
Eclipse ESCET™ general toolkit
documentation

Copyright (c) 2010, 2023 Contributors to the Eclipse Foundation

Version v1.0

Table of Contents
1. Using the Eclipse ESCET IDE . 2

1.1. Starting Eclipse ESCET IDE for the first time . 2

1.2. Updating Eclipse ESCET IDE. 2

1.3. Removing Eclipse ESCET IDE . 3

1.4. Eclipse terminology . 3

1.5. Working with projects, directories, and files . 5

1.6. Editing files and executing commands . 8

1.7. Eclipse ESCET perspective . 9

1.8. Applications view . 10

2. Resolving performance and memory problems. 15

2.1. Clearing the console. 15

2.2. Reducing console output. 16

2.3. Closing running applications. 16

2.4. Tweaking performance settings . 17

3. Design Structure Matrix (DSM) clustering . 27

3.1. Starting the clustering tool . 27

3.2. Options . 27

3.3. DSM file format . 28

3.4. Computing a clustered DSM. 28

3.5. Bus detection algorithms . 29

References . 29

4. Eclipse ESCET release notes. 30

4.1. Version 1.0 (2023-09-30) . 30

4.2. Version 0.10 (2023-06-30) . 30

4.3. Version 0.9 (2023-03-31) . 30

4.4. Version 0.8 (2022-12-21) . 31

4.5. Version 0.7 (2022-09-30) . 31

4.6. Version 0.6 (2022-07-07) . 31

4.7. Version 0.5 (2022-03-29) . 32

4.8. Version 0.4 (2021-12-17) . 32

4.9. Version 0.3 (2021-10-01) . 32

4.10. Version 0.2 (2021-07-07) . 33

4.11. Version 0.1 (2021-04-02) . 33

5. Legal . 34

Index . 35

The Eclipse Supervisory Control Engineering Toolkit (Eclipse ESCET™) project is
an Eclipse Foundation open-source project that provides a toolkit for the
development of supervisory controllers in the Model-Based Systems Engineering
(MBSE) paradigm. The toolkit has a strong focus on model-based design,
supervisory controller synthesis, and industrial applicability, for example to
cyber-physical systems. The toolkit supports the entire development process of
(supervisory) controllers, from modeling, supervisory controller synthesis,
simulation-based validation and visualization, and formal verification, to real-
time testing and implementation.

This documentation includes general information related to the Eclipse ESCET toolkit as a whole, as
well as its general tools. The following information is available:

• Using the Eclipse ESCET IDE

• Resolving performance and memory problems

• Tools

◦ Design Structure Matrix (DSM) clustering

• Eclipse ESCET release notes

• Legal

The Eclipse ESCET toolkit features multiple languages and associated tools. Check the website for
each of these languages for more specific information, including separate documentation for each
of them:

• CIF

• Chi

• ToolDef

https://eclipse.org
https://eclipse.dev/escet/v1.0/cif
https://eclipse.dev/escet/v1.0/chi
https://eclipse.dev/escet/v1.0/tooldef

1. Using the Eclipse ESCET IDE
After you have downloaded and extracted the Eclipse ESCET IDE, you can start using it. The
following information is available to get you started on using the Eclipse ESCET IDE in general, and
applies to the various tools in the toolkit:

• Starting Eclipse ESCET IDE for the first time

• Updating Eclipse ESCET IDE

• Removing Eclipse ESCET IDE

• Eclipse terminology

• Working with projects, directories, and files

• Editing files and executing commands

• Eclipse ESCET perspective

• Applications view

Consult the documentation of the individual tools for specific information regarding their use.

1.1. Starting Eclipse ESCET IDE for the first time
When you start the Eclipse ESCET IDE for the first time, it will ask you to choose a workspace
directory. A workspace directory is where all your settings will be stored. It is also the default
directory for new projects, in which you will store your files.

Choose a workspace directory and continue. Make sure that you have read and write access to the
directory you choose. If you wish, the Eclipse ESCET IDE can remember your workspace directory.
Note that if the workspace directory you choose does not yet exist, Eclipse will create it for you.

The first time Eclipse launches in a fresh workspace, you will get a Welcome screen. It shows a
number of links that can help you to get started with using Eclipse ESCET and its tools. You can
close the Welcome tab by clicking the 'X' at the right of the tab, or by clicking on the 'workbench'
icon (the right most icon on the welcome page).

1.2. Updating Eclipse ESCET IDE
New versions of the Eclipse ESCET IDE can be used side-by-side older versions.

To download and install a new version of Eclipse ESCET IDE side-by-side an older version, follow
these steps:

• Download and extract the new version as usual, but extract the new version to a different
directory than the old version.

• You can copy the data (projects, files, and settings) of an earlier installation to the new
installation. While neither version of the Eclipse ESCET IDE is running, simply remove the

workspace directory of the new installation, and copy the workspace directory of the earlier
installation to the new installation.

Using these instructions, it is possible to use multiple installations side by side, at the same time,
regardless of whether the installations are the same version or different versions. Simply extract
them to different directories and launch them as you would normally do.

1.3. Removing Eclipse ESCET IDE
Before removing a version of the Eclipse ESCET IDE, you may want to preserve (back up) its
workspace directory, to keep your data (settings, projects, files). Then, to remove a version, simply
remove the directory that contains files that you extracted from the downloaded archive.

1.4. Eclipse terminology
The Eclipse ESCET IDE is based on the Eclipse IDE, a cross platform Integrated Development
Environment (IDE). There is quite a bit of terminology that is used within the IDE. If you are not
familiar with Eclipse terminology, it may be difficult to use the Eclipse ESCET IDE. Here we’ll
explain some basic Eclipse terminology:

• Eclipse workspace

• Eclipse views

• Eclipse projects

1.4.1. Eclipse workspace

Eclipse stores all its settings in a so-called workspace. The workspace is simply a directory on your
computer. You can choose any directory you like to serve as a workspace, as long as you have write
access to that directory. It is usually best to choose an empty directory or a directory that does not
yet exist as your workspace.

Typically, and by default, a directory named workspace inside your Eclipse ESCET installation
directory is used. Eclipse will ask you to choose a workspace directory when you start the Eclipse
ESCET IDE for the first time.

The actual settings are stored in a sub-directory of the workspace directory, called .metadata. You
should avoid manually manipulating this directory. Note that because the name of the directory
starts with a dot (.), depending on your operating system, file browser, and settings, the directory
may be hidden.

You can easily change your workspace directory from within Eclipse, by selecting File › Switch
workspace. Select one of the workspaces from the list of last used workspaces, or select Other… to
freely select any directory on your system to use as a workspace directory.

It is possible to run multiple instances of Eclipse at the same time, but each instance must use its
own workspace.

The workspace is also the default directory for new projects. However, projects don’t have to be
physically located inside your workspace directory. They can be stored in any directory on your
system. Whenever you create a project and store it outside of your workspace, or whenever you
import an existing project from outside your workspace, it is linked to the workspace, but remains
physically stored in a directory outside of the workspace.

Having projects stored outside of the workspace has some benefits. The most important benefit is
that you can remove the workspace directory, without losing your files.

1.4.2. Eclipse views

Eclipse is an Integrated Development Environment (IDE) with a lot of functionality. Most of the
functionality is available through views. A view is a part of the Eclipse graphical user interface.
Views can be thought of as 'sub-windows'. When you start Eclipse you are likely to see the Project
Explorer or Package Explorer view on the left, and the Problems view at the bottom.

Opening a view

To open/show a view, select Window › Show view and then choose the view that you wish to open.

If the particular view that you wish to open is not in that menu, choose Other… instead. A new
dialog opens, in which you can find all available views. The views are organized into categories.
Expand a category, select the desired view, and click [ OK ].

Alternatively, in the Show view dialog, enter the name of the view (or the first part of it) in the filter
box at the top of the dialog, and observe how views that don’t match the filter are no longer
displayed. This makes it easier to find the desired view.

1.4.3. Eclipse projects

Eclipse, being an Integrated Development Environment (IDE), does not only allow you to edit a
single file, and simulate it, but also allows you to manage your files.

Eclipse works with so-called projects. A project is a collection of files and directories. A project may
be located anywhere on your system, even though by default project are created in your workspace
directory.

A project is essentially a directory on your computer, with a special file named .project. This
special file stores the information about your project, such as the name of the project. It is
recommended to keep the name of the project as Eclipse sees it, the same as the name of the
directory in which the project is stored on your hard disk.

You can see the projects that Eclipse knows about in the Project Explorer or Package Explorer <use-
terminology-view,view>>.

For more information on projects, see the Working with projects, directories, and files section.

