
XML Schema Infoset Model, Part 1

Presented by developerWorks, your source for great tutorials

ibm.com/developerWorks

Table of Contents
If you're viewing this document online, you can click any of the topics below to link directly to that section.

1. Before you start... 2
2. XML Schema fundamentals .. 3
3. Setting up the development environment 5
4. Using XML Schema Infoset Model classes 9
5. Working with XML Schema resources in Eclipse 21
6. Working with namespaces.. 25
7. You try it!... 27
8. Summary and resources .. 28

XML Schema Infoset Model, Part 1 Page 1 of 29

Section 1. Before you start

About this tutorial
The first of a two-part series, this tutorial gives you the building blocks you need to set up and
work with the XML Schema Infoset Model. In this tutorial, you will learn:
• How to set up the development environment

• How to use the XML Schema Infoset Model classes

• How to load and create XML Schema models

• How to link XML Schema models together

This tutorial is for developers who are familiar with Java, XML, and XML Schema, and who are
interested in combining these technologies using the XML Schema Infoset Model. You should
therefore understand how to write Java code and understand how XML Schemas work. Some
understanding of the Unified Modeling Language (UML) is helpful but not required. You can
get an introduction to XML Schema fundamentals in the Resources on page 28 at the end of this
tutorial, and an introduction to UML basics in How to read UML class diagrams on page 9 .

About the author
Dave Spriet is a software developer for the IBM Toronto Laboratory. He develops tools for the
WebSphere Business Integration Message Broker (WBIMB) product. He specializes in
object-oriented technologies, XML, XML Schema, middleware, and UML Modeling. He is also
a committer for the XML Schema Infoset Model component. Dave has a Bachelor of Science
degree (Honors) in Computer Science and Statistics from McMaster University. He welcomes
any comments; please direct them to spriet@ca.ibm.com.

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 2 of 29 XML Schema Infoset Model, Part 1

http://www.eclipse.org/xsd
http://www.eclipse.org/xsd
http://www.eclipse.org/xsd
http://www.eclipse.org/xsd
mailto:spriet@ca.ibm.com

Section 2. XML Schema fundamentals

What is an XML schema?
An XML schema, like a DTD (Document Type Definition), defines the legal building blocks of
an XML document. More and more companies are starting to use XML schemas to describe
their documents shared between business partners because of a schema's wide range of
features:
• Schemas define elements that can appear in a document

• Schemas define attributes that can appear in a document

• Schemas define which elements are child elements

• Schemas define the order of child elements

• Schemas define the number of child elements

• Schemas define whether an element is empty or can include text

• Schemas define data types for elements and attributes

• Schemas define default and fixed values for elements and attributes

So, are XML schemas the successors of DTDs? I think they will be soon, for the following
reasons:
• Schemas are extensible to future additions

• Schemas are richer and more useful than DTDs

• Schemas are written in XML

• Schemas support data types

• Schemas support namespaces

Several XML Schema proposals exist, but the XML Schema Infoset Model is 100% compatible
with the W3C XML Schema recommendation V 1.0, 2 May 2001. This version is described in:
XML Schema Part 0: Primer, XML Schema Part 1: Structures, and XML Schema Part 2:
Datatypes.

What is the XML Schema Infoset Model?
The XML Schema Infoset Model is a library for use with any code that examines, creates, or
modifies XML Schemas. These XML Schemas can be stand-alone schemas or part of other
artifacts, such as XForms or WSDL documents. The library provides an API for manipulating
the components of an XML Schema as described by the W3C XML Schema specifications, as
well as an API for manipulating the DOM-accessible representation of XML Schema as a
series of XML documents, and for keeping these representations in agreement as schemas
are modified.

This library includes APIs to serialize and deserialize XML Schema documents, and to do

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

XML Schema Infoset Model, Part 1 Page 3 of 29

http://www.eclipse.org/xsd
http://www.eclipse.org/xsd
http://www.eclipse.org/xsd
http://www.eclipse.org/xsd
http://www.w3.org/TR/xmlschema-0/
http://www.w3.org/TR/xmlschema-0/
http://www.w3.org/TR/xmlschema-0/
http://www.w3.org/TR/xmlschema-0/
http://www.w3.org/TR/xmlschema-0/
http://www.w3.org/TR/xmlschema-1/
http://www.w3.org/TR/xmlschema-1/
http://www.w3.org/TR/xmlschema-1/
http://www.w3.org/TR/xmlschema-1/
http://www.w3.org/TR/xmlschema-1/
http://www.w3.org/TR/xmlschema-2/
http://www.w3.org/TR/xmlschema-2/
http://www.w3.org/TR/xmlschema-2/
http://www.w3.org/TR/xmlschema-2/
http://www.w3.org/TR/xmlschema-2/

integrity checking of XML Schemas. This integrity checking looks for things like element
references that reference non-existent global elements invalid maximum values.

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 4 of 29 XML Schema Infoset Model, Part 1

Section 3. Setting up the development environment

Setup overview
First familiarize yourself with the Eclipse environment. The main areas to focus on are:
• The Workbench

• The Workspace

• Perspectives usage

• Eclipse plug-ins

• Team support

Now we'll download and install the Eclipse Modeling Framework and the XML Schema
components, and verify the installation.

