
Chi documentation
Copyright (c) 2010, 2024 Contributors to the Eclipse Foundation

Version v4.0

Table of Contents
1. Chi Tutorial . 3

1.1. Introduction . 3

1.2. Data types . 6

1.3. Statements . 19

1.4. Functions . 25

1.5. Input and output. 28

1.6. Modeling stochastic behavior . 33

1.7. Processes. 40

1.8. Channels . 43

1.9. Buffers . 50

1.10. Servers with time . 58

1.11. Conveyors. 68

1.12. Simulations and experiments . 71

1.13. SVG visualization . 74

1.14. SVG visualization example. 74

2. Chi Reference Manual . 81

2.1. Global definitions . 81

2.2. Statements . 88

2.3. Expressions . 111

2.4. Standard library functions. 135

2.5. Distributions . 144

2.6. Types . 156

2.7. Lexical syntax . 164

2.8. Model migration . 166

2.9. SVG visualization . 166

3. Chi Tool Manual . 168

3.1. Software operation . 168

3.2. Command line options . 171

4. Chi release notes. 173

4.1. Version 4.0 (2024-06-30) . 173

4.2. Version 3.0 (2024-03-31) . 173

4.3. Version 2.0 (2023-12-22) . 173

4.4. Version 1.0 (2023-09-30) . 173

4.5. Version 0.10 (2023-06-30) . 173

4.6. Version 0.9 (2023-03-31) . 173

4.7. Version 0.8 (2022-12-21) . 173

4.8. Version 0.7 (2022-09-30) . 174

4.9. Version 0.6 (2022-07-07) . 174

4.10. Version 0.5 (2022-03-29) . 174

4.11. Version 0.4 (2021-12-17) . 174

4.12. Version 0.3 (2021-10-01) . 175

4.13. Version 0.2 (2021-07-07) . 175

4.14. Version 0.1 (2021-04-02) . 175

5. Legal . 176

Index . 178

Chi is a modeling language for describing and analyzing performance of discrete
event systems by means of simulation. It uses a process-based view, and uses
synchronous point-to-point communication between processes. A process is
written as an imperative program, with a syntax much inspired by the well-
known Python language.

Chi is one of the tools of the Eclipse ESCET™ project. Visit the project website for downloads,
installation instructions, source code, general tool usage information, information on how to
contribute, and more.

Tutorial

The Chi Tutorial teaches the Chi language, and its use in modeling and simulating systems to
answer your performance questions.

Some interesting topics are:

• Basics (Data types, Statements, Modeling stochastic behavior)

• Programming (Processes, Channels)

• Modeling (Buffers, Servers with time, Conveyors)

Reference manual

The Chi Reference Manual describes the Chi language in full detail, for example the top level
language elements or all statements. It also contains a list with all standard library functions and
a list with all distribution functions.

Some interesting topics are:

• Global definitions (Top level language elements)

• Standard library functions (Standard library functions)

• Distributions (Available distributions)

Tool manual

The Tool manual describes the Chi simulator software. Use of the software to create and
simulate Chi programs is also explained.

Release notes

The Release notes provides information on all Chi releases.

Legal

See Legal for copyright and licensing information.

A screenshot showing a Chi model and simulation with visualization:

https://eclipse.dev/escet/v4.0

1. Chi Tutorial
This manual explains using the Chi modeling language.

Topics

• Introduction (global description of the aims of the language)

• Basics: Elementary knowledge needed for writing and understanding Chi programs. Start here
to learn the language!

◦ Data types (explanation of all kinds of data and their operations)

◦ Statements (available process statements)

◦ Functions (how to use functions)

◦ Input and output (reading/writing files, displaying output)

• Programming: How to specify parallel executing processes using the Chi language.

◦ Modeling stochastic behavior (how to model varying behavior)

◦ Processes (creating and running processes)

◦ Channels (connecting processes with each other)

• Modeling: Modeling a real system with Chi.

◦ Buffers (modeling temporary storage of items)

◦ Servers (modeling machines)

◦ Conveyors (modeling conveyor belts)

◦ Experiments (performing simulation experiments)

• Visualization: Making an animated graphical display of a system with the Chi simulator.

◦ SVG visualization (how to attach an SVG visualization)

◦ SVG example (an SVG example)

1.1. Introduction
The topic is modeling of the operation of (manufacturing) systems, e.g. semiconductor factories,
assembly and packaging lines, car manufacturing plants, steel foundries, metal processing shops,
beer breweries, health care systems, warehouses, order-picking systems. For a proper functioning
of these systems, these systems are controlled by operators and electronic devices, e.g. computers.

During the design process, engineers make use of (analytical) mathematical models, e.g. algebra
and probability theory, to get answers about the operation of the system. For complex systems,
(numerical) mathematical models are used, and computers perform simulation experiments, to
analyze the operation of the system. Simulation studies give answers to questions like:

• What is the throughput of the system?

• What is the effect of set-up time in a machine?

• How will the batch size of an order influence the flow time of the product-items?

• What is the effect of more surgeons in a hospital?

The operation of a system can be described, e.g. in terms of or operating processes.

An example of a system with parallel operating processes is a manufacturing line, with a number of
manufacturing machines, where product-items go from machine to machine. A surgery room in a
hospital is a system where patients are treated by teams using medical equipment and sterile
materials. A biological system can be described by a number of parallel processes, where, e.g.
processes transform sugars into water and carbon-dioxide producing energy. In all these examples,
processes operate in parallel to complete a task, and to achieve a goal. Concurrency is the dominant
aspect in these type of systems, and as a consequence this holds too for their models.

The operating behavior of parallel processes can be described by different formalisms, e.g.
automata, Petri-nets or parallel processes. This text uses the programming language Chi, which is
an instance of a parallel processes formalism.

A system is abstracted into a model, with cooperating processes, where processes are connected to
each other via channels. The channels are used for exchanging material and information. Models of
the above mentioned examples consist of a number of concurrent processes connected by channels,
denoting the flow of products, patients or personnel.

In Chi, communication takes place in a synchronous manner. This means that communication
between a sending process, and a receiving process takes place only when both processes are able
to communicate. Processes and channels can dynamically be altered. To model times, like inter-
arrival times and server processing times, the language has a notation of time.

The rationale behind the language is that models for the analysis of a system should be

• formal (exactly one interpretation, every reader attaches the same meaning to the model),

• easily writable (write the essence of the system in a compact way),

• easily readable (non-experts should be able to understand the model),

• and easily extensible (adding more details in one part should not affect other parts).

Verification of the models to investigate the properties of the model should be relatively effortless.
(A model has to preserve some properties of the real system otherwise results from the simulation
study have no relation with the system being modeled. The language must allow this verification to
take place in a simple manner.)

Experiments should be performed in an straightforward manner. (Minimizing the effort in doing
simulation studies, in particular for large systems, makes the language useful.)

Finally, the used models should be usable for the supervisory (logic) control of the systems
(simulation studies often provide answers on how to control a system in a better way, these
answers should also work for the modeled system).

1.1.1. Chi in a nutshell

During the past decades, the ancestors of Chi have been used with success, for the analysis of a
variety of (industrial) systems. Based on this experience, the language Chi has been completely
redesigned, keeping the strong points of the previous versions, while making it more powerful for
advanced users, and easier to access for non-experts.

Its features are:

• A system (and its control) is modeled as a collection of parallel running processes,
communicating with each other using channels.

• Processes do not share data with other processes and channels are synchronous (sending and
receiving is always done together at the same time), making reasoning about process behavior
easier.

• Processes and channels are dynamic, new processes can be created as needed, and
communication channels can be created or rerouted.

• Variables can have elementary values such as boolean, integer or real numbers, to high level
structured collections of data like lists, sets and dictionaries to model the data of the system. If
desired, processes and channels can also be part of that data.

• A small generic set of statements to describe algorithms, assignment, if, while, and for
statements. This set is relatively easy to explain to non-experts, allowing them to understand the
model, and participate in the discussions.

• Tutorials and manuals demonstrate use of the language for effective modeling of system
processes. More detailed modeling of the processes, or custom tailoring them to the real
situation, has no inherent limits.

• Time and (quasi-) random number generation distributions are available for modeling behavior
of the system in time.

• Likewise, measurements to derive performance indicators of the modeled system are integrated
in the model. Tutorials and manuals show basic use. The integration allows for custom solutions
to obtain the needed data in the wanted form.

• Input and output facilities from and to the file system exists to support large simulation
experiments.

1.1.2. Exercises

1. Install the Chi programming environment at your computer.

2. Test your first program.

a. Construct the following program in a project in your workspace:

model M():
 writeln("It works!")
end

b. Compile, and simulate the model as explained in the tool manual (in Compile and simulate).

c. Try to explain the result.

3. Test a program with model parameters.

a. Construct the following program in the same manner:

model M(string s):
 write("%s\n")
end

b. Simulate the model, where you have to set the Model instance text to M("OOPS") in the dialog
box of the simulator.

c. Try to explain the result.

1.2. Data types
The language is a statically typed language, which means that all variables and values in a model
have a single fixed type. All variables must be declared in the program. The declaration of a
variable consists of the type, and the name, of the variable. The following fragment shows the
declaration of two elementary data types, integer variable i and real variable r:

...
int i;
real r;
...

The ellipsis (...) denotes that non-relevant information is left out from the fragment. The syntax for
the declaration of variables is similar to the language C. All declared variables are initialized,
variables i and r are both initialized to zero.

An expression, consisting of operators, e.g. plus (+), times (*), and operands, e.g. i and r, is used to
calculate a new value. The new value can be assigned to a variable by using an assignment
statement. An example with four variables, two expressions and assignment statements is:

...
int i = 2, j;
real r = 1.50, s;

j = 2 * i + 1;
s = r / 2;
...

The value of variable j becomes 5, and the value of s becomes 0.75. Statements are described in
Statements.

Data types are categorized in five different groups: elementary types, tuple types, container types,
custom types, and distribution types. Elementary types are types such as Boolean, integer, real or
string. Tuple types contain at least one element, where each element can be of different type. In
other languages tuple types are called records (Pascal) or structures (C). Variables with a container
type (a list, set, or dictionary) contain many elements, where each element is of the same type.
Custom types are created by the user to enhance the readability of the model. Distributions types
are types used for the generation of distributions from (pseudo-) random numbers. They are
covered in Modeling stochastic behavior.

1.2.1. Elementary types

The elementary data types are Booleans, numbers and strings. The language provides the
elementary data types:

• bool for booleans, with values false and true.

• enum for enumeration types, for example enum FlagColors = {red, white, blue},

• int for integers, e.g. -7, 20, 0.

• real for reals, e.g. 3.14, 7.0e9.

• string for text strings, e.g. "Hello", "world".

Booleans

A boolean value has two possible values, the truth values. These truth values are false and true.
The value false means that a property is not fulfilled. A value true means the presence of a
property. Boolean variables are initialized with the value false.

In mathematics, various symbols are used for unary and binary boolean operators. These operators
are also present in Chi. The most commonly used boolean operators are not, and, and or. The names
of the operators, the symbols in mathematics and the symbols in the language are presented in the
following table:

Operator Math Chi

boolean not ¬ not

boolean and ∧ and

boolean or ∨ or

Examples of boolean expressions are the following. If z equals true, then the value of (not z) equals
false. If s equals false, and t equals true, then the value of the expression (s or t) becomes true.

The result of the unary not, the binary and and or operators, for two variables p and q is given in the
following table:

p q not p p and q p or q

false false true false false

p q not p p and q p or q

false true false true

true false false false true

true true true true

If p = true and q = false, we find for p or q the value true (third line in the table).

Enumerations

Often there are several variants of entities, like types of products, available resources, available
machine types, and so on.

One way of coding them is give each a unique number, which results in code with a lot of small
numbers that are not actually numbers, but refer to one variant.

Another way is to give each variant a name (which often already exists), and use those names
instead.

For example, to model a traffic light:

enum TrafficColor = {RED, ORANGE, GREEN};

TrafficColor light = RED;

The enum TrafficColor line lists the available traffic colors. With this definition, a new type
TrafficColor is created, which you can use like any other type. The line TrafficColor light = RED;
creates a new variable called light and initializes it to the value RED.

Numbers

In the language, two types of numbers are available: integer numbers and real numbers. Integer
numbers are whole numbers, denoted by type int e.g. 3, -10, 0. Real numbers are used to present
numbers with a fraction, denoted by type real. E.g. 3.14, 2.7e6 (the scientific notation for 2.7
million). Note that real numbers must either have a fraction or use the scientific notation, to let the
computer know you mean a real number (instead of an integer number). Integer variables are
initialized with 0. Real variables are initialized with 0.0.

For numbers, the normal arithmetic operators are defined. Expressions can be constructed with
these operators. The arithmetic operators for numbers are listed in the following table:

Operator name Notation Comment

unary plus + x

unary minus - x

Operator name Notation Comment

raising to the power x ^ y Always a real result.

multiplication x * y

real division x / y Always a real result.

division x div y For int only.

modulo x mod y For int only.

addition x + y

subtraction x - y

The priority of the operators is given from high to low. The unary operators have the strongest
binding, and the + and - the weakest binding. So, -3^2 is read as (-3)^2 and not -(3^2), because the
priority rules say that the unary operator binds stronger than the raising to the power operator.
Binding in expressions can be changed by the use of parentheses.

The integer division, denoted by div, gives the biggest integral number smaller or equal to x / y.
The integer remainder, denoted by mod, gives the remainder after division x - y * (x div y). So, 7
div 3 gives 2 and -7 div 3 gives -3, 7 mod 3 gives 1 and -7 mod 3 gives 2.

The rule for the result of an operation is as follows. The real division and raising to the power
operations always produce a value of type real. Otherwise, if both operands (thus x and y) are of
type int, the result of the operation is of type int. If one of the operands is of type real, the result of
the operation is of type real.

Conversion functions exist to convert a real into an integer. The function ceil converts a real to the
smallest integer value not less than the real, the function floor gives the biggest integer value
smaller than or equal to the real, and the function round rounds the real to the nearest integer value
(or up, if it ends on .5).

Between two numbers a relational operation can be defined. If for example variable x is smaller
than variable y, the expression x < y equals true. The relational operators, with well-known
semantics, are listed in the following table:

Name Operator

less than x < y

at most x <= y

equals x == y

differs from x != y

at least x >= y

greater than x > y

Strings

Variables of type string contains a sequence of characters. A string is enclosed by double quotes. An
example is "Manufacturing line". Strings can be composed from different strings. The concatenation
operator (+) adds one string to another, for example "One" + " " + "string" gives "One string".
Moreover the relational operators (<, <=, ==, != >=, and >) can be used to compare strings
alphabetically, e.g. "a" < "aa" < "ab" < "b". String variables are initialized with the empty string "".

1.2.2. Tuple types

Tuple types are used for keeping several (related) kinds of data together in one variable, e.g. the
name and the age of a person. A tuple variable consists of a number of fields inside the tuple, where
the types of these fields may be different. The number of fields is fixed. One operator, the projection
operator denoted by a dot (.), is defined for tuples. It selects a field in the tuple for reading or
assigning.

Notation

A type person is a tuple with two fields, a 'name' field of type string, and an 'age' field of type int, is
denoted by:

type person = tuple(string name; int age)

Operator

A projection operator fetches a field from a tuple. We define two persons:

person eva = ("eva" , 29),
 adam = ("adam", 27);

And we can speak of eva.name and adam.age, denoting the name of eva ("eva") and the age of adam (
27). We can assign a field in a tuple to another variable:

ae = eva.age;
eva.age = eva.age + 1;

This means that the age of eva is assigned tot variable ae, and the new age of eva becomes eva.age +
1.

By using a multi assignment statement all values of a tuple can be copied into separate variables:

string name;
int age;

name, age = eva

This assignment copies the name of eva into variable name of type string and her age into age of type
int.

1.2.3. Container types

Lists, sets and dictionaries are container types. A variable of this type contains zero or more
identical elements. Elements can be added or removed in variables of these types. Variables of a
container type are initialized with zero elements.

Sets are unordered collections of elements. Each element value either exists in a set, or it does not
exist in a set. Each element value is unique, duplicate elements are silently discarded. A list is an
ordered collection of elements, that is, there is a first and a last element (in a non-empty list). A list
also allows duplicate element values. Dictionaries are unordered and have no duplicate value, just
like sets, but you can associate a value (of a different type) with each element value.

Lists are denoted by a pair of (square) brackets. For example, [7, 8, 3] is a list with three integer
elements. Since a list is ordered, [8, 7, 3] is a different list. With empty lists, the computer has to
know the type of the elements, e.g. <int>[] is an empty list with integer elements. The prefix <int> is
required in this case.

Sets are denoted by a pair of (curly) braces, e.g. {7, 8, 3} is a set with three integer elements. As
with lists, for an empty set a prefix is required, for example <string>{} is an empty set with strings.
A set is an unordered collection of elements. The set {7, 8, 3} is a set with three integer numbers.
Since order of the elements does not matter, the same set can also be written as {8, 3, 7} (or in one
of the four other orders). In addition, each element in a set is unique, the set {8, 7, 8, 3} is equal
to the set {7, 8, 3}. For readability, elements in a set are normally written in increasing order, for
example {3, 7, 8}.

Dictionaries are denoted by a pair of (curly) braces, whereby an element value consists of two
parts, a 'key' and a 'value' part. The two parts separated by a colon (:). For example {"jim" : 32,
"john" : 34} is a dictionary with two elements. The first element has "jim" as key part and 32 as
value part, the second element has "john" as key part and 34 as value part. The key parts of the
elements work like a set, they are unordered and duplicates are silently discarded. A value part is
associated with its key part. In this example, the key part is the name of a person, while the value
part keeps the age of that person. Empty dictionaries are written with a type prefix just like lists
and sets, e.g. <string:int>{}.

Container types have some built-in functions in common (Functions are described in Functions):

• The function size gives the number of elements in a variable, for example size([7, 8, 3])
yields 3; size({7, 8}) results in 2; size({"jim":32}) gives 1 (an element consists of two parts).

• The function empty yields true if there are no elements in variable. E.g. empty(<string>{}) with
an empty set of type string is true. (Here the type string is needed to determine the type of the
elements of the empty set.)

• The function pop extracts a value from the provided collection and returns a tuple with that
value, and the collection minus the value.

For lists, the first element of the list becomes the first field of the tuple. The second field of the
tuple becomes the list minus the first list element. For example:

pop([7, 8, 3]) -> (7, [8, 3])

The -> above denotes 'yields'. The value of the list is split into a 'head' (the first element) and a
'tail' (the remaining elements).

For sets, the first field of the tuple becomes the value of an arbitrary element from the set. The
second field of the tuple becomes the original set minus the arbitrary element. For example, a
pop on the set {8, 7, 3} has three possible answers:

pop({8, 7, 3}) -> (7, {3, 8}) or
pop({8, 7, 3}) -> (3, {7, 8}) or
pop({8, 7, 3}) -> (8, {3, 7})

Performing a pop on a dictionary follows the same pattern as above, except 'a value from the
collection' are actually a key item and a value item. In this case, the pop function gives a three-
tuple as result. The first field of the tuple becomes the key of the extracted element, the second
field of the tuple becomes the value of the element, and the third field of the tuple contains the
dictionary except for the extracted element. Examples:

pop({"a" : 32, "b" : 34}) -> ("a", 32, {"b" : 34}) or
pop({"a" : 32, "b" : 34}) -> ("b", 34, {"a" : 32})

Lists

A list is an ordered collection of elements of the same type. They are useful to model anything
where duplicate values may occur or where order of the values is significant. Examples are waiting
customers in a shop, process steps in a recipe, or products stored in a warehouse. Various
operations are defined for lists.

An element can be fetched by indexing. This indexing operation does not change the content of the
variable. The first element of a list has index 0. The last element of a list has index size(xs) - 1. A

negative index, say m, starts from the back of the list, or equivalently, at offset size(xs) + m from the
front. You cannot index non-existing elements. Some examples, with xs = [7, 8, 3, 5, 9] are:

xs[0] -> 7
xs[3] -> 5
xs[5] -> ERROR (there is no element at position 5)
xs[-1] -> xs[5 - 1] -> xs[4] -> 9
xs[-2] -> xs[5 - 2] -> xs[3] -> 5

In the figure below, the list with indices is visualized. A common name for the first element of a list
(i.e., x[0]) is the head of a list. Similarly, the last element of a list (xs[-1]) is also known as head right.

A part of a list can be fetched by slicing. The slicing operation does not change the content of the
list, it copies a contiguous sequence of a list. The result of a slice operation is again a list, even if the
slice contains just one element.

Slicing is denoted by xs[i:j]. The slice of xs[i:j] is defined as the sequence of elements with index
k such that i <= k < j. Note the upper bound j is noninclusive. If i is omitted use 0. If j is omitted
use size(xs). If i is greater than or equal to j, the slice is empty. If i or j is negative, the index is
relative to the end of the list: size(xs) + i or size(xs) + j is substituted. Some examples with xs =
[7, 8, 3, 5, 9]:

xs[1:3] -> [8, 3]
xs[:2] -> [7, 8]
xs[1:] -> [8, 3, 5, 9]
xs[:-1] -> [7, 8, 3, 5]
xs[:-3] -> [7, 8]

The list of all but the first elements (xs[1:]) is often called tail and xs[:-1] is also known as tail
right. Below, the slicing operator is visualized:

Two lists can be 'glued' together into a new list. The glue-ing or concatenation of a list with elements
7, 8, 3 and a list with elements 5, and 9 is denoted by:

[7, 8, 3] + [5, 9] -> [7, 8, 3, 5, 9]

An element can be added to a list at the rear or at the front. The action is performed by
transforming the element into a list and then concatenate these two lists. In the next example the
value 5 is added to the rear, respectively the front, of a list:

[7, 8, 3] + [5] -> [7, 8, 3, 5]
[5] + [7, 8, 3] -> [5, 7, 8, 3]

Elements also can be removed from a list. The del function removes by position, e.g. del(xs, 2)
returns the list xs without its third element (since positions start at index 0). Removing a value by
value can be performed by the subtraction operator -. For instance, consider the following
subtractions:

[1, 4, 2, 4, 5] - [2] -> [1, 4, 4, 5]
[1, 4, 2, 4, 5] - [4] -> [1, 2, 4, 5]
[1, 4, 2, 4, 5] - [8] -> [1, 4, 2, 4, 5]

Every element in the list at the right is searched in the list at the left, and if found, the first
occurrence is removed. In the first example, element 2 is removed. In the second example, only the
first value 4 is removed and the second value (at position 3) is kept. In the third example, nothing is
removed, since value 8 is not in the list at the left.

When the list at the right is longer than one element, the operation is repeated. For example,
consider xs - ys, whereby xs = [1, 2, 3, 4, 5] and ys = [6, 4, 2, 3]. The result is computed as
follows:

 [1, 2, 3, 4, 5] - [6, 4, 2, 3]
-> ([1, 2, 3, 4, 5] - [6]) - [4, 2, 3]
-> [1, 2, 3, 4, 5] - [4, 2, 3]
-> ([1, 2, 3, 4, 5] - [4]) - [2, 3]
-> [1, 2, 3, 5] - [2, 3]
-> ([1, 2, 3, 5] - [2]) - [3]
-> [1, 3, 5] - [3]
-> [1,5]

Lists have two relational operators, the equal operator and the not-equal operator. The equal
operator (==) compares two lists. If the lists have the same number of elements and all the elements
are pair-wise the same, the result of the operation is true, otherwise false. The not-equal operator
(!=) does the same check, but with an opposite result. Some examples, with xs = [7, 8, 3]:

xs == [7, 8, 3] -> true
xs == [7, 7, 7] -> false

The membership operator (in) checks if an element is in a list. Some examples, with xs = [7, 8, 3]:

6 in xs -> false
7 in xs -> true
8 in xs -> true

Initialization

A list variable is initialized with a list with zero elements, for example in:

list int xs;

The initial value of xs equals <int>[].

A list can be initialized with a number, denoting the number of elements in the list:

list(2) int ys

This declaration creates a list with 2 elements, whereby each element of type int is initialized. The
initial value of ys equals [0, 0]. Another example with a list of lists:

list(4) list(2) int zm

This declaration initializes variable zm with the value [[0, 0], [0, 0], [0, 0], [0, 0]].

Sets

Set operators for union, intersection and difference are present. The table below gives the name,
the mathematical notation and the notation in the Chi language:

Operator Math Chi

set union ∪ +

set intersection ∩ *

set difference ∖ -

The union of two sets merges the values of both sets into one, that is, the result is the collection of
values that appear in at least one of the arguments of the union operation. Some examples:

{3, 7, 8} + {5, 9} -> {3, 5, 7, 8, 9}

All permutations with the elements 3, 5, 7, 8 and 9 are correct (sets have no order, all permutations
are equivalent). To keep sets readable the elements are sorted in increasing order in this tutorial.

Values that occur in both arguments, appear only one time in the result (sets silently discard
duplicate elements). For example:

{3, 7, 8} + {7, 9} -> {3, 7, 8, 9}

The intersection of two sets gives a set with the common elements, that is, all values that occur in
both arguments. Some examples:

{3, 7, 8} * {5, 9} -> <int>{} # no common element
{3, 7, 8} * {7, 9} -> {7} # only 7 in common

Set difference works much like subtraction on lists, except elements occur at most one time (and
have no order). The operation computes 'remaining elements'. The result is a new set containing all
values from the first set which are not in the second set. Some examples:

{3, 7, 8} - {5, 9} -> {3, 7, 8}
{3, 7, 8} - {7, 9} -> {3, 9}

The membership operator in works on sets too:

3 in {3, 7, 8} -> true
9 in {3, 7, 8} -> false

Dictionaries

Elements of dictionaries are stored according to a key, while lists elements are ordered by a
(relative) position, and set elements are not ordered at all. A dictionary can grow and shrink by
adding or removing elements respectively, like a list or a set. An element of a dictionary is accessed
by the key of the element.

The dictionary variable d of type dict(string : int) is given by:

dict (string : int) d =
 {"jim" : 32,
 "john" : 34,
 "adam" : 25}

Retrieving values of the dictionary by using the key:

d["john"] -> 34
d["adam"] -> 25

Using a non-existing key to retrieve a value results in a error message.

A new value can be assigned to the variable by selecting the key of the element:

d["john"] = 35

This assignment changes the value of the "john" item to 35. The assignment can also be used to add
new items:

d["lisa"] = 19

Membership testing of keys in dictionaries can be done with the in operator:

"jim" in d -> true
"peter" in d -> false

Merging two dictionaries is done by adding them together. The value of the second dictionary is
used when a key exists in both dictionaries:

{1 : 1, 2 : 2} + {1 : 5, 3 : 3} -> {1 : 5, 2 : 2, 3 : 3}

The left dictionary is copied, and updated with each item of the right dictionary.

Removing elements can be done with subtraction, based on key values. Lists and sets can also be
used to denote which keys should be removed. A few examples for p is {1 : 1, 2 : 2}:

p - {1 : 3, 5 : 5} -> {2 : 2}
p - {1, 7} -> {2 : 2}
p - [2, 8] -> {1 : 1}

Subtracting keys that do not exist in the left dictionary is allowed and has no effect.

1.2.4. Custom types

To structure data the language allows the creation of new types. The definition can only be done at
global level, that is, outside any proc, func, model, or xper definition.

Types can be used as alias for elementary data types to increase readability, for example a variable
of type item:

type item = real;

Variables of type item are, e.g.:

item box, product;

box = 4.0; product = 120.5;

This definition creates the possibility to speak about an item.

Types also can be used to make combinations of other data types, e.g. a recipe:

type step = tuple(string name; real process_time),
 recipe = tuple(int id; list step steps);

A type step is defined by a tuple with two fields, a field with name of type string, denoting the name
of the step, and a field with process_time of type real, denoting the duration of the (processing) step.
The step definition is used in the type recipe. Type recipe is defined by a tuple with two fields, an id
of type int, denoting the identification number, and a field steps of type list step, denoting a list of
single steps. Variables of type recipe are, e.g.:

recipe plate, bread;
plate = (34, [("s", 10.8), ("w", 13.7), ("s", 25.6)]);
bread = (90, [("flour", 16.3), ("yeast", 6.9)]);

1.2.5. Exercises

1. Exercises for integer numbers. What is the result of the following expressions:

-5 ^ 3
-5 * 3
5 mod 3

2. Exercises for tuples. Given are tuple type box and variable x of type box:

type box = tuple(string name; real weight);
box x = ("White", 12.5);

What is the result of the following expressions:

x.name
x.real
x

3. Exercises for lists. Given is the list xs = [0,1,2,3,4,5,6]. Determine the outcome of:

xs[0]
xs[1:]
size(xs)
xs + [3]
[4,5] + xs
xs - [2,2,3]
xs - xs[2:]
xs[0] + (xs[1:])[0]

1.3. Statements
There are several kinds of statements, such as assignment statements, choice statements (select and
if statements), and loop statements (while and for statements).

