in an empty sequence. The second Factor defines
the syntax on the way back to the start. Note that parentheses are required in the second Factor if is
it more than one node.

Note that together with | above and the empty sequence () below, you can write all loops using the
+ infix operator. The Examples section explains this as well.

In an alternative, Factor is a single token:

The [literal1] and [literal2] choices show the text of the string. Surrounding quotes are dropped.
There are two forms of literals to simplify using single or double quote literals in the diagrams. The
[sub-diagram] choice allows nesting of sequence, choice, and repetition, enabling construction of
more complicated diagrams. The [epsilon] choice is the empty sequence. The [sub-rule] choice
enables giving the name of another diagram to process.

Finally, the [line-break] choice can be used to split a long sequence of factors into multiple rows. In
general, its use should be avoided as it often leads to less pretty diagrams. Instead, try to re-
organize rules or diagrams.

5.7. Debugging
When the output does not look correct, the generator also provides tools for analyzing such
problems. This section starts with a global description of how a railroad diagram is computed and
painted, followed by an explanation of how to relate errors in the image to problems in the code.

5.7.1. Global internal structure of the generator

Generating a rail diagram picture starts by reading the .rr input diagram file and converting it to a
tree of nodes. There are elementary nodes such as an empty node, a node with a name for
terminals, meta-terminals and non-terminals, and the bracketed reference name node. There are
also container nodes, the sequence node, the choice node, and the loop node. They combine and
organize their child nodes, leading to paths from begin to end in the diagram, stored as a tree of
nodes. The root node is a diagram node that contains the name of the diagram and a sequence of
rules in the diagram.

The second step is to convert nodes in the tree to elements in a bottom-up traversal through the
nodes. An element is a rectangular area in the picture that completely displays that node and all its
children. An element also has a horizontal connector for linking it with other elements. Inside an
element a collection of graphics (text, quarter arcs, and lines) is created to visualize the flow
through the element from the connector at one side to the connector at the other side. Non-leaf
nodes also incorporate the elements of their children. Finally, the element and its contents is given
a size and relative position. At the parent level the element can thus be seen as a black box with
known size and connection points.

Assigning size and relative positions to content in an element is not a trivial process. Usually
several graphics are used in a single node. Choice and loop nodes even have multiple independent
chains of graphics that connect again at the extremes of the element. To avoid complex
computations in assigning sizes and positions, the generator instead introduces variables for
positions and sets equality constraints a + val = b (position a is exactly val units away from
position b) and/or less-equal constraints a + val ⇐ b (position a is at least val units away from
position b). A solver computes values for all the variables using the constraints and derives
positions (and thus also sizes) for the element and its content.

At the end of the second step it is known how large the diagram should be. The third step is then to
create an image of the appropriate size and traverse the tree again, painting all graphics onto the
image. Once that is done, the image is written to the file system, and the job is done.

5.7.2. Analyzing output

Hopefully it will not happen, but you may get output like the following diagram:

By resizing the image the problems are easier to spot:

Obviously something is not right here as various lines and arcs are not connected properly to each
other. Unfortunately, what the cause for these misalignments is doesn’t become clear. For example,
the arc at the left is clearly above the line it should connect to, but is the arc too high or the line too
low? To decide where the cause of the problem lies, you need to do some analysis first.

The generator can produce output about how it derives its positions in a diagram. This is controlled
by a number of debug-properties in the properties file. The debug.structure property gives the high
level element structure, showing how the diagram is built. To understand what an element draws
where, the debug.abs_coordinates property is useful in particular when you need to relate positions
with other elements. Printed positions in the output should also be the position in the image of the
elements if you start counting at (0, 0) for the top-left pixel in the image where positive X axis is to
the right and positive Y axis is down. This approach generally finds the element where it goes
wrong, and from there it is relatively easy to find the code that generates the element, the variables
and the constraints.

