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Figure 1: The OCL Compromise.

ABSTRACT

While OCL is primarily a specification language supporting the
elaboration of often-graphical metamodels with textual constraints,
it is also executable enabling the constraints to be used to vali-
date models. The superficial textual similarity of OCL and Java has
tempted some authors to attempt a textual transliteration to facili-
tate a faster Java execution. Unfortunately there are many aspects
of OCL semantics that deviate from Java and so transliteration is
close to impossible. We identify the semantic differences so that
new transliteration attempts can review the almost inevitable limi-
tations of an OCL-like transliteration when choosing to implement
a Java-Friendly OCL rather than a full OCL code generator.
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1 INTRODUCTION

OCL is primarily a specification language supporting the elabora-
tion of often-graphical metamodels with textual constraints.

As shown in Figure 1, OCL[9] compromises the familiar pop-
ularity of typical general purpose languages, such as Java, with
formal languages, such as Z. Formal languages are so unfamiliar as
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to be unacceptable to many programmers. OCL’s use, in conjunc-
tion with UML[10], ensures that OCL has model oriented support.
OCL'’s functional style facilitates the definition of a constraint as a
compact expression.

The foregoing contrast is important but just ergonomic. More
important for specification purposes is correctness, for which the
generality of General Purpose Languages makes correctness proofs
very hard if not impossible. In contrast, Formal Languages can be
provably correct but the time and skills necessary to provide that
proof are not available to many programmers or applications. OCL
is positioned nicely between these two extremes. The relevant, ac-
cessible syntax means that 20 years on OCL is still the language
of choice for writing model constraints. The potential for proof
arises from the underlying side-effect-free functional specification
principles. Sadly, the potential for proof has not been exploited in
mainstream tools and so remains just a potential for most specifi-
cations.

As a specification language, OCL is just a model-oriented pseudo-
code, for which tooling ensures some degree of syntactic consis-
tency with the standard. It is only once OCL’s executable capability
is realized that the pseudo-code is elevated to functional accuracy.

Model validation is an important use case in which a model
is loaded and all the applicable OCL constraints are executed to
confirm that a model’s Well Formedness Rules are respected. For
large models, the efficiency of the execution is important and so
it is attractive to replace a direct naive interpreted OCL execution
of the WFRs by distinct compilation and execution phases. The
compilation phase generates code in a language that can be executed
faster.

In this paper, we first review the attraction of a transliterator in
Section 2 and contrast it with the traditional tooling in Section 3.
OCL and Java compatibility challenges are addressed in Section 4
for syntax and Section 5 for semantics. We then consider some code
synthesis concerns in Section 6 before summarizing the simplifi-
cations that a Java-Friendly OCL might make in Section 7. Related
work follows in Section 8 and we conclude in Section 9.
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OCL | Similar Java
name
(a =Db) and true

’xyzzy’.substring(a,b)

name
(a ==b) && true
"xyzzy".substring(a,b)

if a then b else ¢ endif if (@) {b}else{c}
elements->forall(e : Element for (Element e : elements)
| body) {body }

Set{1, 1.0}->size() Sets.newHashSet(1, 1.0).size()
Table 1: Alluring Transliterations

2 TRANSLITERATION

Table 1 shows examples of the kind of superficial textual and func-
tional similarity between OCL and Java that have enticed some
authors to attempt a textual transliteration.

The examples in the table clearly show that neither character-
by-character nor word-by-word transliteration is feasible. The chal-
lenge for a transliteration approach is to do sentence-by-sentence
transliteration rather than a total analysis of the whole document
followed by total synthesis by a code generator.

Unfortunately there are many aspects of OCL semantics that
deviate from Java and so transliteration is close to impossible; there
are too many concepts that require total analysis.

We briefly identify some errors in the alluring transliterations.

name to name is only correct if name is the same concept in both
languages. An unnavigable opposite would not be the same.

"xyzzy".substring(a,b) neglects to correct from 1-based to
0-based indexes.

OCL’s forall is a multi-term and operation whereas Java’s for
does not relate its iterations. The transliteration should be more
like:
boolean result = true;
for (Element e : elements) {

if (!body) {

result = false;
break;

}

. = result;

The Set{1, 1.0}->size() demonstrates the uniformity of OCL
numbers; the OCL size is 1 since OCL counts the number of distinct
numeric DataType-typed values. Java numbers are not uniform;
the Java size is 2 since Java counts the number of distinct numeric
Class-typed objects. A better transliteration could be

Sets.newHashSet (Double.valueOf (1), 1.0).size()

We revisit these and many other semantic differences so that a
transliteration author can choose whether to resolve each differ-
ence by implementation heroism in the transliterator or by com-
promising to offer only a defective OCL subset that we refer to as
Java-Friendly OCL (jfOCL).

3 TOOL STRUCTURE AND PERFORMANCE

To understand what the transliterator does not do, it is helpful to
review what standard tooling provides.
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Figure 2: Traditional OCL Tool Architecture.
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Figure 3: ASG of let c=a+b in ... example

3.1 Traditional Tooling Architecture

The OCL specification separates concerns by suggesting an archi-
tecture such as Figure 2 for an OCL tool.

Lexer and Parser realize appropriate grammars to convert source
file text characters via multi-character tokens to the Concrete Syn-
tax Tree nodes.

The Concrete Syntax provides a model that is close to the source
text. Short forms are not elaborated. References are retained as
unresolved names. The Concrete Syntax is therefore a Tree.