Semicolons are required after statements, except at the end of a sequence (that is, just before an end
keyword and after the last statement) or after the keyword end. In this text semicolons are omitted
before end.

1.3.1. The assignment statement

An assignment statement is used to assign values to variables. An example:

y = x + 10

This assignment consists of a name of the variable (y), an assignment symbol (=), and an expression

(x + 10) yielding a value. For example, when x is 2, the value of the expression is 12. Execution of
this statement copies the value to the y variable, immediately after executing the assignment, the
value of the y variable is 10 larger than the value of the x variable at this point of the program. The
value of the y variable will not change until the next assignment to y, for example, performing the
assignment x = 7 has no effect on the value of the y variable.

An example with two assignment statements:

i = 2;
j = j + 1

The values of i becomes 2, and the value of j is incremented. Independent assignments can also be
combined in a multi-assignment, for example:

i, j = 2, j + 1

The result is the same as the above described example, the first value goes into the first variable,
the second value into the second variable, etc.

In an assignment statement, first all expression values are computed before any assignment is
actually done. In the following example the values of x and y are swapped:

x, y = y, x;

1.3.2. The if statement

The if statement is used to express decisions. An example:

if x < 0:
 y = -x
end

If the value of x is negative, assign its negated value to y. Otherwise, do nothing (skip the y = -x
assignment statement).

To perform a different statement when the decision fails, an if-statement with an else alternative
can be used. It has the following form. An example:

if a > 0:
 c = a
else:
 c = b
end

If a is positive, variable c gets the value of a, otherwise it gets the value of b.

In some cases more alternatives must be tested. One way of writing it is by nesting an if-statement
in the else alternative of the previous if-statement, like:

if i < 0:
 writeln("i < 0")
else:
 if i == 0:
 writeln("i = 0")
 else:
 if i > 0 and i < 10:
 writeln("0 < i < 10")
 else:
 # i must be greater or equal 10
 writeln("i >= 10")
 end
 end
end

This tests i < 0. If it fails, the else is chosen, which contains a second if-statement with the i == 0
test. If that test also fails, the third condition i > 0 and i < 10 is tested, and one of the writeln
statements is chosen.

The above can be written more compactly by combining an else-part and the if-statement that
follows, into an elif part. Each elif part consists of a boolean expression, and a statement list.
Using elif parts results in:

if i < 0:
 writeln("i < 0")
elif i == 0:
 writeln("i = 0")
elif i > 0 and i < 10:
 writeln("0 < i < 10")
else:
 # i must be greater or equal 10
 writeln("i >= 10")
end

Each alternative starts at the same column, instead of having increasing indentation. The execution
of this combined statement is still the same, an alternative is only tested when the conditions of all

previous alternatives fail.

Note that the line # i must be greater or equal 10 is a comment to clarify when the alternative is
chosen. It is not executed by the simulator. You can write comments either at a line by itself like
above, or behind program code. It is often useful to clarify the meaning of variables, give a more
detailed explanation of parameters, or add a line of text describing what the purpose of a block of
code is from a birds-eye view.

1.3.3. The while statement

The while statement is used for repetitive execution of the same statements, a so-called loop. A
fragment that calculates the sum of 10 integers, 10, 9, 8, ..., 3, 2, 1, is:

int i = 10, sum;

while i > 0:
 sum = sum + i; i = i - 1
end

Each iteration of a while statement starts with evaluating its condition (i > 0 above). When it holds,
the statements inside the while (the sum = sum + i; i = i - 1 assignments) are executed (which
adds i to the sum and decrements i). At the end of the statements, the while is executed again by
evaluating the condition again. If it still holds, the next iteration of the loop starts by executing the
assignment statements again, etc. When the condition fails (i is equal to 0), the while statement
ends, and execution continues with the statement following end.

A fragment with an infinite loop is:

while true:
 i = i + 1;
 ...
end

The condition in this fragments always holds, resulting in i getting incremented 'forever'. Such
loops are very useful to model things you switch on but never off, e.g. processes in a factory.

A fragment to calculate z = x ^ y, where z and x are of type real, and y is of type integer with a
non-negative value, showing the use of two while loops, is:

real x; int y; real z = 1;

while y > 0:
 while y mod 2 == 0:
 y = y div 2; x = x * x
 end;
 y = y - 1; z = x * z
end

A fragment to calculate the greatest common divisor (GCD) of two integer numbers j and k,
showing the use of if and while statements, is:

while j != k:
 if j > k:
 j = j - k
 else:
 k = k - j
 end
end

The symbol != stands for 'differs from' ('not equal').

1.3.4. The for statement

The while statement is useful for looping until a condition fails. The for statement is used for
iterating over a collection of values. A fragment with the calculation of the sum of 10 integers:

int sum;

for i in range(1, 11):
 sum = sum + i
end

The result of the expression range(1, 11) is a list whose items are consecutive integers from 1
(included) up to 11 (excluded): [1, 2, 3, ..., 9, 10].

The following example illustrates the use of the for statement in relation with container-type
variables. Another way of calculating the sum of a list of integer numbers:

list int xs = [1, 2, 3, 5, 7, 11, 13];
int sum;

for x in xs:
 sum = sum + x
end

This statement iterates over the elements of list xs. This is particularly useful when the value of xs
may change before the for statement.

1.3.5. Notes

In this chapter the most used statements are described. Below are a few other statements that may
be useful some times:

• Inside loop statements, the break and continue statements are allowed. The break statements
allows 'breaking out of a loop', that is, abort a while or a for statement. The continue statement
aborts execution of the statements in a loop. It 'jumps' to the start of the next iteration.

• A rarely used statement is the pass statement. It’s like an x = x assignment statement, but more
clearly expresses 'nothing is done here'.

1.3.6. Exercises

1. Study the Chi specification below and explain why, though it works, it is not an elegant way of
modeling the selection. Make a suggestion for a shorter, more elegant version of:

model M():
 int i = 3;

 if (i < 0) == true:
 write("%d is a negative number\n", i);
 elif (i <= 0) == false:
 write("%d is a positive number\n", i);
 end
end

2. Construct a list with the squares of the integers 1 to 10.

a. using a for statement, and

b. using a while statement.

3. Write a program that

a. Makes a list with the first 50 prime numbers.

b. Extend the program with computing the sum of the first 7 prime numbers.

c. Extend the program with computing the sum of the last 11 prime numbers.

1.4. Functions
In a model, computations must be performed to process the information that is sent around. Short
and simple calculations are written as assignments between the other statements, but for longer
computations or computations that are needed at several places in the model, a more encapsulated
environment is useful, a function. In addition, the language comes with a number of built-in
functions, such as size or empty on container types. An example:

func real mean(list int xs):
 int sum;

 for x in xs:
 sum = sum + x
 end;
 return sum / size(xs)
end

The func keyword indicates it is a function. The name of the function is just before the opening
parenthesis, in this example mean. Between the parentheses, the input values (the formal
parameters) are listed. In this example, there is one input value, namely list int which is a list of
integers. Parameter name xs is used to refer to the input value in the body of the function. Between
func and the name of the function is the type of the computation result, in this case, a real value. In
other words, this mean function takes a list of integers as input, and produces a real value as result.

The colon at the end of the first line indicates the start of the computation. Below it are new
variable declarations (int sum), and statements to compute the value, the function algorithm. The
return statement denotes the end of the function algorithm. The value of the expression behind it is
the result of the calculation. This example computes and returns the mean value of the integers of
the list.

Use of a function (application of a function) is done by using its name, followed by the values to be
used as input (the actual parameters). The above function can be used like:

m = mean([1, 3, 5, 7, 9])

The actual parameter of this function application is [1, 3, 5, 7, 9]. The function result is (1 + 3 +
5 + 7 + 9)/5 (which is 5.0), and variable m becomes 5.0.

A function is a mathematical function: the result of a function is the same for the same values of
input parameters. A function has no side-effect, and it cannot access variables outside the body. For
example, it cannot access time (explained in Servers with time) directly, it has to be passed in
through the parameter list.

A function that calculates the sign of a real number, is:

func int sign(real r):
 if r < 0:
 return -1
 elif r = 0:
 return 0
 end;
 return 1
end

The sign function returns:

• if r is smaller than zero, the value minus one;

• if r equals zero, the value zero; and

• if r is greater than zero, the value one.

The computation in a function ends when it encounters a return statement. The return 1 at the end
is therefore only executed when both if conditions are false.

1.4.1. Sorted lists

The language allows recursive functions as well as higher-order functions. Explaining them in detail
is beyond the scope of this tutorial, but these functions are useful for making and maintaining
sorted lists. Such a sorted list is useful for easily getting the smallest (or largest) item from a
collection, for example the order with the nearest deadline.

To sort a list, the first notion that has to be defined is the desired order, by making a function of the
following form:

func bool decreasing(int x, y):
 return x >= y
end

The function is called predicate function. It takes two values from the list (two integers in this case),
and produces a boolean value, indicating whether the parameters are in the right order. In this
case, the function returns true when the first parameter is larger or equal than the second
parameter, that is, larger values must be before smaller values (for equal values, the order does not
matter). This results in a list with decreasing values.

The requirements on any predicate function f are:

1. If x != y, either f(x, y) must hold or f(y, x) must hold, but not both. (Unequal values must
have a unique order.)

2. If x == y, both f(x, y) and f(y, x) must hold. (Equal values can be placed in arbitrary order.)

3. For values x, y, and z, if f(x, y) holds and f(y, z) holds (that is x >= y and y >= z), then f(x, z)
must also hold (that is, x >= z should also be true).

(The order between x and z must be stable, even when you compare with an intermediate value y
between x and z.)

These requirements hold for functions that test on <= or >= between two values, like above.

If you do not provide a proper predicate function, the result may not be sorted as you expect, or the
simulator may abort when it fails to find a proper sorting order.

Sort

The first use of such a predicate function is for sorting a list. For example list [3, 8, 7] is sorted
decreasingly (larger numbers before smaller numbers) with the following statement:

ys = sort([3, 8, 7], decreasing)

Sorting is done with the sort function, it takes two parameters, the list to sort, and the predicate
function. (There are no parentheses () behind decreasing!) The value of list ys becomes [8, 7, 3].

Another sorting example is a list of type tuple(int number, real slack), where field number denotes
the number of an item, and field slack denotes the slack time of the item. The list should be sorted
in ascending order of the slack time. The type of the item is:

type item = tuple(int number, real slack);

The predicate function spred is defined by:

func bool spred(item x, y):
 return x.slack <= y.slack
end

Function spred returns true if the two elements are in increasing order in the list, otherwise false.
Note, the parameters of the function are of type item. Given a variable ps equal to [(7, 21.6), (5,
10.3), (3, 35.8)]. The statement denoting the sorting is:

qs = sort(ps, spred)

variable qs becomes [(5, 10.3), (7, 21.6), (3, 35.8)].

Insert

Adding a new value to a sorted list is the second use of higher-order functions. The simplest
approach would be to add the new value to the head or rear of the list, and sort the list again, but
sorting an almost sorted list is very expensive. It is much faster to find the right position in the
already sorted list, and insert the new value at that point. This function also exists, and is named
insert. An example is (assume xs initially contains [3,8]):

xs = insert(xs, 7, increasing)

where increasing is:

func bool increasing(int x, y):
 return x <= y
end

The insert call assigns the result [3,7,8] as new value to xs, 7 is inserted in the list.

1.5. Input and output
A model communicates with the outside world, e.g. screen and files, by the use of read statements
for input of data, and write statements for output of data.

1.5.1. The read function

Data can be read from the command line or from a file by read functions. A read function requires
a type value for each parameter to be read. An example:

int i; string s;

i = read(int);
s = read(string);

Two values, an integer value and a string value are read from the command line. On the command
line the two values are typed:

1 "This is a string"

Variable i becomes 1, and string s becomes "This is a string". The double quotes are required!
Parameter values are separated by a space or a tabular stop. Putting each value on a separate line
also works.

1.5.2. Reading from a file

Data also can be read from files. An example fragment:

type row = tuple(string name; list int numbers);

file f;
int i;
list row rows;

f = open("data_file.txt", "r");
i = read(f, int);
rows = read(f, list row);
close(f)

Before a file can be used, the file has to be declared, and the file has to be opened by statement open.
Statement open has two parameters, the first parameter denotes the file name (as a string), and the
second parameter describes the way the file is used. In this case, the file is opened in a read-only
mode, denoted by string "r".

Reading values works in the same way as before, except you cannot add new text in the file while
reading it. Instead, the file is processed sequentially from begin to end, with values separated from
each other by white space (spaces, tabs, and new-lines). You can read values of different types from
the same file, as long as the value in the file matches with the type that you ask. For example, the
above Chi program could read the following data from data_file.txt:

21
[("abc", [7,21]),
 ("def", [8,31,47])]

After enough values have been read, the file should be closed with the statement close, with one
parameter, the variable of the file. If a file is still open after an experiment, the file is closed
automatically before the program quits.

1.5.3. Advanced reading from a file

When reading from a file, the eof and eol functions can be used to obtain information about the
white space around the values.

• The eof (end of file) function returns true if you have read the last value (that is, there are no
more values to read).

• The eol (end of line) function returns true if there are no more values at the current line. In
particular, the eol function returns true when the end of the file has been reached.

These functions can be used to customize reading of more complicated values. As an example, you
may want to read the same list row value as above, but without having all the comma’s, quotes,
parentheses, and brackets of the literal value [("abc", [7,21]), ("def", [8,31,47])]. Instead,

imagine having a file clean_data.txt with the following layout:

abc 7 21
def 8 31 47

Each line is one row. It starts with a one-word string, followed by a list of integer numbers. By using
the eof and eol functions, you can read this file in the following way:

file f;
list row rows;
string name;
list int xs;

f = open("clean_data.txt", "r");
while not eof(f):
 name = read(f, string);
 xs = <int>[];
 while not eol(f): # Next value is at the same line.
 xs = xs + [read(f, int)];
 end
 rows = rows + [(name, xs)];
end
close(f);

Each line is processed individually, where eol is used to find out whether the last value of a line has
been read. The reading loop terminates when eof returns true.

Note that eol returns whether the current line has no more values. It does not tell you how many
lines down the next value is. For example, an empty line inserted between the abc 7 21 line and the
def 8 31 47 line is skipped silently. If you want that information, you can use the newlines function
instead.

1.5.4. The write statement

The write statement is used for output of data to the screen of the computer. Data can also be
written to a file.

The first argument of write (or the second argument if you write to a file, see below) Is called the
format string. It is a template of the text to write, with 'holes' at the point where a data value is to be
written.

Behind the format string, the data values to write are listed. The first value is written in the first
'hole', the second value in the second 'hole' and so on. The holes are also called place holders. A
place holder starts with % optionally followed by numbers or some punctuation (its meaning is
explained below). A place holder ends with a format specifier, a single letter like s or f. An example:

int i = 5;

write("i equals %s", i)

In this example the text i equals 5 is written to the screen by the write statement. The "i equals
%s" format string defines what output is written. All 'normal' characters are copied as-is. The %s
place holder is not copied. Instead the first data value (in this case i) is inserted.

The s in the place holder is the format specifier. It means 'print as string'. The %s is a general
purpose format specifier, it works with almost every type of data. For example:

list dict(int:real) xs = [{1 : 5.3}];

write("%s", xs)

will output the contents of xs ({1 : 5.3}).

In general, this works nicely, but for numeric values a little more control over the output is often
useful. To this end, there are also format specifiers d for integer numbers, and f for real numbers.
An example:

int i = 5;
real r = 3.14;

write("Result:\n");
write("%4d/%8.2f", i, r);

This fragment has the effect that the values of i and r are written to the screen as follows:

Result:
 5/ 3.14

The value of i is written in d format (as int value), and the value of r is written in f format (as real
value). The symbols d and f originate respectively from 'decimal', and 'floating point' numbers. The
numbers 4 respectively 8.2 denote that the integer value is written four positions wide (that is, 3
spaces and a 5 character), and that the real value is written eight positions wide, with two
characters after the decimal point (that is, 4 spaces and the text 3.14).

A list of format specifiers is given in the following table:

Format specifier Description

%b boolean value (outputs false or true)

%d integer

%10d integer, at least ten characters wide

Format specifier Description

%f real

%10f real, at least ten characters wide

%.4f real, four characters after the decimal point

%10.4f real, at least ten characters wide with four
characters after the decimal point

%s character string s, can also write other types of
data

%% the character %

Finally, there are also a few special character sequences called escape sequence which allow to
write characters like horizontal tab (which means 'jump to next tab position in the output'), or
newline (which means 'go to the next line in the output') in a string. An escape sequence consists of
two characters. First a backslash character \, followed by a second character. The escape sequences
are presented in the following table:

Sequence Meaning

\n new line

\t horizontal tab

\" the character "

\\ the character \

An example is:

int i = 5, j = 10;
real r = 3.14;

write("Result:\n");
write("%6d\t%d\n\t%.2f\n", i, j, r);

The result looks like:

Result:
 5 10
 3.14

The value of j is written at the tab position, the output goes to the next line again at the first tab
position, and outputs the value of r.

1.5.5. Writing to a file

Data can be written to a file, analog to the read function. A file has to be defined first, and opened
for writing before the file can be used. An example:

file f;
int i;

f = open("output_file", "w");
write(f, "%s", i); write(f, "%8.2f", r);
close(f)

A file, in this case "output_file" is used in write-only mode, denoted by the character "w". Opening a
file for writing destroys its old contents (if the file already exists). In the write statement, the first
parameter must be the file, and the second parameter must be the format string.

After all data has been written, the file is closed by statement close. If the file is still open after
execution of the program, the file is closed automatically.

1.6. Modeling stochastic behavior
Many processes in the world vary a little bit each time they are performed. Setup of machines goes
a bit faster or slower, patients taking their medicine takes longer this morning, more products are
delivered today, or the quality of the manufactured product degrades due to a tired operator.
Modeling such variations is often done with stochastic distributions. A distribution has a mean
value and a known shape of variation. By matching the means and the variation shape with data
from the system being modeled, an accurate model of the system can be obtained. The language has
many stochastic distributions available, this chapter explains how to use them to model a system,
and lists a few commonly used distributions. The full list is available in the reference manual at
Distributions.

The following fragment illustrates the use of the random distribution to model a dice. Each value of
the six-sided dice is equally likely to appear. Every value having the same probability of appearing
is a property of the integer uniform distribution, in this case using interval [1, 7) (inclusive on the
left side, exclusive on the right side). The model is:

dist int dice = uniform(1,7);
int x, y;

x = sample dice;
y = sample dice;
writeln("x=%d, y=%d", x, y);

The variable dice is an integer distribution, meaning that values drawn from the distribution are
integer numbers. It is assigned an uniform distribution. A throw of a dice is simulated with the
operator sample. Each time sample is used, a new sample value is obtained from the distribution. In
the fragment the dice is thrown twice, and the values are assigned to the variables x, and y.

1.6.1. Distributions

The language provides constant, discrete and continuous distributions. A discrete distribution is a
distribution where only specific values can be drawn, for example throwing a dice gives an integer
number. A continuous distribution is a distribution where a value from a continuous range can be
drawn, for example assembling a product takes a positive amount of time. The constant
distributions are discrete distributions that always return the same value. They are useful during
the development of the model (see below).

Constant distributions

When developing a model with stochastic behavior, it is hard to verify whether the model behaves
correctly, since the stochastic results make it difficult to predict the outcome of experiments. As a
result, errors in the model may not be noticed, they hide in the noise of the stochastic results. One
solution is to first write a model without stochastic behavior, verify that model, and then extend the
model with stochastic sampling. Extending the model with stochastic behavior is however an
invasive change that may introduce new errors. These errors are again hard to find due to the
difficulties to predict the outcome of an experiment. The constant distributions aim to narrow the
gap by reducing the amount of changes that need to be done after verification.

With constant distributions, a stochastic model with sampling of distributions is developed, but the
stochastic behavior is eliminated by temporarily using constant distributions. The model performs
stochastic sampling of values, but with predictable outcome, and thus with predictable
experimental results, making verification easier. After verifying the model, the constant
distributions are replaced with the distributions that fit the mean value and variation pattern of the
modeled system, giving a model with stochastic behavior. Changing the used distributions is
however much less invasive, making it less likely to introduce new errors at this stage in the
development of the model.

Constant distributions produce the same value v with every call of sample. There is one constant
distribution for each type of sample value:

• constant(bool v), a bool distribution.

• constant(int v), an int distribution.

• constant(real v), a real distribution.

An example with a constant distribution is:

dist int u = constant(7);

This distribution returns the integer value 7 with each sample u operation.

Discrete distributions

Discrete distributions return values from a finite fixed set of possible values as answer. In Chi,
there is one distribution that returns a boolean when sampled, and there are several discrete
distributions that return an integer number.

• dist bool bernoulli(real p)

Outcome of an experiment with chance p (0 <= p <= 1).

0

0.2

0.4

0.6

0.8

1

false true

be
rn

ou
lli

(r
ea

l p
)

x

bernoulli(0.69)

Range {false, true}

Mean p (where false is interpreted as 0, and true is interpreted as 1)

Variance 1 - p (where false is interpreted as 0, and true is interpreted as 1)

See also Bernoulli(p), [Law (2007)], page 302

• dist int uniform(int a, b)

Integer uniform distribution from a to b excluding the upper bound.

0

0.05

0.1

0.15

0.2

0.25

1 2 3 4 5 6

un
if

or
m

(i
nt

 a
, b

)

x

uniform(1, 6)

Range {a, a+1, ..., b-1}

Mean (a + b - 1) / 2

Variance ((b - a)\^2 - 1) / 12

See also DU(a, b - 1), [Law (2007)], page 303

Continuous distributions

Continuous distributions return a value from a continuous range.

• dist real uniform(real a, b)

Real uniform distribution from a to b, excluding the upper bound.

0

0.05

0.1

0.15

0.2

0.25

1 2 3 4 5 6

un
if

or
m

(r
ea

l a
, b

)

x

uniform(1.0, 6.0)

Range [a, b)

Mean (a + b) / 2

Variance (b - a)^2 / 12

See also U(a,b), [Law (2007)], page 282, except that distribution has an inclusive upper
bound.

• dist real gamma(real a, b)

Gamma distribution, with shape parameter a > 0 and scale parameter b > 0.

0

0.1

0.2

0.3

0.4

0.5

0 2 4 6 8 10 12 14 16 18 20

ga
m

m
a(

re
al

 a
, b

)

x

gamma(1.0, 2.0)

gamma(3.0, 2.0)

gamma(6.0, 2.0)

gamma(6.0, 0.5)

Mean a * b

Variance a * b^2

References

▪ [Law (2007)] Averill M. Law, "Simulation Modeling and Analysis", fourth edition, McGraw-Hill,
2007

1.6.2. Simulating stochastic behavior

In this chapter, the mathematical notion of stochastic distribution is used to describe how to model
stochastic behavior. Simulating a model with stochastic behavior at a computer is however not
stochastic at all. Computer systems are deterministic machines, and have no notion of varying
results.

A (pseudo-)random number generator is used to create stochastic results instead. It starts with an
initial seed, an integer number (you can give one at the start of the simulation). From this seed, a
function creates a stream of 'random' values. When looking at the values there does not seem to be
any pattern. It is not truly random however. Using the same seed again gives exactly the same
stream of numbers. This is the reason to call the function a pseudo-random number generator (a
true random number generator would never produce the exact same stream of numbers). A sample
of a distribution uses one or more numbers from the stream to compute its value. The value of the
initial seed thus decides the value of all samples drawn in the simulation. By default, a different

seed is used each time you run a simulation (leading to slightly different results each time). You can
also explicitly state what seed you want to use when running a model, see Compile and simulate. At
the end of the simulation, the used initial seed of that simulation is printed for reference purposes.

While doing a stochastic simulation study, performing several experiments with the same initial
seed invalidates the results, as it is equivalent to copying the outcome of a single experiment a
number of times. On the other hand, when looking for the cause of a bug in the model, performing
the exact same experiment is useful as outcomes of previous experiments should match exactly.

1.6.3. Exercises

1. According to the Chi reference manual, for a gamma distribution with parameters (a, b), the
mean equals a * b.

a. Use a Chi specification to verify whether this is true for at least 3 different pairs of a and b.

b. How many samples from the distribution are approximately required to determine the
mean up to three decimals accurate?

2. Estimate the mean μ and variance σ2 of a triangular distribution triangle(1.0, 2.0, 5.0) by
simulating 1000 samples. Recall that the variance σ2 of n samples can be calculated by a
function like:

func real variance(list real samples, real avg):
 real v;

 for x in samples:
 v = v + (x - avg)^2;
 end

 return v / (size(samples) - 1)
end

3. We would like to build a small game, called Higher or Lower. The computer picks a random
integer number between 1 and 14. The player then has to predict whether the next number will
be higher or lower. The computer picks the next random number and compares the new
number with the previous one. If the player guesses right his score is doubled. If the player
guesses wrong, he looses all and the game is over. Try the following specification:

model HoL():
 dist int u = uniform(1, 15);
 int sc = 1;
 bool c = true;
 int new, oldval;
 string s;

 new = sample u;
 write("Your score is %d\n", sc);
 write("The computer drew %d\n", new);

 while c:
 writeln("(h)igher or (l)ower:\n");
 s = read(string);
 oldval = new;
 new = sample u;
 write("The computer drew %d\n", new);
 if new == oldval:
 c = false;
 else:
 c = (new > oldval) == (s == "h");
 end;

 if c:
 sc = 2 * sc;
 else:
 sc = 0;
 end;

 write("Your score is %d\n", sc)
 end;
 write("GAME OVER...\n")
end

a. What is the begin score?

b. What is the maximum end score?

c. What happens, when the drawn sample is equal to the previous drawn sample?

d. Extend this game specification with the possibility to stop.

1.7. Processes
The language has been designed for modeling and analyzing systems with many components, all
working together to obtain the total system behavior. Each component exhibits behavior over time.
Sometimes they are busy making internal decisions, sometimes they interact with other
components. The language uses a process to model the behavior of a component (the primary
interest are the actions of the component rather than its physical representation). This leads to
models with many processes working in parallel (also known as concurrent processes), interacting

with each other.

Another characteristic of these systems is that the parallelism happens at different scales at the
same time, and each scale can be considered to be a collection of co-operating parallel working
processes. For example, a factory can be seen as a single component, it accepts supplies and
delivers products. However, within a factory, you can have several parallel operating production
lines, and a line consists of several parallel operating machines. A machine again consists of
parallel operating parts. In the other direction, a factory is a small element in a supply chain. Each
supply chain is an element in a (distribution) network. Depending on the area that needs to be
analyzed, and the level of detail, some scales are precisely modeled, while others either fall outside
the scope of the system or are modeled in an abstract way.

In all these systems, the interaction between processes is not random, they understand each other
and exchange information. In other words, they communicate with each other. The Chi language
uses channels to model the communication. A channel connects a sending process to a receiving
process, allowing the sender to pass messages to the receiver. This chapter discusses parallel
operating processes only, communication between processes using channels is discussed in
Channels.

As discussed above, a process can be seen as a single component with behavior over time, or as a
wrapper around many processes that work at a smaller scale. The Chi language supports both kinds
of processes. The former is modeled with the statements explained in previous chapters and
communication that will be explained in Channels. The latter (a process as a wrapper around many
smaller-scale processes) is supported with the run statement.

1.7.1. A single process

The simplest form of processes is a model with one process:

proc P():
 write("Hello. I am a process.")
end

model M():
 run P()
end

Similar to a model, a process definition is denoted by the keyword proc (proc means process and
does not mean procedure!), followed by the name of the process, here P, followed by an empty pair
of parentheses (), meaning that the process has no parameters. Process P contains one statement, a
write statement to output text to the screen. Model M contains one statement, a run statement to run
a process. When simulating this model, the output is:

Hello. I am a process.