1.5. Working with projects, directories, and files
Eclipse uses projects to manage files and directories (also called folders). This section contains
information on the following topics:

• Creating a new project

• Importing an existing project

• Creating a new directory

• Creating a new file

• Renaming a file, directory, or project

• Locating files, directories, and projects

• Refreshing a file, directory, or project

1.5.1. Creating a new project

To create a new project, ensure you have either the Project Explorer or Package Explorer view
visible.

Select File › New › Project… to open the New Project window. Alternatively, right click somewhere

in the Project Explorer or Package Explorer view, and select New › Project…, to open the same
window.

In the New Project window, from the General category select Project, and click the [ Next > ] button.

In the next window, enter a project name, for example models.

By default, a project is created inside your workspace directory. If you want it at a different place
(so you can remove the workspace without losing your projects), uncheck the Use default location
option, and enter a Location. Make sure the location does not yet exist, for example by ending with
the project name. It is recommended to always create a project in a directory that has the same
name as the project.

Click the [ Finish ] button to create the project. Observe how it appears in the Project Explorer or
Package Explorer view.

1.5.2. Importing an existing project

If you previously created a project, but it is no longer visible in your Project Explorer or Package
Explorer view, you can import it. Imported projects are linked to your workspace, but remain in
their original location on your hard disk (by default, they are not moved or copied to your
workspace directory).

Importing existing projects is particularly useful if you removed you workspace directory and
started with a fresh one, e.g. for a new installation.

To import one or more existing projects, select File › Import… to open the Import window.
Alternatively, right click somewhere in the Project Explorer or Package Explorer view, and select
Import… to open the same window.

In the Import window, from the General category, select Existing Projects into Workspace, and click
[ Next > ].

In the next window, in Select root directory, point it to the directory that contains the project you
wish to import. The available projects in the given root directory, and all its sub-directories
(recursively), are listed in the Projects list. Select the project(s) you want to import, by checking the
relevant check boxes, and click [ Finish ]. Observe how the project(s) appear(s) in the Project
Explorer or Package Explorer view.

1.5.3. Removing a project from Eclipse

To remove a project from Eclipse, ensure you have either the Project Explorer or Package Explorer
view visible.

Right click the project in the Project Explorer or Package Explorer view and choose Delete.
Alternatively, select it and press the Delete key on your keyboard. The Delete Resources dialog
appears. To only remove the project from Eclipse, and keep the files on your hard disk, disable the
Delete project contents on disk (cannot be undone) option and click the [ OK ] button. Alternatively,
to remove the project from Eclipse and also remove all the files in the project from your hard disk,
enable the Delete project contents on disk (cannot be undone) option and click the [ OK ] button.

Wait for Eclipse to complete the removal operation.

1.5.4. Creating a new directory

You can structure large collections of files, by putting them into different directories (also called
folders). Directories can only be created in projects, or in other directories.

Select the project or directory in which you want to create a new directory (by left clicking its name

in the Project Explorer or Package Explorer view, and create a new directory by selecting File › New

› Folder. Alternatively, right click on the project or directory instead, and from the popup menu

select New › Folder.

In the New Folder window, enter the Folder name, and click [ Finish ].

1.5.5. Creating a new file

Select the project or directory in which you want to create a new file (by left clicking its name in the

Project Explorer or Package Explorer view), and create a new file by selecting File › New › File.

Alternatively, right click on the project or directory instead, and from the popup menu select New ›
File.

In the New File window, enter the File name, and click [ Finish ]. Make sure to give the file the
correct file extension, for example CIF files should end with .cif.

An editor for the new file opens, and you can start editing it.

1.5.6. Renaming a file, directory, or project

To rename a file, directory, or project, select it by left clicking its name in the Project Explorer or

Package Explorer view, and then select File › Rename…. Alternatively, right click on the file,

directory, or project instead, and from the popup menu select Refactor › Rename…. A second
alternative is to select the file, directory, or project, and then press the F2 key.

In the Rename Resource window, enter the New name, and click [ OK ].

1.5.7. Locating files, directories, and projects

Often, it is convenient to be able to manage files not from inside Eclipse, but from outside Eclipse,
for instance in a file explorer provided by your operating system. The Properties view can be used
to find out where the files, directories, and projects that are in Eclipse, are located on your hard
disk. With the Properties view visible, select a file, directory, or project in the Project Explorer or
Package Explorer view. In the Property column of the Properties view, look for location. The
corresponding Value indicates where the file, directory, or project is located on your hard disk. Note
that you can right click the location and choose Copy to copy the location to the clipboard.

As an alternative to the Properties view, you can also use the Properties window. Right click a file,
directory, or project in the Project Explorer or Package Explorer view and choose Properties. In the
window that shows, select Resource on the left, if it is not already selected. Then, on the right, look
for the Location.

To directly open the directory that contains a file, directory, or project in your system’s file
explorer, right click the file, directory, or project in the Project Explorer or Package Explorer view

and choose Show In › System Explorer.

Don’t forget to refresh your projects in Eclipse after manipulating them outside Eclipse.

1.5.8. Refreshing a file, directory, or project

Whenever changes are made to files or directories from outside Eclipse, and those files or
directories are also in one of the projects inside Eclipse, the changes are not always automatically
reflected in the Project Explorer or Package Explorer view. To ensure that the current state of the
files and directories are properly reflected in Eclipse, a refresh is required. To refresh a file,
directory, or project, right click it, and choose Refresh. Any files and directories that no longer exist
will disappear from Eclipse. Any new files and directories created outside Eclipse will appear in
Eclipse as well.

1.5.9. Checking the size of a file

When working with files, you may occasionally encounter large files. Opening large files in Eclipse
can cause serious performance problems. You can use the Properties view to check the size of a file.
With the Properties view visible, select a file in the Project Explorer or Package Explorer view. In the
Property column of the Properties view, look for size. The corresponding Value indicates the size of
the file.

As an alternative to the Properties view, you can also use the Properties window. Right click a file in
the Project Explorer or Package Explorer view and choose Properties. In the window that shows,
select Resource on the left, if it is not already selected. Then, on the right, look for the Size.

1.6. Editing files and executing commands
This section contains information on editing text files and executing commands (such as starting a
simulator).

1.6.1. Editing a text file

To edit a file, double click it in the Project explorer or Package explorer view.

Whenever you open a text file, change it, or the editor receives the focus, the file is checked for
errors. If there are errors (or warnings), they are displayed in the editor as shown below.

Note that you can hover over an error in the source code itself to find out what the problem is.
Alternatively, you can hover over the error marker in the margin of the editor, or look at the
Problems view. Also, if a file has an error or a warning, an overlay icon is shown in the Project
Explorer and Package Explorer views, for that file, the directories that contain it, and the project
that contains it.

Normally, text files are opened with their associated text editor that features syntax highlighting,
and syntax and type checking. Large files are however opened with the default non-language-
specific text editor to avoid performance issues. You can open a file in an editor of your choosing by
right clicking it and selecting Open With and then selecting the editor of your choosing, or choosing
Other… to open a dialog to choose from a larger selection of editors.

1.6.2. Executing commands

If you have a file without errors, you can execute certain commands on it. The various Eclipse
ESCET tools add commands to Eclipse. For instance, CIF models can be simulated using a simulation
command.

To execute a command on a file, right click the file in the Project Explorer or Package Explorer view,
and select the command. Alternatively, if you have the file open in an editor, right click the editor,
and select the command.

The commands that are available are determined by the file extension of the file. That is, only the
commands applicable for a certain file are shown.

Besides simulation, other commands may be available, depending on the modeling language and
tools you use. Consult the specific documentation for each tool for more details.

1.7. Eclipse ESCET perspective
The layout of the different parts of the Eclipse ESCET IDE, including the position and size of the

various views, can be configured per perspective. Different perspectives allow you to use different
layouts for different tasks.

The Eclipse ESCET IDE ships with some built-in perspectives. The default ESCET perspective is
ideally suited for the use of the Eclipse ESCET software.

You can manually open the ESCET perspective (or any other perspective), by selecting Window ›
Perspective › Open Perspective › Other…. Then, in the Open Perspective dialog, select the ESCET
perspective from the list, and click the [ OK ] button.

By default, the Eclipse ESCET IDE shows the opened perspectives at the top right corner of the IDE.
Each perspective is a button that can be used to active it. If the button appears in a pushed state,
that perspective is active. The following image shows an Eclipse ESCET IDE with two open
perspectives: the Resource perspective and the ESCET perspective. The ESCET perspective is the
currently enabled perspective.

By default, the ESCET perspective shows the following views:

• Project explorer (top left)

• Applications (bottom left)

• Problems (bottom, grouped)

• Properties (bottom, grouped)

• Console (bottom, grouped)

You can manually open additional views, close some views, move views around, change the size of
the different views, etc. If at any time you wish to go back to the original layout, you can reset the

perspective, by selecting Window › Perspective › Reset Perspective…. Click the [ OK ] button to
confirm.