There is however a level beyond linking positions in the image to element positions. The printed
positions from the debug properties say where the generator believes that a graphic should be. That
does not mean painted pixels in the image of that element also actually always end up at the right
spot. In other words, the painting code could be wrong too and paint pixels outside its element,
omit some pixels, or paint some pixels twice. Visual inspection of the result may not always show
that information. To fight this problem, the generator also has a --format=dbg-images option value. It
also produces rail diagram images, but instead of a pretty diagram it shows position and painting
information. After enlarging it looks like:

Background is black, and any pixel in the diagram that is different from the background is grey or
yellow. The arcs and text thus look very fat since they have a lot of anti-aliasing pixels to smooth
their edges.

The grey is mostly not very interesting as long as they are at the expected spot, those pixels are

painted once and that is also what you would expect. Yellow pixels are painted more than once.
Light yellow pixels that you see are painted twice, there are also a darker yellow colours for
indicating touching the same pixel even more often.

Some yellow exists by design, when an arc diverts or merges with a line, some overlap exists to
simplify drawing the image. The picture however also has other yellow pixels at the right side of
the name boxes. The latter should not be there, as graphics should not overlap except when
connecting an arc to a line. These pixels mean that either the horizontal line is one pixel too much
to the left or the vertical line is one pixel too far to the right.

To decide what is wrong you need to check graphic positions. The other colours give much of that
information. Pink pixels indicate where the computed graphics expect connections by another
graphic. For example, the two pink pixels at the top of the Identifier box are from the arcs. They
expect the horizontal line to connect there, but in reality the line is painted one pixel below that
position. You see the same pattern happen at other horizontal lines as well. The conclusion here is
thus that the painting code of a horizontal line is painting one row too low.

In a correctly painted image there should not be pink pixels except at the far left and far right of
leading and trailing lines and around the square box of a non-terminal. (The reason for these
exceptions is that normal horizontal and vertical lines are used there, but they don’t know there is
no other graphic connected there.) Those pink pixels should still properly be aligned with the line
though.

The green pixels in the image show the center point of the arc (at the corner of the green pixel
furthest away from the arc) as well as the opposite corner, thus allowing checking that the arc
pixels do not exceed their box.

Last but not least, the blue pixels show the corners of sub-elements as listed in the debug.structure
output. It simplifies finding bounding box positions. In this image those pixels show a problem with
the outermost diagram element. At the top-left corner of the image the pixel is at the very edge of
the image while at the bottom-right there are black pixels around it. The latter shouldn’t happen, so
it points to a bug where the image size is not computed properly.

6. SeText scanner/parser generator
SeText is a textual syntax specification language and associated scanner/parser generator. It can be
used to specify the syntax of a language, and automatically generate a scanner and LALR(1)
parser(s).

For the purpose of this documentation, it is assumed that the reader:

• Is familiar with scanner/parser generators (for example yacc/bison and lex/flex).

• Is familiar with scanner and LALR(1) parser technology, including regular expressions and BNF
notation.

• Understands the limitations of the LALR(1) algorithm.

The following topics explain the SeText language and tools in more detail:

• SeText lexical syntax

• Specifying lexical syntax using SeText

• Regular expressions

• Terminal descriptions

• Imports

• Scanner hooks

• Specifying grammars using SeText

• Parser hooks

• Usage hints

• Generated scanners/parsers

• Using SeText in an Eclipse Plug-in Project

• Limitations

6.1. SeText lexical syntax
SeText supports the following comments:

• Everything after // until the end of the line is a comment.

• Everything from /* up to the next */, possibly spanning multiple lines, is a comment.

SeText keywords may be used by escaping them with a $ character.

Whitespace (spaces, tabs, and new lines) are essentially ignored.

6.2. Specifying lexical syntax using SeText
Terminals can be specified as follows:

@terminals:
 @keywords Operators = and or;
 @keywords Functions = log sin cos tan;
end

@terminals:
 IDTK = "$?[a-zA-Z_][a-zA-Z0-9_]*" {scanID};
end

Here we specified two groups of terminals. The first group specifies two keyword (sub-)groups,
named Operators and Functions. For these keywords (and, or, log, etc), terminals are created (ANDKW,
ORKW, LOGKW, etc). Furthermore, the keyword group names (Operators and Functions) may be used as
non-terminals in the grammar, to recognize exactly one of the keyword terminals created for that
keyword group.