Downloading and installing the EMF and XML Schema
components

1. Java Runtime Environment V 1.3. Eclipse does not include a Java Runtime Environment
(JRE), so you will need a 1.3-level Java runtime or Java Development Kit (JDK) installed on
your machine in order to run Eclipse. I recommend using the IBM or the Sun JRE/JDK:
• IBM developer kit (http://www.ibm.com/developerworks/java/jdk/)

• Sun developer kit (http://java.sun.com/j2se/1.3/download.html)

2. Eclipse Base V2.1.1. After you read and understand the Eclipse.org Software User
Agreement, then download the Eclipse base. For this tutorial, we are using the latest
release, which is 2.1.1 at the time of writing, but almost any version will do. Download and
unzip a copy of the Eclipse base V2.1.1.. Throughout this document we will refer to
%ECLIPSE_BASE%, which is the base directory in which you unzipped the Eclipse base
V2.1.1.

3. Eclipse Modeling Framework, V1.1.0, Build 20030620_1105VL. Next, download the
Eclipse Modeling Framework component, which we will call EMF throughout this tutorial. For
this tutorial, we are using version 1.1.0, Build 20030620_1105VL. You can either download
EMF from the EMF Web site or directly download EMF Version 1.1.0 from the following
links:
• EMF Runtime

• EMF Documentation

• EMF Source

After you have downloaded EMF V1.1.0, you should unzip the three zip files into the
%ECLIPSE_BASE%\eclipse directory. Make sure that the directories line up so that the
EMF plug-ins go into the %ECLIPSE_BASE%\eclipse\plugins directory.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

XML Schema Infoset Model, Part 1 Page 5 of 29

http://www.eclipse.org
http://www.ibm.com/developerworks/java/jdk/
http://www.ibm.com/developerworks/java/jdk/
http://www.ibm.com/developerworks/java/jdk/
http://java.sun.com/j2se/1.3/download.html
http://java.sun.com/j2se/1.3/download.html
http://java.sun.com/j2se/1.3/download.html
http://www.eclipse.org/legal/notice.html
http://www.eclipse.org/legal/notice.html
http://www.eclipse.org/legal/notice.html
http://www.eclipse.org/legal/notice.html
http://download.eclipse.org/downloads/index.php
http://download.eclipse.org/downloads/index.php
http://download.eclipse.org/downloads/index.php
http://www.eclipse.org/emf/
http://download.eclipse.org/tools/downloads/emf/emf_1.1.0_20030620_1105VL.zip
http://download.eclipse.org/tools/downloads/emf/emf_1.1.0_20030620_1105VL.zip
http://download.eclipse.org/tools/downloads/emf/emf.doc_1.1.0_20030620_1105VL.zip
http://download.eclipse.org/tools/downloads/emf/emf.doc_1.1.0_20030620_1105VL.zip
http://download.eclipse.org/tools/downloads/emf/emf.source_1.1.0_20030620_1105VL.zip
http://download.eclipse.org/tools/downloads/emf/emf.source_1.1.0_20030620_1105VL.zip

As an alternative, you can keep these additional components separated from the base by
unzipping the three zip files into a subdirectory and then using an Eclipse link file to point to
where the additional plug-ins are. Remember that EMF and XML Schema components are
just Eclipse plug-ins; they work the same way as any other plug-ins in Eclipse. To keep
these other plug-ins separated from the base, you need to create a "links" directory directly
under the %ECLIPSE_BASE%\eclipse directory. In the links directory, add a file that
contains the following:
• Filename: org.eclipse.emf.link

• Contents: path=C:\\Dev\\eclipse\\emf110

NOTE: Remember that on windows you have to escape the backslashes in this file.

4. XML Schema Infoset Model, V1.1.0, Build 20030620_1105VL. Next, download the XML
Schema Infoset component, which we will call XML Schema model throughout this tutorial.
For this tutorial, we are using version 1.1.0, Build 20030620_1105VL. You can download
XML Schema model from the XML Schema Infoset Model Web site or you can directly
download XML Schema model Version 1.1.0 from the following links:
• XSD Runtime

• XSD Documentation

• XSD Source

After you have downloaded the XML Schema plug-ins, you can do the same thing that you
did with the EMF plug-ins. Either unzip them into the %ECLIPSE_BASE%\eclipse directory
or point to them using an eclipse link file.

Note: When using the EMF and XML Schema components, remember that the build date and
build level for the XML Schema Runtime must match that of the EMF Runtime that you plan
use. For example, you could use the XSD Runtime (xsd_1.1.0_20030620_1105VL.zip) with
the EMF Runtime (emf_1.1.0_20030620_1105VL.zip), which is what we are using in this
tutorial.

Verifying the installation
To verify that you have installed the EMF and the XML Schema components correctly, launch
the %ECLIPSE_BASE%\eclipse\eclipse.exe executable. After the Eclipse Workbench comes
up, select Help > About Eclipse Platform. Then click the "Plug-in Details" button. You should
see a dialog like the one below that shows all of the plug-ins that are or could be loaded within
that Eclipse environment.