Whenever a new version changes the default layout of a perspective, for instance by adding a new
default view, you can reset the perspective to get the new view, or you can open that view it
manually.

1.8. Applications view
The Applications view can be used to manage the applications of the Eclipse ESCET software
running within the Eclipse ESCET IDE.

1.8.1. Opening the view

The Applications view can be opened by selecting Window › Show view › Applications, assuming
the ESCET perspective is enabled.

1.8.2. Application status

The view shows a list of running applications. If an application starts another application, it is
shown as a child, forming a tree structure. Each item of the tree shows a single application. In the
example screenshot above, there are four running applications. The first application is a ToolDef
interpreter, which is running a second application, a CIF simulator. The third application is also a
ToolDef interpreter, which is running a fourth application, also a CIF simulator.

To the left of each item, the status of the application is indicated. The following statuses are
available:

• Staring

• Running

• Terminating

• Terminated

• Finished

• Failed

• Crashed

When an application is started, it get a Starting state. Once the options have been processed from
the command line and the option dialog (if requested), the actual application code is executed, and
the status changes to Running. If the application is not terminated at the request of the user, the
application will be done with its execution after some time. If execution finished without problems,
it then reaches status Finished. If execution failed for some reason, it reaches status Failed instead.
If the execution crashed due to internal problems, the application reaches status Crashed. If
however the user terminates the application, the status is first changed to Terminating. Once the
application has successfully been terminated, the status changes to Terminated.

You can also view these statuses and their corresponding icons from within the IDE, by opening the
Application Status Legend dialog, which is available via the view’s drop-down button popup menu:

1.8.3. Termination

The Applications view supports terminating running applications. There are several ways to
terminate an application using the Applications view.

When terminating an application (with a Starting or Running state), the application will get a
Terminating state. Applications occasionally poll for termination requests. Therefore, it may take a
while for the application to actually process the termination request. Once it has been processed,
the application will have terminated, and the status changes to Terminated as well.

Applications can’t process a termination request while a modal dialog (such as the option dialog) is
open, or when input is requested from the console. They will terminate as soon as possible, after
the dialog is closed, or the user has provided input via the console.

The following buttons related to termination are available in the Applications view’s toolbar:

• Auto Terminate ()

Most users will only want to have a single application running at a time, including application
started by that application, etc. To facilitate this, the view provides an Auto Terminate feature.
This feature can be enabled and disabled from the view’s toolbar. It is enabled by default. Your
choice whether to enable or disable this option will be remembered, even after Eclipse is
restarted. The feature only has an effect if the view is shown in at least one of the opened
perspectives.

If enabled, and a new application (not started by another already running application) is
started, all other already running applications are automatically terminated. The new
application starts its execution immediately. The already running applications will start to
process the termination request, and will terminate as soon as possible.

• Terminate All ()

The view’s toolbar contains a Terminate All button that can be used to terminate all running
applications. The button is only enabled when at least one of the listed applications can be
terminated. When clicked, all running applications are given a termination request, and will
terminate as soon as possible.

• Terminate ()

The view’s drop-down button popup menu contains a Terminate item that can be used to
terminate all selected applications that are running. The item is only enabled when at least one
of the listed applications that is selected, can be terminated. When clicked, all selected
applications that can be terminated, are given a termination request, and will terminate as soon
as possible.

Even when a child application is selected, all applications in the entire tree, starting from the
root, will be given a termination request, if not already terminated or having finished their
execution. In other words, only an entire tree of related applications can be terminated.

1.8.4. Removal

The Applications view can get a bit crowded, if already terminated applications are not removed
from the list. To keep only relevant applications, the Applications view supports removing items
from the list.

Only applications which have finished execution can be removed. That is, the root of the tree of
applications needs to have a Terminated, Finished, Failed, or Crashed status, for the tree to be
allowed to be removed. This prevents removing applications that are still running, which would
make it impossible to terminate them, or observe their status.

The following buttons related to removal are available in the Applications view’s toolbar:

• Auto Remove ()

Most users will only want to only have applications listed in the view, that are either still
running, or have just finished execution. To facilitate this, the view provides an Auto Remove
feature. This feature can be enabled and disabled from the view’s toolbar. It is enabled by
default. Your choice whether to enable or disable this option will be remembered, even after
Eclipse is restarted. The feature only has an effect if the view is shown in at least one of the
opened perspectives.

If enabled, and a new application (not started by another already running application) is
started, all already terminated applications, will be removed from the list. If combined with the
Auto Terminate feature, all other applications that can not be removed immediately because
they are still running, will be removed as soon as possible, after they have been terminated.

• Remove All ()

The view’s drop-down button popup menu contains a Remove All item that can be used to

remove all listed applications that may be removed. The item is only enabled when at least one
of the listed applications can be removed. When clicked, all listed applications that can be
removed, are immediately removed from the list.

• Remove ()

The view’s drop-down button popup menu contains a Remove item that can be used to remove
all selected applications that can be removed. The item is only enabled when at least one of the
listed applications that is selected, can be removed. When clicked, all selected applications that
can be removed, are immediately removed from the list.

Even when a child application is selected, all applications in the entire tree, starting from the
root, will be removed. In other words, only an entire tree of related applications can be
removed, and only if all applications in that tree have finished execution.

1.8.5. Expansion

When one application starts another application, they are listed in a tree, with the parent
containing the child. When running a single application, it may be of interest to see which child
applications are being executed by the parent application. However, when executing multiple
applications, this may quickly crowd the view. It may then be better to keep all root items collapsed,
only showing the status of the root applications. This provides an overview over those multiple
applications.

The following buttons related to expansion are available in the Applications view’s toolbar:

• Auto Expand ()

Most users will have the Auto Terminate and Auto Remove features enabled, and will thus only
have a single application listed. They will want to automatically expand a parent application, to
show its children. To facilitate this, the view provides an Auto Expand feature. This feature can
be enabled and disabled from the view’s toolbar. It is enabled by default. Your choice whether
to enable or disable this option will be remembered, even after Eclipse is restarted. The feature
only has an effect if the view is shown in at least one of the opened perspectives.

If enabled, and a parent application starts a child application, the item for the parent
application in the view, is automatically expanded to show its children. If disabled, no items will
be automatically expanded.

2. Resolving performance and memory
problems
During the use of the Eclipse ESCET toolkit, you may encounter performance and/or memory
problems. This includes slow execution, performance degradation over time, out-of-memory errors,
etc. One way to solve such problems, is to use a computer that is faster and/or has more memory. If
that is not an option, or if that doesn’t help, the following information is available to help you get
rid of these problems:

• Clearing the console

• Reducing console output

• Closing running applications

• Tweaking performance settings

In particular, the Tweaking performance settings section provides information on how to give
Eclipse ESCET tools more memory. This solves the most common performance problems and out-of-
memory errors.

2.1. Clearing the console
In the Eclipse ESCET IDE, the Console view displays the console output generated by the
applications that you run. This console keeps all the output in memory. If the application that you
run creates a lot of output, this can quickly fill the available memory, and lead to out of memory
errors.

By clearing the console, the output is removed and the associated memory becomes free for other
uses. To clear the console, right click the console (the part of the view that contains the actual
console text) and choose Clear from the popup menu. Alternatively, click the Clear Console button
() of the Console view’s toolbar.

The Eclipse Console view does not just keep the console output of the currently running application
or applications in memory, it also keeps the output of all terminated applications in memory. To
look at the applications that you executed, click the small arrow next to the Display Selected Console
icon () of the Console view’s toolbar. A list of executed applications will appear, that looks
something like this:

In this case, four applications have been launched. The console output for the fourth application is
currently displayed on the console, as indicated by the selection indicator on the left. Clicking on
any of the other applications will activate the console for that application, and show its console

output in the Console view. Clearing the console of applications that have terminated can free a lot
of memory for other uses, if the applications produced a lot of console output.

Note that instead of clearing the console after a lot of output has been generated, it is often better to
prevent that much output from being created in the first place.

2.2. Reducing console output
Console output is expensive. Not only because of the amount of memory the generated console
output uses, but also because the console output itself needs to be generated, and displayed on the
console. Reducing console output can significantly increase the performance of our tools.

Therefore, instead of clearing the console, it may be better to prevent that much output from being
written to the console in the first place. If your model itself generates a lot of console output,
consider letting it generate less output. Alternatively, if the tool you use generates a lot of console
output, consider checking its options to see if you can disable certain console output.

All Eclipse ESCET applications have an Output mode option (General category). Changing the value
of this option from Debug to Normal, or from Normal to Warning may significantly reduce the
amount of output that is written to the console. Note however that this is mostly an all or nothing
approach. It is often much better to use application specific settings, or change your model, to
reduce the amount of output that is generated, as it allows for more control over what output is or
isn’t generated.