The second group specifies an IDTK terminal, defined by a regular expression (see below). The
{scanID} part indicates that the resulting tokens should be passed to the scanID method in the hooks
class (see below), to allow post-processing. Post-processing methods are also allowed for keyword
identifiers, such as sin and cos in the example.

SeText generated scanners use longest match when recognizing tokens. If two or more terminals
recognize the same longest match, priorities are used to resolve the conflict. For the example above,
the first group of terminals has priority over the second group, thus giving the keywords priority
over the identifiers. That is, @terminals groups listed earlier in the specification have higher priority
than @terminals groups listed later in the specification. If two terminals accept the same input, and
they are defined within the same group (they have the same priority), then the specification is
invalid.

It is also possible to use scanner states:

@terminals:
 "//.*";
 "/*" -> BLOCK_COMMENT;
 @eof;
end

@terminals BLOCK_COMMENT:
 "*/" ->;
 ".";
 "\n";
end

The first group of terminals is for the default state, as no state name is specified. Single line
comments (// ...) are detected using the first regular expression. This expression is not given a
name, and can thus not be used in parser rules.

The second regular expression detects the start of block comments (/*) and switches the scanner to
the BLOCK_COMMENT state.

The second group of terminals is detected only when the scanner is in the BLOCK_COMMENT state, as
indicated by the BLOCK_COMMENT state name after the @terminals keyword. Everything except for the
end of the comment is ignored (no name for the terminals, and no new scanner state). The end of
block comments (*/) makes the scanner go back to the default scanner state (arrow without state
name).

The @eof terminal indicates that end-of-file is allowed in a scanner state (in this case, the default
scanner state).

For every scanner, the name of the Java class to generate should be specified, as follows:

@scanner some.package.SomeScanner;

The scanner class must not be a generic class. Imports (see below) can be used to shorten the
specification of the Java class name.

Shortcuts can be used for reuse of regular expressions:

@shortcut identifier = "$?[a-zA-Z_][a-zA-Z0-9_]*";

@terminals:
 ID2TK = "{identifier}.{identifier}";
 ID3TK = "{identifier}.{identifier}.{identifier}";
end

It is possible to use shortcuts in other shortcuts, as long as a shortcut is defined before its use.

6.3. Regular expressions
Regular expressions are enclosed in double quotes. Within them, the following are supported:

• a for character a, for any a (special characters need escaping).

• \n for the new line character (Unicode U+0A).

• \r for the carriage return character (Unicode U+0D).

• \t for the tab character (Unicode U+09).

• \a for character a, for any a (especially useful for escaping special characters).

• \\ for character \ (escaped).

• \" for character " (escaped).

• (x) for regular expression x (allows for grouping).

• xy for regular expression x followed by regular expression y.

• x* for zero or more times regular expression x.

• x+ for one or more times regular expression x.

• x? for zero or one times regular expression x.

• . for any ASCII character except \n (new line, Unicode U+0A).

• x|y for either regular expression x or regular expression y (but not both).

• [abc] for exactly one of the characters a, b or c.

• [a-z] for exactly one of the characters a, b, …, or z. This notation is called a character class. Note
that the ranges of characters are based on their ASCII character codes.

• [^a] for any ASCII character except for character a. This notation is called a negated character
class.

• {s} for the regular expression defined by shortcut s.

To include special characters, they must always be escaped, wherever they occur in the regular
expression. For instance, regular expression [a\^] recognizes either character a or character ^ (but
not both). Here the ^ character is escaped, as it is a special character (it may be used at the
beginning of a character class to invert the character class).

New lines are not allowed in the regular expressions themselves. Obviously, it is possible to detect
new lines using regular expressions.