The Analyzer resolves the names to appropriate model elements,
expands shortforms, synthesizes implicit iterators, elaborates im-
plicit collect and infers types to annotate each node with accurate us-
age. A simple example for the OCL expressionlet c =a + b in ...
is shown in Figure 3 using the style of a UML Object Diagram.

The composition tree has its root at the LetExp node. It has an
OperationCallExp child and two further VariableExp grandchil-
dren. Composition is shown using directed solid edges between
the nodes whose type is underlined. Additional references are
shown as dashed edges. The referredOperation identifies that
OperationCallExp executes using the Operation named add. Sim-
ilar referredVariable edges identify the variable to be read by
each VariableExp. The ancestry of the a and b variables and the
Class instances is not shown to avoid clutter. Nearly all the nodes

in this simple example use the Integer node as their type. (The
. node and class are not relevant to this example; just necessary
to make the LetExp usage valid.)
The Abstract Syntax provides a rich model that is suitable for ex-
ecution or further analysis. References are resolved unambiguously
to model elements; the Abstract Syntax is therefore a Graph.
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Figure 4: Transliterator Architecture.

The Validator is an example of a tool that executes the Abstract
Syntax to determine whether a model confirms to its OCL-defined
Well Formedness Rules. Execution typically uses an evaluator that
interprets the ASG.

A Code Generator is another tool that can use the Abstract
Syntax. It translates the ASG into a language that can execute more
rapidly.

The existence of, and distance between, the CS and AS models
is one of the major inconveniences for OCL tooling. The ‘draft’-
like precision [16] of the OCL specification is yet another major
inconvenience requiring implementers to work hard to determine
what was intended rather than specified.

3.2 Transliterator Architecture

An attraction of the transliterator is that it has a simpler tool archi-
tecture, as shown Figure 4. The complexities of an Abstract Syntax
are ignored; rather the transliterator comprises a simple serializer
direct from the parser output to the required Java text. Ignoring
the AS discards all the useful analysis that is captured in the AS. A
transliterator author has just two choices. Either to replicate the
analysis that underpins the AS, or to simplify the OCL language to
such a degree that no analysis is needed.

3.3 Evaluator Architecture

While the Abstract Syntax is technically a graph, each OCL con-
straint is defined by an expression that is represented by a composi-
tion tree in which there is a child for each value needed to compute
the result. Evaluation of an OCL expression is simply performed by
a depth-first traversal of the composition tree. Once the traversal
has reached the leaves, execution proceeds as each node returns its
result to its parent.

If we consider the execution necessary for our simple example,
whose OCL ASG is shown in Figure 3, we can see the execution cost
of traversing the tree will far exceed that of the minimal pseudo-
assembler for c=a+b.

LD ro,a -- load register r@ from memory a
LD ri1,b -- load register r1 from memory b
ADD r2,r0,ri -- add r@ to r1 with result in r2
ST r2,c -- store register r2 to memory c

We might rate the pseudo-assembler as 25% efficient since only
one of the lines does necessary work; the other three control in-
structions shuffle values around memory and registers. In practice,
we may achieve higher efficiency as the stores for a first expression
may be rendered redundant with respect to the loads of a next
expression. In the extreme case of a perfectly understood execution
and unlimited registers, a near 100% efficiency is possible. Of course
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a perfectly understood execution will give a very long entirely lin-
ear execution flow that need not actually execute at all; it can be
optimized to return just the perfectly understood result.

Realistically, some control overhead is necessary for loops that ac-
commodate data dependencies and reduce program size. A practical
assembler implementation might perhaps aspire to 50% efficiency.

If we now use a LISP-like assembler notation and consider the
overheads of interpreting each opcode:

(ST (ADD (LD a) (LD b)) ©)

There will be control overheads as each opcode such as LD is
fetched and dispatched. Each nested term will result in a nested
function call. It is easy to see that there are now many additional
control overheads that are likely to reduce the efficiency well below
10%.

The 10% estimate above and further estimates below are based
on experience. The numbers are a little more helpful than purely
relative terms such as ‘really inefficient’. The numbers cannot be
precise since a much better performance can be achieved when
the programmer is able to adopt a very direct flat bloated style. A
more maintainable style that satisfies diverse use cases with many
overrideable helper functions may give worse performance. For
the particular case of LD A, a single assembler instruction may
easily bloat to many hundreds of instructions once an interpreted
access uses a hierarchy of scoped Maps with each access needing to
compute a hash code in order to lookup an entry and then invoke
an equality test to check on a hit. Contrasting the hundreds of
instructions for a Map access with the typically better performance
of a small List search is not the topic of this paper. An efficient
code synthesis may require just a single instruction by locating A
in a local variable.

A LISP-like selective rendering of the OCL ASG is even less
direct

(LetExp #c
(OperationCallExp "add"
(VariableExp #a)
(VariableExp #b)

After finding the OperationCallExp opcode, the interpreter
must fetch the "add" argument and select the appropriate actions.
This involves yet more control overheads so that the efficiency of
interpreted OCL execution may well be only 1%. This is clearly
very disappointing and motivates the use of a code generator that
can certainly do very much better than 1%. At least 10% should be
possible using Java. Perhaps 25% could be achieved using C as a
portable assembler language.