2.3. Closing running applications
One of the nice features of an the Eclipse ESCET IDE is that it allows the simultaneous execution of
multiple applications, as well as the simultaneous execution of a single application on many
different inputs. For instance, it is possible to simultaneously simulate two models using a
simulator. The downside is that running multiple applications at the same time, costs more
memory. Sometimes, if you forget to close an application, it can still consume memory, and may
even still be running active computations, thus consuming processing power.

2.3.1. Application management via the applications view

The Applications view can also be used observe the status of running applications, and to terminate
them.

2.3.2. Application management via the console view

The Eclipse Console view maintains the console output for all running and finished applications. To
look at the applications that you executed, click the small arrow next to the Display Selected Console
icon () of the Console view’s toolbar. A list of executed applications will appear, that looks
something like this:

In this case, of the four applications that have been started, the second and fourth are still running.
The console for the fourth application is currently displayed, as indicated by the selection indicator
on the left. Clicking on any of the other applications will activate the console for that application,
allowing it to be terminated, thus freeing resources for other applications.

The application that is currently active in the console can be terminated at any time, by using the
Terminate button (), located at the upper right corner of the console. Note however that if the
console does not have the focus, this button may not be visible. If the button is not visible, click
somewhere in the console to make the button appear. If even then the button is still not available, it
may still appear if you Maximize the console. Also note that the button has no effect while the
application interactively asks for input from the console. However, once the console input is
provided, and Enter is pressed, the termination request will be processed.

2.4. Tweaking performance settings
If you run into errors related to running out of memory, you may need to tweak some settings.
However, even if you don’t get errors, tweaking settings can significantly improve performance.

This page provides a lot of background information, to allow you to better understand the impact of
the various settings. If you wish, you can skip the background information, and go directly to the
Quick and dirty solution section.

The following information is available on this page:

• Quick and dirty solution

• Managed memory and garbage collection

• Different types of memory

• Benefits of increasing the available memory

• Available settings

• Changing memory settings

• Practical hints to solve performance and memory problems

• Monitoring Eclipse heap status

• Monitoring with VisualVM

2.4.1. Quick and dirty solution

This section explains a 'quick and dirty' solution that gives Eclipse more memory, resolving the
most common performance problems and out-of-memory errors.

Find the eclipse-escet.ini file. By default, it is located in your Eclipse ESCET installation directory,
except for macOS, where instead it is in the EclipseESCET-vNNN.app/Contents/Eclipse directory, with
vNNN the version number, inside the Eclipse ESCET installation directory. Add the following line to
the file, as its new last line, to change the maximum available memory to 32 GiB:

-Xmx32g

Restart the Eclipse ESCET IDE or command line script to apply the new settings. If the instructions
given here don’t fix your problem, or if the IDE or script will no longer start after you changed
these settings, you should read the remainder of this page.

2.4.2. Managed memory and garbage collection

Before going into the actual settings, this section provides a little background on managed memory
and garbage collection, to make it easier to understand the following sections. The information here
is highly simplified, in order not to complicate matters too much.

The Eclipse ESCET IDE and command line scripts run on Java, a computer programming language.
The Java Virtual Machine (JVM) manages all memory used by Eclipse, as well as the Eclipse ESCET
tools. Not all settings may apply, as different versions of the JVM often change/tweak their garbage
collector, settings, defaults, etc. As such, the information on this page should be used to guide you,
but may not be completely accurate.

The JVM keeps track of all data that is maintained by the Eclipse ESCET tools, and releases (frees)
the memory once it is no longer needed, so that it can be used to store other data. The JVM frees
memory by means of a process called garbage collection (GC). Garbage collection is a complex
process, but generally it consists of locking the memory to avoid modification during garbage
collection, finding the data that is no longer used (mark the garbage), and then freeing the memory
associated with that data (sweep the marked garbage).

2.4.3. Different types of memory

In order to understand the memory related settings, some understanding of Java’s memory
architecture is essential. The following figure provides an overview of Java’s memory architecture,
and the different types of memory that are used:

https://en.wikipedia.org/wiki/Gibibyte
https://en.wikipedia.org/wiki/Java_%28programming_language%29
https://en.wikipedia.org/wiki/Garbage_collection_%28computer_science%29

The operating system (OS) has memory available, either as physical RAM, or as virtual memory.
When Java is executed, the Java program (java executable on Linux and macOS, java.exe on
Windows), becomes one of the running processes. The process uses a part of the operating system’s
memory to store its data. This memory is called the Java process heap. The Java process heap is
divided into two parts, the Java object heap and 'Everything else'. The Java object heap contains all
data actually used by the running Java program, which in our case is the Eclipse ESCET IDE and/or
Eclipse ESCET command line scripts. The 'Everything else' part contains various data, mostly used
by the JVM internally.

Java uses a generational garbage collector. New data, called objects in Java, are created in the young
generation, or more specifically, in its allocation space (also called eden space). When the young
generation becomes full, the garbage collector will remove all garbage (no longer used data) using a
minor collection, which removes garbage from the young generation. The garbage collector uses the
survivor spaces to store the surviving objects. Objects that survive a few minor collections are
moved to the old generation, which stores the longer living objects, as well as the larger objects that
don’t fit in the young generation, which is usually much smaller than the old generation. When the
old generation becomes full, the garbage collector performs a major collection removing garbage
from the entire Java object heap, which is much more work, and thus much more costly than a
minor collection.

The 'Everything else' part of the Java process heap contains various data used internally by the JVM.
This includes the 'Metaspace' with all the Java code of Eclipse and our own plugins, the values of
constants, etc. It also includes the native code, the highly optimized code generated for the specific
architecture of your machine, that can actually be executed on your processor. Furthermore, it
includes the stacks of all the threads that are running in parallel. There is also a part that contains
the data maintained by the garbage collector itself, for administrative purposes. The 'Everything
else' part contains various other types of data, that are irrelevant for the current discussion.

2.4.4. Benefits of increasing the available memory

If Java runs out of available memory, our applications running in Eclipse will terminate with an

https://en.wikipedia.org/wiki/Random-access_memory
https://en.wikipedia.org/wiki/Virtual_memory
https://en.wikipedia.org/wiki/Process_%28computing%29
https://en.wikipedia.org/wiki/Computer_architecture
https://en.wikipedia.org/wiki/Stack-based_memory_allocation
https://en.wikipedia.org/wiki/Thread_%28computer_science%29

'out of memory' error message. In such cases, increasing the available memory will likely solve the
problem. However, even if you don’t run out of memory, increasing the amount of memory that is
available to Java can significantly improve Java’s performance.

The garbage collector performs a minor collection when the young generation becomes 'full'. Here,
'full' doesn’t necessarily mean 100%, as Java may e.g. try to keep the heap about 40% to 70% filled.
Increasing the size of the young generation makes it possible to allocate more new objects before
the young generation becomes 'full'. During garbage collection, program execution may become
halted, to ensure that memory doesn’t change during the collection process. The longer one can go
without garbage collection, the less halting, and thus the greater the performance of the program.

If an application uses a lot of data that lives for longer periods of time, the old generation may
become mostly filled with data. It then becomes harder and harder for the garbage collector to
move objects from the young generation to the old generation. This may be caused by
fragmentation, due to some objects from the old generation being removed by the garbage
collector. In such cases, if the gaps are too small to hold the new objects, the old generation may
need to be compacted, a form of defragmentation. After compaction, the single larger gap hopefully
has more than enough free space to contain the new objects. The compaction process is expensive,
as a lot of objects need to moved. If the situation gets really bad, Java may need to spend more time
performing expensive garbage collection operations than it spends time on actually executing the
program you’re running. By increasing the size of the old generation to more than the application
needs, a lot more free space is available, reducing the need for frequent compaction, thus
significantly increasing the performance of the application.

These are just some of the reasons why increasing the amount of available memory can improve
program execution times, even though enough memory was already available to complete the
given task. In general, the more memory Java has, the better it performs.

2.4.5. Available settings

The JVM has way too many options to list here, but the settings listed in this section are of
particular practical relevance. Most of the settings affect memory sizes. Each setting is described
using a name, a command line syntax (between parentheses), and a description. The command line
syntax is used to specify the setting, as explained in the Changing memory settings section.

• Initial Java object heap size (-Xms<size>)

The size of the Java object heap when Java starts. Java will increase and/or decrease the size of
the Java object heap as needed.