6.4. Terminal descriptions
Terminals can be given an end user readable description (just before the semicolon), for use in
parser error messages:

@terminals:
 @keywords Operators = and // "and"
 or; // "or"
 IDTK = "[a-z]+" [an identifier]; // an identifier
 ID2TK = "[A-Z]+" [an identifier]; // an identifier
 ASNGTK = ":="; // ":="
 @eof; // end-of-file
 X = "[abc]"; // X
 "[def]"; // no description

Keyword literals (ANDTK and ORTK in the example above) have the keywords surrounded by double
quotes as default description. Similarly, terminals defined by regular expressions without choice
(no character classes, star operators, etc) and using only 'graphical' characters (no control
characters, end-of-file, new lines, etc) also have the literal text that they match (surrounded by
double quotes) as default description (see ASGNTK in the example above). The end-of-file token has
end-of-file as default description. Keywords that don’t have a description and don’t have default
descriptions as described above, get the name of the terminal as description (see X in the example
above). If they don’t have a name, they have no description.

Nameless terminals are not used by the parser, and therefore do not require a description. The end-
of-file terminal has a default description, and can not be given a custom description. Giving a
terminal a custom description if it already has a default description, leads to a warning.

6.5. Imports
Java classes/types can be specified in SeText specifications using their fully quantified names,
optionally with generic type parameters:

java.util.String
java.util.List
java.util.List<java.util.String>

but it is also possible to use imports:

@import java.util.String;
@import java.util.String as string;
@import java.util;
@import java.util as u;

The first import imports java.util.String as String. The second imports the same type as string.
The third import imports the java.util package as util. The fourth import imports that same
package as u. After these imports, the following all refer to the java.util.String Java type/class:

java.util.String
util.String
u.String
String
string

It is also possible to import generic types, with their type parameters instantiated:

@import java.util.List<java.util.String> as stringList

allowing stringList to be used as a short form for java.util.List<java.util.String>.

Note that it is not possible to use imports to shorten other imports.

Finally, note that Java types where the first part of the identifier (the part before any dot) does not
refer to an import, are considered absolute. This means that any Java type name not containing a
dot, and not referring to an import, is also considered absolute, and thus refers to a class with that
name, in the default package.

6.6. Scanner hooks
As indicated above, the following SeText specification:

@terminals:
 IDTK = "$?[a-zA-Z_][a-zA-Z0-9_]*" {scanID};
end

defines a terminal IDTK, which if recognized, is passed to a scanID method for post-processing. If
such a call back hook method is specified, a (non-generic) hooks class is required. It can be specified
as follows:

@hooks some.package.SomeHooks;

As for all Java types, imports can be used. For this example, the some.package.SomeHooks class must
have a default (parameterless) constructor, and an instance method with the following signature:

public void scanID(Token token);

where the Token class is the org.eclipse.escet.setext.runtime.Token class. The method may perform
in-place modifications to the text field of the token parameter.

It is allowed to throw org.eclipse.escet.setext.runtime.exceptions.SyntaxException exceptions in
the hooks methods.

Note that each generated scanner has an inner interface named Hooks that defines all the required
call back hook methods. The hooks class must implement the interface. This does not apply to
scanners that don’t have any terminals with call back hooks.

6.7. Specifying grammars using SeText
All SeText grammars start with one or more start symbols:

@main Program : some.package.ProgramParser;
@start Expression : some.package.ExpressionParser;

This specifies two start symbols, the non-terminals Program and Expression. Each start symbol
further specifies the parser class that should be generated for that start symbol. Once again,
imports are allowed, and the classes must be non-generic.

There are two types of start symbols:

• regular start symbols (@start keyword)

• main start symbols (@main keyword)

The main start symbols are exactly the same as the regular ones, except that they must cover the
entire grammar. That is, all non-terminals must be reachable from each of the main start symbols.
There is no such restriction for regular start symbols.