A run statement constructs a process from the process definition (it instantiates a process definition)
for each of its arguments, and they start running. This means that the statements inside each

process are executed. The run statement waits until the statements in its created processes are
finished, before it ends itself.

To demonstrate, below is an example of a model with two processes:

proc P(int i):
 write("I am process. %d.\n", i)
end

model M():
 run P(1), P(2)
end

This model instantiates and runs two processes, P(1) and P(2). The processes are running at the
same time. Both processes can perform a write statement. One of them goes first, but there is no
way to decide beforehand which one. (It may always be the same choice, it may be different on
Wednesday, etc, you just don’t know.) The output of the model is therefore either:

I am process 1.
I am process 2.

or:

I am process 2.
I am process 1.

After the two processes have finished their activities, the run statement in the model finishes, and
the simulation ends.

An important property of statements is that they are executed atomically. It means that execution
of the statement of one process cannot be interrupted by the execution of a statement of another
process.

1.7.2. A process in a process

The view of a process being a wrapper around many other processes is supported by allowing to
use the run statement inside a process as well. An example:

proc P():
 while true:
 write("Hello. I am a process.\n")
 end
end

proc DoubleP():
 run P(), P()
end

model M():
 run DoubleP()
end

The model instantiates and runs one process DoubleP. Process DoubleP instantiates and runs two
processes P. The relevance becomes clear in models with a lot of processes. The concept of 'a
process in a process' is very useful in keeping the model structured.

1.7.3. Many processes

Some models consist of many identical processes at a single level. The language has an unwind
statement to reduce the amount of program text. A model with e.g. ten identical processes, and a
different parameter value, is:

model MRun():
 run P(0), P(1), P(2), P(3), P(4),
 P(5), P(6), P(7), P(8), P(9)
end

An easier way to write this model is by applying the unwind statement inside run with the same
effect:

model MP():
 run unwind j in range(10):
 P(j)
 end
end

The unwind works like a for statement (see The for statement), except the unwind expands all values
at the same time instead of iterating over them one at a time.

1.8. Channels
In Processes processes have been introduced. This chapter describes channels, denoted by the type

chan. A channel connects two processes and is used for the transfer of data or just signals. One
process is the sending process, the other process is the receiving process. Communication between
the processes takes place instantly when both processes are willing to communicate, this is called
synchronous communication.

1.8.1. A channel

The following example shows the sending of an integer value between two processes via a channel.
The figure below shows the two processes P and C, connected by channel variable a:

Processes are denoted by circles, and channels are denoted by directed arrows in the figure. The
arrow denotes the direction of communication. Process P is the sender or producer, process C is the
receiver or consumer.

In this case, the producer sends a finite stream of integer values (5 numbers) to the consumer. The
consumer receives these values and writes them to the screen. The model is:

proc P(chan! int a):
 for i in range(5):
 a!i
 end
end

proc C(chan? int b):
 int x;

 while true:
 b?x;
 write("%d\n",x)
 end
end

model M():
 chan int a;

 run P(a), C(a)
end

The model instantiates processes P and C. The two processes are connected to each other via
channel variable a which is given as actual parameter in the run statement. This value is copied into
the local formal parameter a in process P and in formal parameter b inside process C.

Process P can send a value of type int via the actual channel parameter a to process C. In this case P
first tries to send the value 0. Process C tries to receive a value of type int via the actual channel
parameter a. Both processes can communicate, so the communication occurs and the value 0 is sent

to process C. The received value is assigned in process C to variable x. The value of x is printed and
the cycle starts again. This model writes the sequence 0, 1, 2, 3, 4 to the screen.

1.8.2. Synchronization channels

Above, process P constructs the numbers and sends them to process C. However, since it is known
that the number sequence starts at 0 and increments by one each time, there is no actual need to
transfer a number. Process C could also construct the number by itself after getting a signal (a 'go
ahead') from process P. Such signals are called synchronization signals, transfered by means of a
synchronization channel. The signal does not carry any data, it just synchronizes a send and a
receive between different processes. (Since there is no actual data transfered, the notion of sender
and receiver is ambiguous. However, in modeling there is often a notion of 'initiator' process that
can be conveniently expressed with sending.)

The following example shows the use of synchronization signals between processes P and C. The
connecting channel 'transfers' values of type void. The type void means that 'non-values' are sent
and received; the type void is only allowed in combination with channels. The iconic model is given
in the previous figure, at the start of this chapter. The model is:

proc P(chan! void a):
 for i in range(5):
 a! # No data is being sent
 end
end

proc C(chan? void b):
 int i;

 while true:
 b?; # Nothing is being received
 write("%d\n", i);
 i = i + 1
 end
end

model M():
 chan void a;

 run P(a), C(a)
end

Process P sends a signal (and no value is sent), and process C receives a signal (without a value). The
signal is used by process C to write the value of i and to increment variable i. The effect of the
model is identical to the previous example: the numbers 0, 1, 2, 3, 4 appear on the screen.

1.8.3. Two channels

A process can have more than one channel, allowing interaction with several other processes.

The next example shows two channel variables, a and b, and three processes, generator G, server S
and exit E. The iconic model is given below:

Process G is connected via channel variable a to process S and process S is connected via channel
variable b to process E. The model is:

proc G(chan! int a):
 for x in range(5):
 a!x
 end
end

proc S(chan? int a; chan! int b):
 int x;

 while true:
 a?x; x = 2 * x; b!x
 end
end

proc E(chan int a):
 int x;

 while true:
 a?x;
 write("E %d\n", x)
 end
end

model M():
 chan int a,b;

 run G(a), S(a,b), E(b)
end

The model contains two channel variables a and b. The processes are connected to each other in
model M. The processes are instantiated and run where the formal parameters are replaced by the
actual parameters. Process G sends a stream of integer values 0, 1, 2, 3, 4 to another process via
channel a. Process S receives a value via channel a, assigns this value to variable x, doubles the
value of the variable, and sends the value of the variable via b to another process. Process E
receives a value via channel b, assigns this value to the variable x, and prints this value. The result
of the model is given by:

E 0
E 2
E 4
E 6
E 8

After printing this five lines, process G stops, process S is blocked, as well as process E, the model
gets blocked, and the model ends.

1.8.4. More senders or receivers

Channels send a message (or a signal in case of synchronization channels) from one sender to one
receiver. It is however allowed to give the same channel to several sender or receiver processes.
The channel selects a sender and a receiver before each communication.

The following example gives an illustration:

Suppose that only G and S0 want to communicate. The channel can select a sender (namely G) and a
receiver (process S0), and let both processes communicate with each other. When sender G, and
both receivers (S0 and S1), want to communicate, the channel selects a sender (G as it is the only
sender available to the channel), and a receiver (either process S0 or process S1), and it lets the
selected processes communicate with each other. This selection process is non-deterministic; a
choice is made, but it is unknown how the selection takes place and it cannot be influenced. Note
that a non-deterministic choice is different from a random choice. In the latter case, there are
known probabilities of selecting a process.

Sharing a channel in this way allows to send data to receiving processes where the receiving party
is not relevant (either server process will do). This way of communication is different from
broadcasting, where both servers receive the same data value. Broadcasting is not supported by the
Chi language.

In case of two senders, S0 and S1, and one receiver E the selection process is the same. If one of the
two servers S can communicate with exit E, communication between that server and the exit takes
place. If both servers can communicate, a non-deterministic choice is made.

Having several senders and several receivers for a single channel is also handled in the same
manner. A non-deterministic choice is made for the sending process and a non-deterministic choice
is made for the receiving process before each communication.

To communicate with several other processes but without non-determinism, unique channels must

be used.

1.8.5. Notes

• The direction in channels, denoted by ? or !, may be omitted. By leaving it out, the semantics of
the parameters becomes less clear (the direction of communication has to be derived from the
process code).

• There are a several ways to name channels:

a. Start naming formal channel parameters in each new process with a, b, etc. The actual
names follow from the figure. This convention is followed in this chapter. For small models
this convention is easy and works well, for complicated models this convention can be
error-prone.

b. Use the actual names of the channel parameters in the figures as formal names in the
processes. Start naming in figures with a, b, etc. This convention works well, if both figure
and code are at hand during the design process. If many processes have sub-processes, this
convention does not really work.

c. Use unique names for the channel parameters for the whole model, and for all sub-systems,
for example a channel between processes A and B is named a2b (the lower-case name of the
sending process, followed by 2, denoting 'to', and the lower-case name of the receiving
process).

In this case the formal and actual parameters can be in most cases the same. If many
identical processes are used, this convention does not really work.

In the text all three conventions are used, depending on the structure of the model.

1.8.6. Exercises

1. Given is the specification of process P and model PP:

proc P(chan int a, b):
 int x;

 while true:
 a?x;
 x = x + 1;
 write("%d\n", x);
 b!x
 end
end

model PP():
 chan int a, b;

 run P(a,b), P(b,a)
end

a. Study this specification.

b. Why does the model terminate immediately?

2. Six children have been given the assignment to perform a series of calculations on the numbers
0, 1, 2, 3, ..., 9, namely add 2, multiply by 3, multiply by 2, and add 6 subsequently. They
decide to split up the calculations and to operate in parallel. They sit down at a table next to
each other. The first child, the reader R, reads the numbers 0, 1, 2, 3, ..., 9 one by one to the
first calculating child C1. Child C1 adds 2 and tells the result to its right neighbour, child C2. After
telling the result to child C2, child C1 is able to start calculating on the next number the reader R
tells him. Children C2, C3, and C4 are analogous to child C1; they each perform a different
calculation on a number they hear and tell the result to their right neighbor. At the end of the
table the writer W writes every result he hears down on paper. A schematic drawing of the
children at the table, is given below:

a. Finish the specification for the reading child R, that reads the numbers 0 till 9 one by one:

proc R(...):
 int i;

 while i < 10:
 ...;
 ...
 end
end

b. Specify the parameterized process Cadd that represents the children C1 and C4, who perform
an addition.

c. Specify the parameterized process Cmul that represents the children C2 and C3, who perform
a multiplication.

d. Specify the process W representing the writing child. Write each result to the screen
separated by a new line.

e. Make a graphical representation of the model SixChildren that is composed of the six
children.

f. Specify the model SixChildren. Simulate the model.

1.9. Buffers
In the previous chapter, a production system was discussed that passes values from one process to
the next using channels, in a synchronous manner. (Sender and receiver perform the
communication at exactly the same moment in time, and the communication is instantaneous.) In
many systems however, processes do not use synchronous communication, they use asynchronous
communication instead. Values (products, packets, messages, simple tokens, and so on) are sent,
temporarily stored in a buffer, and then received.

In fact, the decoupling of sending and receiving is very important, it allows compensating
temporarily differences between the number of items that are sent and received. (Under the
assumption that the receiver is fast enough to keep up with the sender in general, otherwise the
buffer will grow forever or overflow.)

For example, consider the exchange of items from a producer process P to a consumer process C as
shown in the following figure:

In the unbuffered situation, both processes communicate at the same time. This means that when
one process is (temporarily) faster than the other, it has to wait for the other process before
communication can take place. With a buffer in-between, the producer can give its item to the
buffer, and continue with its work. Likewise, the consumer can pick up a new item from the buffer
at any later time (if the buffer has items).

In Chi, buffers are not modeled as channels, they are modeled as additional processes instead. The
result is shown in the following figure:

The producer sends its items synchronously (using channel a) to the buffer process. The buffer
process keeps the item until it is needed. The consumer gets an item synchronously (using channel
b) from the buffer when it needs a new item (and one is available).

In manufacturing networks, buffers, in combination with servers, play a prominent role, for
buffering items in the network. Various buffer types exist in these networks: buffers can have a
finite or infinite capacity, they have a input/output discipline, for example a first-out queuing
discipline or a priority-based discipline. Buffers can store different kinds of items, for example,
product-items, information-items, or a combination of both. Buffers may also have sorting facilities,
etc.

In this chapter some buffer types are described, and with the presented concepts numerous types
of buffer can be designed by the engineer. First a simple buffer process with one buffer position is
presented, followed by more advanced buffer models. The producer and consumer processes are
not discussed in this chapter.

1.9.1. A one-place buffer

A buffer usually has a receiving channel and a sending channel, for receiving and sending items. A
buffer, buffer B1, is presented in the figure below:

The simplest buffer is a one-place buffer, for buffering precisely one item. A one-place buffer can
be defined by:

proc B1(chan? item a; chan! item b):
 item x;

 while true:
 a?x; b!x
 end
end

where a and b are the receiving and sending channels. Item x is buffered in the process. A buffer
receives an item, stores the item, and sends the item to the next process, if the next process is
willing to receive the item. The buffer is not willing to receive a second item, as long as the first
item is still in the buffer.

A two-place buffer can be created, by using the one-place buffer process twice. A two-place buffer is
depicted below:

A two-place buffer is defined by:

proc B2(chan? item a; chan! item b):
 chan item c;

 run B1(a, c), B1(c, b)
end

where two processes B1 buffer maximal two items. If each process B1 contains an item, a third item
has to wait in front of process B2. This procedure can be extended to create even larger buffers.
Another, more preferable manner however, is to describe a buffer in a single process by using a
select statement and a list for storage of the items. Such a buffer is discussed in the next section.

1.9.2. A single process buffer

An informal description of the process of a buffer, with an arbitrary number of stored items, is the
following:

1. If the buffer has space for an item, and can receive an item from another process via channel a,
the buffer process receives that item, and stores the item in the buffer.

2. If the buffer contains at least one item, and the buffer can send that item to another process via
channel b, the buffer process sends that item, and removes that item from the buffer.

3. If the buffer can both send and receive a value, the buffer process selects one of the two
possibilities (in a non-deterministic manner).

4. If the buffer cannot receive an item, and cannot send an item, the buffer process waits.

Next to the sending and receiving of items (to and from the buffer process) is the question of how to
order the stored items. A common form is the first-in first-out (fifo) queuing discipline. Items that
enter the buffer first (first-in) also leave first (first-out), the order of items is preserved by the buffer
process.

In the model of the buffer, an (ordered) list of type item is used for storing the received items. New
item x is added at the rear of list xs by the statement:

xs = xs + [x]

The first item of the list is sent, and then deleted with:

xs = xs[1:]

An alternative solution is to swap the function of the rear and the front, which can be useful some
times.

The statement to monitor several channels at the same time is the select statement. The syntax of
the select statement, with two alternatives, is:

select
 boolean_expression_1, communication statement_1:
 statement_list_1
alt
 boolean_expression_2, communication statement_2:
 statement_list_2
...
end

There has to be at least one alternative in a select statement. The statement waits, until for one of
the alternatives the boolean_expression holds and communication using the communication statement
is possible. (When there are several such alternatives, one of them is non-deterministically chosen.)
For the selected alternative, the communication statement is executed, followed by the statements
in the statement_list of the alternative.

The above syntax is the most generic form, the boolean_expression may be omitted when it always
holds, or the communication statement may be omitted when there is no need to communicate. The ,

also disappears then. (Omitting both the boolean expression and the communication statement is
not allowed.) Similarly, when the statement_list is empty or just pass, it may be omitted (together
with the : in front of it).

The description (in words) of the core of the buffer, from the start of this section, is translated in
code, by using a select statement:

select
 size(xs) < N, a?x:
 xs = xs + [x]
alt
 size(xs) > 0, b!xs[0]:
 xs = xs[1:]
end

In the first alternative, it is stated that, if the buffer is not full, and the buffer can receive an item,
an item is received, and that item is added to the rear of the list. In the second alternative, it is
stated that, if the buffer contains at least one item, and the buffer can send an item, the first item in
the list is sent, and the list is updated. Please keep in mind that both the condition must hold and
the communication must be possible at the same moment.

The complete description of the buffer is:

proc B(chan? item a; chan! item b):
 list item xs; item x;

 while true:
 select
 size(xs) < N, a?x:
 xs = xs + [x]
 alt
 size(xs) > 0, b!xs[0]:
 xs = xs[1:]
 end
 end
end

Instead of boolean expression size(xs) > 0, expression not empty(xs) can be used, where empty is a
function yielding true if the list is empty, otherwise false. In case the capacity of the buffer is
infinite, expression size(xs) < N can be replaced by true, or even omitted (including the comma).

1.9.3. An infinite buffer

A buffer with infinite capacity can be written as:

proc B(chan? item a; chan! item b):
 list item xs; item x;

 while true:
 select
 a?x:
 xs = xs + [x]
 alt
 not empty(xs), b!xs[0]:
 xs = xs[1:]
 end
 end
end

A first-in first-out buffer is also called a queue, while a first-in last-out buffer (lifo buffer), is called a
stack. A description of a lifo buffer is:

proc B(chan? item a; chan! item b):
 list item xs; item x;

 while true:
 select
 a?x:
 xs = [x] + xs
 alt
 not empty(xs), b!xs[0]:
 xs = xs[1:]
 end
 end
end

The buffer puts the last received item at the head of the list, and gets the first item from the list. An
alternative is to put the last item at the rear of the list, and to get the last item from the list.

1.9.4. A token buffer

In the next example, signals are buffered instead of items. The buffer receives and sends 'empty'
items or tokens. Counter variable w of type int denotes the difference between the number of tokens
received and the number of tokens sent. If the buffer receives a token, counter w is incremented; if
the buffer sends a token, counter w is decremented. If the number of tokens sent is less than the
number of tokens received, there are tokens in the buffer, and w > 0. A receiving channel variable a
of type void is defined for receiving tokens. A sending channel variable b of type void is defined for
sending tokens. The buffer becomes:

proc B(chan? void a; chan! void b):
 int w;

 while true:
 select
 a?:
 w = w + 1
 alt
 w > 0, b!:
 w = w - 1
 end
 end
end

Note that variables of type void do not exist. Type void only can be used in combination with
channels.

1.9.5. A priority buffer

A buffer for items with different priority is described in this section. An item has a high priority or
a normal priority. Items with a high priority should leave the buffer first.

An item is a tuple with a field prio, denoting the priority, 0 for high priority, and 1 for normal
priority:

type item = tuple(...; int prio);

For the storage of items, two lists are used: a list for high priority items and a list for normal
priority items. The two lists are described by a list with size two:

list(2) list item xs;

Variable xs[0] contains the high priority items, xs[1] the normal priority items. The first item in the
high priority list is denoted by xs[0][0], etc.

In the model the received items are, on the basis of the value of the prio-field in the item, stored in
one of the two lists: one list for 'high' items and one list for 'normal' items. The discipline of the
buffer is that items with a high priority leave the buffer first. The model is:

proc BPrio(chan? item a; chan! item b):
 list(2) list item xs; item x;

 while true:
 select
 a?x:
 xs[x.prio] = xs[x.prio] + [x]
 alt
 not empty(xs[0]), b!xs[0][0]:
 xs[0] = xs[0][1:]
 alt
 empty(xs[0]) and not empty(xs[1]), b!xs[1][0]:
 xs[1] = xs[1][1:]
 end
 end
end

The buffer has two lists xs[0] and xs[1]. Received items x are stored in xs[x.prio] by the statement
xs[x.prio] = xs[x.prio] + [x].

If the list high priority items (xs[0]) is not empty, items with high priority are sent. The first element
in list xs[0] is element xs[0][0]. If there are no high priority items (list xs[0] is empty), and there
are normal priority items (list xs[1] is not empty), the first element of list xs[1], element xs[1][0], is
sent.

Note that the order of the alternatives in the select statement does not matter, every alternative is
treated in the same way.

1.9.6. Exercises

1. To study product flow to and from a factory, a setup as shown in the figure below is created:

F is the factory being studied, generator G sends products into the factory, and exit process E
retrieves finished products. The factory is tightly controlled by controller C that sends a signal to
G or E before a product may be moved. The model is as follows:

proc G(chan! int a; chan? void sg):
 for i in range(10):
 sg?;
 a!i;
 end
end

proc F(chan? int a; chan! int b):
 ...
end

proc E(chan? int a; chan? void se):
 int x;

 while true:
 se?;
 a?x;
 write("E received %d\n", x);
 end
end

proc C(chan! void sg, se; int low, high):
 int count;

 while true:
 while count < high:
 sg!;
 count = count + 1;
 end
 while count > low:
 se!;
 count = count - 1;
 end
 end
end

model M():
 chan void sg, se;
 chan int gf, fe;

 run C(sg, se, 0, 1),
 G(gf, sg), F(gf, fe), E(fe, se);
end

The number of products inserted by the generator has been limited to allow for manual
inspection of results.

a. As a model of the factory, use a FIFO buffer process. Run the simulation, and check whether
all products are received by the exit process.

b. Change the control policy to low = 1 and high = 4. Predict the outcome, and verify with
simulation.

c. The employees of the factory propose to stack the products in the factory to reduce the
amount of space needed for buffering. Replace the factory process with a LIFO buffer
process, run the experiments again, first with low = 0 and high = 1 and then with low = 1
and high = 4.

d. You will notice that some products stay in the factory forever. Why does that happen? How
should the policy be changed to ensure all products eventually leave the factory?

1.10. Servers with time
A manufacturing line contains machines and/or persons that perform a sequence of tasks, where
each machine or person is responsible for a single task. The term server is used for a machine or a
person that performs a task. Usually the execution of a task takes time, e.g. a drilling process, a
welding process, the set-up of a machine. In this chapter we introduce the concept of time, together
with the delay statement.

Note that here 'time' means the simulated time inside the model. For example, assume there are
two tasks that have to be performed in sequence in the modeled system. The first task takes three
hours to complete, the second task takes five hours to complete. These amounts of time are
specified in the model (using the delay statement, as will be explained below). A simulation of the
system should report 'It takes eight hours from start of the first task to finish of the second task'.
However, it generally does not take eight hours to compute that result, a computer can calculate the
answer much faster. When an engineer says ''I had to run the system for a year to reach steady-
state'', he means that time inside the model has progressed a year.

1.10.1. The clock

The variable time denotes the current time in a model. It is a global variable, it can be used in every
model and proc. The time is a variable of type real. Its initial value is 0.0. The variable is updated
automatically by the model, it cannot be changed by the user. The unit of the time is however
determined by the user, that is, you define how long 1 time unit of simulated time is in the model.

The value of variable time can be retrieved by reading from the time variable:

t = time

The meaning of this statement is that the current time is copied to variable t of type real.

A process delays itself to simulate the processing time of an operation with a delay statement. The
process postpones or suspends its own actions until the delay ends.

For example, suppose a system has to perform three actions, each action takes 45 seconds. The unit
of time in the model is one minute (that is, progress of the modeled time by one time unit means a
minute of simulated time has passed). The model looks like:

proc P():
 for i in range(3):
 write("i = %d, time = %f\n", i, time);
 delay 0.75
 end
end

model M():
 run P()
end

An action takes 45 seconds, which is 0.75 time units. The delay 0.75 statement represents
performing the action, the process is suspended until 0.75 units of time has passed.

The simulation reports:

i = 0, time = 0.000000
i = 1, time = 0.750000
i = 2, time = 1.500000
All processes finished at time 2.25

The three actions are done in 2.25 time units (2.25 minutes).

1.10.2. Adding time

Adding time to the model allows answering questions about time, often performance questions
('how many products can I make in this situation?'). Two things are needed:

• Servers must model use of time to perform their task.

• The model must perform measurements of how much time passes.

By extending models of the servers with time, time passes while tasks are being performed. Time
measurements then give non-zero numbers (servers that can perform actions instantly result in all
tasks being done in one moment of time, that is 0 time units have passed between start and finish).
Careful analysis of the measurements should yields answers to questions about performance.

In this chapter, adding of passing time in a server and how to embed time measurements in the
model is explained. The first case is a small production line with a deterministic server (its task
takes a fixed amount of time), while the second case uses stochastic arrivals (the moment of arrival
of new items varies), and a stochastic server instead (the duration of the task varies each time). In
both cases, the question is what the flow time of an item is (the amount of time that a single item is
in the system), and what the throughput of the entire system is (the number of items the production
line can manufacture per time unit).

A deterministic system

The model of a deterministic system consists of a deterministic generator, a deterministic server,

and an exit process. The line is depicted in the following figure:

Generator process G sends items, with constant inter-arrival time ta, via channel a, to server process
S. The server processes items with constant processing time ts, and sends items, via channel b, to
exit process E.

An item contains a real value, denoting the creation time of the item, for calculating the throughput
of the system and flow time (or sojourn time) of an item in the system. The generator process
creates an item (and sets its creation time), the exit process E writes the measurements (the moment
in time when the item arrives in the exit process, and its creation time) to the output. From these
measurements, throughput and flow time can be calculated.

Model M describes the system:

type item = real;

model M(real ta, ts; int N):
 chan item a, b;

 run G(a, ta),
 S(a, b, ts),
 E(b, N)
end

The item is a real number for storing the creation time. Parameter ta denotes the inter-arrival time,
and is used in generator G. Parameter ts denotes the server processing time, and is used in server S.
Parameter N denotes the number of items that must flow through the system to get a good
measurement.

Generator G has two parameters, channel a, and inter-arrival time ta. The description of process G is
given by:

proc G(chan! item a; real ta):
 while true:
 a!time; delay ta
 end
end

Process G sends an item, with the current time, and delays for ta, before sending the next item to
server process S.

Server S has three parameters, receiving channel a, sending channel b, and server processing time
ts:

proc S(chan? item a; chan! item b; real ts):
 item x;

 while true:
 a?x; delay ts; b!x
 end
end

The process receives an item from process G, processes the item during ts time units, and sends the
item to exit process E.

Exit E has two parameters, receiving channel a and the length of the experiment N:

proc E(chan item a; int N):
 item x;

 for i in range(N):
 a?x; write("%f, %f\n", time, time - x)
 end
end

The process writes current time time and item flow time time - x to the screen for each received
item. Analysis of the measurements will show that the system throughput equals 1 / ta, and that
the item flow time equals ts (if ta >= ts).

A stochastic system

In the next model, the generator produces items with an exponential inter-arrival time, and the
server processes items with an exponential server processing time. To compensate for the
variations in time of the generator and the server, a buffer process has been added. The model is
depicted below:

Type item is the same as in the previous situation. The model runs the additional buffer process:

model M(real ta, ts; int N):
 chan item a, b, c;

 run G(a, ta),
 B(a, b),
 S(b, c, ts),
 E(c, N)
end

Generator G has two parameters, channel variable a, and variable ta, denoting the mean inter-
arrival time. An exponential distribution is used for deciding the inter-arrival time of new items:

proc G(chan item a; real ta):
 dist real u = exponential(ta);

 while true:
 a!time; delay sample u
 end
end

The process sends a new item to the buffer, and delays sample u time units. Buffer process B is a fifo
buffer with infinite capacity, as described at An infinite buffer. Server S has three parameters,
channel variables a and b, for receiving and sending items, and a variable for the average
processing time ts:

proc S(chan item a, b; real ts):
 dist real u = exponential(ts);
 item x;

 while true:
 a?x; delay sample u; b!x
 end
end

An exponential distribution is used for deciding the processing time. The process receives an item
from process G, processes the item during sample u time units, and sends the item to exit process E.

Exit process E is the same as previously, see A deterministic system. In this case the throughput of
the system also equals 1 / ta, and the mean flow can be obtained by doing an experiment and
analysis of the resulting measurements (for ta > ts).

1.10.3. Two servers

In this section two different types of systems are shown: a serial and a parallel system. In a serial
system the servers are positioned after each other, in a parallel system the servers are operating in
parallel. Both systems use a stochastic generator, and stochastic servers.

Serial system

The next model describes a serial system, where an item is processed by one server, followed by
another server. The generator and the servers are decoupled by buffers. The model is depicted
below:

The model can be described by:

model M(real ta, ts; int N):
 chan item a, b, c, d, e;

 run G(a, ta),
 B(a, b), S(b, c, ts),
 B(c, d), S(d, e, ts),
 E(e, N)
end

The various processes are equal to those described previously in A stochastic system.