Perhaps the simplest approach to a speed up just provides a large
library of helper functions for everything so that we may execute
the Java serialization

"n_n

doLetExp(env, "c",
doOperationCallExp_add(env,
doVariableExp(env, "a"),
doVariableExp(env, "b"))
)
)
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The above has already reified the "add" into the operation-
specific doOperationCallExp_add helper, but has not reified "a"
as a variable; rather an env is passed around. doVariableExp may
get from, and doLetExp may put to, the environment at a non-
trivial cost. Clearly we can do better by exploiting Java variables
directly, but we can start to see the challenges. Each change that
we make to exploit a Java capability to realize an OCL capability
must ensure that the Java execution observes OCL semantics. We
will now examine the many ways in which OCL semantics differs
from Java and why the following ‘obvious’ Java is too simplistic.

int ¢ = a + b;

4 SYNTAX COMPATIBILITY

We will first look at aspects of the OCL syntax that require accurate
processing by the CS to AS analysis to determine the meaning. The
code generator must faithfully represent the meaning as valid Java
code. It is not clear how a transliterator can resolve the incompati-
bilities without the AS resolutions to guide the transliteration.

4.1 Reserved Words

Languages have reserved words that the user may not use as regular
names. Use of a reserved word as a regular identifier almost always
results in a compilation error that will prevent the transliterator
being used. In pathological cases use of a reserved word could create
a differently ‘valid’ program.

In Essential OCL, names such as self, else and not are reserved.
In Complete OCL, names such as context and package are also
reserved. forall is not reserved. T and T1 are also reserved but
only to support the evasion of a proper implementation of UML
templates. There is an escape mechanism so that _'\n' or _'self"’
may be used; any Unicode character sequence is an acceptable OCL
name.

In Java, names such as this and package are reserved. There is
no escape mechanism.

A transliteration of OCL to Java must therefore provide a mech-
anism to ensure a distinct and valid Java spelling for every possible
OCL name spelling. jfOCL may attempt to push this responsibility
back onto the OCL programmer, but sometimes metamodels have
awkward names such as class. Third party metamodels cannot be
changed for the convenience of jfOCL.

4.2 Shortforms, Name capture, Implicit Sources

Object Oriented languages often allow a field of the current con-
text object to be accessed without explicitly specifying the context
object. Thus self.name in OCL, or this.name in Java can be short-
ened to just name. This is friendly but requires the transliterator
to understand the OCL shorform before attempting to exploit a
corresponding Java shorform.

4.2.1 Java Shortforms. In Java, name may refer to

e afunction parameter

e alocal variable

e a non-static field of this

e a static field of this.getClass()

When there is only one option, user and tooling may be happy.
When there is an unresolvable ambiguity, tooling must report a
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compilation error. But sometimes there is a resolution priority; a
function parameter hides a non-static field. This priority may not
always suit the user, so tooling may offer a warning to encourage
the user to rename the parameter and so avoid the hazard.

Further complexity arises when an outer definition may be ac-
cessed from within

e a nested class
e an anonymous function
e alambda.

4.2.2 OCL Shortforms. OCL’s name resolution policies are similar

an operation parameter

a let variable

a non-static property of self

a static property of self.oclType()

but include

e any unique iterator
e an advanced navigation
e atype
e a template parameter
Implicit Sources. The OCL implicit iterator source is dangerously
flexible. In

books->forall(b
| chapters->forall(c
| authors->notEmpty()))

authors can be a shortform for c.authors or b.authors or
self.authors or a let-variable or a function parameter. The itera-
tor shortform is a candidate even when the explicit b and c iterators
are implicit. Resolution of the shortform requires a search of the
metamodel to see whether Chapter: :authors or Book: : authors
exist before considering the usual candidates. jfOCL might well
prohibit the dangerous nested implicit source. Prohibiting the im-
mediate loop iterator could be a step too far.

OCL Navigation. In addition to the traditional Object Oriented
instance to slot interpretation of the dot navigation operator, OCL
normalizes a variety of different forms of navigation behind the
one syntax. The most complicated is probably the implicit opposite
navigation for which the transliterator must generate a call to an
appropriate helper that searches the model for the required opposite.
See Section 5.2 and Section 5.8.2 for further details.

OCL Type Names. OCL lacks a distinctive type literal syntax
analogous to Java’s MyClass. class. Consequently the argument
for oc1IsKindOf (V) may refer to at least the type V or the property
V or the let-variable V.

OCL is UML-aligned, consequently OCL supports UML templates
even though the OCL specification lacks any grammar, concrete or
abstract syntax support. Once templates are supported, template
parameters are yet another option for a name reference.

4.2.3  Summary. The many differences in name resolution make it
unsafe to attempt to transliterate shortforms directly from OCL to
Java. The actual access must be understood, matched to an appro-
priate Java access, and then serialized in a way that ensures that
the appropriate access is actually used.



Challenges for Code Generated OCL Execution

anX : X [d-----------~ ay:y

Figure 5: Navigation example

5 SEMANTIC COMPATIBILITY

Once the OCL semantics has been identified, it is possible to trans-
late the OCL into Java that exhibits the identical OCL semantics. We
must therefore identify how and when OCL semantics can be real-
ized in Java. Generating Java without an appropriate understanding
risks generating inaccurate code. We will therefore examine the
compatibility of various constructs.

5.1 Program Structure

Java package, class and operation constructs are very similar and
more powerful than OCL’s so there is little difficulty in mapping
OCL structural concepts to a subset of Java.

5.2 Properties

OCL, or rather UML or Ecore, has Classes with Properties in a
similar fashion to Java’s Classes with Fields, so it would seem that
the aY. x OCL navigation using the unidirectional association from
Y to X in Figure 5 can be transliterated to aY.x in Java.

But this is to ignore the power of OCL’s model oriented support.
OCL supports many different forms of Property navigation, many
of which appear to be simple.