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 6 of 29 XML Schema Infoset Model, Part 1

http://www.eclipse.org/xsd/
http://www.eclipse.org/xsd/
http://www.eclipse.org/xsd/
http://www.eclipse.org/xsd/
http://download.eclipse.org/tools/downloads/xsd/xsd_1.1.0_20030620_1105VL.zip
http://download.eclipse.org/tools/downloads/xsd/xsd_1.1.0_20030620_1105VL.zip
http://download.eclipse.org/tools/downloads/xsd/xsd.doc_1.1.0_20030620_1105VL.zip
http://download.eclipse.org/tools/downloads/xsd/xsd.doc_1.1.0_20030620_1105VL.zip
http://download.eclipse.org/tools/downloads/xsd/xsd.source_1.1.0_20030620_1105VL.zip
http://download.eclipse.org/tools/downloads/xsd/xsd.source_1.1.0_20030620_1105VL.zip

If you installed EMF and the XML Schema components correctly, you should see these
plug-ins:

Provider Plug-in name Version Plug-in Id

Eclipse.org ECore Edit Support 1.1.0 org.eclipse.emf.ecore.edit

Eclipse.org EMF Common 1.1.0 org.eclipse.emf.common

Eclipse.org EMF Common UI 1.1.0 org.eclipse.emf.common.ui

Eclipse.org EMF ECore 1.1.0 org.eclipse.emf.ecore

Eclipse.org EMF ECore Code
Generation

1.1.0 org.eclipse.emf.codegen.ecore

Eclipse.org EMF ECore Code
Generation UI

1.1.0 org.eclipse.emf.codegen.ecore.ui

Eclipse.org EMF Edit 1.1.0 org.eclipse.emf.edit

Eclipse.org EMF Edit UI 1.1.0 org.eclipse.emf.edit.ui

Eclipse.org EMF Mapping 1.1.0 org.eclipse.emf.mapping

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

XML Schema Infoset Model, Part 1 Page 7 of 29

Eclipse.org EMF Mapping UI 1.1.0 org.eclipse.emf.mapping.ui

Eclipse.org EMF Programmers Guide 1.1.0 org.eclipse.emf.doc

Eclipse.org EMF Template Code
Generator

1.1.0 org.eclipse.emf.codegen

Eclipse.org EMF Template Code
Generator UI

1.1.0 org.eclipse.emf.codegen.ui

Eclipse.org EMF XMI 1.1.0 org.eclipse.emf.ecore.xmi

Eclipse.org XML Schema Edit
Framework

1.1.0 org.eclipse.xsd.edit

Eclipse.org XML Schema Editor 1.1.0 org.eclipse.xsd.editor

Eclipse.org XML Schema Infoset Model 1.1.0 org.eclipse.xsd

Eclipse.org XML Schema Infoset Model
Source

1.1.0 org.eclipse.xsd.source

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 8 of 29 XML Schema Infoset Model, Part 1

Section 4. Using XML Schema Infoset Model classes

How to read UML class diagrams
Class diagrams

Unified Modeling Language (UML) has become the developer's choice of tools for
object-oriented design. Many types of diagrams are defined by UML, but here we'll only cover
class diagrams and associations between classes. This tutorial will use IBM Rational XDE to
display the different diagrams.

In class diagrams, classes are represented as boxes with three compartments:

The top section in a Class object contains the class name; if the class is abstract, then the
name is italicized. The middle section contains the class attributes. The bottom section
contains the class methods or operations. Like the class name, if a method is abstract, its
name is italicized.

Associations between classes

Any interaction between classes is shown by a line drawn between the classes. A simple line
indicates an association. The relationship between the classes can be modified to provide
information about the association. The following diagram show the different types of
associations that you will need to understand:

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

XML Schema Infoset Model, Part 1 Page 9 of 29

Understanding the XML Schema Infoset model diagrams
The next several panels show a set of UML diagrams that represent the XML Schema Infoset
model, using the following notation:
• Each relationship or attribute Xyz, which we will refer to as a feature Xyz in a diagram,

corresponds to a getXyz() method in Java for accessing that feature.

• If the feature is many-valued (in other words, (0..*)), the getXyz() method returns a
java.util.List interface, which can be modified directly using standard java.util.List API.

• Otherwise, if the feature is single-valued, then a corresponding setXyz() method is
available for modification.

A relationship with a black diamond corresponds to a containment relationship. These form the
basis for the concrete tree structure of the XML Schema Infoset model.

A relationship with a white diamond corresponds to a shared pseudo-containment relationship .
It is used only for documentation purposes since it is not logically different from a relationship
with no diamond. In general, the white diamond relationships represent relationships defined
directly in the XML Schema specification. They are typically computed from other relations and
hence should not be modified directly. The exception to this rule are relations involving
types. These consist of base-type, member-type, item-type, and element- or attribute-type.

Note: The diagrams on the next several panels can also be found in the
org.eclipse.xsd/src/model/XSD.mdl model file.

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 10 of 29 XML Schema Infoset Model, Part 1

http://java.sun.com/j2se/1.4.1/docs/api/java/util/List.html
http://www.w3.org/TR/xmlschema-0/
http://www.w3.org/TR/xmlschema-0/
http://www.w3.org/TR/xmlschema-0/

Component hierarchy
The abstract XML Schema components, as described in XML Schema Part 1: Structures of the
Standard, are related according to the following hierarchy:

The figure above displays the hierarchy of the XML Schema Infoset model. The classes in light
blue represent abstract classes, whereas the classes in light orange represent the concrete
classes. Here is a short description of some of the classes that you will need to understand:
• XSDComponent: is the base class for all of the XML Schema Infoset model classes.