Parallel systems

In a parallel system the servers are operating in parallel. Having several servers in parallel is useful
for enlarging the processing capacity of the task being done, or for reducing the effect of break
downs of servers (when a server breaks down, the other server continues with the task for other
items). The system is depicted below:

Generator process G sends items via a to buffer process B, and process B sends the items in a first-in
first-out manner to the servers S. Both servers send the processed items to the exit process E via
channel c. The inter-arrival time and the two process times are assumed to be stochastic, and
exponentially distributed. Items can pass each other, due to differences in processing time between
the two servers.

If a server is free, and the buffer is not empty, an item is sent to a server. If both servers are free,
one server will get the item, but which one cannot be determined beforehand. (How long a server
has been idle is not taken into account.) The model is described by:

model M(real ta, ts; int N):
 chan item a, b, c;

 run G(a, ta),
 B(a, b),
 S(b, c, ts), S(b, c, ts),
 E(c, N)
end

To control which server gets the next item, each server must have its own channel from the buffer.
In addition, the buffer has to know when the server can receive a new item. The latter is done with
a 'request' channel, denoting that a server is free and needs a new item. The server sends its own
identity as request, the requests are administrated in the buffer. The model is depicted below:

In this model, the servers 'pull' an item through the line. The model is:

model M(real ta, ts; int N):
 chan item a; list(2) chan item b; chan item c;
 chan int r;

 run G(a, ta),
 B(a, b, r),
 unwind j in range(2):
 S(b[j], c, r, ts, j)
 end,
 E(c, N)
end

In this model, an unwind statement is used for the initialization and running of the two servers. Via
channel r an integer value, 0 or 1, is sent to the buffer.

The items received from generator G are stored in list xs, the requests received from the servers are
stored in list ys. The items and requests are removed form their respective lists in a first-in first-out
manner. Process B is defined by:

proc B(chan? item a; list chan! item b; chan? int r):
 list item xs; item x;
 list int ys; int y;

 while true:
 select
 a?x:
 xs = xs + [x]
 alt
 r?y:
 ys = ys + [y]
 alt
 not empty(xs) and not empty(ys), b[ys[0]]!xs[0]:
 xs = xs[1:]; ys = ys[1:]
 end
 end
end

If, there is an item present, and there is a server demanding for an item, the process sends the first
item to the longest waiting server. The longest waiting server is denoted by variable ys[0]. The head
of the item list is denoted by xs[0]. Assume the value of ys[0] equals 1, then the expression
b[ys[0]]!xs[0], equals b[1]!xs[0], indicates that the first item of list xs, equals xs[0], is sent to
server 1.

The server first sends a request via channel r to the buffer, and waits for an item. The item is
processed, and sent to exit process E:

proc S(chan? item b; chan! item c; chan! int r; real ts; int k):
 dist real u = exponential(ts);
 item x;

 while true:
 r!k;
 b?x;
 delay sample u;
 c!x
 end
end

1.10.4. Assembly

In assembly systems, components are assembled into bigger components. These bigger components
are assembled into even bigger components. In this way, products are built, e.g. tables, chairs,
computers, or cars. In this section some simple assembly processes are described. These systems
illustrate how assembling can be performed: in industry these assembly processes are often more
complicated.

An assembly work station for two components is shown below:

The assembly process server S is preceded by buffers. The server receives an item from each buffer
B, before starting assembly. The received items are assembled into one new item, a list of its (sub-
)items. The description of the assembly server is:

proc S(list chan? item c, chan! list item b):
 list(2) item v;

 while true:
 select
 c[0]?v[0]: c[1]?v[1]
 alt
 c[1]?v[1]: c[0]?v[0]
 end
 b!v
 end
end

The process takes a list of channels c to receive items from the preceding buffers. The output
channel b is used to send the assembled component away to the next process.

First, the assembly process receives an item from both buffers. All buffers are queried at the same
time, since it is unknown which buffer has components available. If the first buffer reacts first, and
sends an item, it is received with channel c[0] and stored in v[0] in the first alternative. The next
step is then to receive the second component from the second buffer, and store it (c[1]?v[1]). The
second alternative does the same, but with the channels and stored items swapped.

When both components have been received, the assembled product is sent away.

A generalized assembly work station for n components is depicted below. In the figure, m = n - 1.

The entire work station (the combined buffer processes and the assembly server process) is
described by:

proc W(list chan? item a; chan! list item b):
 list(size(a)) chan item c;

 run unwind i in range(size(a)):
 B(a[i], c[i])
 end,
 S(c,b)
end

The size of the list of channels a is determined during initialization of the workstation. This size is
used for the generation of the process buffers, and the accompanying channels.

The assembly server process works in the same way as before, except for a generic n components, it
is impossible to write a select statement explicitly. Instead, an unwind is used to unfold the
alternatives:

proc S(list chan? item c, chan! list item b):
 list(size(c)) item v;
 list int rec;

 while true:
 rec = range(size(c));
 while not empty(rec):
 select
 unwind i in rec
 c[i]?v[i]: rec = rec - [i]
 end
 end
 end;
 delay ...;
 b!v
 end
end

The received components are again in v. Item v[i] is received from channel c[i]. The indices of the
channels that have not provided an item are in the list rec. Initially, it contains all channels 0 …
size(c), that is, range(size(c)). While rec still has a channel index to monitor, the unwind i in rec
unfolds all alternatives that are in the list. For example, if rec contains [0, 1, 5], the select unwind
i in rec ... end is equivalent to:

select
 c[0]?v[0]: rec = rec - [0]
alt
 c[1]?v[1]: rec = rec - [1]
alt
 c[5]?v[5]: rec = rec - [5]
end

After receiving an item, the index of the channel is removed from rec to prevent receiving a second
item from the same channel. When all items have been received, the assembly process starts
(modeled with a delay, followed by sending the assembled component away with b!v.

In practical situations these assembly processes are performed in a more cascading manner. Two
or three components are 'glued' together in one assemble process, followed in the next process by
another assembly process.

1.10.5. Exercises

1. To understand how time and time units relate to each other, change the time unit of the model
in The clock.

a. Change the model to using time units of one second (that is, one time unit means one second
of simulated time).

b. Predict the resulting throughput and flow time for a deterministic case like in Adding time,
with ta = 4 and ts = 5. Verify the prediction with an experiment, and explain the result.

2. Extend the model A controlled factory in Buffer exercises with a single deterministic server
taking 4.0 time units to model the production capacity of the factory. Increase the number of
products inserted by the generator, and measure the average flow time for

a. A FIFO buffer with control policy low = 0 and high = 1.

b. A FIFO buffer with control policy low = 1 and high = 4.

c. A LIFO buffer with control policy low = 1 and high = 4.

1.11. Conveyors
A conveyor is a long belt on which items are placed at the starting point of the conveyor. The items
leave the conveyor at the end point, after traveling a certain period of time on the conveyor. The
number of items traveling on the conveyor varies, while each item stays the same amount of time
on the conveyor. It works like a buffer that provides output based on item arrival time instead of
based on demand from the next process.

1.11.1. Timers

To model a conveyor, you have to wait until a particular point in time. The Chi language has timers
to signal such a time-out. The timer is started by assigning it a value. From that moment, it
automatically decrements when time progresses in the model, until it reaches zero. The function
ready gives the boolean value true if the timer is ready. The amount of time left can be obtained by
reading from the variable. An example:

proc P():
 timer t;

 delay 10.0;
 t = timer(5.0); # Get a time-out at time = 15.0
 for i in range(7):
 write("%f %f %b\n", time, real(t), ready(t));
 delay 1.0
 end
end

model M():
 run P()
end

Initially, time equals 0.0. The first action of process P is to delay the time for 10.0 time units. Now
the value of time equals 10.0. Nothing happens to timer t as it was already zero. At time 10 timer t is
started with the value 5.0. The output of the program is:

10.0 5.0 false
11.0 4.0 false
12.0 3.0 false
13.0 2.0 false
14.0 1.0 false
15.0 0.0 true
16.0 0.0 true

Timer t decrements as time progresses, and it is ready at 10.0 + 5.0 units. A process can have more
timers active at the same moment.

1.11.2. A conveyor

A conveyor is schematically depicted in the following figure:

Three items are placed on the conveyor. For simplicity, assume the conveyor is 60.0 meter long and
has a speed of 1 meter per second. An item thus stays on the conveyor for 60.0 seconds.

Item 0 has been placed on the conveyor 50.0 seconds ago, and will leave the conveyor 10.0 second

from now. In the same way, item 1 will leave 30.0 seconds from now, and 2 leaves after 45.0
seconds. Each item has a yellow sticker with the time that the item leaves the conveyor. Based on
this idea, tuple type conv_item has been defined, consisting of a field item, denoting the received
item, and a timer field t, with the remaining time until the item leaves the conveyor:

type conv_item = tuple(item x; timer t);

proc T(chan? item a; chan! item b; real convey_time):
 list conv_item xst; item x;

 while true:
 select
 a?x:
 xst = xst + [(x, timer(convey_time))]
 alt
 not empty(xst) and ready(xst[0].t), b!xst[0].x:
 xst = xst[1:]
 end
 end
end

The conveyor always accepts new items from channel a, and adds the item with the yellow sticker
to the list. If the conveyor is not empty, and the timer has expired for the first item in the list, it is
sent (without sticker) to the next process. The conveyor sends items to a process that is always
willing to a receive an item, this implies that the conveyor is never blocked. Blocking implies that
the items nevertheless are transported to the end of the conveyor.

1.11.3. A priority conveyor

In this example, items are placed on a conveyor, where the time of an item on the conveyor varies
between items. Items arriving at the conveyor process, get inserted in the list with waiting items, in
ascending order of their remaining time on the conveyor. The field tt in the item denotes the
traveling time of the item on the conveyor:

type item = tuple(...; real tt; ...),
 conv_item = tuple(item x; timer t);

The predicate function pred is defined by:

func bool pred(conv_item x, y):
 return real(x.t) <= real(y.t)
end

The conveyor process becomes:

proc T(chan? item a; chan! item b):
 list conv_item xst; item x;

 while true:
 select
 a?x:
 xst = insert(xst, (x, timer(x.tt)), pred)
 alt
 not empty(xst) and ready(xst[0].t), b!xst[0].item:
 xst = xst[1:]
 end
 end
end

The conveyor process works like before, except the new item is inserted in the list according to its
remaining time, instead of at the rear of the list.

1.11.4. Exercises

1. Model the system as shown in the figure below, where T is a conveyor process with a capacity of
at most three products and exponentially distributed conveying times with an average of 4.0.

Compute the average flow time of products in the system.

2. Model the system as shown in the figure below, with exponentially distributed server
processing times with an average of 4.0.

a. Compute the average flow time of products in the system.

b. Are there differences in behavior between both systems? Why (not)?

1.12. Simulations and experiments
So far, attention has focused on the Chi language, and how to use it for modeling a discrete-event

system.

In this chapter, the focus shifts to performing simulations, in particular for systems with infinite
behavior. Also, how to perform multiple model simulations is explained.

1.12.1. Simulating finite systems

For systems that have simple cyclic behavior, the simulation can be 'exhaustive', for example:

proc G(chan! real a):
 a!time
end

proc M(chan? real a, chan! real b):
 real x;

 a?x; delay 5.0; b!x
end

proc E(chan? real a):
 real x;

 a?x;
 writeln("Flow time: %.2f", time - x);
end

model M():
 chan real gm, me;

 run G(gm), M(gm, me), E(me);
end

This simulation sends a single product through the line, prints the flow time, and exits. (All
processes end, which makes that the run statement and the model end as well.)

In this case, the answer is even obvious without running the simulation.

1.12.2. Simulating infinite systems

For other systems, it is much harder to decide when enough has been simulated. Typically, a
process (E in the example below), collects values of the property of interest (for example flow time
of products), until it has collected enough samples to draw a conclusion, and compute the resulting
value.

After doing so, the problem arises to let all processes know the simulation should be stopped. This
can be programmed in the model (such as adding channels to signal termination of the simulation
to all processes). A simpler alternative is to use the exit statement, in the following way:

proc real E(chan? real a, int N):
 real total, x;

 for n in range(N):
 a?x;
 total = total + time - x;
 end;
 exit total / N
end

model real M(... int N):
 ...

 run ..., E(..., N);
end

In process E, the average flow time is calculated and given as argument of the exit statement. At the
moment this statement is executed, the model and all processes are killed, and the computed value
becomes the exit value (the result) of the simulation. The real type before the name E denotes that
the process may perform an exit statement returning a real value. The model runs the E process, so
it may also give an exit value as result. These types are called exit type. Exit values are printed to
the screen by the simulator when it ends the model simulation.

Another option is to use write to output the computed value, and use exit without argument. In that
case, the exit value is of type void.

1.12.3. Simulating several scenarios

The above works nicely for single model simulations. The model is started one time, and it derives a
result for a single scenario.

Often however, you want to perform several model simulations. This can be the exact same
scenario when the model has stochastic behavior, or it can be with different parameter values each
time (to investigate system behavior under different circumstances). In such cases, you can use an
experiment, like below:

xper X():
 real v;
 int n;

 for n in range(5, 10):
 v = M(n);
 write("%2d: %.2f\n", n, v)
 end
end

The experiment X looks just like a function, except that it has no return statement. It can however
'call' a model like a function. In the example above M(n) starts a simulation with model M and the

given value for n. When the model exits by means of the exit statement (this is required!), the
computed exit value of the (model) simulation is assigned to variable v. In the experiment, this
value can be used for post-processing, or in this case, get printed as result value in a table.

1.13. SVG visualization
A Chi simulation often produces large amounts of textual output that you have to process in order
to understand the simulation result. Also for people unfamiliar with the details of the simulated
system, results are hard to understand. A possible solution is to add a visualization of the system to
the simulator, that displays how the system behaves over time. Generally, it looses some of the
details, but it makes globally checking, and explaining of the simulation much easier.

1.13.1. The SVG file format

The Scalable Vector Graphics (SVG) file format is a widely used, royalty-free standard for two-
dimensional vector graphics, developed by the World Wide Web Consortium (W3C). SVG images
consist of three types of objects: vector graphic shapes (rectangles, circles, etc.), raster images, and
text. The benefit of vector images formats over raster image formats, is that raster images are
created with a fixed size, while vector images contain a description of the image and can be
rendered at any size without loss of quality.

SVG image files are stored in an XML-based file format. This means that they can be edited with any
text editor. However, it is often more convenient to edit them with a drawing program that
supports vector graphics, such as Adobe Illustrator or Inkscape. Most modern web browsers also
support display of SVG images.

1.13.2. Visualization

An SVG file has a tree structure; (graphical) elements are drawn in the same order as they appear in
the file. Elements further down in the file are thus drawn on top of earlier elements. Also, each
element has a position and size. They may have other properties like a color or a gradient as well.
There are also 'administrative' elements, that can group, scale, or rotate parts of the tree. The
website of Jakob Jenkov has a very nice SVG Tutorial.

The SVG visualization by the Chi simulator exploits this structure. You access the elements, and
literally change the value of their properties or copy part of the tree. The Apache Batik SVG Toolkit
used for drawing the SVG image at the screen notices the changes, and updates the displayed image.

By updating the SVG tree every time when the state of the simulation changes, you can display how
a system evolves over time as an animated image.

1.14. SVG visualization example
To illustrate how to make an SVG visualization, a simple generator, buffer, server, buffer, server,
exit (GBSBSE) process line is used. Below the generator and exit process definitions, and the model:

https://www.w3.org/TR/SVG11/
https://www.w3.org/
https://en.wikipedia.org/wiki/XML
https://www.adobe.com/products/illustrator.html
https://inkscape.org/
http://tutorials.jenkov.com/svg
https://xmlgraphics.apache.org/batik/

proc G(chan! real to; real ptime):
 int n = 0;

 while n < 100:
 to!time; delay ptime; n = n + 1
 end
end

proc E(chan? real from):
 real x;

 while true:
 from?x
 end
end

model M():
 list(3) chan real c;
 list(2) chan real bs;

 run G(c[0], 1.1),

 B(0, c[0], bs[0], 3),
 S(0, bs[0], c[1], 1.0, exponential(10.0), exponential(4.0)),

 B(1, c[1], bs[1], 3),
 S(1, bs[1], c[2], 0.9, exponential(10.0), exponential(4.0)),

 E(c[2]);
end

This system should be visualized, where the number of items in each buffer should be displayed,
and the state of each server (waiting for input, processing, or waiting for output) should also be
shown. The gbse.svg SVG file was made for this purpose, which looks like

../images/tutorial/gbse.svg

in an editor. The black rectangle represents the displayed area when the visualization is running. It
has two light-green rectangles in it, representing the first and second buffer. The darker green
rectangles inside will vary in height to show the number of items in each buffer.

The circle at the left of the displayed area is never displayed in the visualization. However, each
server makes a copy of it, and places it at an appropriate position in the display. While for two
servers, one could just as well perform the copying beforehand, as was done with the buffer
graphics, but the copying technique demonstrates how to scale visualizations for displaying a larger
number of items without a lot of effort.

1.14.1. Buffer visualization

The left darker green rectangle has an id with value buf0, while the right rectangle has an id
containing buf1. Through the id, you can access the properties, in this case, the height, for example
attr buf0.height = 50. This will set the height property of the SVG element named buf0 to 50.

The SVG visualization is not in the Chi model itself, it is an external entity. You access it by opening
a 'file', and writing the commands such as above, as lines of text. The code of the buffer is shown
below.

proc B(int num; chan? real from; chan! real to; int cap):
 list real xs;
 real x;
 file f = open("SVG:gbse.svg", "w");

 while true:
 select size(xs) > 0, to!xs[0]:
 xs = xs[1:];
 alt size(xs) < cap, from?x:
 xs = xs + [x]
 end
 writeln(f, "attr buf%d.height = %d", num, size(xs) * 50);
 end
 close(f);
end

It is a normal finite buffer process, except for three additional lines. The first change is the file f =
open("SVG:gbse.svg", "w"); line. It creates a connection to the SVG visualization due to the SVG:
prefix of the file name. gbse.svg is the name of the .svg file described above. The 'file' should be
opened for writing (since you will be sending commands to it).

The second line is the writeln(f, "attr buf%d.height = %d", num, size(xs) * 50); line, which
constructs a line of text to set the height of the darker green rectangle to a value proportional to the
number of elements in the buffer. There is however a vertical coordinate trick needed to make it all
work.

The third line is the close(f); line at the end of the process. It closes the connection to the SVG
visualization.

1.14.2. Vertical coordinates trickery

In SVG, the vertical coordinates run from the top of the screen to the bottom. If you just draw a
rectangle, its base position (x,y) is at the top-left corner, with width going to the right of the screen,
and height towards the bottom. In other words, if you change the height of a simple SVG rectangle
by a program like the buffer process, the rectangle will grow downwards instead of upwards!

To make it grow upwards instead, you can

• change both the height and the y coordinate of the rectangle at the same time (you move the top
of the rectangle in opposite direction with its growth in height, so it looks like the rectangle
grows upwards), or

• flip the coordinate system of the rectangle by inserting a '180 degrees rotation' transformation
around the rectangle (you tell SVG to draw the rectangle 'upside down', thus if you make it
higher, it grows downwards, but the flipped coordinate displays it as growth upwards.

1.14.3. Server process

The server process code looks as follows (ignore all the writeln lines for now).

proc S(int num; chan? real from; chan! real to; real ptime; dist real up, down):
 real event, x;
 file f = open("SVG:gbse.svg", "w");

 writeln(f, "copy server, , _x%d", num);
 writeln(f, "absmove s_x%d (%d, 325)", num, num*420+150);

 while true:
 event = time + sample up;

 # Up; process items.
 while event > time:
 writeln(f, "attr s_x%d.fill=yellow", num);
 from?x;
 writeln(f, "attr s_x%d.fill=green", num);
 delay ptime;
 writeln(f, "attr s_x%d.fill=magenta", num);
 to!x;
 end

 # Down; repair machine.
 writeln(f, "attr s_x%d.fill=red", num);
 delay sample down;
 end
 close(f);
end

The server runs forever, starting with sampling how long it will be up (event = time + sample up).
Until it has reached that time (while event > time:), it cycles through getting a product, processing
it for uptime time units, and sending the product out again. After a few cycles, it has reached the
event time, goes down, and waits for repair (delay sample down;). Once the machine is repaired it
starts again. Visualization of the servers is discussed below.

1.14.4. Visualizing the server

A server is to be visualized with a circle that changes color depending on what the server is doing.
Yellow means it is waiting for a product, green means processing, magenta means it is waiting to
pass the finished product to the next station, and red means the machine is down. After repairing, it
will continue processing.

As with the buffer process, the SVG visualization first opens a file connection to the visualizer and
the SVG file with the file f = open("SVG:gbse.svg", "w"); line. The filename of the .svg file must be
the same as with the buffer process (the visualizer can only show one SVG file at a time).

To display server state in the SVG visualization, we need a circle (called arc in SVG) named s_0 and

s_1 (for server 0 and server 1), positioned behind its buffer. If there are not too many servers, and
their number is fixed, one could simply add those arcs to the SVG file and be done with it. However,
if you have a lot of servers, or you don’t know in advance how many you will have, you cannot add
them beforehand, you need to construct the SVG elements 'on the fly'.

1.14.5. Copying SVG elements

For showing the server states, arcs named s_0 and s_1 are required in SVG, which are created by
copying and moving an SVG element. In this case, a server is represented by just one SVG element,
so you can copy and move that one element. In general however, you want to copy several elements
at the same time (for example you might want to copy graphical elements to display a work station,
a server with its buffer).

SVG has group elements, where you can put any number of (graphical) elements inside. When you
copy a group, you copy its entire contents. The gbse.svg file as a group called server, containing an
arc element called s. The server group is copied and moved, which causes the arc element to be
copied and moved as well.

Inside an SVG file, each element must have a unique id, that is, each element must have a unique
name. When making a copy, the copied elements must thus also be given a new name. The entire
operation is performed with sending a copy [node], [prefix], [suffix] command to the SVG
visualizer. It takes the element named [node], and makes a full copy of it (all elements inside it are
also copied). For each copied element the [prefix] is added in front of its id name, and the [suffix]
is added behind it.

The writeln(f, "copy server, , _x%d", num); line in the Chi simulation performs the copy
operation for the servers. It takes the server group element (which contains an s arc element), and
adds nothing in front of the names (there is no text between the first and the second comma). It
appends the names with _x0 for the first server, and _x1 for the second server. The result is thus a
copy of the server group, called server_x0 or server_x1, containing an arc s_x0 respectively s_x1.

Note that the copy command performs copying, and nothing else. Since the copied element is
exactly at the same position as the original, you don’t see copies. This is however fixed by a move
command explained next.

1.14.6. Moving SVG elements

You often want to position an SVG element at some point in the display. The simplest way to do that
is to change its x and y attributes, much like the height attribute of the buffer rectangle was
modified. Another solution is to perform a relative move, using transform/translate.

This works, until you add a transformation element that changes the coordinate system. Sometimes
you do this consciously, for example adding a 'flip' transformation to fix the vertical coordinates. At
other times the SVG editor may insert one, for example when you rotate or scale some part of the
drawing.

The Chi SVG visualizer has a absmove [node] ([xpos], [ypos]) command to handle this case. It
computes a transformation to get the top-left corner of the element named [node] at position
([xpos], [ypos]). Keep in mind that the vertical coordinate starts at the top, and goes down.

There are limitations to this command, in some case it may fail (see the reference manual for
details about the command). It is recommended to use this command one time on an element to
move it to a known base position. Once it is at a known position, change the x and y coordinates of a
child element (to avoid disturbing the base position), to move relative to that base position. Another
solution is to perform a relative move, using transform/translate.

In the Chi simulation, the writeln(f, "absmove s_x%d (%d, 325)", num, num*420+150); line moves the
copied s_x0 and s_x1 arcs to the right position in the display.

With the arcs in the right position in the display, the servers can display their activities by changing
the color of the fill attribute.

2. Chi Reference Manual
This manual explains the allowed Chi language constructs and their semantics. Topics discussed
here are:

• Global definitions

• Statements

• Expressions

• Standard library functions

• Distributions

• Types

• Lexical syntax

• Model migration

• SVG visualization

2.1. Global definitions
At global level, a Chi program is a sequence of definitions, as shown in the following diagram.

Each of the definitions is explained below. The syntax diagram suggests that a ; separator is
obligatory between definitions. The implementation is more liberal, you may omit the separator
when a definition ends with the end keyword. Also, it is allowed to use a separator after the last
definition.

The name of each global definition has to be unique.

2.1.1. Enumeration definitions

With enumerations, you create a new enumeration type containing a number of names (called
enumeration values). The syntax is given below.

The enumeration definitions start with the keyword enum, followed by a sequence of definitions
separated with a ,. Each definition associates an enumeration type name with a set of enumeration
value names. For example:

enum FlagColours = {red, white, blue},
 MachineState = {idle, heating, processing};

The enumeration type names act as normal types, and the enumeration values are its values. The
values have to be unique words.

For example, you can create a variable, and compare values like:

MachineState state = idle;
...
while state != processing:
 ...
end

Note that enumeration values have no order, you cannot increment or decrement variables with an
enumeration type, and you can only compare values with equality and inequality.

2.1.2. Type definitions

Type definitions allow you to assign a name to a type. By using a name instead of the type itself,
readability of the program increases.

A type definition starts with the keyword type, followed by a number of 'assignments' that associate
a type name with a type, separated with a ,. For further details about type names and types, see
Types.

An example:

type lot = real,
 batch = list lot;

Here a lot type name is introduced that is implemented with a real number, and a batch type name
is created, which is a list of lot.

These type names can be used at every place where you can use a type, for example in variable
declarations:

batch xs;
lot x;

Note that you cannot define use a type name in its own definition.

2.1.3. Constant definitions

Constant definitions allow you to give a name to a fixed value to enhance readability. It also makes
it easier to change a value between different experiments. For example, if you have a constant
named speed, and you want to investigate how its value affects performance, you only have to
change value in the constant definition, instead of finding and changing numbers in the entire
program.

The syntax of constant definitions is as follows.

An example:

const real speed = 4.8,
 dict(string : list int) recipes = { "short" : [1,4,8],
 "long" : [1,1,2,3,4,5] };

Here, a speed real value is defined, and recipes value, a dictionary of string to numbers. The
constant names can be used at every point where you can use an expression. See the Expressions
section for details about expressions.

Note that you cannot use a constant name in its own definition.

2.1.4. Process definitions

A process is an entity that shows behavior over time. A process definition is a template for such a
process. It is defined as follows.

The definition starts with the keyword proc optionally followed by an exit type. The name of the
process definition, and its formal parameters concludes the header. In the body, the behavior is
described using statements.

Formal parameters are further explained in Formal parameters, statements are explained in the
Statements section.

For example:

proc P():
 writeln("Hello");
 delay 15;
 writeln("Finished")
end

In the example, a process definition with the name P is defined, without parameters, that outputs a
line of text when starting, and another line of text 15 time units later (and then finishes execution).

Creating and running a process is done with Sub-process statements (start or run) from another
process or from a model.

If a process definition has no exit type specified, it may not use the exit statement, nor may it start
other processes that have an exit type (see also Sub-process statements). Process definitions that
have an exit type may use the exit statement directly (see Exit statement for details on the
statement), and it may start other processes without exit type, or with the same exit type.

Since values returned by the exit statement may get printed onto the output, you may only use exit
types that are printable. These are all the 'normal' data values, from simple booleans to lists, sets,
and dictionaries of data values, but not channels, files, etc.

2.1.5. Model definitions

A model behaves like a process, the only difference is that a model is run as first process. It is the
'starting point' of a simulation. As such, a model can only take data values which you can write
down as literal value. For example, giving it a channel or a process instance is not allowed.

Like the process, a model also has a definition. It is defined below.

The syntax is exactly the same as process definitions explained in Process definitions, except it
starts with a model keyword instead. A model can be started directly in the simulator (see Software
operation), or as part of an experiment, explained in Simulating several scenarios, and Experiment
definitions. If the model definition has no exit type, it may not use the exit statement directly, nor
may it start other processes that have an exit type. If an exit type is specified, the model may use the
exit statement to end the model simulation (see Sub-process statements for details), and it may
start other processes, either without exit type, or with a matching exit type.

2.1.6. Function definitions

In programs, computations are executed to make decisions. These computations can be long and
complex. A function definition attaches a name to a computation, so it can be moved to a separate
place in the file.

