This is the multi-page printable view of this section. Click here to print.

Return to the regular view of this page.

Concepts

Explore key essentials of Eclipse Kanto.

1 - AWS Connector

Empower the edge device with a remote connectivity.

AWS Connector enables the remote connectivity to an AWS IoT cloud ecosystem. It provides the following use cases:

  • Enriched remote connection
    • Optimized - to pass the messages via a single underlying connection
    • Secured - to protect the edge identity and data via TLS with basic and certificate-based authentication
    • Maintained - with a reconnect exponential backoff algorithm
    • Synchronized - on a connectivity recovering via a message buffering
  • Application protection - AWS Connector is the only one component with a remote connectivity i.e. all local applications are protected from exposure to the public network
  • Offline mode - local applications don’t need to care about the status of the remote connection, they can stay fully operable in offline mode
  • Device Shadow - messages sent to the Twin Channel are converted to messages more suitable for AWS Device Shadow service and sent to it.

AWS Connector

How it works

The AWS Connector plays a key role in two communication aspects - local and remote.

Cloud connectivity

To initiate its connection, the edge has to be manually or automatically provisioned. The result of this operation is different parameters and identifiers. Currently, AWS Connector supports MQTT transport as a connection-oriented and requiring less resources in comparison to AMQP. Once established, the connection is used as a channel to pass the edge telemetry and event messages. The IoT cloud can control the edge via commands and responses.

In case of a connection interruption, the AWS Connector will switch to offline mode. The message buffer mechanism will be activated to ensure that there is no data loss. Reconnect exponential backoff algorithm will be started to guarantee that no excessive load will be generated to the IoT cloud. All local applications are not affected and can continue to operate as normal. Once the remote connection is restored, all buffered messages will be sent and the edge will be fully restored to online mode.

Local communication

Ensuring that local applications are loosely coupled, Eclipse Hono™ MQTT definitions are in use. The event-driven local messages exchange is done via a MQTT message broker - Eclipse Mosquitto™. The AWS Connector takes the responsibility to forward these messages to the IoT cloud and vice versa.

Monitoring of the remote connection status is also enabled locally as well, along with details like the last known state of the connection, timestamp and a predefined connect/disconnect reason.

2 - Suite connector

Empower the edge device with a remote connectivity.

Suite connector enables the remote connectivity to an IoT cloud ecosystem of choice, powered by Eclipse Hono™ (e.g. Eclipse Cloud2Edge and Bosch IoT Suite). It provides the following use cases:

  • Enriched remote connection
    • Optimized - to pass the messages via a single underlying connection
    • Secured - to protect the edge identity and data via TLS with basic and certificate-based authentication
    • Maintained - with a reconnect exponential backoff algorithm
    • Synchronized - on a connectivity recovering via a message buffering
  • Application protection - suite connector is the only one component with a remote connectivity i.e. all local applications are protected from exposure to the public network
  • Offline mode - local applications don’t need to care about the status of the remote connection, they can stay fully operable in offline mode

Suite connector

How it works

The suite connector plays a key role in two communication aspects - local and remote.

Cloud connectivity

To initiate its connection, the edge has to be manually or automatically provisioned. The result of this operation is different parameters and identifiers. Currently, suite connector supports MQTT transport as a connection-oriented and requiring less resources in comparison to AMQP. Once established, the connection is used as a channel to pass the edge telemetry and event messages. The IoT cloud can control the edge via commands and responses.

In case of a connection interruption, the suite connector will switch to offline mode. The message buffer mechanism will be activated to ensure that there is no data loss. Reconnect exponential backoff algorithm will be started to guarantee that no excessive load will be generated to the IoT cloud. All local applications are not affected and can continue to operate as normal. Once the remote connection is restored, all buffered messages will be sent and the edge will be fully restored to online mode.