• XSDSchema: is the concrete class representing the xml schema root object (<xsd:schema
...>)

• XSDAnnotation: is the concrete class representing xml schema components annotations
(<xsd:annotation>)

• XSDSimpleTypeDefinition: is the concrete class representing a simple type
(<xsd:simpleType ...>)

• XSDComplexTypeDefinition: is the concrete class representing a complex type
(<xsd:complexType ...>)

• XSDElementDeclaration: is the concrete class representing an element; either global, local
or reference (<xsd:element ...>)

• XSDAttributeDeclaration: is the concrete class representing an attribute; either global,local

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

XML Schema Infoset Model, Part 1 Page 11 of 29

http://www.w3.org/TR/xmlschema-1
http://www.w3.org/TR/xmlschema-1
http://www.w3.org/TR/xmlschema-1
http://www.w3.org/TR/xmlschema-1
http://www.w3.org/TR/xmlschema-1

or reference (<xsd:attribute ...>)

• XSDAttributeGroupDefinition: is the concrete class representing an attribute group
(<xsd:attributeGroup ...>)

• XSDModelGroupDefinition: is the concrete class representing a group; either global or
reference (<xsd:group ...>)

• XSDModelGroup: is the concrete class representing a local group (<xsd:sequence>,
<xsd:choice>or <xsd:all>)

• XSDWildCard: is the concrete class representing a wild card element or attribute
(<xsd:any> or <xsd:anyAttribute>)

Component hierarchy, relations, and attributes
The abstract XML Schema components, as described in XML Schema Part 2: Datatypes of the
Standard, are related according to the following hierarchy with these defined relationships and
attributes:

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 12 of 29 XML Schema Infoset Model, Part 1

http://www.w3.org/TR/xmlschema-2/
http://www.w3.org/TR/xmlschema-2/
http://www.w3.org/TR/xmlschema-2/
http://www.w3.org/TR/xmlschema-2/
http://www.w3.org/TR/xmlschema-2/

The figure above illustrates how the XML Schema Datatypes and facets are modeled:
• XSDFacet: is the base class for all of the XML Schema facets.

• XSDConstrainingFacet: is the base class for all of the XML Schema facets that provide
constraints to the model, which include length facets, inclusive facets, exclusive facets, total
digits facets, white space facets, fraction digits facets, enumeration facets, and pattern
facets.

• XSDFixedFacet: is the base class for all of the XML Schema facets that provide constraints
that can not be changed through type inheritance (in other words, must be fixed).
• XSDLengthFacet: corresponds to the xml schema <xsd:length ...> facet.

• XSDMinLengthFacet: corresponds to the xml schema <xsd:minLength ...> facet.

• XSDMaxLengthFacet: corresponds to the xml schema <xsd:maxLength ...> facet.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

XML Schema Infoset Model, Part 1 Page 13 of 29

• XSDMinInclusiveFacet: corresponds to the xml schema <xsd:minInclusive ...> facet.

• XSDMaxInclusiveFacet: corresponds to the xml schema <xsd:maxInclusive ...> facet.

• XSDMinExclusiveFacet: corresponds to the xml schema <xsd:minExclusive ...> facet.

• XSDMaxExclusiveFacet: corresponds to the xml schema <xsd:maxExclusive ...> facet.

• XSDWhiteSpaceFacet: corresponds to the xml schema <xsd:whiteSpace ...> facet.

• XSDFractionDigitsFacet: corresponds to the xml schema <xsd:fractionDigits ...> facet.

• XSDTotalDigits: corresponds to the xml schema <xsd:totalDigits ...> facet.

• XSDRepeatableFacet: is the base class for all of the XML Schema facets that provide
constraints that can repeat.
• XSDEnumeration: corresponds to the xml schema <xsd:enumeration ...> facet.

• XSDPatternFacet: corresponds to the xml schema <xsd:minLength ...> facet.

Component annotations
The abstract XML Schema Components, as described in Part 1 and Part 2 of the Standard,
are annotated as follows:

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 14 of 29 XML Schema Infoset Model, Part 1

The figure above illustrates how the XML Schema components are annotated, which
correspond to xml schema <xsd:annotation ...> tag.

Concrete containment
The XML Schema Infoset model's concrete containment relationships are represented by the
following diagram:

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

XML Schema Infoset Model, Part 1 Page 15 of 29

In the figure above, most of the relationships are black diamond relationships, which are the
containment relationships. These form the basis for the majority of classes within the XML
Schema Infoset model. Below is a short description of some of the more interesting
relationships from different classes in the above diagram.

XSDSchema

The root XSDSchema object can contain (0..*) XSDSchemaContent objects. Each of these
XSDSchemaContent objects will show up as xml elements under the root xml schema
element.

<?xml version="1.0" encoding="UTF-8"?>
<schema xmlns="http://www.w3.org/2001/XMLSchema"
targetNamespace="http://www.example.com/IPO"
xmlns:ipo="http://www.example.com/IPO">

<annotation>
<documentation>

Addresses for International Purchase Order Schema
</documentation>

</annotation>

<complexType name="Address">
...

</complexType>

<simpleType name="USState">

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 16 of 29 XML Schema Infoset Model, Part 1

...
</simpleType>

<element name="order" type="ipo:Address">

<attribute name="order" type="ipo:USState">

...
</schema>

In the above code snippet, you can see that the root schema element contains an annotation,
complexType, simpleType, element, and attribute.