• Maximum Java object heap size (-Xmx<size>)

The maximum size of the Java object heap. Java will increase the size of the Java object heap as
needed, but never to more than the amount indicated by this setting.

https://en.wikipedia.org/wiki/Fragmentation_%28computing%29
https://en.wikipedia.org/wiki/Defragmentation
https://www.oracle.com/java/technologies/javase/vmoptions-jsp.html

• Minimum percentage of free heap space (-XX:MinHeapFreeRatio=<n>)

Java will increase the size of the Java object heap as needed. Frequent heap resizing is costly. To
prevent frequent resizing, the JVM allocates more space than it really needs. This way, a lot of
new objects can be allocated before running out of space, which requires the heap to be
increased again.

This setting indicates the desired minimum percentage of free heap space after each garbage
collection operation. This is a desired percentage only, and if it conflicts with other settings, it is
ignored. For instance, if this setting is set to 40%, but 80% of the maximum heap size is in use,
only 20% free space may be allocated.

• Maximum percentage of free heap space (-XX:MaxHeapFreeRatio=<n>)

Java will decrease the size of the Java object heap if possible, to ensure that Java doesn’t keep
claiming memory that it no longer needs. Frequent heap resizing is costly. To prevent frequent
resizing, the JVM allocates more space than it really needs. This way, a lot of new objects can be
allocated before running out of space, which requires the heap to be increased again.

This setting indicates the desired maximum percentage of free heap space after each garbage
collection operation.

• Ratio of young/old generation sizes (-XX:NewRatio=<n>)

The ratio (1:n) of the young generation size to the old generation size. That is, with a ratio of 1:8,
the old generation is 8 times as large as the young generation. In the command line syntax, the 8
is specified.

• Ratio of allocation/survivor space sizes (-XX:SurvivorRatio=<n>)

The ratio (1:n) of the survivor spaces size to the allocation space size. That is, with a ratio of 1:8,
the allocation space is 8 times as large as the survivor space. In the command line syntax, the 8
is specified.

• Use garbage collector overhead limit (-XX:+UseGCOverheadLimit)

By default, the JVM uses a policy that limits the proportion of the VM’s time that is spent on the
garbage collector. If the limit is exceeded, the garbage collector has trouble doing its work
(usually due to too little free memory), and performance is impacted so badly, that executed is
practically halted. Instead of continuing, the JVM will issue an 'out of memory' error.

• Maximum code cache size (-XX:ReservedCodeCacheSize=<size>)

The maximum size of the code cache for native code.

• Compile threshold (-XX:CompileThreshold=<n>)

By default, the JVM runs in mixed mode, which means that some code is interpreted, while
other code is compiled to native code, which runs much faster. Since compilation takes time as
well, compilation is only performed for often used code.

This setting indicates the number of method (a peace of Java code) invocations/branches before
a method is compiled for improved performance.

• Thread stack size (-Xss<size>)

The size of the stack of each thread.

The <size> part of the command line syntax is to be replaced by an actual size, in bytes. The size can
be postfixed with a k or K for kibibytes, an m or M for mebibytes, or a g or G for gibibytes. For
instance, 32k is 32 kibibytes, which is equal to 32768, which is 32,768 bytes.

The <n> part of the command line syntax is to be replaced by an integer number. The values that
are allowed are option specific.

The + part of the command line syntax indicates that the corresponding feature is to be enabled.
Replace the + by a - to disable the feature instead of enabling it.

2.4.6. Changing memory settings

There are several ways to supply the command line arguments for the settings to Java. The easiest
way to do it, when using Eclipse, is to modify the eclipse-escet.ini file. By default, it is located in
your Eclipse ESCET installation directory, except for macOS, where instead it is in the EclipseESCET-
vNNN.app/Contents/Eclipse directory, with vNNN the version number, inside the Eclipse ESCET
installation directory.

Each of the settings you want to change should be added to the eclipse-escet.ini text file, in the
command line syntax. Each setting must be put on a line by itself. Furthermore, all these JVM
settings must be put after the line that contains -vmargs. Settings on lines before the -vmargs line are
the settings for the launcher that starts Eclipse, rather than to the JVM.

Note that the default eclipse-escet.ini file supplied with Eclipse may already contain some of the
settings. If so, don’t add the setting again. Instead, change the value of the existing setting. The

https://en.wikipedia.org/wiki/Kibibyte
https://en.wikipedia.org/wiki/Mebibyte
https://en.wikipedia.org/wiki/Gibibyte

settings that are present by default, as well as their values, may change from version to version.

After modifying eclipse-escet.ini, restart the Eclipse ESCET IDE or command line script for the
changes to take effect.

Miscellaneous troubleshooting

If the ECLIPSE_HOME environment variable is defined, that directory is used instead of the default
directory, to look for eclipse-escet.ini. However, most users should not be affected by this.

Using the -vmargs command line option replaces the similar settings from the eclipse-escet.ini file.
For most users, this will not be applicable. If --launcher.appendVmargs is specified either in the
eclipse-escet.ini file, or on the command line, the -vmargs settings of the command line are added
to the eclipse-escet.ini file -vmargs instead of replacing them.

2.4.7. Practical hints to solve performance and memory problems

In general, giving Java extra memory only makes it perform better. As such, increasing the
maximum Java object heap size (-Xmx), is generally a good idea, if you have enough free memory.

If you actually run out of memory, Java will emit a java.lang.OutOfMemoryError, with a message to
indicate the type of memory that was insufficient. Below some common out of memory error
message are listed, with possible solutions:

• java.lang.OutOfMemoryError: Java heap space

The Java object heap needs more space. Increase the maximum Java object heap size (-Xmx
setting).

• java.lang.OutOfMemoryError: GC overhead limit exceeded

The 'use garbage collector overhead limit' feature is enabled, and the garbage collector
overhead limit was exceeded. The best way to solve this, is to make sure the limit is not
exceeded, by giving Java more memory, and thus making it easier for the garbage collector to do
its work. Increase the maximum Java object heap size (-Xmx setting).

Alternatively, disable the 'use garbage collector overhead limit' feature (-XX:-UseGCOverheadLimit
setting, note the - instead of the +). However, this doesn’t solve the underlying problem, as the
limit will still be exceeded. Java will try to continue, and will either fail, or be very slow.

• warning: CodeCache is full. Compiler has been disabled.

This message is not a java.lang.OutOfMemoryError, but may still be printed to the console. It is
usually followed by warning: Try increasing the code cache size using
-XX:ReservedCodeCacheSize=. The warnings indicate that the code cache for native code is full.
They already indicate the solution: increase the maximum size of the code cache (
-XX:ReservedCodeCacheSize setting).

• java.lang.OutOfMemoryError: unable to create new native thread

A new thread could not be created. The best way to solve this problem is to decrease the
maximum Java object heap size (-Xmx setting), to make room for the 'Everything else' part of the
Java memory, including the stack of the new thread.

Alternatively, decrease the size of stacks on all threads (-Xss setting). However, decreasing the
thread stack size may cause more java.lang.StackOverflowError errors, and is thus not
recommended.

2.4.8. Monitoring Eclipse heap status

In Eclipse, it is possible to observe the amount of Java object heap space that is being used. In

Eclipse, open the Preferences dialog, via Window › Preferences. Select the General category on the
left, if not already selected. On the right, make sure the Show heap status option is checked, and
click [ OK ] to close the dialog.

The heap status should now be displayed in the bottom right corner of the Eclipse window:

This example shows that the Java object heap (not the Java process heap) is currently 147 MB in
size. Of that 147 MB, 62 MB are in use. The entire graph (the gray background) indicates the total
heap size (147 MB), while the dark gray part indicates the used part of the heap (62 MB).

Clicking on the garbage can icon, to the right of the heap status, will trigger a major collection cycle
of the garbage collector.

By right clicking on the heap status, and enabling the Show Max Heap option, the heap status shows
more information:

The text still shows the amount of used heap memory (74 MB) out of the total size of the current
heap (147 MB). The scale of the background colors however, is different. The entire graph (the light
gray background) now indicates the maximum heap size. The orange part indicates the current
heap size. The dark gray part still indicates the part of the heap that is in use. If the used part of the
memory gets past the red bar, it will become red as well, to indicate that you are approaching the
maximum allowed Java object heap size, and may need to increase it (-Xmx setting).

Hover over the heap status to get the same information in a tooltip.

2.4.9. Monitoring with VisualVM

VisualVM is a tool to monitor, troubleshoot, and profile running Java applications. It can be
downloaded from the VisualVM website.

Download the 'Standalone' version, and extract the archive somewhere on your system.

On Windows, start visualvm.exe from the bin directory by double clicking on it. On Linux, start
visualvm from the bin directory. On macOS, use the .dmg file as you would any other such file.

After you start VisualVM for the first time, you may see some dialogs. Just go through the steps until
you get to the actual application.

In VisualVM, you’ll see the currently running Java applications, for the local system:

Sometimes VisualVM can identify the Java applications, sometimes it can’t. This may also depend
on you operating system, and the version of VisualVM. Find the application you want to know more
about and double click it. A new tab opens on the right. The new tab has various tabs of its own:

• Overview: provides various basic information, including the location of the JVM, its command
line settings, etc.