Even the simplest access may need care since OCL does not
specify the reification of each class instance. Distinct mechanisms
will probably be needed depending whether the source and/or target
class instance is:

e Java Object

Java Bean

EMF EObject

XML Element

Object Data Base Object
UML Instance

UML Stereotype

o UML Association

The transliterator must invoke an appropriate helper, since di-
rect use of Java’s mechanism is not often correct. Distinct mecha-
nisms will usually be needed depending whether the access is to
a DataType or a Class object and whether the access is to a single
object or a collection of objects.

OCL hides a variety of access mechanisms behind the simple
dot-navigation syntax. The unnavigable opposite syntax is useful
and powerful but hard to implement. With respect to Figure 5, OCL
supports the anX.y navigation even though X: :y is not navigable.
Implementation of this is discussed in Section 5.8.2. Further lexical
complexities arise when the y role is omitted from the metamodel.
A default name is available by re-using the name of the target type
allowing anX.Y. If the auto-generated name is ambiguous the more
elaborate anX.Y[Y: :x] syntax may be used.

Yet more complexity arises from

e static properties
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derived properties

inherited properties

Stereotype properties
Association-owned properties

UML subset/union/redefined properties

Access to a property is only part of the challenge. Many proper-
ties may have an OCL expression defining the initial and/or derived
value that must be calculated in a timely fashion and which may
need to be cached to avoid redundant calculation. But once cached,
the external usage must be respected to invalidate the cache in an
equally timely fashion.

It is not clear how this can be done without an overall analysis
to determine all the forms of property access that occur, then to
plan an implementation strategy, and finally to synthesize distinct
construction code as well as the use of an appropriate helper for
the actual access.

5.3 Control Semantics

OCL’s operation call and return is broadly compatible with Java.
OCL’s if then else endif is easily accommodated in Java.
An OCL let-variable is relatively easily realized by a Java variable

declaration.

OCL’s loops do not have direct Java counterparts, so helpers or
templates are required. See Section 6.2.

There is a major incompatibility in regard to OCL’s invalid
which is philosophically the same as a Java exception but very
different implementation-wise. invalid handles the very incon-
venient use case where the program flow fails perhaps due to a
program error, perhaps due to an external environment problem.

OCL’s invalid is a value that is returned as an alternative to the
intended value and must be propagated through every computation
until it is handled or returned as the overall result.

In contrast, a Java exception is a Throwable instance that is
thrown. It bypasses all intermediate computations until a catch
handler is encountered.

These very different practical semantics are not amenable to
naive transliteration.

An implementation may chose to use Java exception seman-
tics throughout the transliteration. Every generation of an OCL
invalid must then be replaced by a thrown Throwable. Conversely
every OCL operation that may be passed an invalid value must
have an operation call that carefully catches any exceptions to cre-
ate the required invalid. This is inconvenient for ordinary code,
it is distinctly awkward when the exception can occur while initial-
izing a let variable. The awkwardness arises because an exception
while evaluating the ‘init’ variable child of a LetExp must be caught
so that it may be correctly propagated or suppressed according to
the logic of the ‘in’ child.

Alternatively, an implementation may use OCL invalid seman-
tics throughout the transliteration. This then requires every helper
to be accurately coded to guarantee that exceptions are returned
as invalid, a guarantee that is likely to be overlooked by main-
tainers. Every call to a helper may therefore need to wrapped in
an exception conversion. All helpers must be coded to propagate
invalid.
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The latter approach could be suitable if invalid was a prolific
use case, but hopefully invalid is rare, so it is more efficient to
work with, rather than against, Java’s natural capabilities. It is
appropriate to analyze the potentially invalid flows in order to plan
the necessary catch handlers. An accurate analysis can ensure that
only those very rare let-variables that can propagate an invalid
value incur the overheads.

Implementation of invalid is a significant pain, so tools may
follow USE’s[12] example and omit support for invalid altogether.
However this is not OCL; it provides support only for OCL programs
that never fail. There can be no divide-by-zero, no null-navigation,
no index-out-of-bounds on ordered collections.

None of the above approaches is attractive. Careful study of
the OCL specification reveals that it is well-intentioned but ir-
rational [17]. A much more practical and sensible design can be
compatible with Java exception semantics. Unavoidable exceptions
such as a network-failure are classified as desirable exceptions that
should always be thrown. Programming errors such as collection-
index-out-of-bounds are classified as undesirable exceptions that
should be eliminated by analysis at compile time. The challenging
need for commutative rather than short-circuit and/or operators
that uncrash can be eliminated by commuting the inputs at compile
time to guarantee that only the second input can crash.

The OCL validity analysis [17] is a non-trivial whole program
analysis that cannot possibly be done sentence-by-sentence. How-
ever, while the motivation of the analysis is to prove that the OCL
is free of undesirable crashes, jfOCL can follow the principles and
define all crashes as desirable avoiding the need to catch any ex-
ceptions anywhere. It is only necessary to convert invalid to a
thrown exception. This is easily done by providing no reification
of invalid; exceptions can be thrown from the outset. With no
catching of exceptions, a rational implementation of and/or that
computes first argument first will exhibit the familiar short-circuit
behaviour.

5.4 Type/ Value

When we use helper functions to implement each OCL semantic,
the values we pass to the functions and which are returned by
those functions should observe OCL semantics and conform to
OCL types.