The root XSDSchema object can contain any of the following model objects as children within
the concrete tree structure of the XML Schema Infoset model:
• XSDImport

• XSDInclude

• XSDRedefine

• XSDAnnotation

• XSDElementDeclaration

• XSDAttributeDeclaration

• XSDComplexTypeDefinition

• XSDSimpleTypeDefinition

• XSDModelGroupDefinition

• XSDAttributeGroupDefinition

• XSDNotationDeclaration

XSDModelGroupDefinition

Model group definitions can either be global or references to global model group definitions. A
global XSDModelGroupDefinition can contain a single XSDModelGroup.

XSDModelGroup

Model groups are also known as local groups, which have of one of the following
compositions: sequence, choice, or all. An XSDModelGroup contains (0..*) XSDParticle
objects.

XSDParticle

Particles contain the maxOccurs and minOccurs values for the content of the XSDParticle,
which is known as the XSDParticleContent.

An XSDParticle contains a single XSDParticleContent, which can be one of the following
objects:
• XSDModelGroup

• XSDWildCard

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

XML Schema Infoset Model, Part 1 Page 17 of 29

• XSDElementDeclaration

• XSDModelGroupDefinition

XSDComplexTypeDefinition

Complex type definitions can either be global or anonymous. If you are unfamiliar with the term
anonymous, you can think of this as being local.

An XSDComplexTypeDefinition can contain a single attribute wildcard, (0..*)
XSDAttributeGroupContent and a single XSDComplexTypeContent.

The XSDComplexTypeContent can either be an XSDParticle with an XSDModelGroup or
XSDModelGroupDefinition as the particle's content or an XSDSimpleTypeDefinition, which
means this complex type has simple content. If the XSDParticle's content is an
XSDModelGroupDefinition, it will be a group reference to a global group.

Component relations
The abstract XML Schema components have the following defined relationships:

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 18 of 29 XML Schema Infoset Model, Part 1

The figure above is very similar to the standard non-normative Schema Components Diagram .
This diagram is very complex, so the main thing to notice are the white diamond relationships,
which are the shared pseudo-containment relationships and are computed from other relations
within the model.

Concrete Schema composition
The following concrete components resolve to the following abstract components:

The figure above illustrates how some concrete components resolve to the other concrete
components:
• XSDModelGroupDefinition: a group reference resolves to a global group

• XSDAttributeGroupDefinition: an attribute group reference resolves to a global attribute
group

• XSDElementDeclaration: an element declaration reference resolves to a global element

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

XML Schema Infoset Model, Part 1 Page 19 of 29

http://www.w3.org/TR/xmlschema-1/#component-diagram
http://www.w3.org/TR/xmlschema-1/#component-diagram
http://www.w3.org/TR/xmlschema-1/#component-diagram
http://www.w3.org/TR/xmlschema-1/#component-diagram

declaration

• XSDAttributeDeclaration: an attribute declaration reference resolves to a global attribute
declaration

Diagnostics diagram
The following diagnostics are produced by validation of the XML Schema Infoset model. More
details on the validation of the XML Schema Infoset model will be in Part 2 of this tutorial
series.

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 20 of 29 XML Schema Infoset Model, Part 1

Section 5. Working with XML Schema resources in
Eclipse

Creating an XML Schema file
Before you create complicated XML Schema structures, you should first create a skeleton XML
Schema model and save it in the Eclipse workspace. You have the option of giving the schema
a namespace or not.

Creating an XML Schema file with no target namespace

As shown in Listing 1 below, the steps for creating an XML Schema file with no target
namespace are:

1. Create the org.eclipse.emf.ecore.resource.Resource using the new xml schema Uri

2. Create the XSDSchema root object

3. Set up the schema for schema namespace information on the root XSDSchema object

4. Call updateElement() on the root XSDSchema object

5. Add the root XSDSchema object to the resource you created in step 1

6. Save the resource

Listing 1. Creating an XML Schema file with no target namespace
org.eclipse.xsd.examples.command.CreateXSDWithNoTNSOperation
public XSDSchema createXSDSchema(IFile xsdFile)
{
try
{
//Get the URI of the model file.
URI fileURI = URI.createPlatformResourceURI(xsdFile.getFullPath().toString());

//Create a resource set to manage the different resources
ResourceSet resourceSet = new ResourceSetImpl();

//Create a resource for this file.
Resource resource = resourceSet.createResource(fileURI);

//Create the root XSDSchema object
XSDSchema xsdSchema = XSDFactory.eINSTANCE.createXSDSchema();

//set the schema for schema QName prefix to "xsd"
xsdSchema.setSchemaForSchemaQNamePrefix("xsd");
java.util.Map qNamePrefixToNamespaceMap = xsdSchema.getQNamePrefixToNamespaceMap();

//put the following namespace in the root schema namespace map
//xsd:http://www.w3.org/2001/XMLSchema
qNamePrefixToNamespaceMap.put(xsdSchema.getSchemaForSchemaQNamePrefix(),
XSDConstants.SCHEMA_FOR_SCHEMA_URI_2001);

//We call updateElement to synchronize the MOF model with the underlying DOM model
//This should only have to be done after creating a new model
xsdSchema.updateElement();

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

XML Schema Infoset Model, Part 1 Page 21 of 29

//Add the root schema to the resource that was created above
resource.getContents().add(xsdSchema);

//Save the contents of the resource to the file system.
resource.save(Collections.EMPTY_MAP);

return xsdSchema;
}
catch (Exception exception)
{
exception.printStackTrace();

}
return null;

}

Creating an XML Schema file with target namespace
"http://www.eclipse.org/xsd/examples/createxsd"

As shown in Listing 2, the basic steps in creating an XML Schema file with a target namespace
are very similar to creating aa XML Schema file with no target namespace. The major
difference is that you set the targetNamespace() on the XSDSchema root, and you also add a
defined prefix to the root schema QName prefix namespace map on page 25 , which maps to
the new target namespace.