• Monitor: provides a quick overview of among others the CPU usage, GC activity, Java object heap
usage, number of loaded classes, and the number of running threads, over time.

• Threads: provides an overview of the running threads, and their status, over time. The [ Thread
Dump ] button can be used to dump the stack traces of all currently running threads.

• Sampler and Profiler: provide CPU and memory profiling, over time, by using sampling and
instrumentation respectively.

The Monitor tab can be used to determine which type of memory should be increased. The Sampler
tab can be used to profile an application, and figure out where bottlenecks are. This information
can be used by the developers of the application to improve the performance of the application, by
removing those bottlenecks.

https://visualvm.github.io/
https://en.wikipedia.org/wiki/Profiling_%28computer_programming%29

Via Tools › Plugins you can access the Plugins window, where you manage the plugins. Various
plugins are available. The Visual GC plugin is of particular interest. After installing it, restart
VisualVM, or close the tabs of the JVMs you’re monitoring and open them again. You’ll get an extra
tab for monitored JVMs, the Visual GC tab. This tab is somewhat similar to the Monitor tab, but
shows more detailed information about the garbage collector, its various generations, etc.

3. Design Structure Matrix (DSM) clustering

One way to find structure in a graph is by seeing it as a collection of clustered nodes, where two
nodes within a single cluster are more connected to each other than two nodes in different clusters.
In addition, in a lot of cases, there is a set of nodes that connect to many other nodes in the graph
(or in terms of clusters, one cluster connects with many other clusters). Such a set of nodes is
named a bus.

The DSM clustering tool aims to heuristically find such a bus and clusters. The implemented
algorithm is based on [Wilschut et al. (2017)].

3.1. Starting the clustering tool
The clustering tool can be started in the following ways:

• In Eclipse, right click a .dsm file in the Project Explorer tab or Package Explorer tab and choose
Cluster a DSM….

• Right click an open text editor for a .dsm file and choose Cluster a DSM….

• Use the dsmclustering tool in a ToolDef script.

• Use the dsmclustering command line tool.

3.2. Options
Besides the general application options, this application has the following options:

• Input file path: The absolute or relative file system path to the input DSM file.

• Output file path: The absolute or relative file system path for writing the generated DSM output
file. By default, the output file path is the same as the input file path, but with the .dsm extension
removed (if it exists), and the _output.dsm extension added. By setting this option, the default is
overridden by the given value.

• Evaporation factor: Factor that influences when a node is considered to be part of a cluster.
Higher values leads to higher connection requirements between nodes, which leads to fewer
nodes in a single cluster and thus more (smaller) clusters. Between 1.0 and 10.0, default value is
2.0.

• Inflation factor: Factor that influences how fast large values increase and small values decrease,
where the small values are eventually eliminated. Higher values of the factor speed up the
process. Between 1.0 and 4.0, default value is 2.0.

• Bus detection algorithm: The bus detection algorithm to apply. By default, no bus is detected. See
Bus detection algorithms below for more details.

• Bus factor: Factor that influences when a node is considered to be part of the bus. The actual
interpretation of this factor depends on the chosen bus detection algorithm. Default value is 2.
For more information, see Bus detection algorithms below for more details.

• Convergence limit: Allowed remaining numerical error before considering termination of the
algorithm. Higher values end the computation sooner at the cost of less precision in the results.
Values are between 0 and 1 (where 0 is not achievable, and 1 is not precise enough). Default
value is 1e-4.

• Step count: Number of additional nodes to visit each iteration. Between 1 and 4, default value is
2. Changing this values is rarely needed.

• Output groups: Whether to output the node numbers in the bus and each cluster. Default is true.

3.3. DSM file format
A Design Structure Matrix (DSM) file is an RFC-4180 compliant CSV file that contains an N times N
matrix of values. Each line of the file contains a row of the matrix. Within the line, values are
separated by commas, and leading and trailing white space around each value is discarded. Both
integer and real values are supported, such as 0, 1, 1.5, 1e3 and 1.5e-4. Negative values, NaN and
infinite values are not allowed. Before the first number at each row there should be a label
indicating the name of the element of that row. Optionally, above the first line of data there may be
a line of column labels as well. If column labels are present, the top-left cells of the matrix must be
empty, and the row and column labels must match. Rows that are shorter than other rows are
automatically extended with additional zero values. Zero values may be omitted. Labels that
include a comma or space should be surrounded by double quotes, like "Some text, and more text".

The following example shows a DSM for a two by two adjacency matrix of elements A and B, with
column labels:

 , A , B
A, 1 , 0
B, 0.5, 0.1

3.4. Computing a clustered DSM
Since the DSM clustering tool is based on heuristics, and typically much of the input values in the
graph are not hard numbers, there are often several valid answers where some of the answers
match your expectations better.

It is therefore recommended to experiment with the various factors somewhat to see what other
answers are possible, and whether they make sense.

3.5. Bus detection algorithms
Bus detection uses connectivity of the nodes, which is the sum of their in and out degrees.

Currently, the following bus detection algorithm options are available:

• Fix-point algorithm, named fix-point in the tool. This is the fix-point algorithm as introduced in
[Wilschut et al. (2017)]. The algorithm repeatedly adds new nodes to the bus with a connectivity
higher than the median connectivity of non-bus nodes multiplied by bus factor. The final set of
bus nodes is obtained when such new nodes no longer exist. The value of bus factor should be
between 1 and 4 (boundaries included).

• Top-k algorithm, named top-k in the tool. This bus detection algorithm selects the nodes with the
highest connectivity, where the number of nodes to select as bus nodes is bus factor. The value
of bus factor should be an integer between 0 and the number of elements in the DSM. Real
numbers are truncated.

• No bus, named no-bus in the tool. No bus detection mechanism is applied, so no bus elements
are detected.

References
▪ [Wilschut et al. (2017)] T. Wilschut, L.F.P. Etman, J.E. Rooda and I.J.B.F. Adan, "Multilevel Flow-

Based Markov Clustering for Design Structure Matrices", Journal of Mechanical Design, volume
139, issue 12, 2017, doi:10.1115/1.4037626

https://doi.org/10.1115/1.4037626

4. Eclipse ESCET release notes
The release notes for the versions of the Eclipse ESCET tools, as part of the Eclipse ESCET project,
are listed below in reverse chronological order.

See also the release notes for the specific tools for more information:

• CIF release notes

• Chi release notes

• ToolDef release notes

4.1. Version 1.0 (2023-09-30)
Improvements and fixes:

• The Eclipse ESCET project has graduated. The project has left the 'incubation' phase, and has
entered the 'mature' phase. In honor of this occasion, we leave the '0.x' version numbering
behind. All indications of the incubation phase have been removed. This also leads to changes
in download filenames (issues #614 and #647).

• The DSM clustering tool’s DSM input file format has been changed from a CSV-like file to an
RFC-4180 compliant CSV file. Tab characters are no longer supported in the input files (issue
#629).

4.2. Version 0.10 (2023-06-30)
Improvements and fixes:

• The Eclipse ESCET website has moved from www.eclipse.org/escet to eclipse.dev/escet.
Redirects from the old URLs to the new ones are in place (issue #577).

• This release is based on Eclipse 2023-03, rather than Eclipse 2022-06 (issue #399).

• The Eclipse ESCET IDE no longer gives warnings for projects without an explicit encoding (issue
#399).

• The DSM clustering tool’s command line script for Linux is now executable (issue #570).

• The SVG viewer’s Save as dialog now properly starts in the directory that contains the SVG file,
also on Windows. And it now properly handles paths with spaces and other special characters
in them (issue #221).

4.3. Version 0.9 (2023-03-31)
Improvements and fixes:

• The ESCET download page information for macOS has been updated to describe macOS Ventura
(issue #483).

• Eclipse ESCET is now released for the both the x86_64 and aarch64 architectures of macOS

https://eclipse.dev/escet/v1.0/cif/release-notes.html
https://eclipse.dev/escet/v1.0/chi/release-notes.html
https://eclipse.dev/escet/v1.0/tooldef/release-notes.html
https://gitlab.eclipse.org/eclipse/escet/escet/-/issues/614
https://gitlab.eclipse.org/eclipse/escet/escet/-/issues/647
https://gitlab.eclipse.org/eclipse/escet/escet/-/issues/629
https://gitlab.eclipse.org/eclipse/escet/escet/-/issues/577
https://gitlab.eclipse.org/eclipse/escet/escet/-/issues/399
https://gitlab.eclipse.org/eclipse/escet/escet/-/issues/399
https://gitlab.eclipse.org/eclipse/escet/escet/-/issues/570
https://gitlab.eclipse.org/eclipse/escet/escet/-/issues/221
https://gitlab.eclipse.org/eclipse/escet/escet/-/issues/483

(issue #484).