Another common pattern is that the same computation is needed at several places in the program.
Rather than duplicating it (which creates consistency problems when updating the computation),
write it in a function definition, and call it by name when needed.

The syntax of a function definition is as follows.

In the syntax, the only thing that changes compared with the syntax in Process definitions or Model
definitions is the additional Type node that defines the type resulting from the computation.

However, since a function represents a computation (that is, calculation of an output value from
input values) rather than having behavior over time, the Body part has additional restrictions.

• A computation is performed instantly, no time passes. This means that you cannot delay or wait
in a function.

• A computation outputs a result. You cannot have a function that has no result.

• A computation is repeatable. That means if you run the same computation again with the same
input values, you get the same result every time. Also in the environment of the function, there
should be no changes. This idea is known as mathematical functions.

A consequence of having mathematical functions is that you cannot interact with 'outside'. No
querying of the current time, no communication, no select statement, and no use of
distributions.

Technically, this would also imply no input/output, but for practical reasons this restriction has
been lifted. However, as a general rule, avoid using it.

2.1.7. Experiment definitions

An experiment can execute one or more model simulations, collect their exit values, and combine
them into a experiment result. Its syntax is shown below.

An experiment definition has some function-like restrictions, like not being able to use sub-process
statements, no communication, and no use of time. On the other hand, it does not return a value,
and it can start model simulations that have a non-void exit type (Void type discusses the void type).

The definition is very similar to other definitions. It starts with an xper keyword, followed by the
name of the definition. The name can be used to start an experiment with the simulator (see
Software operation for details on starting the simulator). If formal parameters are specified with
the experiment definition (see Formal parameters below), the experiment can be parameterized
with values. Like models, an experiment can only take data values which you can write down as
literal value. For example, giving it a channel or a process instance is not allowed.

The body of an experiment is just like the body of a Function definitions (no interaction with
processes or time). Unlike a function, an experiment never returns a value with the Return
statement.

The primary goal of an xper is to allow you to run one or more model simulations that give an exit
value. For this purpose, you can 'call' a model like a function, for example:

xper X():
 real total;
 int n;

 while n < 10:
 total = total + M();
 n = n + 1
 end

 writeln("Average is %.2f", total / 10);
end

model real M():
 dist real d = exponential(7.5);
 exit sample d;
end

The model above is very short to keep the example compact. In practice it will be larger, start
several concurrent processes, and do a lengthy simulation before it decides what the answer should
be. The experiment X makes ten calls to the model. Each call causes the model to be run, until the
model or one of its processes executes the exit statement. At that point, the model and all its
processes are killed, and the value supplied with the exit statement becomes the return value of the
model call, adding it to total. After the ten model simulations, the experiment outputs the average
value of all model simulations.

Note that the called model (or one of its started processes) must end with the exit statement, it is an
error when the model ends by finishing its last model statement.

2.1.8. Formal parameters

Definitions above often take values as parameter to allow customizing their behavior during
execution. The definition of those parameters are called formal parameters. The syntax of formal
parameters is shown below.

As you can see, they are just variable declarations (explained in the Local variables section), except
you may not add an initial value, since their values are obtained during use of the definition.

To a definition, the formal parameters act like variables. You may use them just like other variables.

An example, where int x, y; string rel are the formal parameters of process definition P:

proc P(int x, y; string rel):
 writeln("%d %s %d", x, rel, x-y)
end

...

run P(2, -1, "is less than");

The formal parameters introduce additional variables in the process, that can be just like any other
variable. Here, they are just printed to the screen. Elsewhere in the program, the definition gets
used (instantiated), and a value is supplied for the additional variables. Such values are called
actual parameters.

2.2. Statements
Statements express how a process or function in a system works. They define what is done and in
which order. Many statements use data for their decisions, which is stored in local variables. The
combined local variables and statements are called 'body' with the following syntax.

Data values available to the process are the global constants (see Constant definitions) and
enumeration values (see Enumeration definitions). The formal parameters of the surrounding
process definition (explained in Process definitions) or the surrounding function definition
(explained in Function definitions) are added as well.

Data storage that can be modified by the process are the local variables, defined by the
VarDefinitions block in the Body diagram above (variable definitions are explained below in Local
variables).

The data values and the modifiable data storage is used by the statements of the Body in the path
after 1. For ease of reference they are grouped by kind of statement as shown in the Statement
diagram below.

• The AssignmentStatement is used to assign new values to the local variables (and explained
further in Assignment statement).

• The IterativeStatement allows repeated execution of the same statements by means of the for
and while statements (further explained in Iterative statements).

• The ChoiceStatement allows selection on which statement to perform next by means of the if
statement (explained in Choice statement).

• The run and start statements of the SubProcessStatement group (explained in Sub-process
statements) start new processes.

• Communication with other processes using channels is done with send, receive, and select
statements in CommunicationStatement (explained in Communication statements)

• Finally, the OtherStatements group contains several different statements (explained further in
Other statements). The more commonly used statements in that group are the delay statement,
the write statement, and the return statement.

The syntax diagram of Body states that statements are separated from each other with a semicolon
(;). The compiler allows more freedom. Semicolons may be omitted before and after a end keyword,
and a semicolon may be added after the last statement.

2.2.1. Local variables

Local variables are introduced in a process or function using the following syntax.

Variable definitions start with a Type node (its syntax if explained in Types), followed by a sequence

of variable names where each variable may be initialized with a value by means of the = Expression
path. If no value is assigned, the variable gets the default value of the type. Use a semicolon to
terminate the sequence of new variables.

Next, another set of variables may be defined by going back to the start of the diagram, and giving
another Type node, or the diagram can be ended, and the statements of the process or function can
be given.

2.2.2. Assignment statement

An assignment statement assigns one or more values to the local variables. Its syntax is as follows.

The assignment statement computes the value of every Expression at the right. If there is one
expression, its value is also the value to assign. If there are more expressions, a tuple value is
constructed, combining all values into one tuple (see Tuple expression for a discussion of tuple
values).

At the left, a number of Addressable blocks define where the computed value is assigned to.

An Addressable is a variable. If the variable has a tuple type (see Tuple type) a field of the tuple may
be assigned only using Path 1. Similarly, if the variable is a list (see List type) or a dictionary (see
Dictionary type) assignment is done to one element by using Path 2. The Expression here is
evaluated before any assignment by this statement is performed. Since selected elements may also
have a type that allows selection, element selection can be repeated.

After processing the element selections at the left, it is known where values are assigned to. If there
is exactly one addressable at the left, its type must match with the type of the value at the right
(which may be a constructed tuple value as explained above). The value gets copied into the
variable (or in its element if one is selected). If there are several addressable values at the left, the
number of values must be equal to the length of the tuple from the expression(s) at the right, and

each field of the right tuple must pair-wise match with the type of the addressed element at the left.
In the latter case, all assignments are done at the same moment.

For a few examples, a number of variable declarations are needed:

int x, y;
real r;
list(10) int xs;
tuple(real v; int w) t;
func tuple(real v; int w) (int) f;

... # Initialization of the variables omitted

The variable declarations introduce integer variables x and y, a real number variable r, a list of 10
integers xs, a tuple t with two fields, and a function variable f.

For reasons of clarity, initialization of the variables has been omitted. Also, expressions at the right
are simple values. However, you may use all allowed expression operations explained in the next
chapter (Expressions) to obtain a value to assign. The first assignments show assignment of values
to variables where there is one explicit value for every assigned variable:

x = 3;
t = f(y);
x, y = 4, 5;
xs[0], t.v = x+x, r;

The first assignment statement assigns 3 to x. The second assignment assigns the return value of the
function call f(y) to tuple t. The third assignment assigns 4 to x and 5 to y at the same time. The
fourth assignment assigns the value of x+x to the first element of the list xs, and the value of r to the
v field of tuple t.

The next assignments show combining or splitting of tuples:

t = r, y;
r, x = t;
r, x = f(y);

The first assignment assigns a new value to every field of tuple t (t.v gets the value of r, while t.w
gets the value of y). This is called packing, it 'packs' the sequence of values into one tuple. The
opposite operation is demonstrated in the second assignment. The value of each field of t is
assigned to a separate variable. The types of the variables at the left have to pair-wise match with
the field types of the tuple at the right. This assignment is called unpacking, it 'unpacks' a tuple
value into its separate elements. The third assignment does the same as the second assignment, the
difference is that the value at the right is obtained from a function call. The origin of the value is
however irrelevant to the assignment statement.

To demonstrate the order of evaluation, the following assignment, under the assumption that

variable x holds value 3:

x, xs[x-1] = 7, x+2;

The assignment first computes all values at the right. Since there are more than one expression,
they are combined into a tuple:

x, xs[x-1] = (7, 5);

Next, the addressable values are calculated:

x, xs[2] = (7, 5);

Finally the values are assigned, x gets a new value 7, while the third element of xs gets the value of
expression x+2.

The expressions at the right as well as the expressions to select elements in lists and dictionaries
are always evaluated using values from before the assignment.

It is forbidden to assign the same variable or selected element more than once:

x, x = 3, 3 # Error, assigned 'x' twice.
xs[0], xs[1] = 0, 1 # Allowed, different selected elements.
xs[0], xs[x] = 0, 1 # Allowed if x != 0.

2.2.3. Iterative statements

The iterative statements are shown below.

The Chi language has two statements for repeatedly executing a body (a sequence of statements), a
while statement and a for statement. The former is the generic iterative statement, the latter
simplifies the common case of iterating over a collection of values.

The break and continue statements change the flow of control in the iterative statements.

While loop statement

A while loop starts with the keyword while with a boolean condition. Between the colon and the end
keyword, the body of statements is given, which is executed repeatedly.

Executing an iterative while statement starts with evaluating the boolean condition. If it does not
hold, the while statement ends (and execution continues with the statement following the while
statement). If the condition holds, the statements in the body are executed from start to end (unless
a break or continue statement is executed, as explained below). After the last statement has been
executed, the while statement starts again from the beginning, by evaluating the boolean condition
again.

As an example, consider the following code:

int s, i;

while i < 10:
 s = s + i
 i = i + 1
end

At first, the i < 10 condition holds, and the body of the while statement (two assignment
statements) is executed. After the body has finished, i has been incremented, but is still less than 10.
The condition again holds, and the body is again executed, etc. This process continues, until the
final statement of the body increments i to 10. The condition does not hold, and execution of the
while statement ends.

For loop statement

A common case for iterating is to execute some statements for every value in a collection, for

example a list:

list int xs;
int x;
int i;

while i < size(xs):
 x = xs[i]
 ...
 i = i + 1
end

where the ... line represents the statements that should be executed for each value x of the list.
This is a very common case. Chi has a special statement for it, the for statement. It looks like:

list int xs;

for x in xs:
 ...
end

This code performs the same operation, the statements represented with ... are executed for each
value x from list xs, but it is shorter and easier to write. The advantages are mainly a reduction in
the amount of code that must be written.

• No need to create and update the temporary index variable i.

• Variable x is declared implicitly, no need to write a full variable declaration for it.

The behavior is slightly different in some circumstances.

• There is no index variable i that can be accessed afterwards.

• When the ... statements modify the source variable (xs in the example), the while statement
above uses the changed value. The for statement continues to use the original value of the
source variable.

Continuing use of the original source value can be an advantage or a disadvantage, depending on
the case. Using the new value gives more flexibility, keeping the old value makes the for statement
more predictable, for example indices in the source variable stay valid.

Besides iterating over a list with for, you can also iterate over element values of a set, or over key-
value tuples of a dictionary, for example:

dict(int:int) d = {1:10, 2:20};

for k, v in d:
 writeln("%s: %s", k, v);
end

When iterating over a set or a dictionary, the order of the elements is undefined. In the above
example, the first pair is either (1, 10) or (2, 20).

Break statement

The break statement may only be used inside the body of a loop statement. When executed, the
inner-most loop statement ends immediately, and execution continues with the first statement after
the inner-most loop statement. An example:

Get a slice of the xs list, up-to the position of value x in the list
func get_until(list int xs, int x):
 int index;

 while index < size(xs):
 if xs[index] == x:
 break
 end;
 index = index + 1
 end
 return xs[:index]
end

In the example, elements of the list xs are inspected until an element with a value equal to x is
found. At that point, the loop ends with the break statement, and the function returns a slice of the
list.

Continue statement

Another common case when executing the body of an inner-most loop is that the remaining
statements of the body should be skipped this time. It can be expressed with an if statement, but a
continue statement is often easier.

The syntax of the continue statement is just continue. An example to demonstrate its operation:

int s;

for x in xs:
 if x mod 5 == 0:
 continue
 end
 s = s + x
end

The for statement iterates over every value in list xs. When the value is a multiple of 5 (expressed
by the condition x mod 5 == 0), the continue is executed, which skips the remaining statements of
the body of the for statement, namely the s = s + x assignment. The result is that after executing
the for statement, variable s contains the sum of all values of the list that are not a multiple of 5.

2.2.4. Choice statement

The choice statement, also known as 'if statement', selects one alternative from a list based on the
current value of a boolean expression. The alternatives are tried in turn, until a boolean expression
one an alternative yields true. The statements of that alternative are executed, and the choice
statement ends. The choice statement also ends when all boolean expressions yield false. The
boolean expression of the else alternative always holds.

The syntax of the choice statement is as follows.

Processing starts with evaluating the BooleanExpression behind the if. If it evaluates to true, the
statements behind it are executed, and the choice statement ends.

If the boolean expression behind the if does not hold, the sequence elif alternatives is tried.
Starting from the first one, each boolean expression is evaluated. If it holds, the statements of that
alternative are performed, and the choice statement ends. If the boolean expression does not hold,
the next elif alternative is tried.

When there are no elif alternatives or when all boolean expressions of the elif alternatives do not
hold, and there is an else alternative, the statements behind the else are executed and the choice
statement ends. If there is no else alternative, the choice statement ends without choosing any
alternative.

An example with just one alternative:

if x == 1:
 x = 2
end

which tests for x == 1. If it holds, x = 2 is performed, else no alternative is chosen.

An longer example with several alternatives:

if x == 1:
 y = 5
elif x == 2:
 y = 6; x = 6
else:
 y = 7
end

This choice statement first tests whether x is equal to 1. If it is, the y = 5 statement is executed, and
the choice statement finishes. If the first test fails, the test x == 2 is computed. If it holds, the
statements y = 6; x = 6 are performed, and the choice statement ends. If the second test also fails,
the y = 7 statement is performed.

The essential points of this statement are:

• The choice is computed now, you cannot wait for a condition to become true.

• Each alternative is tried from the top down, until the first expression that yields true.

The second point also implies that for an alternative to be chosen, the boolean expressions of all
previous alternatives have to yield false.

In the above example, while executing the y = 7 alternative, you know that x is neither 1 nor 2.

2.2.5. Sub-process statements

The sub-process statements deal with creating and managing of new processes. The statement may
only be used in Process definitions and Model definitions.

The RunStartStatement block creates new processes (see Run and start statements for details), while
the FinishStatement waits for a process to end (further explanation at Finish statement).

Run and start statements

The run and start commands take a sequence of process instance as their argument.

Both statements start all instances listed in the sequence. The start statement ends directly after
starting the processes, while the run statement waits until all the started instances have ended.
Using run is generally recommended for creating new processes.

A process instance has the following syntax.

The elementary process instance is created using Path 1. It consists of a process name (which must
be one of the names of the Process definitions), followed by a sequence of actual parameters for the
process between parentheses. The number of actual parameters and their types must match pair-
wise with the number and type of the formal parameters of the referenced process definition.
Channel directions of the formal parameters must be a sub-set of the channel directions of the
actual parameters.

The optional assignment of the process to a process variable (which must be of type inst, see
Instance type) allows for checking whether the started process has ended, or for waiting on that
condition in a select statement (explained in Select statement), or with a finish statement
(explained in Finish statement).

For example:

chan c;
inst p, q;

run P(18, c), Q(19, c);
start p = P(18, c), q = Q(19, c);

First two processes are completely run, namely the instances P(18, c), and Q(19, c). When both
have ended, the start statement is executed, which starts the same processes, and assigned the P

process instance to instance variable p and the Q process instance to variable q. After starting the
processes, the start ends. Unless one of started processes has already ended, in the statement
following the start, three processes are running, namely the process that executed the start
statement, and the two started process instances referenced by variables p and q. (There may be
more processes of course, created either before the above statements were executed, or the P or Q
process may have created more processes.)

Path 2 of the ProcessInstance diagram is used to construct many new processes by means of an
unwind loop. Each value in the Expression gets assigned to the iterator variable sequence of
VariableName blocks (and this may be done several times as the syntax supports several Expression
loops). For each combination of assignments, the process instances behind the colon are created.
The end keyword denotes the end of the unwind.

Typical use of unwind is to start many similar processes, for example:

list int xs = [1, 2]

run
 unwind i in range(5),
 j in range(3),
 x in xs: P(i, j, x)
 end;

This run statement runs 5*3*2 processes: P(0, 0, 1), P(0, 0, 2), P(0, 1, 1), …, P(0, 2, 2), P(1, 0,
1), …, P(4, 2, 2).

Both the run and the start statements can always instantiate new processes that have no exit type
specified. (see Process definitions for details about exit types in process definitions). If the
definition containing the sub-process statement has an exit type, the statements can also instantiate
processes with the same exit type.

This requirement ensures that all exit statements in a model simulation give exit values of the same
type.

Finish statement

The finish statement allows waiting for the end of a process instance. The statement may only be
used in Process definitions and Model definitions. Its syntax is as follows.

Each process variable must be of type inst (see Instance type for details). The statement ends when

all referenced process instances have ended. For example:

chan bool c;
inst p, q;

start p = P(18, c), q = Q(19, c);
finish p, q;

During the start statement (see Run and start statements), instance variables p and q get a process
instance assigned (this may also happen in different start statements). The finish statement waits
until both process instances have ended.

2.2.6. Communication statements

Communication with another process is the only means to forward information from one process
to another processes, making it the primary means to create co-operating processes in the modeled
system. The statement may only be used in Process definitions and Model definitions.

All communication is point-to-point (from one sender to one receiver) and synchronous (send and
receive occur together). A communication often exchanges a message (a value), but communication
without exchange of data is also possible (like waving 'hi' to someone else, the information being
sent is 'I am here', but that information is already implied by the communication itself). The latter
form of communication is called synchronization.

Send and receive does not specify the remote process directly, instead a channel is used (see
Channel type and Channel expressions sections for more informations about channels and how to
create them). Using a channel increases flexibility, the same channel can be used by several
processes (allowing communication with one of them). Channels can also be created and exchanged
during execution, for even more flexibility.

Setting up a communication channel between two processes is often done in the following way:

chan void sync; # Synchronization channel
chan int dch; # Channel with integer number messages

run P(sync, dch), Q(sync, dch);

In a parent process, two channels are created, a synchronization channel sync, and a
communication channel with data called dch. The channel values are given to processes P and Q
through their formal parameters.

The communication statements are as follows.

The elementary communication statements for sending and receiving at a single channel are the
Send statement and the Receive statement. The Select statement is used for monitoring several
channels and conditions at the same time, until at least one of them becomes available.

Send statement

The send statement send signals or data away through a channel. The statement may only be used
in Process definitions and Model definitions. It has the following syntax:

The statement takes a channel value (derived from ChannelExpression), and waits until another
process can receive on the same channel. When that happens, and the channel is a synchronization
channel, a signal 'Communication has occurred' is being sent, if the channel also carries data, the
Expression value is computed and sent to the other process. For example:

proc P(chan void a, chan! int b):
 a!;
 b!21;
end

Process P takes two parameters, a synchronization channel locally called a and a outgoing channel
called b carrying integer values. In the process body, it first synchronizes over the channel stored in
a, and then sends the value 21 of the channel stored in b.

Receive statement

The receive statement receives signals or data from a channel. The statement may only be used in
Process definitions and Model definitions. It has the following syntax:

The statement takes a channel value (derived from the ChannelExpression), and waits until another
process can send on the same channel. For synchronization channels, it receives just a signal that
the communication has occurred, for channels carrying data, the data value is received and stored
in the variable indicated by Addressable. For example:

proc Q(chan void a, chan int b):
 int x;

 a?;
 b?x;
 writeln("%s", x);
end

Process Q takes a synchronization channel called a and a data channel for integer values called b as
parameters. The process first waits for a synchronization over channel a, and then waits for
receiving an integer value over channel b which is stored in local variable x.

Select statement

The Send statement and the Receive statement wait for communication over a single channel. In
some cases, it is unknown which channel will be ready first. Additionally, there may be time-
dependent internal activities that must be monitored as well. The select statement is the general
purpose solution for such cases. The statement may only be used in Process definitions and Model
definitions.

It has the following syntax:

The statement has one or more SelectCondition alternatives that are all monitored. The first
alternative is prefixed with select to denote it is a the start of a select statement, the other
alternatives each start with alt (which is an abbreviation of 'alternative').

The statement monitors all conditions simultaneously, waiting for at least one to become possible.
At that moment, one of the conditions is selected to be executed, and the select statement ends.

The syntax of a SelectCondition is:

In its simplest form, a SelectCondition is a SelectAlternative (taking Path 1). At Path 2, the condition
is eventually also an SelectAlternative, but prefixed with an unwind construct, and with an
additional end keyword at the end to terminate the unwind.

The unwind construct allows for a compact notation of a large number of alternatives that must be
monitored. Examples are provided below.

Using Path 1, a SelectAlternative can be a Send statement or a Receive statement, which may
optionally have a BooleanExpression condition prefix. Path 2 allows for a condition without a send
or receive statement.

The alternative checks the condition and monitors the channel. If the condition holds and the
channel has a communication partner, the alternative can be chosen by the select statement. (Of
course, omitting a condition skips the check, and not specifying a send or receive statement skips
monitoring of the channel.) When an alternative is chosen by the select statement, the send or
receive statement are performed (if it was present). If additional statements were given in the
alternative using Path 3, they are executed after the communication has occurred (if a send or
receive was present).

A few examples to demonstrate use of the select statement:

timer t = timer(5.2);

select
 a?
alt
 b!7:
 writeln("7 sent")
alt
 ready(t):
 writeln("done")
end

This select waits until it can receive a signal from channel a, it can send value 7 over channel b, or
until ready(t) holds (which happens 5.2 time units after starting the select, see Timers for details).
If b!7 was selected, the writeln("7 sent") is executed after the communication over channel b. If the
ready(t) alternative is chosen, the writeln("done") is executed.

A buffer can be specified with:

list int xs;
int x;

select
 a?x:
 xs = xs + [x]
alt
 not empty(xs), b!xs[0]:
 xs = xs[1:]
end

The select either receives a value through channel a, or it sends the first element of list xs over
channel b if the list is not empty (the condition must hold and the channel must be able to send an
item at the same time to select the second alternative).

After communication has been performed, the first alternative appends the newly received value x
to the list (the received value is stored in x before the assignment is executed). In the second
alternative, the assignment statement drops the first element of the list (which just got sent away
over channel b).

The unwind loop 'unwinds' alternatives, for example:

list(5) chan int cs;
int x;

select
 unwind i, c in enumerate(cs):
 c?x:
 writeln("Received %s from channel number %d", x, i)
 end
end

Here cs is a list of channels, for example list(5) chan int cs. (See List type for details about lists.)
The unwind iterates over the enumerate(cs) (see List expressions for details about enumerate),
assigning the index and the channel to local i and c variables. The SelectAlternative uses the
variables to express the actions to perform (wait for a receive, and output some text saying that a
value has been received).

The above is equivalent to (if list cs has length 5):

select
 cs[0]?x:
 writeln("Received %s from channel number %d", x, 0)
alt
 cs[1]?x:
 writeln("Received %s from channel number %d", x, 1)

...

alt
 cs[4]?x:
 writeln("Received %s from channel number %d", x, 4)

The unwind however works for any length of list cs. In addition, the unwind allows for nested loops to
unfold for example list list bool ds, or to send one of several values over one of several
channels.

2.2.7. Other statements

Finally, there are a number of other useful statements.

The Delay statement waits for the given amount of time units, the Write statement outputs text to
the screen or a file, the Close statement closes a file, the Return statement returns a value from a
function. the Exit statement ends the execution of all processes, and the Pass statement does
nothing.

Delay statement

The delay statement is useful to wait some time. The statement may only be used in Process
definitions and Model definitions. It has the following syntax:

The IntegerExpression or RealExpression is evaluated, and is the amount of time that the statement
waits. The value of the expression is computed only at the start, it is not evaluated while waiting.
Changes in its value has thus no effect. A negative value ends the statement immediately, you
cannot go back in time.

Examples:

delay 1.5 # Delay for 1.5 time units.

Write statement

The write statement is used to output text to the screen or to a file. It has the following syntax:

The format string at 2 is a literal string value (further explained at String expressions) which
defines what gets written. Its text is copied to the output, except for two types of patterns which are
replaced before being copied. Use of the writeln (write line) keyword causes an additional \n to be
written afterwards.

The first group of pattern are the back-slash patterns. They all start with the \ character, followed
by another character that defines the character written to the output. The back-slash patterns are
listed in the table below.

Pattern Replaced by

\n The new-line character (U+000A)

\t The tab character (U+0009)

\" The double-quote character (U+0022)

\\ The back-slash character (U+005C)

The second group of patterns are the percent patterns. Each percent pattern starts with a %
character. It is (normally) replaced by the (formatted) value of a corresponding expression listed
after the format string (the first expression is used as replacement for the first percent pattern, the
second expression for the second pattern, etc). How the value is formatted depends on the format
specifier, the first letter after the percent character. Between the percent character and the format
specifier may be a format definition giving control on how the value is output.

The format definition consists of five parts, each part is optional.

• A - character, denoting alignment of the value to the left. Cannot be combined with a 0, and
needs a width.

• A + character, denoting the value with always be printed with a sign, only for formatting
decimal integers, and real numbers.

• A 0 character, denoting the value will be prefixed with zeros, only for integer numbers. Cannot
be combined with -, and needs a width.

• A width as decimal number, denoting the minimal amount of space used for the value. The
value will be padded with space (or zeros if the 0 part has been specified).

• A . and a precision as decimal number, denoting the number of digits to use for the fraction,
only for real numbers.

The format definition is a single letter, the table below lists them and their function.

Definition Description

b Output boolean value.

d Output integer value as decimal number.

x, X Output integer value as hexadecimal number.

f Output real value as number with a fraction.

e, E Output real value in exponential notation.

g, G Output real value either as f or as e (E)
depending on the value

s Output value as a string (works for every
printable value)

% Output a % character

Close statement

The close statement takes a value of type file as argument (see File type for details about the file
type). It closes the given file, which means that the file is no longer available for read or write. In
case data was previously written to the file, the close statement ensures that the data ends up in the
file itself.

Note that a close of a file is global in the system, none of the processes can use the file any longer.

In Reading from a file and Writing to a file, use of the close statement is shown.

Return statement

The return statement may only be used in a Function definitions. It has the following syntax:

The statement starts with a return keyword, followed by one or more (comma-separated)
expressions that form the value to return to the caller of the function.

The value of the expressions are calculated, and combined to a single return value. The type of the
value must match with the return type of the function. Execution of the function statements stops
(even when inside a loop or in an alternative of an if statement), and the computed value is
returned to the caller of the function.

Examples:

return 4 # Return integer value 4 to the caller.

return true, 3.7 # Return value of type tuple(bool b; real r).

Exit statement

The exit statement may only be used in Process definitions and Model definitions. It has the
following syntax:

The exit statement allows for immediately stopping the current model simulation. The statement
may be used in Process definitions and Model definitions. If arguments are provided, they become
the exit value of the model simulation. Such values can be processed further in an Simulating
several scenarios, see also Experiment definitions on how to run a model in an experiment.

The type of the combined arguments must match with the exit type of the process or model that
uses the statement. If no arguments are given, the exit type must be a void type (see also Void type).

If an experiment is running, execution continues by returning from the model instantiation call.
Otherwise, the simulation as a whole is terminated.

Pass statement

The pass statement does nothing. Its purpose is to act as a place holder for a statement at a point
where there is nothing useful to do (for example to make an empty process), or to explicitly state
nothing is being done at some point:

if x == 3:
 pass
else:
 x = x + 1
end

Here, pass is used to explicitly state that nothing is done when x == 3. Such cases are often a matter
of style, usually it is possible to rewrite the code and eliminate the pass statement.