The non-terminals and rules (or productions) can be specified using a BNF like syntax, as follows:

{java.util.List<some.package.SomeClass>}
NonTerm : /* empty */
 | NonTerm2
 | NonTerm NonTerm2
 | NonTerm3 @PLUSTK NonTerm3 SEMICOLTK
 ;

This example specifies a non-terminal named NonTerm. Once reduced, the call back hooks for this
non-terminal must result in a Java object of type java.util.List<some.package.SomeClass>. Here,
both generic types and imports are allowed.

The non-terminal is defined by four rules (or productions). The first rule is empty, as clarified by
the comment. The comment is obviously not required. The second rule consists of a single non-
terminal NonTerm2, etc.

Each non-terminal rule gives rise to a call back hook method. The parameters of that method are
determined by the symbols that make up that rule. That is, all non-terminal are always passed to
the call back hook method. Terminals are only passed to the method if they are prefixed with a @
character.

6.8. Parser hooks
For parsers, a hooks class must always be specified. The scanner and all parsers share a single (non-
generic) hooks class. The following specification (from which we omit the scanner part):

@hooks some.package.SomeHooks;

@import some.package.ast;

@main Expression : some.package.ExpressionParser;

{ast.Expression}
Expression : /* empty */
 | Expression @PLUSTK Literal
 | Expression MINUSTK Literal
 ;

{ast.Literal}
Literal : @IDTK
 | PITK
 ;

requires a some.package.SomeHooks Java class, with a default (parameterless) constructor, and five
methods, with the following signatures:

public Expression parseExpression1();

public Expression parseExpression2(Expression e1, Token t2, Literal l3);

public Expression parseExpression3(Expression e1, Literal l3);

public Literal parseLiteral1(Token t1);

public Literal parseLiteral2();

The return types are determined by the non-terminals. The names of the methods are formed from
the text parse, the name of the non-terminal, and number of the rule, within the non-terminal. Note
that all numbers have equal length. For instance 01, 02, 03, …, 12. The parameters consist of all the
non-terminals that make up the , as well and those terminals with a @ before them. The types of the
non-terminal parameters are the types of the corresponding non-terminals. For terminals, the type
is the org.eclipse.escet.setext.runtime.Token class. The parameter names are formed from their
types (first character of the simple name of the class, in lower case), followed by the number of the
symbol in the rule, without any 0 prefixes. All numbers start counting at one (1).

Note that each generated parser has an inner interface named Hooks that defines all the required
call back hook methods. The hooks class must implement the interface(s). This interface specifies
one additional method, which all parser hooks classes must implement:

public void setParser<Parser<?> parser);

where the Parser<?> class is the org.eclipse.escet.setext.runtime.Parser class. This method is
provided to allow hooks classes access to the parser that creates the hooks class, and its source
information. For more information, see the getSource method of the Parser class.

An implementation of a hooks class for this example could look like this:

package some.package;

import org.eclipse.escet.setext.runtime.Parser;
import org.eclipse.escet.setext.runtime.Token;
import some.package.ast.Expression;
import some.package.ast.Literal;

public class SomeHooks implements ExpressionParser.Hooks {
 @Override
 public void setParser(Parser<?> parser) {
 // No need to store this...
 }

 @Override
 public Expression parseExpression1() {
 return null; // Do something more useful here...
 }

 @Override
 public Expression parseExpression2(Expression e1, Token t2, Literal l3) {
 return null; // Do something more useful here...
 }

 @Override
 public Expression parseExpression3(Expression e1, Literal l3) {
 return null; // Do something more useful here...
 }

 @Override
 public Literal parseLiteral1(Token t1) {
 return null; // Do something more useful here...
 }

 @Override
 public Literal parseLiteral2() {
 return null; // Do something more useful here...
 }
}

It is allowed to throw org.eclipse.escet.setext.runtime.exceptions.SyntaxException exceptions in
the hooks methods. Furthermore, it is allowed to add fold regions to the parser (which then needs
to be stored as it is provided via the setParser hook method), using the addFoldRange methods of the
org.eclipse.escet.setext.runtime.Parser class.