• Version-specific versions of the Eclipse ESCET website are no longer indexed by search engines.
Only the current version of the website is now indexed. It may take some time for all search
engines to catch up (issue #488).

• The DSM clustering tool now outputs files with proper and consistent line endings (issue #540).

4.4. Version 0.8 (2022-12-21)
Improvements and fixes:

• This release is based on Eclipse 2022-06, rather than Eclipse 2021-06 (issue #176).

• Eclipse 2022-06 may show for all projects in your existing workspace a warning that they don’t

have an explicit encoding set. To get rid of the warning, open the Problems view via Window ›
Show View › Problems. Then right click the warning and choose Quick Fix. In the Quick Fix
dialog, click [ Select All ] to select all projects, and then click [ Finish ] to add the UTF-8
encoding to each project (issue #176).

• Eclipse 2022-06 may automatically use a dark theme if your operating system is configured to
use a dark theme. To explicitly choose either a light theme or a dark theme, open the

Preferences dialog via Window › Preferences. Then select General › Appearance, and for
Theme select either Light or Dark. Select System to automatically select light or dark mode based
on the operating system settings (issue #176).

• The Console view now has theming support, and comes with a dark theme in addition to the
existing light theme. The console now automatically uses its dark theme when the Eclipse built-
in dark theme is used, and uses a light theme otherwise (issue #417).

• The Application view’s status legend has been redesigned to support both light and dark themes
(issue #417).

• Improved the Eclipse ESCET IDE welcome screen, by making it fit better with the used theme, by
adding some useful links to get started, and more (issue #32).

• Very long lines in the Console view and text editors now render correctly on Windows (issue
#76).

• Eclipse ESCET now bundles Java 17 rather than Java 11 (issue #259).

• The website of the current Eclipse ESCET release no longer links to version-specific URLs (issue
#394).

4.5. Version 0.7 (2022-09-30)
This release contains no changes that apply to the Eclipse ESCET toolkit in general. Consult the
release notes for the specific tools for their changes.

4.6. Version 0.6 (2022-07-07)
New features:

https://gitlab.eclipse.org/eclipse/escet/escet/-/issues/484
https://gitlab.eclipse.org/eclipse/escet/escet/-/issues/488
https://gitlab.eclipse.org/eclipse/escet/escet/-/issues/540
https://gitlab.eclipse.org/eclipse/escet/escet/-/issues/176
https://gitlab.eclipse.org/eclipse/escet/escet/-/issues/176
https://gitlab.eclipse.org/eclipse/escet/escet/-/issues/176
https://gitlab.eclipse.org/eclipse/escet/escet/-/issues/417
https://gitlab.eclipse.org/eclipse/escet/escet/-/issues/417
https://gitlab.eclipse.org/eclipse/escet/escet/-/issues/32
https://gitlab.eclipse.org/eclipse/escet/escet/-/issues/76
https://gitlab.eclipse.org/eclipse/escet/escet/-/issues/259
https://gitlab.eclipse.org/eclipse/escet/escet/-/issues/394

• Added new Design Structure Matrix (DSM) clustering tool (issue #344).

Improvements and fixes:

• The Eclipse ESCET IDE is no longer configured with a maximum Java object heap size of 4 GB of
memory. The Java Virtual Machine (JVM) now decides the maximum, which may differ for
different systems. It is of course still possible to configure the maximum yourself (issue #374).

• Links in the documentation to Chi, CIF and ToolDef documentation webpages now use version-
specific URLs (issue #386).

• The issue numbers in the release notes now link to the corresponding GitLab issue (issue #396).

• Small website style improvements (issue #367).

4.7. Version 0.5 (2022-03-29)
Improvements and fixes:

• Some small changes to the documentation and website (issues #271 and #335).

• The release notes for each version now contain the release date, with the exception of milestone
releases and release candidates (issue #314).

4.8. Version 0.4 (2021-12-17)
Improvements and fixes:

• Introduced a brand new website (issue #35).

• Many website URLs have changed due to various website structure changes (issues #35 and
#73).

• Various documentation/website textual improvements, style improvements and other changes
(issues #35 and #54).

• The Eclipse ESCET end-user and development documentation have been split into two separate
documentation sets (issue #73).

• SeText is now considered an internal developers tool. It no longer has a website of its own. Its
documentation is now part of the Eclipse ESCET development documentation (issue #73).

• The Eclipse ESCET IDE executable is now named eclipse-escet or eclipse-escet.exe.
eclipse.ini is now named eclipse-escet.ini (issue #98).

• Eclipse ESCET now bundles Java 11.0.12 rather than Java 11.0.2 (issue #237).

4.9. Version 0.3 (2021-10-01)
Improvements and fixes:

• The website and Eclipse help now use multi-page HTML rather than a single HTML file,
although the website still contains a link to the single-page HTML that allows easily searching
the full documentation (issue #36).

https://gitlab.eclipse.org/eclipse/escet/escet/-/issues/344
https://gitlab.eclipse.org/eclipse/escet/escet/-/issues/374
https://gitlab.eclipse.org/eclipse/escet/escet/-/issues/386
https://gitlab.eclipse.org/eclipse/escet/escet/-/issues/396
https://gitlab.eclipse.org/eclipse/escet/escet/-/issues/367
https://gitlab.eclipse.org/eclipse/escet/escet/-/issues/271
https://gitlab.eclipse.org/eclipse/escet/escet/-/issues/335
https://gitlab.eclipse.org/eclipse/escet/escet/-/issues/314
https://gitlab.eclipse.org/eclipse/escet/escet/-/issues/35
https://gitlab.eclipse.org/eclipse/escet/escet/-/issues/35
https://gitlab.eclipse.org/eclipse/escet/escet/-/issues/73
https://gitlab.eclipse.org/eclipse/escet/escet/-/issues/35
https://gitlab.eclipse.org/eclipse/escet/escet/-/issues/54
https://gitlab.eclipse.org/eclipse/escet/escet/-/issues/73
https://gitlab.eclipse.org/eclipse/escet/escet/-/issues/73
https://gitlab.eclipse.org/eclipse/escet/escet/-/issues/98
https://gitlab.eclipse.org/eclipse/escet/escet/-/issues/237
https://gitlab.eclipse.org/eclipse/escet/escet/-/issues/36

• Enabled section anchors for documentation on the website, and disabled section anchors for
Eclipse help (issue #36).

• Fixed macOS-specific instructions for tweaking Java performance settings via eclipse.ini (issue
#179).

• Removed unsupported in-place update instructions from the documentation (issue #166).

• Several small documentation fixes and improvements (issue #166).

4.10. Version 0.2 (2021-07-07)
Improvements and fixes:

• Various documentation updates, including simpler installation instructions (issues #30 and #31).

• Java 11 is now included in the release and Java thus no longer needs to be installed separately
(issues #29 and #30).

• The Eclipse ESCET IDE now includes the Eclipse Marketplace (issue #71).

• Linux command line scripts now work properly from any directory rather than only from the
bin directory that contains them (issue #88).

• macOS releases are now packaged as .dmg files and with proper entitlements (issue #21).

• Eclipse ESCET downloads now contain a folder in the root of the archive, to properly support
unpacking in e.g. a downloads directory (issue #87).

• This release is based on Eclipse 2021-06 (issues #28 and #121).

• Improved Eclipse ESCET download filenames (issues #87 and #92).

• Improved Eclipse ESCET version numbers in documentation, plugin/feature versions, and
Eclipse ESCET IDE about dialog (issues #92 and #103).

• Non-release builds now indicate they are a development build in the Eclipse About dialog (issue
#26).

• Eclipse ESCET downloads for Linux previously included an 'executable' about.html file (issue
#90).

• Crash reports now indicate where and how to report issues (issue #33).

4.11. Version 0.1 (2021-04-02)
The first release of the Eclipse ESCET project and toolkit. This release is based on the initial
contribution by the Eindhoven University of Technology (TU/e).

Most notable changes compared to the last TU/e release:

• A JDK is no longer bundled with the downloads. A JDK must be installed separately and
manually. Future releases will again include a JDK.