2.3. Expressions
Expressions are computations to obtain a value. The generic syntax of an expression is shown
below.

• As shown in Path 1, a name may be used in an expression. It must refer to a value that can be
used in an expression. Names are explained further at Names.

The first four entries are quite normal, function names can be used for variables with a
function type (see Function type) and process names for variables with a process type (see
Process type). The latter two are mainly useful as actual parameters of functions or processes.

• Path 2 states that you can write parentheses around an expression. Its main use is to force a
different order of applying the unary and binary operators (see Operator priorities).
Parentheses may also be used to clarify the meaning of a complicated expression.

• Path 3 gives access to the other parts of expressions. Typed expressions gives the details about
typed expressions.

2.3.1. Typed expressions

The number of operators in expressions is quite large. Also, each node has an associated type, and
the allowed operators depend heavily on the types of the sub-expressions. To make expressions
easier to access, they have been split. If possible the (result) type is leading, but in some cases (like
the ReadExpression for example) this is not feasible.

• The expressions with a boolean type are denoted by the BooleanExpression block and explained
further in Boolean expressions.

• The expressions with an integer type are denoted by the IntegerExpression block and explained
further in Integer expressions.

• The expressions with a real number type are denoted by the RealExpression block and explained
further in Real number expressions.

• The expressions with a string type are denoted by the StringExpression block and explained
further in String expressions.

• The expressions with a list type are denoted by the ListExpression block and explained further
in String expressions.

• The expressions with a set type are denoted by the SetExpression block and explained further in
Set expressions.

• The expressions with a dictionary type are denoted by the DictionaryExpression block and
explained further in Dictionary expressions.

• The expressions with a tuple type are denoted by the TupleExpression block and explained
further in Tuple expression.

• The expressions with a file handle type are denoted by the FileExpression block and explained
further in File handle expressions.

• The function to read values from an external source is shown in the ReadExpression block, and
further discussed in Read expression.

• The expressions with a timer type are denoted by the TimerExpression block and explained
further in Timer expressions.

• The expressions with a channel type are denoted by the ChannelExpression block and explained
further in Channel expressions.

• The expressions with a distribution type are denoted by the DistributionExpression block and
explained further in Distribution expressions.

• The expressions with a process type are denoted by the ProcessExpression block and explained
further in Process expressions.

• The expressions with an instance type are denoted by the InstanceExpression block and
explained further in Instance expressions.

• The expressions that convert one type to another are denoted by the CastExpression block, and
explained further in Cast expressions.

• The expressions that perform a function call are denoted by the FunctionCallExpression block,
and explained further in Function call expressions.

2.3.2. Enumeration value

Enumeration values may be used as literal value in an expression.

See Enumeration definitions for a discussion about enumeration definitions and enumeration
values.

There are two binary operators for enumeration values.

Expression Type lhs Type rhs Type result Explanation

lhs == rhs E E bool Test for equality

lhs != rhs E E bool Test for inequality

Two enumeration values from the same enumeration definition E can be compared against each
other for equality (or in-equality). Example:

enum FlagColours = {red, white, blue};

...

bool same = (red == white);

2.3.3. Boolean expressions

The literal values for the boolean data type are as follows.

The values true and false are also the only available values of the boolean data type.

The not operation is the only boolean unary operator.

Expression Type op Type result Explanation

not op bool bool op value is inverted.

The and, the or, and the equality tests are available for boolean values.

Expression Type lhs Type rhs Type result Explanation

lhs and rhs bool bool bool Both operands
hold

lhs or rhs bool bool bool At least one
operand holds

lhs == rhs bool bool bool Test for equality

lhs != rhs bool bool bool Test for inequality

2.3.4. Integer expressions

The syntax of an integer literal number is (at character level) as follows.

This diagram works at lexical level (at the level of single characters), white space
or comments are not allowed between elements in this diagram.

An integer number is either 0, or a sequence of decimal digits, starting with a non-zero digit.

There are two unary operators on integer numbers.

Expression Type op Type result Explanation

- op int int op value is negated.

+ op int int op value is copied.

With the unary - operation, the sign of the operand gets toggled. The + unary operation simply
copies its argument.

There are many binary operations for integer numbers, see the table below.

Expression Type lhs Type rhs Type result Explanation

lhs + rhs int int int Integer addition

lhs - rhs int int int Integer
subtraction

lhs * rhs int int int Integer
multiplication

lhs / rhs int int real Real division

lhs div rhs int int int Integer divide
operation

lhs mod rhs int int int Modulo operation

lhs ^ rhs int int real Power operation

lhs < rhs int int bool Test for less than

lhs <= rhs int int bool Test for less or
equal

lhs == rhs int int bool Test for equality

Expression Type lhs Type rhs Type result Explanation

lhs != rhs int int bool Test for inequality

lhs >= rhs int int bool Test for bigger or
equal

lhs > rhs int int bool Test for bigger
than

The divide operator / and the power operator ^ always gives a real result, integer division is
performed with div. The operation always rounds down, that is a div b == floor(a / b) for all integer
values a and b. The mod operation returns the remainder from the div, that is a mod b == a - b * (a div
b). The table below gives examples. For clarity, the sign of the numbers is explicitly added
everywhere.

Example Result Explanation

+7 div +4 +1 floor(+7/+4) = floor(+1.75) =
+1

+7 mod +4 +3 +7 - +4 * (+7 div +4) = +7 -
+4 * +1 = +7 - +4 = +3

+7 div -4 -2 floor(+7/-4) = floor(-1.75) =
-2

+7 mod -4 -1 +7 - -4 * (+7 div -4) = +7 -
-4 * -2 = +7 - +8 = -1

-7 div +4 -2 floor(-7/+4) = floor(-1.75) =
-2

-7 mod +4 +1 -7 - +4 * (-7 div +4) = -7 -
+4 * -2 = -7 - -8 = +1

-7 div -4 +1 floor(-7/-4) = floor(+1.75) =
+1

-7 mod -4 -3 -7 - -4 * (-7 div -4) = -7 -
-4 * +1 = -7 - -4 = -3

The Chi simulator uses 32 bit integer variables, which means that only values from -2,147,483,647 to
2,147,483,647 (with an inclusive upper bound) can be used. Using a value outside the valid range
will yield invalid results. Sometimes such values are detected and reported.

The technical minimum value for integers is -2,147,483,648, but this number
cannot be entered as literal value due to parser limitations.

2.3.5. Real number expressions

Real numbers are an important means to express values in the contiguous domain. The type of a
real number expression is a real type, see Real type for more information about the type. The
syntax of real number values is as follows.

There are two ways to construct real numbers, by writing a literal real number, or by using time
which returns the current time in the model.

The syntax of a literal real number (at character level) is as follows.

This diagram works at lexical level (at the level of single characters), white space
or comments are not allowed between elements in this diagram.

A literal real number starts with one or more digits, and then either a dot or an exponent. In the
former case, an exponent is allowed as well. Examples:

3.14
0.314e1
314E-2

A real number always has either a dot character, or an exponent notation in the number.

Many of the integer operations can also be performed on real numbers. The unary operators are
the same, except for the type of the argument.

Expression Type op Type result Explanation

- op real real op value is negated.

+ op real real op value is copied.

With the unary - operation, the sign of the operand gets toggled. The + unary operation simply
copies its argument.

The binary operators on real numbers is almost the same as the binary operators on integer
numbers. Only the div and mod operations are not here.

Expression Type lhs Type rhs Type result Explanation

lhs + rhs int,real int,real real Addition

lhs - rhs int,real int,real real Subtraction

lhs * rhs int,real int,real real Multiplication

lhs / rhs int,real int,real real Real division

lhs ^ rhs int,real int,real real Power operation

lhs < rhs int,real int,real bool Test for less than

lhs <= rhs int,real int,real bool Test for less or
equal

lhs == rhs int,real int,real bool Test for equality

lhs != rhs int,real int,real bool Test for inequality

lhs >= rhs int,real int,real bool Test for bigger or
equal

lhs > rhs int,real int,real bool Test for bigger
than

With these operations, one of the operands has to be a real number value, while the other operand
can be either an integer value or a real number value.

The standard library functions for real numbers contain a lot of math functions. They can be found
in Real number functions.

The Chi simulator uses 64-bit IEEE 754 floating point numbers to represent real number values.
Using a value outside the valid range of this format will yield invalid results. Sometimes such
values are detected and reported.

2.3.6. String expressions

Strings are sequences of characters. Their most frequent use is to construct text to output to the
screen. A string literal is defined as follows.

https://en.wikipedia.org/wiki/IEEE_floating_point

This diagram works at lexical level (at the level of single characters), white space
or comments are not allowed between elements in this diagram.

A string literal starts with a quote character ", and ends with another quote character. In between,
you may have a sequence of characters. Most characters can be written literally (eg write a a to get
an 'a' in the string). The exceptions are a backslash \, a quote ", a TAB, and a NL (newline) character.
For those characters, write a backslash, followed by \, ", t, or n respectively. (A TAB character moves
the cursor to the next multiple of 8 positions at a line, a NL moves the cursor to the start of the next
line.)

Strings have the following binary expressions.

Expression Type lhs Type rhs Type result Explanation

lhs + rhs string string string Concatenation

lhs [rhs] string int string Element access

lhs [low : high] string int, int string Slicing with step 1

lhs [low : high :
step]

string int, int, int string Slicing

lhs < rhs string string bool Test for less than

lhs <= rhs string string bool Test for less or
equal

lhs == rhs string string bool Test for equality

lhs != rhs string string bool Test for inequality

lhs >= rhs string string bool Test for bigger or
equal

lhs > rhs string string bool Test for bigger
than

The concatenation operator joins two strings ("a" + "bc" gives "abc").

The element access and slicing operators use numeric indices to denote a character in the string.
First character has index value 0, second character has index 1, and so on. Negative indices count
from the back of the string, for example index value -1 points to the last character of a string.
Unlike lists, both the element access and the slicing operators return a string. The former
constructs a string with only the indicated character, while the latter constructs a sub-string where
the first character is at index low, the second character at index low + step, and so on, until index
value high is reached or crossed. That final character is not included in the result (that it, the high
boundary is excluded from the result). If low is omitted, it is 0, if high is omitted, it is the length of
the string (size(lhs)). If step is omitted, it is 1. A few examples:

string s = "abcdef";

s[4] # results in "e"
s[2:4] # results in "cd"
s[1::2] # results in "bdf"
s[-1:0:-2] # results in "fdb"
s[-1:-7:-1] # results in "fedcba"
s[:4] # results in "abcd"
s[-1:] # results in "f" (from the last character to the end)

In the comparison operations, strings use lexicographical order.

There are also a few standard library functions on strings, see String functions for details.

Note that length of the string is not the same as the number of characters needed for writing the
string literal, as shown in the following example.

size("a") # results in 1, string is 1 character long (namely 'a').
size("\n") # results in 1, string contains one NL character.

2.3.7. List expressions

Lists are very versatile data structures, the Chi language has a large number of operations and
functions for them.

The most elementary list expression is a literal list. It has the following syntax.

The first line shows the syntax of an empty list. The Type block denotes the element type of the list,
for example <int>[] is an empty list of integer values.

The second line shows how to write a non-empty literal list value. It is a comma-separated sequence
of expressions surrounded by square brackets. The type of all expressions must be the same, and
this is also the element type of the list.

Some examples:

list int xs;
list int ys = <int>[];
list int zs = [1, 4, 28];

Variable ys is assigned an empty list with integer element type. Since an empty list is the default
value of a variable, xs has the same value. Variable zs is initialized with a list holding three
elements.

Two list values are equal when they have the same number of element values, and each value is
pair-wise equal.

Lists have no unary operators, the binary operators of lists are shown below.

Expression Type lhs Type rhs Type result Explanation

lhs [rhs] list T int T Element access

lhs [low : high] list T int, int list T Slicing with step 1

lhs [low : high :
step]

list T int, int, int list T Slicing

lhs + rhs list T list T list T Concatenation

lhs - rhs list T list T list T List subtraction

lhs == rhs list T list T bool Test for equality

lhs != rhs list T list T bool Test for inequality

lhs in rhs T list T bool Element test

The element access operator 'lhs [rhs] ' indexes with zero-based positions, for example xs[0]
retrieves the first element value, xs[1] retrieves the second value, etc. Negative indices count from
the back of the list, xs[-1] retrieves the last element of the list (that is, xs[size(xs)-1]), xs[-2] gets
the second to last element, ect. It is not allowed to index positions that do not exist. Examples:

list int xs = [4, 7, 18];
int x;

x = xs[0]; # assigns 4
x = xs[2]; # assigns 18
x = xs[-1]; # assigns 18
x = xs[-2]; # assigns 7

xs[2] # ERROR, OUT OF BOUNDS
xs[-4] # ERROR, OUT OF BOUNDS

The slicing operator 'lhs [low : high] ' extracts (sub-)lists from the lhs source. The low and high
index expressions may be omitted (and default to 0 respectively size(lhs) in that case). As with
element access, negative indices count from the back of the list. The result is the list of values
starting at index low, and up to but not including the index high. If the low value is higher or equal
to high, the resulting list is empty. For example:

list int xs = [4, 7, 18];
list int ys;

ys = xs[0:2]; # assigns [4, 7]
ys = xs[:2]; # == xs[0:2]
ys = xs[1:]; # == xs[1:3], assigns [7, 18]
ys = xs[:]; # == xs[0:3] == xs

ys = xs[1:2]; # assigns [7] (note, it is a list!)
ys = xs[0:0]; # assigns <int>[]
ys = xs[2:1]; # assigns <int>[], lower bound too high
ys = xs[0:-1]; # == xs[0:2]

The slicing operator with the step expression (that is, the expression with the form 'lhs [low :
high : step] ') can also skip elements (with step values other than 1) and traverse lists from back to
front (with negative step values). Omitting the step expression or using 0 as its value, uses the step
value 1. This extended form does not count from the back of the list for negative indices, since the
high value may need to be negative with a negative step size.

The first element of the result is at 'lhs [low]'. The second element is at 'lhs [low + step]', the third
element at 'lhs [low + 2 * step]' and so on. For a positive step value, the index of the last element is
the highest value less than high, for a negative step value, the last element is the smallest index
bigger than high (that is, boundary high is excluded from the result). The (sub-)list is empty when
the first value ('lhs [low]') already violates the conditions of the high boundary.

Examples:

list int xs = [4, 7, 18];
list int ys;

ys = xs[::2]; # == xs[0:3:2], assigns [4, 18]
ys = xs[::-1]; # == xs[2:-1:-1], assigns [18, 7, 4]

With the latter example, note that the -1 end value in xs[2:-1:-1] really means index -1, it is not
rewritten!

The concatenation operator + 'glues' two lists together by constructing a new list, copying the value
of the lhs list, and appending the values of the rhs:

[1, 2] + [3, 4] == [1, 2, 3, 4]
<int>[] + [1] == [1]
[5] + <int>[] == [5]

The subtraction operator - subtracts two lists. It copies the lhs list, and each element in the rhs list
is searched in the copy, and the left-most equal value is deleted. Searched values that do not exist
are silently ignored. The result of the operation has the same type as the lhs list. Some examples:

[1, 2, 4, 2] - [4] # results in [1, 2, 2], 4 is removed.
[1, 2, 4, 2] - [6] # results in [1, 2, 4 2], 6 does not exist.
[1, 2, 4, 2] - [1, 4] # results in [2, 2], 1 and 4 are removed.
[1, 2, 4, 2] - [2] # results in [1, 4, 2], first 2 is removed.
[1, 2, 4, 2] - [2, 2] # results in [1, 4].
[1, 2, 4, 2] - [2, 2, 2] # results in [1, 4], no match for the 3rd '2'.

The element test operator in tests whether the value lhs exists in list rhs. This operation is
expensive to compute, if you need this operation frequently, consider using a set instead. Some
examples of the element test operation:

1 in [1, 2, 3] == true
4 in [1, 2, 3] == false # there is no 4 in [1, 2, 3]
[1] in [[2], [1]] == true
[2, 1] in [[1, 2]] == false # [2, 1] != [1, 2]
<int>[] in <list int>[] == false # empty list contains no values.

There are also standard library functions for lists, see List functions for details.

2.3.8. Set expressions

Literal sets are written as follows.

The first line shows the syntax of an empty set. The Type block denotes the element type of the set,
for example <int>{} is an empty set of integer values.

The second line shows how to write a non-empty literal set value. It is a comma-separated sequence
of expressions surrounded by curly brackets. The type of all expressions must be the same, and this
is also the element type of the set. The order of the values in the literal is not relevant, and duplicate
values are silently discarded. For example:

set real xr = {1.0, 2.5, -31.28, 1.0}

assigns the set {-31.28, 1.0, 2.5} (any permutation of the values is allowed). By convention,
elements are written in increasing order in this document.

Two set values are equal when they have the same number of element values contained, and each
value of one set is also in the other set. The order of the elements in a set is not relevant, any
permutation is equivalent.

Like lists, sets have no unary operators. They do have binary operators though. The operators are
as follows.

Expression Type lhs Type rhs Type result Explanation

lhs + rhs set T set T set T Set union

lhs - rhs set T set T set T Set difference

lhs * rhs set T set T set T Set intersection

lhs == rhs set T set T bool Test for equality

lhs != rhs set T set T bool Test for inequality

lhs in rhs T set T bool Element test

lhs sub rhs set T set T bool Sub-set test

The union of two sets means that the lhs elements and the rhs elements are merged into one set
(and duplicates are silently discarded). Set difference makes a copy of the lhs set, and removes all
elements that are also in the rhs operand. The result of the operation has the same type as the lhs
set. Set intersection works the other way around, its result is a set with elements that exist both in
lhs and in rhs. Some examples:

set int xr = {1, 3, 7};
set int yr;

yr = xr + {1, 2}; # assigns {1, 2, 3, 7}
yr = xs - {1, 2}; # assigns {3, 7}
yr = xs * {1, 2}; # assigns {1}

The element test of sets tests whether the value lhs is an element in the set rhs. This operation is
very fast. The sub-set test does the same for every element value in the lhs operand. It returns true
is every value of the left set is also in the right set. A few examples:

1 in {1, 3, 7} == true
9 in {1, 3, 7} == false

{1} sub {1, 3, 7} == true
{9} sub {1, 3, 7} == false
{1, 9} sub {1, 3, 7} == false # All elements must be present.
{1, 3, 7} sub {1, 3, 7} == true # All sets are a sub-set of themselves.

There are also standard library functions for sets, see Set functions for details.

2.3.9. Dictionary expressions

Literal dictionaries are written using the syntax shown below.

An empty dictionary needs the key and value type prefix, for example <string:int>{} is an empty
dictionary with strings as key, and integer numbers as value. Literal values of such a dictionary are:

dict(string, int) d; # Initialized with the empty dictionary.

d = {"one": 1, "twenty-three": 23};

The key-value pairs can be put in any order. Also, the key value must be unique. Two dictionaries
are equal when they have the same number of keys, each key in one dictionary is also in the other
dictionary, and the value associated with each key also match pair-wise.

The binary operators of dictionaries are as follows.

Expression Type lhs Type rhs Type result Explanation

lhs [rhs] dict(K:V) K V Element access

lhs + rhs dict(K:V) dict(K:V) dict(K:V) Update

lhs - rhs dict(K:V) dict(K:V) dict(K:V) Subtraction

lhs - rhs dict(K:V) list K dict(K:V) Subtraction

lhs - rhs dict(K:V) set K dict(K:V) Subtraction

lhs == rhs dict(K:V) dict(K:V) bool Test for equality

lhs != rhs dict(K:V) dict(K:V) bool Test for inequality

lhs in rhs K dict(K:V) bool Element test

lhs sub rhs dict(K:V) dict(K:V) bool Sub-set test

The element access operator accesses the value of a key. Querying the value of a non-existing key
value is not allowed, however when used at the left side of an assignment, it acts as an adding
operation. A few examples:

dict(int:bool) d = {1:true, 2:false};
bool b;

b = d[1]; # assigns 'true' (the value of key 1).
d[1] = false; # updates the value of key '1' to 'false'.
d[8] = true; # adds pair 8:true to the dictionary.

The + operation on dictionaries is an update operation. It copies the lhs dictionary, and assigns
each key-value pair of the rhs dictionary to the copy, overwriting values copied from the lhs. For
example:

dict(int:bool) d = {1:true, 2:false};

d + {1:false} # result is {1:false, 2:false}
d + {3:false} # result is {1:true, 2:false, 3:false}

The subtraction operator only takes keys into consideration, that is, it makes a copy of the lhs
dictionary, and removes key-value pairs where the key is also in the rhs argument (for subtraction
of lists and sets, the elements are used, instead of the keys):

dict(int:bool) d = {1:true, 2:false};

d - {1:false} # results in {2:false}, value of '1' is not relevant
d - [1] # results in {2:false}
d - {1} # results in {2:false}

As with list subtraction and set difference, the type of the result is the same as the type of the lhs
dictionary.

The element test tests for presence of a key value, and the sub-set operation tests whether all keys
of the lhs value are also in the rhs value. Examples:

dict(int:bool) d = {1:true, 2:false};
bool b;

b = 2 in d; # assigns 'true', 2 is a key in d.
b = 5 in d; # assigns 'false', 5 is not a key in d.

{1:false} sub d # results in 'true', all keys are in d.

There are also standard library functions for dictionaries, see Dictionary functions for details.

2.3.10. Tuple expression

A tuple expression is a value of a tuple type (explained in Tuple type). A tuple expression literal
value is written as shown below.

A literal tuple is a comma separated sequence of expressions of length two or longer, surrounded
by a pair of parentheses. The number of expressions and the type of each expression decide the
tuple type. For example:

type tup = tuple(bool b; real r);

tup t = (true, 3.48);

The type named tup is a tuple type with a boolean field and a real field. The expression (true, 3.48)
constructs the same tuple type, thus it can be assigned to variable t. Names of the fields are not
relevant in this matching, for example variable declaration (and initialization) tuple(bool z; real
w) u = t is allowed, since the types of the fields match in a pair-wise manner.

A field of a tuple can be accessed both for read and for assignment by the name of the field:

bool c;

c = t.b; # Read the 'b' field.
t.b = false; # Assign a new value to the 'b' field.

In the latter case, only the assigned field changes, all other fields keep the same value.

Tuples can also be packed and unpacked. Packing is assignment to all fields, while unpacking is
reading of all fields into separate variables:

real q;

t = false, 3.8; # Packing of values into a tuple.

c, q = t; # Unpacking into separate variables.

Packing is very closely related to literal tuples above. The difference is that packing can be done
only like above in an assignment to a tuple value, while a literal tuple works everywhere.

Unpacking is very useful when the right side (t in the example) is more complex, for example, the
return value of a function call, as in c, q = f();. In such cases you don’t need to construct an
intermediate tuple variable.

Packing and unpacking is also used in multi-assignment statements:

a, b = 3, 4; # Assign 3 to 'a', and 4 to 'b'.

a, b = b, a; # Swap values of 'a' and 'b'.

The latter works due to the intermediate tuple that is created as part in the assignment.

2.3.11. File handle expressions

Variables of type file are created using a variable declaration with a file type, see File type for
details about the type.

You cannot write a literal value for a file type (nor can you read or write values of this type), file
values are created by means of the open function in the standard library, see File functions.

You can test whether two files are the same with the binary == and != operators.

Expression Type lhs Type rhs Type result Explanation

lhs == rhs file file bool Test for equality

lhs != rhs file file bool Test for inequality

Values of type file are used for writing output to a file using the Write statement, or for reading
values from a file using the read function explained in Read expression. After use, a file should be
closed with a close statement explained at Close statement.

2.3.12. Read expression

The read expression reads a value of a given type from the keyboard or from a file. It has two
forms:

T read(T)

Read a value of type T from the keyboard.

T read(file f, T)

Read a value of type T from the file opened for reading by file f (see the open function in File
functions for details about opening files).

You can read values from types that contain data used for calculation, that is values of types bool,
int, real, string, list T, set T, and dict(K:V). Types T, K, and V must also be readable types of data
(that is, get chosen from the above list of types).

Reading a value takes a text (with the same syntax as Chi literal values of the same type), and
converts it into a value that can be manipulated in the Chi model. Values read from the text have to
be constant, for example the input time cannot be interpreted as real number with the same value
as the current simulation time.

2.3.13. Timer expressions

Timers are clocks that count down to 0. They are used to track the amount of time you still have to
wait. Timers can be stored in data of type timer (see Timer type for details of the type).

The standard library function ready exists to test whether a timer has expired. See Timer functions
for details.

2.3.14. Channel expressions

Channels are used to connect processes with each other. See the Channel type for details.

Usually, channels are created by variable declarations, as in:

chan void s;
chan int c, d;

This creates three channels, one synchronization channel s, and two channels (c, and d)

communicating integers.

There is also a channel function to make new channels:

chan T channel(T)

Construct a new channel communicating data type T. When T is void, a synchronization channel
is created instead.

The only binary expressions on channels are equality comparison operations.

Expression Type lhs Type rhs Type result Explanation

lhs == rhs chan T chan T bool Test for equality

lhs != rhs chan T chan T bool Test for inequality

where T can be either a normal type, or void. There has to be an overlap between the channel
directions (that is, you cannot compare a receive-only channel with a send-only channel).

2.3.15. Distribution expressions

A distribution represents a stochastic distribution for drawing random numbers. It use a pseudo-
random number generator. See Modeling stochastic behavior for a discussion how random
numbers are used.

Variables of type distribution (see Distribution type) are initialized by using a distribution function
from the standard library, see Distributions for an overview.

There is only one operator for variables with a distribution type, as shown below.

Expression Type op Type result Explanation

sample op dist bool bool Sample op distribution

sample op dist int int Sample op distribution

sample op dist real real Sample op distribution

The sample operator draws a random number from a distribution. For example rolling a dice:

model Dice():
 dist int d = uniform(1, 7);

 # Roll the dice 5 times
 for i in range(5):
 writeln("Rolled %d", sample d);
 end
end

2.3.16. Process expressions

A process expression refers to a process definition. It can be used to parameterize the process that
is being instantiated, by passing such a value to a run or start statement. (See Run and start
statements for details on how to create a new process.) An example:

proc A(int x):
 writeln("A(%d)", x);
end

proc B(int x):
 writeln("B(%d)", x);
end

proc P(proc (int) ab):
 run ab(3);
end

model M():
 run P(A); # Pass 'proc A' into P.
end

Formal parameter ab of process P is a process variable that refers to a process taking an integer
parameter. The given process definition is instantiated. Since in the model definition, A is given to
process P, the output of the above model is A(3).

2.3.17. Instance expressions

Process instances represent running processes in the model. Their use is to store a reference to
such a running process, to allow testing for finishing.

An instance variable is assigned during a start statement. (See Run and start statements for details
on how to start a new process.)

The instance variable is used to test for termination of the instantiated process, or to wait for it:

proc Wait():
 delay 4.52;
end

model M():
 inst w;

 start w = Wait();

 delay 1.2;
 writeln("is Wait finished? %b", finished(w));

 # Wait until the process has finished.
 finish w;
end

Wait is a process that waits a while before terminating. In the start statement, instance variable w is
set up to refer to instantiated process Wait. After assignment, you can use the variable for testing
whether the process has terminated. In the example, the test result is written to the screen, but this
could also be used as a guard in a select statement (See Select statement for details).

The other thing that you can do is to wait for termination of the process by means of the finish
statement, see also Finish statement.

2.3.18. Matrix expression

The syntax of a matrix literal value is as follows.

The literal starts with a [symbol, and ends with a] symbol. In between it has at least two comma-
separated lists of real number values, separated with a ; symbol.

Each comma-separated list of real number values is a row of the matrix. The number of columns of
each row is the same at each row, which means the number of real number values must be the
same with each list. As an example:

matrix(2, 3) m = [1.0, 2.0, 3.0;
 4.0, 5.0, 6.0]

m is a matrix with two rows and three columns. A comma separates two columns from each other, a
semicolon separates two rows.

The syntax demands at least one semicolon in a literal matrix value, which means you cannot write
a matrix literal with a single row directly. Instead, write a cast expression that converts a list of real
numbers to a matrix with a single row. See Cast expressions for an explanation of cast expressions.