Before we examine typical types, we should note one important
difference between OCL/UML and Java. UML defines two kinds of
Object, Class-typed and DataType-typed. A Class is instantiated
as an instance which typically has a unique address and so two
distinct class instances are not equal. A DataType defines a value
that is often embedded as the attribute of an instance. A DataType
does not have a unique address. DataType values are equal when a
deep comparison of their information fields finds all are equal.

Java has user-defined Class instances but only built-in primitive
DataType values. There is a flexibility to overload equals() so that,
for instance, a pair of String instances can compare equal even
when their addresses differ. This is important to avoid the need for
Map keys to be used without the overhead of interning. However,
this can lead to some surprises whenever int, double, Integer
and Double are intermixed. The surprise is demonstrated by the
difficulty in transliterating Set{1, 1.0}->size() to ensure that
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the two representations of the one value populate a single-entry
Set.

The overt example mixing real and integer literals is perhaps
unrealistic so jfOCL could prohibit it. More complex examples
might not be apparent to the user, so jfOCL should diagnose them,
however the effort required to diagnose them is comparable to
the effort required to enforce the common type determined by the
regular OCL analysis. jfOCL should really support numeric value
uniformity.

5.4.1 Boolean, String. The semantics of Boolean and String values
are compatible so Java’s type and values can be used. Only a little
care is needed where the spelling of operations such as toUpper
varies.

5.4.2  UnlimitedNatural. Java has no counterpart to UnlimitedNat-
ural, so a helper type is necessary. However UnlimitedNatural is not
a numeric type, rather it is an unbounded enumeration used solely
to support the upperbound of UML’s Multiplicity. jfOCL might omit
UnlimitedNatural.

5.4.3 Integer, Numeric Precision. OCL specifies two ideal numeric
types Real and Integer, whereas Java specifies many practical
types such as int, Long and BigInteger with inconsistently im-
perfect functionality. A 32 bit integer is sufficient for almost all use
cases, but just occasionally position or time calculations need more.

Suppose a salary is represented by a 32 bit integer. After many
generous pay rises, a salary may grow to the 31 bit threshold. At this
point, the salary wraps around to a negative number; the employee
must now pay to work.

This is OK in Java; it is what the specification says should happen.
It is absolutely not OK in OCL for which unbounded integers grow
and grow.

An OCL2Java conversion must choose a Java representation for
OCL’s Integer

o always 32 bit Integer
e always 64 bit Long
e always BigInteger
e use a variety of types

32 bits is simple and efficient but significantly defective.

64 bits is simple and similarly efficient on a modern 64 bit ma-
chine and very rarely defective.

Biglnteger is costly for the vast majority of use cases and defec-
tive only in pathologically huge use cases.

The approach taken by the pivot-based Eclipse OCL is to use a
polymorphic abstract IntegerValue, It has LongIntegerValue,
IntIntegerValue and BigIntegerValue concrete derived classes.
The implementation of addition returns a larger type when required.

IntIntegerValue like Java’s Integer wraps an underlying int
content so there is very little performance penalty for the ‘correct’
solution.

5.4.4  Real. Floating point arithmetic is little used in OCL, so there
is little benefit in struggling to use Float or Double rather than
BigDecimal everywhere.

5.4.5 Object. References to Model Elements can be compatible.
Conversely, if they are not, the overheads of converting or wrapping
Objects incur an undesirable cost.
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5.4.6 Collection. Java’s Collection types were originally designed
as non-template types. These were upgraded to templated classes
when Java 5 added generics, but backward compatibility necessi-
tated a concept of type erasure. This means that the actual templat-
ing type is not known at run-time preventing expressions such as
new T().

OCL’s collection types have a magic underspecified T that be-
haves in many ways like a template parameter. Once the require-
ment for UML alignment is respected, the magic T can be respecified
as aregular template parameter and the rules for collection type con-
formance revisited to avoid the anomaly that Set{}->including(4)
is erroneous. The empty Set{}isa Set (0clVoid). When the source
argument is used to specialize the Set(T): :including(T) opera-
tion to Set(0clVoid): :including(0OclVoid) the error arises be-
cause 4 does not conform to Oc1Void. More declaratively, there is an
alternative specialization Set(Integer)::including(Integer)
for which both source and argument are type conformant.

Eclipse OCL applies this declarative philosophy to ensure that the
Abstract Syntax is annotated with consistent specializations. The
Operation: :type declaration has the unspecialized type. The in-
voking OperationCallExp: : type has the specialized type. These
types are propagated and checked throughout the AST. They pro-
vide the accuracy necessary to declare variables in Java and to inject
the necessary casts from what the OCL analysis guarantees to what
the Java declarations require.

The Java Set<T>and OCL Set(T) classes are templated so that
the programmer can enforce their intent. A SetValue class that
provides the underlying implementation of Set(T) for OCL does
not need to be a templated class since the underlying implementa-
tion can access the template parameter more flexibly as a regular
field rather than as a template parameter.

Unless jfOCL replicates the collection type analysis, the translit-
erator may have to sprinkle the code with casts of dubious validity.

Java provides ArrayList and HashSet that can be used rela-
tively easily to implement OCL’s Sequence and Set collections.
LinkedHashSet can be used for OrderedSet once a bug-fixing
equals overload is provided to ensure that differently-ordered con-
tents are not equal. There is no Java counterpart for Bag. jfOCL can
exclude Bag or provide a custom helper type.