6.9. Usage hints
Here are some hints on using SeText:

• It is recommended to name the generated and hooks classes, using the following convention:

XyzScanner, XyzParser, XyzHooks, for the scanner, parser, and hooks classes of a language Xyz or
XYZ. For parsers for a part of a language, it is recommended to name the generated parsers
XyzPartParser, for non-terminal Part of language Xyz or XYZ. Following these naming
conventions ensures consistency in the naming of the classes.

• It is recommended to import the packages that contain the classes used as the types of the non-
terminals. For instance, import the expressions package some.long.package.name.expressions as
expressions or exprs, and then use {exprs.SomeClass} as the type for a non-terminal, instead of
{some.long.package.name.expressions.SomeClass}. Importing the package instead of the
individual classes reduces the number of imports, and also avoids conflicts between non-
terminals names and class names. For standard Java types, however, it is recommended to
import the full type. For instance, import java.lang.String or java.util.List.

6.10. Generated scanners/parsers
The generated scanners and parsers depend on the org.eclipse.escet.setext.runtime and
org.eclipse.escet.common.java plug-ins. Generated scanners and parsers inherit from the
org.eclipse.escet.setext.runtime.Scanner class and org.eclipse.escet.setext.runtime.Parser class
respectively. Look at those classes for the public API of generated scanners/parsers, as it should be
fairly self-explanatory.

Besides the scanner and parser(s), debug output is generated from which the scanner and parser(s)
can be analyzed. In particular, the debug output for the parsers makes it possible to find out the
details about conflicts in the grammar. Furthermore, a skeleton is generated for the hooks class.

6.11. Using SeText in an Eclipse Plug-in Project
For a new language, follow these steps:

• Create a Plug-in Project in Eclipse.

• Add the org.eclipse.escet.common.java and org.eclipse.escet.setext.runtime plug-ins to the
Required plug-ins in the project’s manifest. Also add any plug-ins that define the classes that you
will be referring to in the SeText specification.

• Create the Java package where your scanner, parser(s) and hooks classes are to be stored.

• Create a text file ending with .setext in that same package. Fill the specification, and save it.

• Right click the file in the Project Explorer or Package Explorer, and choose the Generate
Parser(s) action. Alternatively, right click the text editor for the SeText specification and choose
the same action.

• Observe how the files are generated. Make sure the console is free of warnings and errors.

• Copy the hooks class skeleton (extension .skeleton to extension .java), and implement the
hooks.

• You are ready to use the scanner and parser(s).

After changes to the SeText specification:

• Regenerate the code, as before.

• If a Hooks interface has changed, update the hooks class.

• You are ready to use the modified scanner and parser(s).

It may be a good idea to put the .skeleton file in a version control system. That way, after
regeneration, you can ask for a diff. You then know what has changed, and how you need to update
the hooks class.

Also note that if a generated Hooks interface changes after a regeneration, Java will report errors for
methods not yet present in the hook class. Similarly, Java will complain about changed method
signatures, and methods that no longer exist in the Hooks interface (and thus have invalid @Override
annotations in the hooks class).

6.12. Limitations
The following limitations currently apply:

• SeText only allows for the specification of scanners that accept ASCII input.

• SeText currently assumes UTF-8 encoded files. If the input file is actually encoded using a
different encoding, scanner exceptions may indicate the wrong character.

• SeText does not support grammars with conflicts (shift/reduce, reduce/reduce, accept/reduce).

7. Legal
The material in this documentation is Copyright (c) 2010, 2023 Contributors to the Eclipse
Foundation.

Eclipse ESCET and ESCET are trademarks of the Eclipse Foundation. Eclipse, and the Eclipse Logo
are registered trademarks of the Eclipse Foundation. Other names may be trademarks of their
respective owners.

License

The Eclipse Foundation makes available all content in this document ("Content"). Unless otherwise
indicated below, the Content is provided to you under the terms and conditions of the MIT License.
A copy of the MIT License is available at https://opensource.org/licenses/MIT. For purposes of the
MIT License, "Software" will mean the Content.