2.3.19. Cast expressions

A cast expression converts a value from one type to another. The syntax of a cast expression is as
follows.

You write the result type, followed by an expression between parentheses. The value of the
expression is converted to the given type. For example:

real v = 3.81;
timer t;

t = timer(v); # Convert from real to timer (third entry in the table)

The conversion from a list to a matrix (the first entry in the table) is a special case in the sense that
you also need to specify the size of the resulting matrix, as in:

list real xs = [1, 2, 3];

writeln("matrix with one row and three columns: %s", matrix(1, 3, xs));

The expected number of rows and columns given in the first two arguments must be constant.
When the conversion is performed, the length of the given list must be the same as the number of
columns stated in the second argument.

The number of available conversions is quite limited, below is a table that lists them.

Value type Result type Remarks

list matrix Conversion of a list to a matrix
with one row

list set Construct a set from a list

real timer Setting up a timer

timer real Reading the current value of a
timer

string bool Parsing a boolean value from a
string

string int Parsing an integer number
from a string

string real Parsing a real number from a
string

bool string Converting a boolean to a string
representation

int string Converting an integer to a
string representation

real string Converting a real number to a
string representation

int real Widening an integer number to
a real number

The first entry exists for creating matrices with one row (which you cannot write syntactically). The
second entry constructs a set from a list of values. The element type of the list and the resulting set
are the same.

The pair of conversions between timer type and real number type is for setting and reading timers,
see Timers for their use.

The conversions from string to boolean or numeric allows parsing of a string. The other way
around is also possible, although this is usually done as part of a write statement (see Write
statement for details).

The final entry is for widening an integer to a real number. The other way around (from a real
number to an integer number) does not exist as cast, but there are stdlib functions ceil, floor, and
round available instead (explained in Real number functions).

2.3.20. Function call expressions

A function call starts a function to compute its result value from the input parameters. The syntax is
as follows.

The Expression before the open parenthesis represents the function to call. Often this is a simple
name like size (the name of one of the standard library functions), but you can have more
complicated expressions.

The sequence of expressions inside the parentheses denote the values of the input parameters of
the functions. Their type has to match with the type stated in the formal parameter at the
corresponding position.

The result of the function call is a value with the same type as stated in the return type of the
function definition.

2.3.21. Operator priorities

Operator priorities aim to reduce the number of parentheses needed in expressions. They do this
by make choices in the order of applying operators on their arguments. For example, 1 + 2 * 3 can
be interpreted as (1 + 2) * 3 (if the addition operation is applied first), or as 1 + (2 * 3) (if the
multiplication operation is performed first).

In the following table, the order of applying operators in the Chi language is defined.

Priority Operators

1 (unary) sample

2 unary +, unary -

3 ^

4 *, /, div, mod

5 +, -

6 <, <=, ==, !=, >=, >, in, sub

7 (unary) not

8 and

9 or

Operators with a smaller priority number get applied before operators with a higher priority
number. Operators with the same priority get applied from left to right.

2.4. Standard library functions
The Chi language has many general purpose functions available. They are organized by type and

kind of use.

• Integer functions

• Real number functions

• String functions

• List functions

• Set functions

• Dictionary functions

• Distributions

• Timer functions

• File functions

• Process instance functions

2.4.1. Integer functions

The following standard library functions on integers exist:

• int abs(int val)

Return the absolute value of val.

• int sign(int val)

Return -1 if val less than zero, 1 if val more than zero, and 0 otherwise.

• int max(int a, b, ...)

Return the biggest value of the parameters.

• int min(int a, b, ...)

Return the smallest value of the parameters.

2.4.2. Real number functions

The following standard library functions on real numbers exist:

• real abs(real val)

Return the absolute value of val.

• int sign(real val)

Return -1 if val less than zero, 1 if val more than zero, and 0 otherwise.

• real max(real a, b, ...)

Return the biggest value of the parameters. Integer parameters are silently promoted to real.

• real min(real a, b, ...)

Return the smallest value of the parameters. Integer parameters are silently promoted to real.

Conversion from real number to integer can be performed in three different ways.

• int ceil(real val)

Return smallest integer bigger or equal to val.

• int floor(real val)

Return biggest integer less or equal to val.

• int round(real val)

Round to nearest integer value (up if distance is 0.5).

The following power and logarithmic functions exist.

• real sqrt(real val)

Return the square root of val (argument must be non-negative).

• real cbrt(real val)

Return the cube root of val (val^(1/3)).

• real exp(real x)

Compute e^x.

• real ln(real x)

Compute the natural logarithm of x.

• real log(real x)

Compute the base-10 logarithm of x.

Finally, there are trigonometric functions available.

• real cos(real a)

Cosine function of angle a (in radians).

• real sin(real angle)

Sine function of angle a (in radians).

• real tan(real angle)

Tangent function of angle a (in radians).

• real acos(real val)

Arc cosine function of value val.

• real asin(real val)

Arc sine function of value val.

• real atan(real val)

Arc tangent function of value val.

• real cosh(real val)

Hyperbolic cosine function of value val.

• real sinh(real val)

Hyperbolic sine function of value val.

• real tanh(real val)

Hyperbolic tangent function of value val.

• real acosh(real val)

Inverse hyperbolic cosine function of value val.

• real asinh(real val)

Inverse hyperbolic sine function of value val.

• real atanh(real val)

Inverse hyperbolic tangent function of value val.

2.4.3. String functions

The following string functions exist in the standard library.

• int size(string s)

Get the number of characters in string s.

• string max(string a, b, ...)

Return the biggest string of the parameters.

• string min(string a, b, ...)

Return the smallest string of the parameters.

2.4.4. List functions

Getting an element out of list can be done in two ways.

• tuple(T value, list T ys) pop(list T xs)

Get the first element of non-empty list xs (with arbitrary element type T), and return a tuple
with the first element and the list without the first element.

• list T del(list T xs, int index)

Remove element xs[index] from list xs (with arbitrary type T). The index position must exist in
the list. Returns a list without the removed element.

For getting information about the number of elements in a list, the following functions are
available.

• bool empty(list T xs)

Is list xs empty (for any element type T)? Returns true when xs contains no elements, and false
when it has at least one element.

• int size(list T xs)

Get the number of elements in list xs (for any element type T).

List functions mainly useful for using with a for statement (explained in For loop statement) follow
next.

• list tuple(int index, T value) enumerate(list T xs)

Construct a copy of the list xs with arbitrary element type T, with each element replaced by a
tuple containing the index of the element as well as the element itself. For example,
enumerate(["a", "b"]) results in the list [(0, "a"), (1, "b")].

• list int range(int end)

Construct a list with integer values running from 0 to (but not including) end. For example
range(3) produces list [0, 1, 2].

• list int range(int start, end)

Construct a list with integer values running from start to (but not including) end. For example,
range(3, 7) produces list [3, 4, 5, 6].

• list int range(int start, end, step)

Construct a list with integer values running from start to (but not including) end, while
incrementing the value with step size step. For example range(3, 8, 2) produces list [3, 5,
7]. Negative step sizes are also allowed to construct lists with decrementing values, but start
has to be larger than end in that case.

For occasionally getting the biggest or smallest element of a list, the min and max functions are
available. These functions take a lot of time, if smallest or biggest values are needed often, it may be
better to use a sorted list.

• T min(list T xs)

Return the smallest element value of type T (T must be type int, real, or string) from non-empty
list xs.

• T max(list T xs)

Return the biggest element value of type T (T must be type int, real, or string) from non-empty
list xs.

• list T sort(list T xs, func bool pred(T a, b))

Sort list xs such that the predicate function pred holds for every pair of elements in the list, and
return the sorted list.

The predicate function pred must implement a total ordering on the values. See also the sorted
lists discussion in the tutorial.

• list T insert(list T xs, T x, func bool pred(T a, b))

Given an already sorted list xs with respect to predicate function pred (with arbitrary element
type T), insert element value x into the list such that the predicate function pred again holds for
every pair of elements in the list. Return the list with the inserted element.

The predicate function pred must implement a total ordering on the values. See also the sorted
lists discussion in the tutorial.

2.4.5. Set functions

Similar to lists, there are two functions for getting an element from a set.

• tuple(T val, set T yr) pop(set T xr)

Get an element of non-empty set xr (with arbitrary element type T), and return a tuple with the
retrieved element and the set without the retrieved element. Note that the order of elements in
a set has no meaning, and may change at any moment.

• list tuple(int index, T val) enumerate(set T xr)

Construct a list of tuples with position index and element value val from the set xr with
arbitrary element type T. Note that the index has no meaning in the set.

Removing a single element from a set can be done with the function below.

• set T del(set T xr, T value)

Remove from set xr (with arbitrary element type T) element value if it exists in the set. Returns a
set without the (possibly) removed element.

For getting information about the number of elements in a set, the following functions are
available.

• bool empty(set T xr)

Is set xr empty (for any element type T)? Returns true when xr contains no elements, and false
when it has at least one element.

• int size(set T xr)

Get the number of elements in set xr (for any element type T).

For occasionally getting the biggest or smallest element of a set, the min and max functions are
available. These functions take a lot of time, if smallest or biggest values are needed often, it may be
better to make a sorted list.

• T min(set T xr)

Return the smallest element value of type T (T must be type int, real, or string) from non-empty
set xr.

• T max(set T xr)

Return the biggest element value of type T (T must be type int, real, or string) from non-empty
set xr.

2.4.6. Dictionary functions

Getting a value or a sequence of values from a dictionary can be done with the following functions.

• tuple(K key, V val, dict(K:V) e) pop(dict(K:V) d)

Get a key-value pair from non-empty dictionary d (with arbitrary key type K and arbitrary value
type V), and return a tuple with the retrieved key, the retrieved value, and the dictionary
without the retrieved element.

• list tuple(int index, K key, V val) enumerate(dict(K:V) d)

Construct a list of tuples with position index, key key and value val from dictionary d (with
arbitrary key type K and arbitrary value type V). Note that the index has no meaning in the
dictionary. In combination with a for statement (explained in For loop statement), it is also
possible to iterate over the dictionary directly.

• list K dictkeys(dict(K:V) d)

Return the keys of dictionary d (with any key type K and value type V) as a list with element type
K. Since a dictionary has no order, the order of the elements in the resulting list is also
undefined.

• list V dictvalues(dict(K:V) d)

Return the values of dictionary d (with any key type K and value type V) as a list with element
type V. Since a dictionary has no order, the order of the elements in the resulting list is also
undefined.

Removing a single element from a dictionary can be done with the function below.

• dict(K:V) del(dict(K:V) d, K key)

Remove element key from dictionary d (with arbitrary element key type K and arbitrary value
type V) if it exists in the dictionary. Returns a dictionary without the (possibly) removed
element.

The number of keys in a dictionary can be queried with the following functions.

• bool empty(dict(K:V) d)

Is dictionary d empty? (with any key type K and value type V) Returns true when d contains no
elements, and false when it has at least one key element.

• int size(dict(K:V) d)

Get the number of key elements in dictionary d (with any key type K and value type V).

For occasionally getting the biggest or smallest key value of a dictionary, the min and max functions
are available. These functions take a lot of time, if smallest or biggest keys are needed often, it may
be better to use a sorted list.

• K min(dict(K:V) d)

Return the smallest key of type K (K must be type int, real, or string) from non-empty dictionary
d.

• K max(dict(K:V) d)

Return the biggest key of type K (K must be type int, real, or string) from non-empty dictionary
d.

2.4.7. Timer functions

• bool ready(timer t)

Return whether timer t has expired (or was never set). Returns true if the timer has reached 0
or was never set, and false if it is still running.

2.4.8. File functions

• bool eof(file handle)

For files that are read, this function tests whether the end of the file (EOF) has been reached.
That is, it tests whether you have read the last value in the file.

If the call returns true, there are no more values to read. If it returns false, another value is still
available. For an example of how to use eof and eol, see Advanced reading from a file.

• bool eol(file handle)

For files that are read, this function tests whether the end of a line (EOL) has been reached. That
is, it tests whether you have read the last value at the current line.

If the call returns true, there are no more values to read at this line. If it returns false, another
value can be read. For an example of how to use eof and eol, see Advanced reading from a file.

Note that 'the same line' is applied only to the leading white space. It does not say anything
about the number lines that a value itself uses. For example, you could spread a list or set with
numbers over multiple lines.

• int newlines(file handle)

For files that are read, this function returns how many lines down the next value can be found.
It returns a negative number if the end of the file has been reached.

For example, executing:

int i;
file f = open("data.txt", "r");

i = read(f, int);
writeln("read %d, eol count is %d", i, newlines(f));
i = read(f, int);
writeln("read %d, eol count is %d", i, newlines(f));
i = read(f, int);
writeln("read %d, eol count is %d", i, newlines(f));
close(f);

where "data.txt" contains:

123 345
789

produces:

read 123, eol count is 0
read 345, eol count is 1
read 789, eol count is -1

After reading 123, the next integer is at the same line, which is 0 lines down. After reading 345,
the next value is at the next line, which is 1 line down. After reading the final value, a negative
line count is returned to indicate lack of a next value.

Note that 'number of lines down' is applied only to the leading white space. It does not say
anything about the number lines that a value itself uses, a set of list could use several lines.

• file open(string filename, string mode)

Open the file with name filename using access mode mode. When the access mode is "r", the file
should exist and is opened for reading. When the access mode is "w", the file is either created or
its previous contents is erased. There is no way to append output to an existing file.

Notice that filename is a normal Chi string, which means that the \ character needs to be
escaped to \\. (That is, use a string like "mydir\\myfile.txt" to open the file with the name
myfile.txt in directory (map) mydir.

Alternatively, you may want to use the forward slash / instead as path component separator.

2.4.9. Process instance functions

• bool finished(inst p)

Return whether the process stored by process instance p has finished. Returns true when the
process has finished, and false if it has not ended yet.

2.5. Distributions
The Chi language has three kinds of distributions:

• Constant distributions, distributions returning always the same value

• Discrete distributions, distributions returning a boolean or integer value

• Continuous distributions, distributions returning a real number value

The constant distributions are used during creation of the Chi program. Before adding stochastic
behavior, you want to make sure the program itself is correct. It is much easier to verify correctness
without stochastic behavior, but if you have to change the program again after the verification, you
may introduce new errors in the process.

The constant distributions solve this by allowing you to program with stochastic sampling in the
code, but it is not doing anything (since you get the same predictable value on each sample
operation). After verifying correctness of the program, you only need to modify the distributions
that you use to get proper stochastic behavior.

2.5.1. Constant distributions

The constant distributions have very predictable samples, which makes them ideal for testing
functioning of the program before adding stochastic behavior.

• dist bool constant(bool b)

Distribution always returning b.

Range b

Mean b

Variance -

• dist int constant(int i)

Distribution always returning i.

Range i

Mean i

Variance -

• dist real constant(real r)

Distribution always returning r.

Range r

Mean r

Variance -

2.5.2. Discrete distributions

The discrete distributions return integer or boolean sample values.

• dist bool bernoulli(real p)

Outcome of an experiment with chance p (0 <= p <= 1).

0

0.2

0.4

0.6

0.8

1

false true

be
rn

ou
lli

(r
ea

l p
)

x

bernoulli(0.69)

Range {false, true}

Mean p (where false is interpreted as 0, and true is interpreted as 1)

Variance 1 - p (where false is interpreted as 0, and true is interpreted as 1)

See also Bernoulli(p), [Law (2007)], page 302

• dist int binomial(int n, real p)

Number of successes when performing n experiments (n > 0) with chance p (0 <= p <= 1).

Range {0, 1, ..., n}

Mean n * p

Variance n * p * (1 - p)

See also bin(n, p), [Law (2007)], page 304

• dist int geometric(real p)

Geometric distribution, number of failures before success for an experiment with chance p (0 <
p <= 1).

Range {0, 1, ...}

Mean (1 - p) / p

Variance (1 - p) / p^2

See also geom(p), [Law (2007)], page 305

• dist int poisson(real lambda)

Poisson distribution.

0

0.05

0.1

0.15

0.2

0 2 4 6 8 10 12 14 16 18 20

poisson(4.0)

poisson(10.0)

po
is

so
n(

re
al

 la
m

bd
a)

x

Range {0, 1, ...}

Mean lambda

Variance lambda

See also Poison(lambda), [Law (2007)], page 308

• dist int uniform(int a, b)

Integer uniform distribution from a to b excluding the upper bound.

0

0.05

0.1

0.15

0.2

0.25

1 2 3 4 5 6

un
if

or
m

(i
nt

 a
, b

)

x

uniform(1, 6)

Range {a, a+1, ..., b-1}

Mean (a + b - 1) / 2

Variance ((b - a)^2 - 1) / 12

See also DU(a, b - 1), [Law (2007)], page 303

2.5.3. Continuous distributions

• dist real beta(real p, q)

Beta distribution with shape parameters p and q, with p > 0 and q > 0.

0

0.5

1

1.5

2

2.5

3

3.5

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

be
ta

(r
ea

l p
, q

)

x

beta(0.8, 0.5)

beta(1.5, 3.0)

beta(2.0, 2.0)

beta(5.0, 1.5)

Range [0, 1]

Mean p / (p + q)

Variance p * q / ((p + q)^2 * (p + q + 1))

See also Beta(p, q), [Law (2007)], page 291

• dist real erlang(double m, int k)

Erlang distribution with k a positive integer and m > 0. Equivalent to gamma(k, m / k).

Mean m

Variance m * m / k

See also ERL(m, k), [Banks (1998)], page 153

• dist real exponential(real m)

(Negative) exponential distribution with mean m, with m > 0.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0 1 2 3 4 5

ex
po

ne
nt

ia
l(

re
al

 m
)

x

exponential(0.5)

exponential(1.0)

exponential(1.5)

Range [0, infinite)

Mean m

Variance m * m

See also expo(m), [Law (2007)], page 283

• dist real gamma(real a, b)

Gamma distribution, with shape parameter a > 0 and scale parameter b > 0.

0

0.1

0.2

0.3

0.4

0.5

0 2 4 6 8 10 12 14 16 18 20

ga
m

m
a(

re
al

 a
, b

)

x

gamma(1.0, 2.0)

gamma(3.0, 2.0)

gamma(6.0, 2.0)

gamma(6.0, 0.5)

Mean a * b

Variance a * b^2

• dist real lognormal(real m, v2)

Log-normal distribution.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

0 0.5 1 1.5 2 2.5 3 3.5 4

lo
gn

or
m

al
(r

ea
l m

, v
2)

x

lognormal(0.0, 1.0)

lognormal(0.0, 0.5)

lognormal(0.0, 0.25)

Range [0, infinite)

Mean exp(m + v2/2)

Variance exp(2*m + v2) * (exp(v2) - 1)

See also N(m, v2), [Law (2007)], page 290

• dist real normal(real m, v2)

Normal distribution.

0

0.1

0.2

0.3

0.4

0.5

0 2 4 6 8 10

no
rm

al
(r

ea
l m

, v
2)

x

normal(3.0, 1.0)

normal(5.0, 2.0)

Range (-infinite, infinite)

Mean m

Variance v2

See also N(m, v2), [Law (2007)], page 288

• dist real random()

Random number generator.

Range [0, 1)

Mean 0.5

Variance 1 / 12

• dist real triangle(real a, b, c)

Triangle distribution, with a < b < c.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 1 2 3 4 5

tr
ia

ng
le

(r
ea

l a
, b

, c
)

x

triangle(1.0, 2.0, 4.0)

Range [a, c]

Mean (a + b + c) /3

Variance (a^2 + c^2 + b^2 - a*b - a*c - b*c) / 18

See also Triangle(a, c, b), [Law (2007)], page 300

• dist real uniform(real a, b)

Real uniform distribution from a to b, excluding upper bound.

0

0.05

0.1

0.15

0.2

0.25

1 2 3 4 5 6

un
if

or
m

(r
ea

l a
, b

)

x

uniform(1.0, 6.0)

Range [a, b)

Mean (a + b) / 2

Variance (b - a)^2 / 12

See also U(a,b), [Law (2007)], page 282, except that distribution has an inclusive upper
bound.

• dist real weibull(real a, b)

Weibull distribution with shape parameter a and scale parameter b, with a > 0 and b > 0.

0

0.5

1

1.5

2

2.5

0 0.5 1 1.5 2 2.5 3

w
ei

bu
ll(

re
al

 a
, b

)

x

weibull(0.5, 1.0)

weibull(1.0, 1.0)

weibull(1.5, 1.0)

weibull(5.0, 1.0)

Range [0, infinite)

Mean (b / a) * G(1 / a)

Variance (b^2 / a) * (2 * G(2 / a) - (1 / a) * G(1 / a)^2) with G(x) the Gamma
function, G(x) = integral over t from 0 to infinity, for t^(x - 1) * exp(-t)

See also Weibull(a, b), [Law (2007)], page 284

References

▪ [Banks (1998)] Jerry Banks, "Handbook of Simulation: Principles, Methodology, Advances,
Applications, and Practice", John Wiley & Sons, Inc., 1998, doi:10.1002/9780470172445

▪ [Law (2007)] Averill M. Law, "Simulation Modeling and Analysis", fourth edition, McGraw-Hill,
2007

2.6. Types
A type defines the set of possible values of an expression or a variable. Its syntax is defined as
follows.

https://doi.org/10.1002/9780470172445

• The ElementaryType block contains types that do not build on other types. They are explained
further in Elementary types.

• The ContainerType block contains types that can store values of a single other type, the 'list', 'set',
and 'dictionary' type. These types are further explained in Container types.

• The TupleType block describes 'tuples', a type that can hold values of several other types.

• The ChannelType blocks describes communication channels that connect processes with each
other, see Channel type for more explanation.

• The DistributionType block contains the stochastic distribution type, explained in Distribution
type.

• The FunctionType can hold a function definition. It allows you to pass a function to a process or
another function. It is further explained in Function type.

• The ProcessType can hold a process definition. It allows you to pass a process definition to a
another process. It is further explained in Process type.

The TypeName is the name of a type defined with a type definition (explained in Type definitions). For
example:

type lot = real;

model M():
 lot x;

 ...
end

The lot x variable declaration (explained in Local variables) uses the type definition of lot at the

first line to define the type of variable x.

The EnumTypeName is similar, except it uses an enumeration definition (see Enumeration definitions)
as type. For example:

enum FlagColours = {red, white, blue};

model M():
 FlagColours x = white;

 ...
end

The FlagColours x variable declaration defines that variable x has the type of the enumeration, and
can hold its values.

2.6.1. Elementary types

The elementary types do not depend on other types to define their set of allowed values. They have
the following syntax:

As you can see, they are mostly just a single keyword. The ConstantExpression nodes in the matrix
type line are integer expressions with a fixed (and known) value before execution of the program.
More information about the elementary types is provided below.

Boolean type

The bool keyword denotes the boolean data type. The allowed values are false and true. While it is
allowed to store boolean values in other data types, their most frequent use is in expressions of
statements that decide what to do, for example, the condition in the while, if or select statement
(see While loop statement, Choice statement and Select statement). Expressions with booleans are
explained in Boolean expressions.

Integer type

The int keyword denotes the integer data type, integer numbers from 2147483647 to -2147483648 (a
standard signed 32 bit number). Values outside that range give undefined behavior. Expressions
with integers are explained in Integer expressions.

Real type

The real keyword denotes the real number data type, real numbers between 4.94065645841246544e-
324 to 1.79769313486231570e+308 positive or negative (a standard 8 bytes IEEE 754 number). As
normal with floating point numbers in computer systems, many values are missing from the above
range. Expect rounding errors with each calculation. Expressions with real numbers are explained
in Real number expressions.

String type

The string keyword denotes strings, sequences of characters. It contains all printable ASCII
characters U+0020 to U+007E, and 'tab' (U+0009) and 'new line' (U+000A). Expressions with strings
are explained in String expressions.

File type

The file keyword denotes a file at the file system of the computer. It allows reading and writing
values of many data types (not all data types can be read or written). Expressions with files are
explained in File handle expressions. How to work with files is explained in Input and output.

Instance type

The inst keyword denotes an instance type, it can store a running process. Its use is to check
whether the stored process has ended. The Finish statement gives more details and provides an
example.

Timer type

The timer keyword denotes a count-down timer. Variables of this type measure time that has passed
since their initialization. Expressions with timers are given in Timer expressions, a tutorial about
using timers can be found in Timers.

Matrix type

The matrix type takes two constant expressions that define the number of rows and the number of
columns of the matrix. The main purpose of the data type is to allow temporary storage of matrices
so they can be passed on to other software. The Chi language also has expressions to write literal
matrices, see Matrix expression for details.

Void type

The void type denotes that no data is involved. Values of type void do not exist. The type is allowed
at two places in the Chi specification, namely:

• As data type of synchronization channels. Further explanation can be found at Communication
statements and Channel type.

• As exit type of Model definitions and Process definitions, to express that it may return an exit
value from an Exit statement without arguments.

2.6.2. Container types

The main function of container types is to organize and hold a collection of values of another type
(the element type). The syntax diagram of the container types is as follows.

The language has three container types, lists (explained in List type), sets (explained in Set type),
and dictionaries (explained in Dictionary type).

List type

The list type has an ordered collection of values from its element type as its value. Duplicate
element values are allowed.

The syntax of a list type is given below.

It starts with the keyword list, optionally followed by a parenthesized (non-negative) integer
expression denoting the initial number of element values in the collection, and finally the type of
the element values.

The default size of the collection is the value of the integer expression, or 0 if there is no such
expression. The value of the elements in the initial list value depends on the type of the elements.

A few examples:

list bool # A list of boolean values, initial value is <bool>[]
list (2) int # A list of integer values, initial value is [0, 0]

For a discussion of operations on values of this type, see List expressions.

Set type

The set type has an unordered collection of values from its element type as its value. Duplicate
element values are silently discarded.

The syntax of the set type is given below.

The set type starts with a set keyword, followed by the type of its elements. Its initial value is the
empty set. An example:

set real # A set of real numbers, initial value <real>{}.

For a discussion of operations on values of this type, see Set expressions.

Dictionary type

The dictionary type has an unordered collection of values of its key type, so called keys. The keys
are unique in the collection. In addition, the dictionary has a value of its value type associated with
each key.

The syntax of a dictionary type is given below.

The syntax starts with a dict keyword, and the key type and value type between parentheses,
separated by a colon. The initial value of a dictionary type is the empty dictionary. An example:

dict (bool : int) # A dictionary with boolean keys, and integer values.
 # Initial value <bool:int>{}.

For a discussion of operations on values of this type, see Dictionary expressions.

2.6.3. Tuple type

A tuple contains a fixed number of values of (possibly) different types. It has the following syntax:

A tuple type starts with the keyword tuple, followed by the list of its fields between parentheses.
Each field has a name and a type. Sequences of fields with the same type can share their type
description, which reduces the amount of text of the tuple type. Tuple types must have at least two
fields.

Examples:

tuple(int a, b) # A tuple containing fields 'a' and 'b', both of type int
tuple(int a; int b) # A tuple containing fields 'a' and 'b', both of type int

tuple(lot x; real start) # A tuple with a 'lot' and a 'real' type.

The first two examples are equivalent, the first form is just a bit shorter in notation. The third
example is more common fields of different types that are kept together in the modeled system.
Expressions with tuples are discussed in Tuple expression.

2.6.4. Channel type

The channel type defines the direction and the type of values transported. The syntax of the
channel type is as follows.

The chan keyword denotes a channel type is being created. It may be followed by allowed directions
of transport, a ! means that sending values is allowed but not for receiving, and a ? means that
receiving values is allowed and sending is not allowed. Finally !? means both sending and receiving
is allowed. The latter is also selected when no direction is specified. The language silently discards
allowed directions. A channel usable for both sending and receiving may be used as a channel for
sending only (dropping the ability to receive at that point). It does not allow adding directions, a
receive-only channel cannot be used for sending. It can also not be used as a channel for sending
and receiving, even if then latter is only used for receiving values (that is, sending is never done).

The type of data that is transported with a communication is given by the Type block. Signalling
channels (that only synchronize without transporting data) are indicated by the void keyword. The
only expressions available for channels are the equality tests, and a function to create new
channels, see Channel expressions for details.