5.4.7 Compatible Value Representation. One of the many chal-
lenges in implementing an OCL tool is the lack of a specification
of the surrounding environment. OCL is an add-on to an existing
system with which OCL must co-exist. There may therefore be
three distinct representations of the same value. So considering a
Set of Integer and EMF as an example surrounding environment,
the usage may need to be

o SetValue for use in OCL support helpers
o Set<Biglnteger> when interacting with a Java routine
e EList<EInt> when interacting with EMF

The transliterator must track the prevailing representation of
each passed value and invoke conversions whenever necessary.

5.4.8 Conformance, Inheritance, OclAny, OclVoid. OCL supports
type conformance whereas Java supports single-class, multiple-
interface inheritance.
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For most types conformance and inheritance are the same, but
OCL adds a conformance from all classes to OclAny and from
OclVoid to all classes.

UML(8] (and Ecore) metamodels may use multiple-class inheri-
tance. The EMF[2] support uses distinct interface and implemen-
tation classes so that the interfaces accurately model the multiple
inheritance. The implementation classes can only inherit one imple-
mentation and so the auto-generation re-implements all additional
inheritances to create the illusion of true multiple-class inheritance.

Helper functions for OCL conformance cannot rely on Java’s
reflection capabilities so custom metadata may be required.

jfOCL may choose to prohibit multiple inheritance and not sup-
port OclAny or OclVoid.

5.5 Null

OCL’s null is very similar to null in Java.
Difficulties can arise if the implementation of a type such as an
enumeration fails to provide for a null value.

5.6 Operation

A distinct Java function can be provided for every OCL operation.
This makes it more likely that OCL semantics are used throughout,
but incurs a significant coding effort. It is therefore desirable to
use pre-existing Java implementations wherever possible with the
occasional wrapper to ensure appropriate semantics.

There are however some notable function/operation inconsis-
tencies.

5.6.1 Boolean Short-Circuiting. Many languages provide a short-
circuit capability for Boolean operations whereby in, for instance
a && b, no attempt to evaluate b occurs if a is false. If evaluation
of a crashes, the overall evaluation crashes.

OCL specifies commutative Boolean operations, which allows
the OCL evaluation of a and b to evaluate its inputs in any order or
concurrently. If the earliest input evaluation crashes and is invalid,
but then the later input evaluation is false, the crash of the earlier
term is ‘uncrashed’.

This very different semantics prohibits the simple transliteration
of and to &&. A helper operation can support the OCL-and semantics
in Java. Since the helper requires invalid input values, the caller
must ensure that any Java exceptions are caught.

The OCL validity analysis [17] enables the inconvenient com-
mutated short circuit use case to be detected and rewritten so that
regular Java exception semantics can be used.

5.6.2 Indexes. Java follows the tradition of implementation lan-
guages with arrays and lists using 0-based indexes. Conversely
OCL follows the specification tradition of 1-based indexes. Java
operations that take an index argument have an easily resolved
semantic incompatibility. The transliterator must convert the index
base at some point taking care to convert exactly once.

5.6.3 Implicit Operations. OCL uses dot navigation for object nav-
igation and arrow navigation for collections. Additionally, OCL
defines an arrow navigation for objects that is equivalent to an
invocation of oclAsSet and a dot navigation for collections that is
equivalent to invocation of a collect() iteration. These implicit
invocations are expanded by the OCL analyzer as it creates the
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AS. A transliterator that ignores the AS must replicate the analysis
that in some cases must accurately resolve types to distinguish
whether for instance myAggregate.name is an implicit collect of a
user collection type or a simple navigation of a regular class.

Java does not (yet) have null-safe navigation and so an imple-
mentation of OCL that provides null-safe operators [15] must again
replicate the synthesis that the analyzer performs when synthesiz-
ing the ASG.

5.7 OCL-specific

Some OCL concepts have no direct Java counterpart.

5.7.1 Tuple. InJava a primary type such as MyClass<T>is declared
once. Its specialization such as MyClass<String> may be ‘declared’
many times with each re-‘declaration’ sharing the same specialized
type.

OCL does not declare types at all; types are declared elsewhere in
some metamodel. Usage of the collection types such asBag(String)
behave in a similar way to a Java specialization, perhaps confirming
that the magic behind the underspecified T that parameterizes them
should be modeled as a UML TemplateParameter.

An OCL Tuple type has no unique declaration, rather each repe-
tition of the same set of {name,type} pairs is the same type. Java has
no corresponding dynamically constructed type, so a code genera-
tor must pre-analyze the OCL to aggregate all Tuple declarations
and create a conventional Java class for each distinct Tuple type.

Alternatively jfOCL may prohibit Tuples.

5.7.2  ocllsKindOf(), oc[Type(), reflection. As noted in Section 5.4.8
OCL uses conformance rather than inheritance and while the con-
cepts are similar there are subtle differences that oc1IsKindOf ()
and oc1IsTypeOf () must respect.

OCL’s oclIsKindOf () is similar to instanceof in Java, and
oclType() is similar to Java’s getClass() however they operate
on different type systems. The OCL calls use modeled types where
Java uses Java classes. Sometimes these are the same, but more
often they differ. In Ecore there is typically a distinct interface and
implementation Java class for each modeled class. Any multiple
inheritance in the model is respected by the interfaces but only
emulated by the classes.

Helper functions for oc1IsKind0f () and oclType() must re-
spect the OCL type conformance relationships. An implementation
can provide tables to facilitate efficient access. These tables may
support full reflective capabilities rather than the very partial form
specified for oc1Type().

5.7.3 ocllsNew() and @pre. OCL’s oc1IsNew() and OCL’s @pre
may only be used in post-conditions in order to contrast the sys-
tem state on entry and exit states of an operation. This has no
counterpart in Java and implementation of a helper is hard.