Listing 2. Creating an XML Schema file with a target namespace
org.eclipse.xsd.examples.command.CreateXSDWithTNSOperation
public XSDSchema createXSDSchema(IFile xsdFile)
{
try
{
//Get the URI of the model file.
URI fileURI = URI.createPlatformResourceURI(xsdFile.getFullPath().toString());

//Create a resource set to manage the different resources
ResourceSet resourceSet = new ResourceSetImpl();

//Create a resource for this file.
Resource resource = resourceSet.createResource(fileURI);

//Create the root XSDSchema object
XSDSchema xsdSchema = XSDFactory.eINSTANCE.createXSDSchema();

//Set the target namespace of the given schema document to
//http://www.eclipse.org/xsd/examples/createxsd
xsdSchema.setTargetNamespace("http://www.eclipse.org/xsd/examples/createxsd");

java.util.Map qNamePrefixToNamespaceMap = xsdSchema.getQNamePrefixToNamespaceMap();
qNamePrefixToNamespaceMap.put(xsdSchema.getSchemaForSchemaQNamePrefix(),
XSDConstants.SCHEMA_FOR_SCHEMA_URI_2001);

//put the following namespace in the root schema namespace map
//createxsd:http://www.eclipse.org/xsd/examples/createxsd
qNamePrefixToNamespaceMap.put("createxsd", xsdSchema.getTargetNamespace());

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 22 of 29 XML Schema Infoset Model, Part 1

//We call updateElement to synchronize the MOF model with the underlying DOM model
//This should only have to be done after creating a new model
xsdSchema.updateElement();

//Add the root schema to the resource that was created above
resource.getContents().add(xsdSchema);

// Save the contents of the resource to the file system.
resource.save(Collections.EMPTY_MAP);

return xsdSchema;
}
catch (Exception exception)
{
exception.printStackTrace();

}
return null;

}

Loading an XML Schema file
Loading an existing XML Schema model is relatively simple if you use the default platform
protocol resolver "platform:/resource". You may want to implement an
org.eclipse.emf.ecore.resource.URIConverter to resolve resources that might not be found
using the default platform protocol resolver. Some of these could include XML Schema files
located in a plug-in directory or somewhere on the World Wide Web.

The following listing shows how to load any XML Schema file within the Eclipse workspace
using the default platform protocol resolver.

public XSDSchema loadXSDSchema(IFile xsdFile)
{
try
{
//Create a resource set to manage the resources
ResourceSet resourceSet = new ResourceSetImpl();

//Let the resource set load the resource from the given uri
XSDResourceImpl xsdResource = (XSDResourceImpl) resourceSet.getResource(URI.
createURI("platform:/resource" + xsdFile.getFullPath()), true);

//The contents of the resource is the root XSDSchema object
XSDSchema xsdSchema = xsdResource.getSchema();

return xsdSchema;
}
catch (Exception e)
{
e.printStackTrace();

}

return null;

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

XML Schema Infoset Model, Part 1 Page 23 of 29

}

XSDResourceFactory and XSDResource
The Eclipse Modeling Framework loads resources by first tying to find a ResourceFactory
based on the file extension of the file being loaded. This is done by first looking in the
org.eclipse.emf.ecore.resource.Resource.Factory.Registry, and if the extension is registered,
then it uses that ResourceFactory.

If the extension is not found, then the default ResourceFactory is used. The default is
XMIResourceFactory, which clearly would never load XML Schema models because XML
Schema is not written in XMI.

So, what do you do if you want to load a resource that contains an XML Schema model that
has an extension other than "xsd"?

Globally register the extension using either of these methods:
• org.eclipse.emf.ecore.resource.Resource.Factory.Registry.INSTANCE.getExtensionToFactoryMap().

put("myxsd", new org.eclipse.xsd.util.XSDResourceFactoryImpl());

• Add the following extension point in your plugin.xml file

<extension point = "org.eclipse.emf.ecore.extension_parser">

<parser type="myxsd" class="org.eclipse.xsd.util.XSDResourceFactoryImpl"/>

</extension>

or

Locally register the extension using this method:
• org.eclipse.emf.ecore.resource.ResourceSet resourceSet = new org.

eclipse.emf.ecore.resource.impl.ResourceSetImpl();
resourceSet.getResourceFactoryRegistry().getExtensionToFactoryMap(). put("myxsd", new
org.eclipse.xsd.util.XSDResourceFactoryImpl());

Then use the above resourceSet to load all of your XML Schema files.

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 24 of 29 XML Schema Infoset Model, Part 1

Section 6. Working with namespaces

QName prefix namespace map
The QName prefix namespace map stores a prefix as the keys and namespace Uri as the
values. This QName prefix namespace map is stored on the root XSDSchema object and is
used when XSDNamedComponents need to be resolved.