2.6.5. Distribution type

The distribution type represents a stochastic distribution. It has the following syntax:

A stochastic distribution allows modeling of random behavior, but with a known chance
distribution. The Type block in the DistributionType diagram defines the type of values drawn. For a
discussion of expressions for the distribution type, see Distribution expressions.

2.6.6. Function type

The function type can hold a function. Its syntax is as follows.

A function type starts with the keyword func followed by the return type of the function and the
type of the formal parameters. The purpose of the function type is to pass functions to processes or
other functions, for example, the predicate function in sort and insert, see List functions.

2.6.7. Process type

The process type is similar to the function type (discussed in Function type), except this type can
hold a process definition. It has the following syntax:

The type starts with the keyword proc followed by the formal parameters of the process definition
to store between parentheses. Expressions with process types are explained in Process expressions.

2.7. Lexical syntax
At the lowest level, a Chi specification file consists of a sequence of characters. The characters are
grouped together to form keywords, names, literal values such as numbers, and symbols such as

expression operators like + and statement separator ;. Also comments are recognized at this level.

2.7.1. Whitespace

The characters that delimit groups and lines from each other is known as whitespace. It contains
the 'tab' character (U0009), the 'line feed' character (U000A), the 'carriage return' character (U000D),
and the 'space' character (U0020).

2.7.2. Comment

A comment is a line of text intended for annotating the program text. It can also be used to
(temporarily) add or remove statements. In the latter case, do note that the meaning of the program
may change.

A line of comment starts with a 'hash' character #, and continues until a 'line feed' character (or the
end of the file). All characters in the comment are ignored by the simulator.

2.7.3. Names

A name is a word-like group of characters. It may start with a $ prefix. After the prefix (if one is
provided), first a letter (A to Z or a to z) or an 'underscore' character _ should be used, optionally
followed by more letters, 'underscore' characters, or digits 0 to 9.

Some names are special in the sense that the Chi language reserves them for its own use, for
example the names model and end. Keywords are always written using lowercase letters. In the
grammar diagrams, the keywords are shown in a rounded box. Names starting with a $ prefix are
never used as keyword.

Names not used as keyword can be used to give entities in the Chi program a unique identification.
In the grammar of this reference manual names are split according to the kind of entity that they
refer to:

ConstantName

Name that refers to a constant value, see Constant definitions for details.

EnumtypeName

Name that refers to an enum type, see Enumeration definitions for details.

EnumvalueName

Name that refers to a value within an enum type, see Enumeration value for details.

FieldName

Name that refers to a field in a tuple type, see Tuple type for more details about tuples.

FunctionName

Name that refers to a function definition, see Function definitions for details.

ModelName

Name that refers to a model definition, see Model definitions for details.

ProcessName

Name that refers to a process definition, see Process definitions for details.

TypeName

Name that refers to a type, see Type definitions for details.

VariableName

Name that refers to a variable (see Local variables) or formal parameter in a process or function
(see Formal parameters).

Names are also shown in a rounded box, but as shown above, start with an uppercase letter and
end with Name.

2.8. Model migration
There are currently no migrations to upgrade from older versions of Chi.

2.9. SVG visualization
The Chi simulator has the possibility to display an SVG file during the simulation. The model can
modify the displayed image depending on the state of the simulated system, thus visualizing the
system.

Such a visualization is useful for getting a quick global verification, as well as explaining the
purpose of the model to people that do not know the detailed ins and outs of the problem being
solved.

Below are the technical details of the SVG visualization. The tutorial has a more gentle introduction
into the subject.

2.9.1. SVG interface

The SVG visualization itself is controlled by the simulator. Normally, it is updated just before a time
step is performed. The simulation can however force an update with the redraw command (see
below for details).

The simulation accesses the SVG visualization by opening a file for writing with a name like
SVG:xyz.svg. The SVG: prefix redirects the request to the SVG visualizer, the xyz.svg suffix is the
name of the SVG file to display. The file should be available at the file system.

Different Chi processes may open the same file at the same time. The SVG visualizer can only
display one SVG file at a time, it is not allowed for processes to open different .svg files.

2.9.2. Visualization modification commands

After opening the file, the content of the SVG file can be changed by modifying the nodes. This is
done by writing lines with commands (one command at each line). Available commands are:

• Copy an element (recursively)

copy [orig-id], [opt-prefix], [op-suffix], with [orig-id] the id-name of the element to copy,
[opt-prefix] an optional prefix that is added to the id of all copied elements, and [opt-suffix]
an optional suffix that is added to the id of all copied elements. Since the id of all elements must
be unique, leaving both the prefix and the suffix empty gives an error about duplicate id labels.

Note that the element (and its descendants) is only copied, but not moved. In other words, after
copying it is fully obscured by the original element. The next step is normally an absolute move
command or an attribute command to perform a relative translate transformation.

• Move an element to an absolute position

absmove [id] ([xpos], [ypos]) with [id] the id-name of the element to move, [xpos] the
horizontal position to move to, and [ypos] the vertical position to move to. This operation adds a
translation to the transform attribute of the node such that the top-left corner of the bounding
rectangle is moved to the provided position. It also takes the existing transformation into
account, and in doing so, will fail if the transformation cannot be reversed.

The origin of the coordinate system is at the top-left of the SVG visualization window, with
positive X running to the right, and positive Y running down.

Avoid using this operation repeatedly on the same element. Instead move it once to a base
position, and perform relative translate transformations on a child element to move it to the
desired position.

• Change an attribute of an element

attr [id].[atrribute] = [value] with [id] the id-name of the element, [attribute] the name of
the attribute of the element to change, and [value] the new value of the attribute.

A change overwrites any previous value of the attribute. Also, names of attributes and syntax of
values are not checked.

• Change the text of an element

text [id] = [value] with [id] the id-name of the element, and [value] the new text.

• Force a redraw of the image

Normally the program redraws the SVG image when it detects a change in time after making
changes in the image by using one of the previous commands. With this command you can fake
a change in time, thus allowing you to also display intermediate states.

The command is mostly useful in experiments, where time never changes.

3. Chi Tool Manual
This manual explains how to use the Chi simulation software. Before using the software however,
you need to install it. The software is part of the Eclipse ESCET software.

Once you’re finished installing, you can start to simulate Chi programs. The easiest way to start
simulation is to press the F9 key in a Chi text editor, or when a Chi file (a file with a .chi extension)
is selected in the Project Explorer tab or Package Explorer tab.

Topics

• Available operations on a chi file

• Command line options

3.1. Software operation
The Chi simulator software performs two steps internally:

• Type checking of the Chi source file, and building a simulator for it.

• Running the created simulator.

Starting with a .chi source file, both steps have to be performed for a simulation. As this is the
common situation, the software normally combines both steps. If you run many experiments with
the same file, it becomes useful to skip the first step. How to do this is explained in Compile only. In
addition, the software can be run from the command line. In that case, command-line options as
explained in Command line options need to be specified.

3.1.1. Compile and simulate

Normally, you want to simulate a .chi source file. The Chi simulator software uses two steps
internally (first checking the input and building the simulator, then running the just created
simulator), but these steps are combined in the dialog.

The process starts by selecting the source file you want to use (a file with a .chi extension) in the
Project Explorer tab or Package Explorer tab, and opening the popup menu with the right mouse
button from that selection. Alternatively, open the file in the editor, and use the right mouse button
to get a similar popup menu.

From the popup menu, select Simulate Chi file entry. The selection causes the Console view to be
opened in Eclipse, and a dialog window pops up to set the simulator options like below.

The dialog shows the source file being used in the Input file path box. Below it, in the Instance box,
you can enter how to run the model or the experiment of the source file. The syntax of the input is
the same as you would write it in your Chi file. For example, with a model definition model M(list
real xs, int n): ... end, you could write M([1.5, 2.81], 15) as model instantiation. If you leave
the entry empty, the simulator tries to find an experiment without any parameters (for example
X()). If that fails, it tries to find a model without any parameters (typically M()). If both attempts fail,
or the simulator finds more than one such experiment or model, an error is reported.

If you want to set an initial seed (see Simulating stochastic behavior for a discussion), you can use
the Initial seed value box. Value 0 means 'create a new one'.

This is all you have to do, select [ OK ] at the bottom. The software performs its two steps, and if no
errors are found, it runs the model.

Quick simulate

For files that do not need any further configuration before they are run, there is a Quick simulate
Chi file. This menu option assumes the default configuration (a parameter-less experiment or model
needs to be run with a new seed), skips the dialog (saving you from having to press [ OK ]) and
immediately proceeds with processing the Chi file.

This functionality is also available from the Chi text editor, by pressing the F9 key. Alternatively, you
can select a Chi file in the Project Explorer tab or Package Explorer tab, and press the F9 key.

3.1.2. Compile only

The above is convenient for simple experiments, but checking the input and building a simulator
each time is tedious if you want to do several experiments with the same source file. For this
reason, each step can be done separately as well.

Only building a simulator starts in the same way as above, select a .chi source file from the Project
Explorer tab, Package Explorer tab or an editor window, and right-click at it. Select the Simulate
Chi file option from the popup menu. As the file only gets compiled, the simulator options are of no
interest. Instead switch to the Compiler tab. It looks like this:

Most settings are only useful for developers, but at the bottom, check the Write the compiled Java
code to a .cchi file box, and click [ OK ] at the bottom. Setting this option causes the simulator
software to check the input file, build a simulator, write the constructed simulator to a .cchi file (a
compiled Chi file), and quit. No simulation of the Chi model is performed at this time.

3.1.3. Simulate a compiled model

You can simulate the Chi model from the .cchi file now, by selecting that file as source file by right-
clicking on it. Select the Simulate Chi file or the Quick simulate Chi file option as before, and
proceed with setting the simulator options and running the model as-if you selected a normal .chi
file, as explained in Compile and simulate above.

3.1.4. Terminating a simulation

A simulation ends when:

• The model goes into a deadlock state,

• An exit statement is performed (see experiments in the tutorial),

• The simulation is terminated by the user, via the console Terminate button (explained below), or

• A runtime error occurs.

The simulation can be stopped at any time by using the Terminate button (image::../images/tool-
manual/terminate_button.png[]), located at the upper right corner of the console. Note however
that if the console does not have the focus, this button may not be visible. If the button is not visible,
click somewhere in the console to make the button appear. If even then the button is still not
available, it may still appear if you Maximize the console. Also note that the button has no effect
while the simulator interactively asks for input from the console. However, once the console input
is provided, and Enter is pressed, the termination request will be processed.

3.2. Command line options
When you run the Chi software from the command line, the interactive dialog as shown in
Software operation is not shown (at least not by default), and everything has to be specified at the
command line instead.

The Chi simulator software takes one input file, which is a filename with .chi extension, or a
filename with .cchi extension.

Below is a list of the available options of such a command line. Most of them are for advanced uses
only, and not of interest to most users.

3.2.1. Simulator options

• --instance=<instance>, -i <instance>

Instantiate the model of the file as given by instance. Default is instantiation of a model without
parameters.

3.2.2. General application options

• --help, -h

Prints the help text of the application to the console.

• --option-dialog=<bool>

Whether to show the option dialog after the command line options have been processed.
Default is off.

• --output-mode=<outmode>, -m <outmode>

The output mode. Specify error for errors only; warning for errors and warnings only; normal
(default) for errors, warnings, and normal output; or debug for errors, warnings, normal, and
debug output.

• --show-license

Prints the license text of the application to the console.

• --devmode=<bool>

Whether exceptional situations return limited user friendly information (--devmode=off), or
extended developer oriented information (--devmode=on). Default is user friendly information.

3.2.3. Compiler options

• --emf=<bool>, -e <bool>

Whether or not to write the generated EMF model after type checking (default is off).

• --directory=<dir>, -d <dir>

Output directory for generated Java files. Output is not written when the option is empty or not
provided.

• --java-compile=<bool>, -c <bool>

Whether or not to perform compilation of the generated Java code (default is on).

• --jar=<bool>, -j <bool>

Whether or not to write the compiled Java simulator classes (default is off).

4. Chi release notes
The release notes for the versions of Chi and the associated tools, as part of the Eclipse ESCET
project, are listed below in reverse chronological order.

See also the Eclipse ESCET toolkit release notes covering those aspects that are common to the
various Eclipse ESCET tools.

4.1. Version 4.0 (2024-06-30)
This release contains no specific changes for Chi.

4.2. Version 3.0 (2024-03-31)
Improvements and fixes:

• The Chi documentation has some small fixes (issue #740).

• The Chi website has an improved link color (issue #38).

4.3. Version 2.0 (2023-12-22)
This release contains no specific changes for Chi.

4.4. Version 1.0 (2023-09-30)
This release contains no specific changes for Chi.

4.5. Version 0.10 (2023-06-30)
Improvements and fixes:

• The Chi simulator’s SVG visualizer Save as dialog now properly starts in the directory that
contains the SVG file, also on Windows. And it now properly handles paths with spaces and
other special characters in them (issue #221).

4.6. Version 0.9 (2023-03-31)
Improvements and fixes:

• The Chi documentation features railroad diagrams, which are now generated using a new and
improved railroad diagram generator (issues #112 and #505).

4.7. Version 0.8 (2022-12-21)
Improvements and fixes:

https://eclipse.dev/escet/v4.0/release-notes.html
https://gitlab.eclipse.org/eclipse/escet/escet/-/issues/740
https://gitlab.eclipse.org/eclipse/escet/escet/-/issues/38
https://gitlab.eclipse.org/eclipse/escet/escet/-/issues/221
https://gitlab.eclipse.org/eclipse/escet/escet/-/issues/112
https://gitlab.eclipse.org/eclipse/escet/escet/-/issues/505

• Normally, .chi files are opened with the Chi text editor. Large files are now however opened
with the default non-Chi text editor to avoid performance issues. You can open a file in an editor
of your choosing by right clicking it and selecting Open With and then selecting the editor of
your choosing, or choosing Other… to open a dialog to choose from a larger selection of editors
(issue #199).

4.8. Version 0.7 (2022-09-30)
New features:

• The Chi text editor now has theming support, and comes with a dark theme in addition to the
existing light theme. The text editor now automatically uses its dark theme when the Eclipse
built-in dark theme is used, and uses a light theme otherwise. The text editor theming behavior
can be configured via the Eclipse Preferences dialog (issue #347).

Improvements and fixes:

• The Chi text editor light theme’s default color has changed from a near-black slightly-brown
color to pure black (issue #347).

4.9. Version 0.6 (2022-07-07)
Improvements and fixes:

• Links in the documentation to non-Chi ESCET documentation webpages now use version-
specific URLs (issue #386).

• Improved bibliography references in documentation (issue #365).

• The issue numbers in the release notes now link to the corresponding GitLab issue (issue #396).

• Small website style improvements (issue #367).

4.10. Version 0.5 (2022-03-29)
Improvements and fixes:

• Some small changes to the documentation (issue #271).

• The release notes for each version now contain the release date, with the exception of milestone
releases and release candidates (issue #314).

4.11. Version 0.4 (2021-12-17)
Improvements and fixes:

• Introduced a brand new website (issue #35).

• Many website URLs have changed due to various website structure changes (issues #35 and
#73).

• Various documentation/website textual improvements, style improvements and other changes

https://gitlab.eclipse.org/eclipse/escet/escet/-/issues/199
https://gitlab.eclipse.org/eclipse/escet/escet/-/issues/347
https://gitlab.eclipse.org/eclipse/escet/escet/-/issues/347
https://gitlab.eclipse.org/eclipse/escet/escet/-/issues/386
https://gitlab.eclipse.org/eclipse/escet/escet/-/issues/365
https://gitlab.eclipse.org/eclipse/escet/escet/-/issues/396
https://gitlab.eclipse.org/eclipse/escet/escet/-/issues/367
https://gitlab.eclipse.org/eclipse/escet/escet/-/issues/271
https://gitlab.eclipse.org/eclipse/escet/escet/-/issues/314
https://gitlab.eclipse.org/eclipse/escet/escet/-/issues/35
https://gitlab.eclipse.org/eclipse/escet/escet/-/issues/35
https://gitlab.eclipse.org/eclipse/escet/escet/-/issues/73

(issues #35, #54, #236 and #248).

• The Chi simulator SVG visualizer functionality to save the image as an SVG file no longer
crashes (issue #205).

• The Chi simulator SVG visualizer functionality to save as an image no longer asks duplicate
overwrite questions (issue #223).

• The Chi simulator no longer crashes when showing an SVG visualizer if the SVG file can’t be
loaded (issue #207).

4.12. Version 0.3 (2021-10-01)
Improvements and fixes:

• The website and Eclipse help now use multi-page HTML rather than a single HTML file,
although the website still contains a link to the single-page HTML that allows easily searching
the full documentation (issue #36).

• Enabled section anchors for documentation on the website, and disabled section anchors for
Eclipse help (issue #36).

• Several small documentation fixes and improvements (issues #36 and #166).

4.13. Version 0.2 (2021-07-07)
Improvements and fixes:

• Chi simulator no longer crashes when using the Eclipse Compiler for Java (ecj) as Java compiler
(issue #46).

4.14. Version 0.1 (2021-04-02)
The first release of Chi as part of the Eclipse ESCET project. This release is based on the initial
contribution by the Eindhoven University of Technology (TU/e).

Most notable changes compared to the last TU/e release:

• The Chi simulator no longer crashes on code generation.

https://gitlab.eclipse.org/eclipse/escet/escet/-/issues/35
https://gitlab.eclipse.org/eclipse/escet/escet/-/issues/54
https://gitlab.eclipse.org/eclipse/escet/escet/-/issues/236
https://gitlab.eclipse.org/eclipse/escet/escet/-/issues/248
https://gitlab.eclipse.org/eclipse/escet/escet/-/issues/205
https://gitlab.eclipse.org/eclipse/escet/escet/-/issues/223
https://gitlab.eclipse.org/eclipse/escet/escet/-/issues/207
https://gitlab.eclipse.org/eclipse/escet/escet/-/issues/36
https://gitlab.eclipse.org/eclipse/escet/escet/-/issues/36
https://gitlab.eclipse.org/eclipse/escet/escet/-/issues/36
https://gitlab.eclipse.org/eclipse/escet/escet/-/issues/166
https://gitlab.eclipse.org/eclipse/escet/escet/-/issues/46

5. Legal
The material in this documentation is Copyright (c) 2010, 2024 Contributors to the Eclipse
Foundation.

Eclipse ESCET and ESCET are trademarks of the Eclipse Foundation. Eclipse, and the Eclipse Logo
are registered trademarks of the Eclipse Foundation. Other names may be trademarks of their
respective owners.

License

The Eclipse Foundation makes available all content in this document ("Content"). Unless otherwise
indicated below, the Content is provided to you under the terms and conditions of the MIT License.
A copy of the MIT License is available at https://opensource.org/licenses/MIT. For purposes of the
MIT License, "Software" will mean the Content.

If you did not receive this Content directly from the Eclipse Foundation, the Content is being
redistributed by another party ("Redistributor") and different terms and conditions may apply to
your use of any object code in the Content. Check the Redistributor’s license that was provided with
the Content. If no such license exists, contact the Redistributor. Unless otherwise indicated below,
the terms and conditions of the MIT License still apply to any source code in the Content and such
source code may be obtained at https://www.eclipse.org.

Third Party Content

The Content includes items that have been sourced from third parties as set out below. If you did
not receive this Content directly from the Eclipse Foundation, the following is provided for
informational purposes only, and you should look to the Redistributor’s license for terms and
conditions of use.

• Font Awesome

The Content includes parts of Font Awesome. Font Awesome is licensed under the SIL Open Font
License 1.1.

SPDX-License-Identifier: OFL-1.1

• Highlight.js

The Content includes parts of highlight.js. Highlight.js is licensed under the BSD 3-Clause
License.

SPDX-License-Identifier: BSD-3-Clause

• MathJax

The Content includes parts of MathJax. MathJax is licensed under the Apache License, Version 2.

SPDX-License-Identifier: Apache-2.0

• Wikipedia external link icon

https://opensource.org/licenses/MIT
https://www.eclipse.org
https://fontawesome.com/
https://openfontlicense.org/
https://openfontlicense.org/
https://highlightjs.org/
https://opensource.org/license/bsd-3-clause/
https://opensource.org/license/bsd-3-clause/
https://www.mathjax.org/
https://www.apache.org/licenses/LICENSE-2.0

The Content includes the Wikipedia external link icon. The external link icon is licensed under
the Creative Commons Attribution 4.0 International license.

SPDX-License-Identifier: CC-BY-4.0

https://en.m.wikipedia.org/wiki/File:Link-external-small-ltr-progressive.svg
https://creativecommons.org/licenses/by/4.0/deed.en

Index
A

addressable, 90
arithmetic

operator, 8
assignment

statement, 19, 90
atomic, 42

B

bernoulli, 145
beta, 148
binomial, 145
body

function, 88
process, 88

bool, 7
type, 7

boolean
expression, 114
type, 159

break
statement, 24, 95

buffer, 49

C

ceil
function, 9

channel, 43
direction, 48
expression, 129
naming, 48
type, 163, 43

channels
naming of parameters, 48

choice
statement, 96

clock, 58, 68
close

statement, 109
comment, 22
communication

statement, 101
concatenation

list, 14
concurrent, 4

process, 40
const, 83
constant

definition, 83
distribution, 34

constant distribution, 145
container

type, 160
continue

statement, 24, 95
continuous

distribution, 36
uniform, 148

continuous distribution, 148
conveyor, 68

priority, 70
custom type, 18

D

data type, 6
declaration

variable, 89
definition

constant, 83
enumeration, 81
experiment, 86
function, 85
model, 85
process, 84
type, 82

del
list, 14

delay, 58
statement, 107, 58

delete
list, 14

dict
type, 16

dictionary, 11, 16
empty, 12
expression, 125
notation, 11
pop, 12
size, 11
stdlib functions, 141

type, 162
direction

channel, 48
discrete

distribution, 34
uniform, 145

discrete distribution, 145
dist

type, 33
distribution, 33

constant, 34
continuous, 36
discrete, 34
expression, 130
stdlib functions, 144
type, 163

E

elementary
type, 158

empty
dictionary, 12
function, 12
list, 12
set, 12

enum, 8, 81
enumeration

definition, 81
type, 8

enumeration value
expression, 113

erlang, 148
exit

statement, 110
value, 110

experiment
definition, 86

exponential, 148
expression, 111

boolean, 114
channel, 129
dictionary, 125
distribution, 130
enumeration value, 113
file, 128
instance, 131
integer, 114
list, 120

parenthesized, 111
process, 130
read, 129
real number, 116
set, 123
string, 118
timer, 129
tuple, 127

F

field
tuple, 10

file
expression, 128
reading from, 28
stdlib functions, 143
type, 159
writing to, 32

finish
statement, 100

floor
function, 9

for
statement, 23, 93

func, 85
function, 25

body, 88
ceil, 9
definition, 85
empty, 12
floor, 9
higher-order, 26
insert, 27
pop, 12
range, 23
ready, 68
recursive, 26
round, 9
size, 11
sort, 27
type, 164
use of time, 25

G

gamma, 148
geometric, 145

H

head
list, 13

head right
list, 13

higher-order
function, 26

I

if
statement, 20, 96

insert
function, 27

instance
expression, 131
process, 99
type, 159

int
type, 8

integer
expression, 114
stdlib functions, 136
type, 159

iterative
statement, 92

K

keyboard
reading from, 28

L

legal, 175
list, 11, 12

concatenation, 14
del, 14
delete, 14
empty, 12
expression, 120
head, 13
head right, 13
notation, 11
pop, 12
size, 11
stdlib functions, 139
subtraction, 14
tail, 13
tail right, 13
type, 12, 160

logical
operator, 7

lognormal, 148

M

matrix
type, 160

model
definition, 85

N

naming
channel, 48

normal, 148
notation

dictionary, 11
list, 11
set, 11

numbers, 8

O

operator
arithmetic, 8
logical, 7
relational, 9

P

parallel, 4
process, 40
system, 62

parameter
naming of channels, 48

parenthesized
expression, 111

pass
statement, 110, 24

poisson, 145
pop

dictionary, 12
function, 12
list, 12
set, 12

priority
conveyor, 70

proc, 84
process, 40

body, 88
concurrent, 40

definition, 84
expression, 130
instance, 99
parallel, 40
type, 164

process instance
stdlib functions, 144

projection
tuple, 10

R

range
function, 23

read
expression, 129

reading
from a file, 28
from the keyboard, 28

ready
function, 68
timer, 68

real
type, 159, 8

real number
expression, 116
stdlib functions, 136

receive
statement, 102

recursive
function, 26

relational
operator, 9

release
notes, 172

return
statement, 109, 25

round
function, 9

run
statement, 41, 98
unwind, 43

S

screen
writing to, 30

select
statement, 103

send

statement, 102
serial

system, 62
server, 58
set, 11, 15

empty, 12
expression, 123
notation, 11
pop, 12
size, 11
stdlib functions, 140
type, 15, 161

side-effect, 25
size

dictionary, 11
function, 11
list, 11
set, 11

sort
function, 27

start
statement, 98

statement
assignment, 19, 90
break, 24, 95
choice, 96
close, 109
communication, 101
continue, 24, 95
delay, 107, 58
exit, 110
finish, 100
for, 23, 93
if, 20, 96
iterative, 92
pass, 110, 24
receive, 102
return, 25
run, 41, 98
select, 103
send, 102
start, 98
sub-process, 98
time, 58
while, 22, 93
write, 107, 30

stdlib functions, 135
dictionary, 141

distribution, 144
file, 143
integer, 136
list, 139
process instance, 144
real number, 136
set, 140
string, 138
timer, 143

string
expression, 118
stdlib functions, 138
type, 159, 9

sub-process
statement, 98

subtraction
list, 14

SVG
editing, 74
file format, 74
vertical coordinates, 77
W3C, 74
XML, 74

system
parallel, 62
serial, 62

T

tail
list, 13

tail right
list, 13

time, 58
in a function, 25
statement, 58

timer, 68
expression, 129
ready, 68
stdlib functions, 143
type, 160, 68

triangle, 148
tuple, 10

expression, 127
field, 10
projection, 10
type, 10, 162

type, 156
bool, 7

boolean, 159
channel, 163, 43
container, 160
definition, 82
dict, 16
dictionary, 162
dist, 33
distribution, 163
elementary, 158
enumeration, 8
file, 159
function, 164
instance, 159
int, 8
integer, 159
list, 12, 160
matrix, 160
process, 164
real, 159, 8
set, 15, 161
string, 159, 9
timer, 160, 68
tuple, 10, 162
void, 160

U

uniform
continuous distribution, 148
discrete distribution, 145

unwind
run, 43

V

variable
declaration, 89

variables
local variables, 89

void
type, 160

W

weibull, 148
while

statement, 22, 93
write

statement, 107, 30
writing

to file, 32

to the screen, 30

X

xper, 86

	Chi documentation
	Table of Contents
	1. Chi Tutorial
	1.1. Introduction
	1.2. Data types
	1.3. Statements
	1.4. Functions
	1.5. Input and output
	1.6. Modeling stochastic behavior
	1.7. Processes
	1.8. Channels
	1.9. Buffers
	1.10. Servers with time
	1.11. Conveyors
	1.12. Simulations and experiments
	1.13. SVG visualization
	1.14. SVG visualization example

	2. Chi Reference Manual
	2.1. Global definitions
	2.2. Statements
	2.3. Expressions
	2.4. Standard library functions
	2.5. Distributions
	2.6. Types
	2.7. Lexical syntax
	2.8. Model migration
	2.9. SVG visualization

	3. Chi Tool Manual
	3.1. Software operation
	3.2. Command line options

	4. Chi release notes
	4.1. Version 4.0 (2024-06-30)
	4.2. Version 3.0 (2024-03-31)
	4.3. Version 2.0 (2023-12-22)
	4.4. Version 1.0 (2023-09-30)
	4.5. Version 0.10 (2023-06-30)
	4.6. Version 0.9 (2023-03-31)
	4.7. Version 0.8 (2022-12-21)
	4.8. Version 0.7 (2022-09-30)
	4.9. Version 0.6 (2022-07-07)
	4.10. Version 0.5 (2022-03-29)
	4.11. Version 0.4 (2021-12-17)
	4.12. Version 0.3 (2021-10-01)
	4.13. Version 0.2 (2021-07-07)
	4.14. Version 0.1 (2021-04-02)

	5. Legal
	Index