This is a difficult corner of the OCL specification that jfOCL may
reasonably choose to skip.

Eclipse OCL[3] with an emphasis on execution has no execution
capability for oc1IsNew() or @pre. No user has reported this bug.

USE[12] has an emphasis on simulation and a custom model
framework with built-in oc1IsNew() and @pre. This is able to sup-
port a ‘filmstrip’ [1] of system states.
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In principle, the support for two system states, may require the
operation entry code to have a complete copy of the system state.
This can be difficult and expensive, but is only necessary when
the post-condition’s @pre access involves a cascade of collection
operations that are too complex to analyze. In practice, the @pre
accesses are often trivial making an on-entry copy simple.

5.8 Model / UML-specific

OCL provides some unique capabilities associated with its support
for models.

5.8.1 alllnstances(). OCL’s allInstances() has no counterpart
in Java. The deficiency can be remedied by a helper function that
traverses the transitive closure of the containment and reference
relationships starting from a single seed model element. This as-
sumes that the Java objects have sufficient context to reflect on
the metamodels that define the Java classes. EMF provides this
capability.

A naive helper implementation may perform a total model search
for every allInstances() call. A better implementation may start
with a metamodel analysis of the OCL to determine the typically
small number of calls that can occur followed by a model analysis
to determine all required allInstances() in one model traversal.
This may be performed as part of the initial model loading or lazily
when the first call occurs.

5.8.2  Unnavigable Opposites. OCL’s navigation to unnavigable and
sometimes implicitly named opposites again has no counterpart
in Java and like allInstances() can be remedied by a helper
function that traverses the whole model searching for the solutions.
Again, like allInstances(), a naive implementation may be very
costly, but a better implementation may use a metamodel analysis to
discover all the X: : y unnavigable opposites actually in use so that
a single traversal of the model can populate a cache of {X -> X::y}
for constant-time cost during execution. These analyses can be
performed at the same time as the allInstances() search.

5.8.3 Stereotype. Normal OCL usage involves developing a typi-
cally M1 metamodel that constrains the corresponding M0 instances.
OCL constraints are written against the metamodel and evaluated
on the model.

UML Stereotypes provide a confusing ability to merge exten-
sions into the M1 metamodel classes. The extensions are defined
in the M2 metametamodel. OCL constraints are written against
the metametamodel and evaluated on the M1 metamodel to verify
consistent extension usage.

When a Stereotype provides an additional property P: :p, it is
accessed by an M2 constraint as aY.extension_P.p. However at
MO, the Stereotype is logically folded into the extended instance
and so the access may be aY.p. How this folding actually occurs
is dependent on the model support. For EMF-based UML2Ecore,
the properties are folded in as regular properties subject to spelling
adjustments to avoid clashes. For UML, the run-time is a little vague,
but probably the property is not folded, rather the missing Stereo-
typeApplication metaclass that lies behind the XMI magic, needs to
be reified to support accessing the stereotype application as a sub-
object. Whatever, the transliterator must choose and parameterize
an appropriate helper to perform the property access.
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6 CODE GENERATION SYNTHESIS

We have identified the near-impossibility of a sentence-by-sentence
transliteration and so we now describe a few synthesis considera-
tions for a code generator. The code generator uses the Abstract
Syntax Graph as input and so has an accurate representation of
what needs to be done; all intermediate expression types are known,
synthetic operations such as safe navigation and implicit collect
have been elaborated, implicit iterator variables have been created
and names resolved appropriately.

6.1 Name Synthesis

The initial implementations of new tools are rarely bug free, conse-
quently users as well as developers may need to study the generated
code to understand what has gone wrong, and perhaps to find a
workaround for a bug. This study is eased if the code is pleasantly
formatted and if the names are easily related to names that are
already familiar to the user.

Mindless re-use of names from metamodels and OCL can fail
through use of reserved words, multiple use of the same name or
differential name occlusion between Java and OCL.

These failures can be resolved by accurately tracking the names
visible in each synthesis scope and generating names that avoid
clashes. The user’s names can provide hints to which prefixes or
suffixes are applied to clarify roles and avoid clashes.

6.2 Loop Synthesis

It was noted in Table 2 that while OCL’s forall looks rather like
Java’s for, a more complex text template is needed. The following
text template can be used for iterations other than closure() that
merits a dedicated handler.

declare-result;

{
declare-and-initialize-iterator(s);
declare-and-initialize-accumulator;
while (true) {
if (iteration-done) {
assign-result-from-final-accumulator-value;
break;
}
advance-iterator(s);
execute-iteration-body-and-assign-to-accumulator;
}
}

For the common single iterator iterations, it is well worth gen-
erating inline Java to reduce control overheads. For less common
iterations such as sortedBy or multi-dimensional iterations, it may
be appropriate to realize the text template by virtual function calls
to a polymorphic loop manager and to pass the body as an anony-
mous function.