If you did not receive this Content directly from the Eclipse Foundation, the Content is being
redistributed by another party ("Redistributor") and different terms and conditions may apply to
your use of any object code in the Content. Check the Redistributor’s license that was provided with
the Content. If no such license exists, contact the Redistributor. Unless otherwise indicated below,
the terms and conditions of the MIT License still apply to any source code in the Content and such
source code may be obtained at https://www.eclipse.org.

https://opensource.org/licenses/MIT
https://www.eclipse.org

Index
A

Application, 41
application

exceptions, 40
execution, 52
I/O, 43
IDE, 38
implement, 48
multi-threading, 51
options, 39, 45
paths, 41
properties, 41
registration, 51
running, 52
stand-alone, 38
termination, 40
testing, 51
thread, 51
working directory, 41

B

branch, 4
build, 18

C

Checkstyle, 17
commit, 5
compiler, 48
contributing, 8

D

development
environment, 12
process, 2

DSM library
busdetection, 55
implementation, 54
java, 54
Markov clustering parameters, 54

E

ECA, 10
EMF, 15
exception, 42

cause, 42

chained, 42
end-user, 42
internal, 42

exit code, 43

F

formatting, 17

G

Git
repository, 15

GitFlow, 4
GitLab, 12
gui, 39

I

I/O, 43
input

stdin, 45
installer, 12
issue, 2

create, 12
issues, 12

J

Java, 15
Jenkins, 18
JUnit, 18

L

legal, 95

M

Maven, 18
merge request, 5
milestone, 3

O

oomph, 12
setup, 12

option
category, 46
class, 45
command line, 46
development mode, 43, 47

dialog, 46, 47
get, 46
gui, 47
help, 47
implement, 47
instance, 46
license, 47
order, 47
output mode, 47
processing, 46
set, 46
standard, 47
syntax, 47

output
component, 43
provider, 44
stderr, 44
stdout, 44

P

patches, 8

R

release, 3

S

SIGINT, 40
static, 39
stderr, 39
stdin, 39
stout, 39
swt, 39

T

test, 18
Tycho, 18

	Eclipse ESCET™ development documentation (Incubation)
	Table of Contents
	1. Eclipse ESCET development
	1.1. The Eclipse ESCET dev-list
	1.2. Development process
	1.3. Contributing
	1.4. Issue tracking
	1.5. Development environment setup
	1.6. Git repository
	1.7. Coding standards
	1.8. Building and testing
	1.9. Release process
	1.10. Third party tools
	1.11. Dependency upgrades
	1.12. License year update

	2. Application framework
	2.1. Introduction
	2.2. Stand-alone execution versus Eclipse IDE
	2.3. The Application class
	2.4. The exception framework
	2.5. Exit codes
	2.6. The I/O framework
	2.7. The option framework
	2.8. The compiler framework
	2.9. How to implement your own application
	2.10. Application registration
	2.11. Execution

	3. Design Structure Matrix (DSM) library
	3.1. Code organization
	3.2. Algorithm and code
	3.3. Bus detection algorithms
	References

	4. Multi-value Decision Diagrams library
	4.1. Goals
	4.2. Variables and relations
	4.3. Combining relations
	4.4. Computing
	4.5. Practical usage

	5. Rail diagram generator
	5.1. Introduction
	5.2. Examples
	5.3. Customizing output
	5.4. Command-line arguments
	5.5. Lexical syntax
	5.6. Grammar
	5.7. Debugging

	6. SeText scanner/parser generator
	6.1. SeText lexical syntax
	6.2. Specifying lexical syntax using SeText
	6.3. Regular expressions
	6.4. Terminal descriptions
	6.5. Imports
	6.6. Scanner hooks
	6.7. Specifying grammars using SeText
	6.8. Parser hooks
	6.9. Usage hints
	6.10. Generated scanners/parsers
	6.11. Using SeText in an Eclipse Plug-in Project
	6.12. Limitations

	7. Legal
	Index