If you want to add additional prefix-namespace pairs to a given XML Schema file, you can do
the following:

//Add additional prefix-namespace pair xmlns:address="http://www.eclipse.org/xsd/examples/address"
qNamePrefixToNamespaceMap.put("address","http://www.eclipse.org/xsd/examples/address");

The above code snippet produces the following serialized XML Schema model:

<?xml version="1.0"?>
<schema targetNamespace="http://www.eclipse.org/xsd/examples/createxsd"

xmlns="http://www.w3.org/2001/XMLSchema"
xmlns:address="http://www.eclipse.org/xsd/examples/address"
xmlns:createxsd="http://www.eclipse.org/xsd/examples/createxsd"/>

Includes
An XML Schema model may contain any number of <xsd:include> elements. Their
schemaLocation attributes consist of a URI reference that should be relative to the root XML
Schema model document.

The XML Schema corresponding to the root XML Schema contains not only the components
corresponding to its definition and declaration, but also all the components of all the XML
Schemas corresponding to any <xsd:include>d schema documents.

Such included schema documents must either:
• Have the same targetNamespace as the <xsd:include>ing schema document

• Have no targetNamespace at all, in which case the <xsd:include>d schema document is
converted to the <xsd:include>ing schema document's targetNamespace.

The code snippet below shows how you would create and add a <xsd:include> to a root
schema. As soon as the xsdSchema.getContents().add(0,xsdInclude) method is called you will
notice that the included schema will get loaded into the same resource set that the root
schema is in.

//Create a XSDInclude
XSDInclude xsdInclude = XSDFactory.eINSTANCE.createXSDInclude();

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

XML Schema Infoset Model, Part 1 Page 25 of 29

http://www.w3.org/TR/xmlschema-1/#element-include
http://www.w3.org/TR/xmlschema-1/#element-include
http://www.w3.org/TR/xmlschema-1/#element-include

//Set the uri to the xml schema file that you want to use the definitions from
xsdInclude.setSchemaLocation("address.xsd");

//we always add the new includes to the top of the root schemas content list
//the included XML Schema file will be loaded at this time
xsdSchema.getContents().add(0,xsdInclude);

Imports
An XML Schema model may contain any number of <xsd:import> elements. Their
schemaLocation attributes consist of a URI reference that should be relative to the root XML
Schema document. Unlike <xsd:include>, <xsd:import> has a namespace attribute that needs
to match a namespace in the QName prefix namespace map on page 25 .

The <xsd:import> element tag identifies namespaces used in external references, in other
words, those whose QNames identify them as coming from a different namespace than the
root schema document's targetNamespace. The actual value of its namespace indicates that
the containing schema document may contain qualified references to schema components in
that namespace (via one or more prefixes declared with namespace declarations in the normal
way).

The code snippet below shows how you would create and add a <xsd:import> to a root
schema document. As soon as the xsdSchema.getContents().add(0,xsdImport)
method is called, you might notice that the imported schema might NOT get loaded. To force
the load on a <xsd:import> you need to call
((XSDImportImpl)xsdImport).importSchema();.

//Create a XSDImport
XSDImport xsdImport = XSDFactory.eINSTANCE.createXSDImport();

//Set the uri to the xml schema file that you want to use the definitions from
xsdImport.setSchemaLocation("address.xsd");

//we always add the new imports to the top of the root schemas content list
xsdSchema.getContents().add(0,xsdImport);

//This will force load the imported schema
((XSDImportImpl)xsdImport).importSchema();

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 26 of 29 XML Schema Infoset Model, Part 1

http://www.w3.org/TR/xmlschema-1/#element-import
http://www.w3.org/TR/xmlschema-1/#element-import
http://www.w3.org/TR/xmlschema-1/#element-import

Section 7. You try it!

Copying the code
All of the code snippets used in this tutorial are bundled in this Eclipse plug-in:
org.eclipse.xsd.examples.zip. To install this plug-in and examine the source code:

1. Unzip org.eclipse.xsd.examples.zip into a temporary directory.

2. Create a Simple project called org.eclipse.xsd.examples in the Eclipse Workbench.

3. Copy the contents of the org.eclipse.xsd.examples.zip file into the newly created eclipse
project. Click Yes if a dialog asks if you want to override the .project file.

4. Expand the org.eclipse.xsd.examples/src directory to view the source.

If you have compiler errors, you can fix these by adjusting the "Windows > Preferences >
Plug-In Development > Target Platform" setting and then updating the project's classpath.

Troubleshooting and bugs
Please report Eclipse bugs in the Eclipse Bugzilla server: http://bugs.eclipse.org/bugs.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

XML Schema Infoset Model, Part 1 Page 27 of 29

org.eclipse.xsd.examples.zip
http://bugs.eclipse.org/bugs

Section 8. Summary and resources

Summary
As XML data is becoming more popular, more companies are depending on common
definitions, which are being built using XML Schemas. The XML Schema Infoset Model
provides a well-designed set of interfaces, implementations, and algorithms for representing
and manipulating XML Schema models.

Now that you've completed Part 1 of this tutorial series, you'll be ready to continue with Part 2.
Part 2 will walk you through the steps in creating almost every construct within the XML
Schema Infoset model.