This release is based on the Eclipse IDE version 2020-06 and supports Java 8.

https://gitlab.eclipse.org/eclipse/escet/escet/-/issues/36
https://gitlab.eclipse.org/eclipse/escet/escet/-/issues/179
https://gitlab.eclipse.org/eclipse/escet/escet/-/issues/166
https://gitlab.eclipse.org/eclipse/escet/escet/-/issues/166
https://gitlab.eclipse.org/eclipse/escet/escet/-/issues/30
https://gitlab.eclipse.org/eclipse/escet/escet/-/issues/31
https://gitlab.eclipse.org/eclipse/escet/escet/-/issues/29
https://gitlab.eclipse.org/eclipse/escet/escet/-/issues/30
https://gitlab.eclipse.org/eclipse/escet/escet/-/issues/71
https://gitlab.eclipse.org/eclipse/escet/escet/-/issues/88
https://gitlab.eclipse.org/eclipse/escet/escet/-/issues/21
https://gitlab.eclipse.org/eclipse/escet/escet/-/issues/87
https://gitlab.eclipse.org/eclipse/escet/escet/-/issues/28
https://gitlab.eclipse.org/eclipse/escet/escet/-/issues/121
https://gitlab.eclipse.org/eclipse/escet/escet/-/issues/87
https://gitlab.eclipse.org/eclipse/escet/escet/-/issues/92
https://gitlab.eclipse.org/eclipse/escet/escet/-/issues/92
https://gitlab.eclipse.org/eclipse/escet/escet/-/issues/103
https://gitlab.eclipse.org/eclipse/escet/escet/-/issues/26
https://gitlab.eclipse.org/eclipse/escet/escet/-/issues/90
https://gitlab.eclipse.org/eclipse/escet/escet/-/issues/33

5. Legal
The material in this documentation is Copyright (c) 2010, 2023 Contributors to the Eclipse
Foundation.

Eclipse ESCET and ESCET are trademarks of the Eclipse Foundation. Eclipse, and the Eclipse Logo
are registered trademarks of the Eclipse Foundation. Other names may be trademarks of their
respective owners.

License

The Eclipse Foundation makes available all content in this document ("Content"). Unless otherwise
indicated below, the Content is provided to you under the terms and conditions of the MIT License.
A copy of the MIT License is available at https://opensource.org/licenses/MIT. For purposes of the
MIT License, "Software" will mean the Content.

If you did not receive this Content directly from the Eclipse Foundation, the Content is being
redistributed by another party ("Redistributor") and different terms and conditions may apply to
your use of any object code in the Content. Check the Redistributor’s license that was provided with
the Content. If no such license exists, contact the Redistributor. Unless otherwise indicated below,
the terms and conditions of the MIT License still apply to any source code in the Content and such
source code may be obtained at https://www.eclipse.org.

https://opensource.org/licenses/MIT
https://www.eclipse.org

Index
A

appendVmargs, 23
application

terminate, 16
applications view, 10

auto expand, 14
auto remove, 13
auto terminate, 12
child, 11
expansion, 14
open, 11
parent, 11
removal, 13
remove, 14
remove all, 13
running, 11
show, 11
status, 11
status legend, 11
terminate, 13
terminate all, 12
termination, 12
tree, 11

auto expand
applications view, 14

auto remove
applications view, 13

auto terminate
applications view, 12

C

CodeCache, 23
command

execute, 9
CompileThreshold, 22
console

clear, 15
output, 16
performance, 16
reduce output, 16

create
directory, 6
file, 7
folder, 6
project, 5

D

delete
project, 6

directory
create, 6
location, 7
properties, 7
refresh, 8
rename, 7
workspace, 3

DSM clustering, 27
bus detection, 28
computing, 28
input, 28
options, 27
start, 27

E

Eclipse
console, 15
directory, 6
file, 7
folder, 6
heap status, 24
metadata, 3
perspective, 9
project, 4
refresh, 8
rename, 7

eclipse-escet.ini, 17, 22
ECLIPSE_HOME, 23
edit

file, 8
text, 8

editor
error, 8
file, 8
marker, 8
text, 8
warning, 8

error
editor, 8

execute
command, 9

existing

project, 6
expansion

applications view, 14

F

F2, 7
file

create, 7
edit, 8
editor, 8
location, 7
project, 4
properties, 7, 8
refresh, 8
rename, 7
right click, 9
size, 8

folder
create, 6

G

garbage collection
memory, 18

gc
halting, 19
major collection, 19
minor collection, 19
VisualVM, 25

H

heap
monitoring, 24
show status, 24
VisualVM, 25

I

import
project, 6

J

Java
heap, 19

JVM, 18
settings, 20

L

launcher.appendVmargs, 23
legal, 33

linked
project, 6

location
directory, 7
file, 7
project, 7

M

marker
editor, 8

MaxHeapFreeRatio, 21
memory

allocation space, 19
configure, 22
console, 15
console output, 16
defragmentation, 20
eden space, 19
fragmentation, 20
garbage collection, 18
heap, 19
increase, 17, 19
Java, 18
large objects, 19
managed, 18
metaspace, 19
more, 17
native code, 19
old generation, 19
out of memory, 17, 19
performance, 14, 17, 19
quick and dirty, 17
settings, 17, 20, 22
tweak, 22
tweaking, 17
types, 18
VisualVM, 25
young generation, 19

metadata
Eclipse, 3
settings, 3
workspace, 3

MinHeapFreeRatio, 21

N

NewRatio, 21

O

OutOfMemoryError, 23
GC overhead limit exceeded, 23
Java heap space, 23
unable to create new native thread, 24

output
amount, 16
debug, 16
mode, 16
normal, 16
warning, 16

P

Package Explorer
view, 4

performance
applications, 16
close, 16
console output, 16
hints, 23
memory, 14, 17, 19
reduce output, 16
settings, 17, 23
terminate, 16
troubleshooting, 14
tweaking, 17
VisualVM, 25

perspective, 9
active, 10
default layout, 10
default views, 10, 10
ESCET, 9
layout, 10
open, 10
reset, 10
switch, 10, 10

project, 4
create, 5
default location, 4
delete, 6
existing, 6
file, 4
import, 6
linked, 6
location, 7
properties, 7
refresh, 8

remove, 6
rename, 7
workspace, 4, 5

Project Explorer
view, 4

properties
directory, 7
file, 7, 8
project, 7

R

refresh
directory, 8
file, 8
project, 8

release
notes, 29

removal
applications view, 13

remove, 3
applications view, 14
project, 6

remove all
applications view, 13

rename
directory, 7
file, 7
project, 7

ReservedCodeCacheSize, 22, 23
right click

file, 9

S

settings
JVM, 20
memory, 17, 20
metadata, 3
performance, 17
workspace, 3

simulate, 9
size

file, 8
StackOverflowError, 24
SurvivorRatio, 21

T

terminate
application, 12

applications view, 13
terminate all

applications view, 12
terminology, 3
text

edit, 8
editor, 8

tools
DSM clustering, 27

troubleshooting
performance, 14

tweaking
memory, 17
performance, 17

U

update, 2
UseGCOverheadLimit, 21, 23

V

view, 4
applications, 10, 10
console, 10
open, 4
Package Explorer, 4
problems, 10
Project Explorer, 10, 4
properties, 10
show, 4

VisualVM, 25
bottlenecks, 25
classes, 25
command line settings, 25
CPU, 25
dump, 25
GC, 25
gc, 25
heap, 25
JVM, 25
overview, 25
performance, 25
plugins, 26
profiler, 25
sampler, 25
sampling, 25
threads, 25
time, 25

vmargs, 22, 23

W

warning
editor, 8

workspace, 3
change, 3
directory, 3
metadata, 3
multiple, 4
new projects, 4
project, 4, 5
settings, 3
switch, 3

X

Xms, 20
Xmx, 20, 23, 23, 23
Xss, 22, 24

	Eclipse ESCET™ general toolkit documentation
	Table of Contents
	1. Using the Eclipse ESCET IDE
	1.1. Starting Eclipse ESCET IDE for the first time
	1.2. Updating Eclipse ESCET IDE
	1.3. Removing Eclipse ESCET IDE
	1.4. Eclipse terminology
	1.5. Working with projects, directories, and files
	1.6. Editing files and executing commands
	1.7. Eclipse ESCET perspective
	1.8. Applications view

	2. Resolving performance and memory problems
	2.1. Clearing the console
	2.2. Reducing console output
	2.3. Closing running applications
	2.4. Tweaking performance settings

	3. Design Structure Matrix (DSM) clustering
	3.1. Starting the clustering tool
	3.2. Options
	3.3. DSM file format
	3.4. Computing a clustered DSM
	3.5. Bus detection algorithms
	References

	4. Eclipse ESCET release notes
	4.1. Version 1.0 (2023-09-30)
	4.2. Version 0.10 (2023-06-30)
	4.3. Version 0.9 (2023-03-31)
	4.4. Version 0.8 (2022-12-21)
	4.5. Version 0.7 (2022-09-30)
	4.6. Version 0.6 (2022-07-07)
	4.7. Version 0.5 (2022-03-29)
	4.8. Version 0.4 (2021-12-17)
	4.9. Version 0.3 (2021-10-01)
	4.10. Version 0.2 (2021-07-07)
	4.11. Version 0.1 (2021-04-02)

	5. Legal
	Index