6.3 Code Generator Model and Optimization

The Abstract Syntax Graph is a good model of the OCL semantics,
but somewhat distant from the Java semantics. A Code Generator
may therefore choose to transform the OCL ASG into a more Object-
Oriented CGM (Code Generator Model) from which generation
of Java or C or some other language is much easier. In the ASG,
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Concept Eclipse OCL jfOCL
iterator shortforms supported prohibited
Java reserved words supported prohibited
invalid supported crash always
Bag supported prohibited
Integer/Real polymorphic distinct
OclAny supported prohibited
OclVoid supported prohibited
UnlimitedNatural supported prohibited
oclIsKindOf() supported prohibited
oclType() supported prohibited
and/or commutative | short-circuit
alllnstances() supported prohibited
unnavigable opposites supported prohibited
qualified navigation supported prohibited
qualified associations supported prohibited
qualified navigation supported prohibited
Tuples supported prohibited
stereotypes supported not supported
@pre, oclIsNew() not supported | prohibited

Table 2: Simplification Options

every expression term can return a value. In the CGM, every not-
inlined expression term may return a Static Single Assignment
variable facilitating a synthesis that can always refer to a variable.
The expression terms include many extra terms to cast to known
types, guard against nulls and convert between representations. The
substantial support code to provide conformance tables, or implicit
opposite caches can be reified in the CGM reducing the complexity
of the eventual CGM to text model-to-text transformation. For
Eclipse OCL a further CGM to JavaModel to JavaText intermediate
is planned.

Once a sensible CGM is in use, support for optimizations such as
Common Subexpression Elimination, Constant Folding and Loop
Hoisting follows naturally. The Validity Analysis [17] is a significant
extension to Constant Folding that once integrated should identify
many more candidates for Dead Code Elimination.

7 JAVA-FRIENDLY OCL

While describing the various challenges, we have identified devia-
tions from specified OCL that a hypothetical fOCL might adopt in
order to avoid the complexity of a full OCL analysis and subsequent
synthesis.

A potential OCL tool vendor may reasonably ask why it is so
hard to develop OCL tools. We have provided some of the answers

e poor quality of the specification
e lack of standard surrounding model access
e subtly distinct semantics from Java

Each of the simplifications summarized in Table 2 enables a
jfOCL to be more like Java making the jfOCL2java transliteration
easier, but if too many are adopted there must be a question as
to whether too much of OCL has been discarded. Many of the
original advantages of OCL such as compact collection cascades
and iterations have been diminished by the advent of Java streams
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and lambdas. Perhaps it would be better to devote the development
effort to providing a better library of helpers for regular Java use
and possibly some annotation magic to facilitate model-oriented
use.

Revisiting Figure 1, the outstanding advantage of OCL is its
potential for provable correctness. Discarding too much of OCL may
not only reduce the richness but also undermine the correctness.
Once this happens, OCL becomes pointless.

8 RELATED WORK

This paper revisits Willink [14] in which "An extensible OCL Virtual
Machine and Code Generator" was presented. It probably remains
as the only extensible code generator for ‘full’ OCL (and QVTc and
QVTr). Ten years on, the emphasis on a VM is clearly misleading
hype. A VM suggests a JVM-like byte code interpreter, which is
possible, but something of a premature optimization. The XMI
serialization of the OCL ASG is more appropriate. Compacting it to
byte code while saving on file size would needlessly lose readability
when debugging. In this paper we draw on 10 years evolution to
explain why a ‘full’ code generator is hard so that other authors
can fully appreciate the challenges they face.

Many authors have provided a partial OCL code generator demon-
strating good characteristics aligned with some research goal. Omis-
sion of OCL facilities such as oclIsNew(), @pre, alllnstances(), States,
Messages and even Tuples and opposites is common, but in many
cases this just represents a pragmatic reduction of scope to facil-
itate research; these omissions can be rectified by a little more
work. Failure to address unbounded numerics, numeric equality,
null/invalid propagation, nested Collections and oclType() is a more
fundamental challenge to some of the approaches.

Wilke[13] describes a reworked Java generator for Dresden OCL
based on parameterized fragments. Aspect] is used to support model
access in Java models. However many Java types are used directly
and so functionality is limited to Java-like semantics for numeric
range and equality.

Heidenreich[5] describes a Dresden OCL generator for SQL based
on identifying typical patterns of database usage. It is not clear that
this is able to handle arbitrary OCL or OCL that fails to exhibit
SQL-like characteristics.

Egea[4] describes a MySQL generator to avoid the heavy over-
head of loading a large model into an OCL tool. Stored procedures
are used to realize the iterations that are common to many typical
applications. The procedures are then executed within an SQL data-
base. This is an interesting deployment option but does not help
with full-functionality OCL code generation.

Shidqie[11] introduces Imperative Ecore as an intermediate model
to separate OCL restructuring and Java formatting concerns, but
ignores non-Java-like aspects such as unbounded numbers.

Moiseev(7] takes a more progressive transformational approach
realized as rewrites in Maude. This is clearly beneficial when sup-
porting multiple target languages, unfortunately it ignores the
awkward aspects of OCL.

More recently Lano[6] has used some powerful rules to create a
remarkably small transliterator from OCL to Swift. It is not clear
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how this approach avoids the need for an overall analysis, how ex-
tensive the library of helpers is, or how the reference and ambiguity
resolution of a traditional OCL analyzer is replicated.

9 CONCLUSION

We have identified how the ‘friendliness’ of OCL’s shortforms re-
quires significant semantic analysis to enable an appropriate expo-
sition in the semantics of another language.

Since the results of this analysis are available in the OCL Abstract
Syntax, we conclude that synthesis of code from the semantically
resolved AS can be accurate. In contrast, full transliteration is only
possible if the standard CS to AS conversion is duplicated within
the transliterator.

We have enumerated many of the OCL facilities such as opposite-
navigation, unbounded-integers and invalid that are inconvenient
to code generate so that OCL-like implementers can determine
which inconveniences to omit in their ‘Java-Friendly OCL’.
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