Resources
For more information on using XML Schema or the Eclipse Modeling Framework, see the
following suggested material:

XML Schema resources

XML Schema Infoset Model

http://www.eclipse.org/xsd/

XML Schema Infoset Model FAQ

http://dev.eclipse.org/viewcvs/indextech.cgi/~checkout~/xsd-home/faq.html

XML Schema Infoset Model Drivers

http://dev.eclipse.org/viewcvs/indextech.cgi/~checkout~/xsd-home/downloads/dl.html

XML Schema Infoset Model newsgroup

news://news.eclipse.org/eclipse.technology.xsd

XML Schema Tutorial, Roger L. Costello, September 2001

http://www.xfront.com/

XML Schema Part 0: Primer

http://www.w3.org/TR/xmlschema-0/

XML Schema Part 1: Structures

http://www.w3.org/TR/xmlschema-1/

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 28 of 29 XML Schema Infoset Model, Part 1

http://www.eclipse.org/xsd
http://www.eclipse.org/xsd
http://www.eclipse.org/xsd
http://www.eclipse.org/xsd
http://www.eclipse.org/xsd/
http://dev.eclipse.org/viewcvs/indextech.cgi/~checkout~/xsd-home/faq.html
http://dev.eclipse.org/viewcvs/indextech.cgi/~checkout~/xsd-home/downloads/dl.html
news://news.eclipse.org/eclipse.technology.xsd
http://www.xfront.com/
http://www.w3.org/TR/xmlschema-0/
http://www.w3.org/TR/xmlschema-1/

XML Schema Part 2: Datatypes

http://www.w3.org/TR/xmlschema-2/

Eclipse Modeling Framework resources

Eclipse Modeling Framework

http://www.eclipse.org/emf/

EMF Users' Guide

http://dev.eclipse.org/viewcvs/indextools.cgi/~checkout~/emf-home/docs/emfug.pdf

Feedback
We welcome your feedback on this tutorial, and look forward to hearing from you. We'd also
like to hear about other tutorial topics you'd like to see covered.

For questions about the content of this tutorial, contact the author, Dave Spriet, at
spriet@ca.ibm.com.

Colophon

This tutorial was written entirely in XML, using the developerWorks Toot-O-Matic tutorial
generator. The open source Toot-O-Matic tool is an XSLT stylesheet and several XSLT
extension functions that convert an XML file into a number of HTML pages, a zip file, JPEG
heading graphics, and two PDF files. Our ability to generate multiple text and binary formats
from a single source file illustrates the power and flexibility of XML. (It also saves our
production team a great deal of time and effort.)

You can get the source code for the Toot-O-Matic at
www6.software.ibm.com/dl/devworks/dw-tootomatic-p. The tutorial Building tutorials with the
Toot-O-Matic demonstrates how to use the Toot-O-Matic to create your own tutorials.
developerWorks also hosts a forum devoted to the Toot-O-Matic; it's available at
www-105.ibm.com/developerworks/xml_df.nsf/AllViewTemplate?OpenForm&RestrictToCategory=11.
We'd love to know what you think about the tool.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

XML Schema Infoset Model, Part 1 Page 29 of 29

http://www.w3.org/TR/xmlschema-2/
http://www.eclipse.org/emf/
mailto:spriet@ca.ibm.com
http://www6.software.ibm.com/dl/devworks/dw-tootomatic-p
http://www-105.ibm.com/developerworks/education.nsf/xml-onlinecourse-bytitle/01F99F6B8BE60C9486256A69005BD21C?OpenDocument
http://www-105.ibm.com/developerworks/education.nsf/xml-onlinecourse-bytitle/01F99F6B8BE60C9486256A69005BD21C?OpenDocument
http://www-105.ibm.com/developerworks/education.nsf/xml-onlinecourse-bytitle/01F99F6B8BE60C9486256A69005BD21C?OpenDocument
http://www-105.ibm.com/developerworks/education.nsf/xml-onlinecourse-bytitle/01F99F6B8BE60C9486256A69005BD21C?OpenDocument
http://www-105.ibm.com/developerworks/education.nsf/xml-onlinecourse-bytitle/01F99F6B8BE60C9486256A69005BD21C?OpenDocument
http://www-105.ibm.com/developerworks/xml_df.nsf/AllViewTemplate?OpenForm&RestrictToCategory=11
http://www-105.ibm.com/developerworks/xml_df.nsf/AllViewTemplate?OpenForm&RestrictToCategory=11
http://www-105.ibm.com/developerworks/xml_df.nsf/AllViewTemplate?OpenForm&RestrictToCategory=11

	Table of Contents
	Before you start
	About this tutorial
	About the author

	XML Schema fundamentals
	What is an XML schema?
	What is the XML Schema Infoset Model?

	Setting up the development environment
	Setup overview
	Downloading and installing the EMF and XML Schema components
	Verifying the installation

	Using XML Schema Infoset Model classes
	How to read UML class diagrams
	Understanding the XML Schema Infoset model diagrams
	Component hierarchy
	Component hierarchy, relations, and attributes
	Component annotations
	Concrete containment
	Component relations
	Concrete Schema composition
	Diagnostics diagram

	Working with XML Schema resources in Eclipse
	Creating an XML Schema file
	Loading an XML Schema file
	XSDResourceFactory and XSDResource

	Working with namespaces
	QName prefix namespace map
	Includes
	Imports

	You try it!
	Copying the code
	Troubleshooting and bugs

	Summary and resources
	Summary
	Resources
	Feedback