Local communication

Ensuring that local applications are loosely coupled, Eclipse Hono™ MQTT definitions are in use. The event-driven local messages exchange is done via a MQTT message broker - Eclipse Mosquitto™. The suite connector takes the responsibility to forward these messages to the IoT cloud and vice versa.

The provisioning information used to establish the remote communication is available locally both on request via a predefined message and on update populated via an announcement. Applications that would like to extend the edge functionality can further use it in Eclipse Hono™ and Eclipse Ditto™ definitions.

Monitoring of the remote connection status is also enabled locally as well, along with details like the last known state of the connection, timestamp and a predefined connect/disconnect reason.

3 - Container management

Empower the edge device for containerized applications.

Container management enables a lightweight standard runtime which is capable to run containerized applications with all advantages of the technology: isolation, portability and efficiency. The deployment and management are available both locally and remotely via an IoT cloud ecosystem of choice. The following use cases are provided:

  • Standardized approach - with OCI (Open Container Initiative) compliant container images and runtime
  • Lightweight runtime - with a default integration of containerd and a possibility for another container technology of choice like podman, LXC and more
  • Isolation - with a default isolation from other containerized applications and the host system
  • Portability - with an option to run one and the same containerized application on different platforms
  • Pluggable architecture - with extension points on different levels

Container management

How it works

A container image packs the application executable along with all its needed dependencies into a single artifact that can be built by a tooling of choice. The built image is made available for usage by being pushed to a container image registry where the runtime can refer it to.

To create a new container instance, the container management uses such an image reference and a configuration for it to produce a fully functional container. The container lifecycle (start, update, stop, remove) and environment (memory constraints, restart policy, etc.) are also handled by the runtime. The container management continuously ensures the applications availability via state awareness and restart policies, provides monitoring via flexible logging and fine-grained resources management. All of that is achieved on top of an underlying runtime of choice (containerd by default) that takes care of the low-level isolation mechanisms.

4 - Software update

Empower the edge device to handle diverse software updates.

Software update enables the deployment and management of various software artifacts, both locally and remotely via an IoT cloud ecosystem of choice. It provides the following use cases:

  • Robust download - with a retry and resume mechanism when the network connection is interrupted
  • Artifact validation - with an integrity validation of every downloaded artifact
  • Universal installation - with customizable install scripts to handle any kind of software
  • Operation monitoring - with a status reporting of the download and install operations

Software update

How it works

When the install operation is received at the edge, the download process is initiated. Retrieving the artifacts will continue until they are stored at the edge or their size threshold is reached. If successful, the artifacts are validated for integrity and further processed by the configured script. It is responsible to apply the new software and finish the operation. A status report is announced on each step of the process enabling its transparent monitoring.

On start up, if there have been any ongoing operations, they will be automatically resumed as the operation state is persistently stored.

What’s next

How to update software

5 - File upload

Empower the edge device to upload files to various storage providers.

File upload enables sending of files to a backend storage of choice. It can be used both locally and remotely via a desired IoT cloud ecosystem. The following use cases are provided:

  • Storage diversity - with ready to use integrations with Azure Blob Storage, Amazon S3 and standard HTTP upload
  • Automatic uploads - with periodically triggered uploads at a specified interval in a given time frame
  • Data integrity - with an option to calculate and send the integrity check required information
  • Operation monitoring - with a status reporting of the upload operation

File upload

How it works

It’s not always possible to inline all the data into exchanged messages. For example, large log files or large diagnostic files cannot be sent as a telemetry message. In such scenarios, file upload can assist enabling massive amount of data to be stored to the backend storage.

There are different triggers which can initiate the upload operation: periodic or explicit. Once initiated, the request will be sent to the IoT cloud for confirmation or cancellation transferred back to the edge. If starting is confirmed, the files to upload will be selected according to the specified configuration, their integrity check information can be calculated and the transfer of the binary content will begin. A status report is announced on each step of the upload process enabling its transparent monitoring.

What’s next

How to upload files