
Support for OCL Libraries and Static Features
Edward D. Willink
ed_at_willink.me.uk

Willink Transformations Ltd.
Reading, Berks, England

ABSTRACT
Libraries provide a powerful re-use capability allowing developers
of one application to exploit the developments of others. Sadly, OCL
has no first class library capability and attempts to use available
capabilities have not led to any re-usable libraries. Problems include
lack of support for imports, foreign language calls, object creation,
maps and inadequate specification of static features. We combine
previous and new resolutions prototyped in Eclipse OCL to make
libraries feasible.

KEYWORDS
OCL, Library, Native Call, Code Generation, Static Feature
ACM Reference Format:
Edward D. Willink. 2022. Support for OCL Libraries and Static Features. In
ACM/IEEE 25th International Conference on Model Driven Engineering Lan-
guages and Systems (MODELS ’22 Companion), October 23–28, 2022, Montreal,
QC, Canada. ACM, New York, NY, USA, 7 pages. https://doi.org/10.1145/
3550356.3561540

1 INTRODUCTION
Libraries provide a powerful mechanism for providing re-use. The
extreme polymorphism of Java’s Object and Collection classes and
the consequent ease of use demonstrates how libraries can create
a virtuous adoption cycle. In contrast, C++ was overtaken as its
Standard Template Library arrived over ten years late and was
compromised by a need to support bare arrays as collections. In
further contrast, OCL has only a built-in library and few users.

The obvious utility of libraries has prompted authors [1],[3] to
query where the OCL math library is. There is no answer. In this
paper, we review the inadequate support for libraries and then
provide the technology to support them. We will find that the non-
Object Oriented style of typical mathematical operations requires
the semantics of static features in OCL to be resolved.

OCL 2.0 [8] attempts to formalize the intuitive obviousness of
OCL 1.x with the aid of models. Unfortunately the formalization
never progressed beyond the draft stage and so whenever we look
too closely at OCL 2.0 we find incompleteness and inconsistency
[18]. The Abstract Syntax model omits critical classes such as
VariableDeclaration. There is no model of the library, just many
well-intentioned partial specifications.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
MODELS ’22 Companion, October 23–28, 2022, Montreal, QC, Canada
© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9467-3/22/10. . . $15.00
https://doi.org/10.1145/3550356.3561540

Figure 1: OCLstdlib model example.

In [14], Eclipse OCL [5] introduced a model and grammar for
the OCL Standard Library supported by an Xtext editor. The li-
brary model declares the library types and their features including
template parameters.

Figure 1 shows part of the declaration of the MapTypewith K and
V template parameters. An iteration with a V2 template parameter
and an operation are also shown. The operation demonstrates the
fairly strong modeling identifying that the templated argument
and return may be null. Additionally the invalidating keyword
indicates that the result may be invalid. The iteration declares its
potentially null parameter followed by its body typed as a lambda-
expression1. The return is a non-null map of potentially null keys
and values.

The figure also demonstrates using java.util.Map for the na-
tive implementation of the type, and using a custom helper class for
each operation and iteration. The helper classes use polymorphism
to dispatch OperationCallExp::referredOperation rapidly.

Once the OCL Standard Library was modeled, it was possible
to separate the OCL Language from the OCL Standard Library
allowing a user to provide an alternate or extended library imple-
mentation. It was also possible to define additional libraries. A few
JUnit tests demonstrated the principle within Eclipse OCL, however
an attempt to write a tutorial to show users how to exploit the poten-
tial of an additional library demonstrated that the implementation
was not ready for prime time2.

We first review the ergonomic issues to be solved in Section 2
then in Section 3 we examine a few examples that motivate exploit-
ing static features whose semantics we examine in Section 4. In
Section 5 we describe the status of this work and in Section 6 we

1The bodies of iterations are lambda expressions in all but name.
2https://bugs.eclipse.org/bugs/show_bug.cgi?id=415146

https://doi.org/10.1145/3550356.3561540
https://doi.org/10.1145/3550356.3561540
https://doi.org/10.1145/3550356.3561540

MODELS ’22 Companion, October 23–28, 2022, Montreal, QC, Canada Edward D. Willink

take static properties further. Then in Section 7, we look at other
work, before concluding in Section 8.

2 LIBRARY ERGONOMICS
In order to make a library useful we need to solve four problems
for the user.

• import the library of declarations
• specify the library declarations
• implement each library declaration
• invoke a specific library declaration

2.1 Import
The OCL specification [11] defines a language that can usefully
constrain models, but does not specify where the models come from.
This provides considerable flexibility but has prevented vendors
from providing a general solution. Each tool has its own proprietary
solution to solving the relationship between the OCL programming
and the models with their metamodels.

Complete OCL comes closer to being complete in so far as the
specification defines a self-standing document with a grammar that
can complement a model. However a practical implementationmust
either add some form of import statement to allow the Complete
OCL document to reference its complemented models, or operate
in a pre-loaded context with ready to-go models.

A similar import statement or pre-loading will be needed to
exploit a library of declarations. This should be just a variation of
a proprietary facility that we do not need to address further here.
Eclipse OCL supports an import such as:
import 'https://git.eclipse.org/r/plugins/gitiles

/ocl/org.eclipse.ocl/+/refs/heads/master/plugins
/org.eclipse.ocl.pivot/model/Types.ocl'

2.2 Declare
A Complete OCL document, a UML model or Eclipse OCL’s Stan-
dard Library model provide adequate mechanisms for declaring
many, but perhaps not all, declarations. A minimal maths.ocl sup-
porting just the tan operation could be declared as3:

package maths
context Real
def: tan() : Real = ...
endpackage

2.3 Implement
OCL is probably Turing complete, see Section 7.1, so it is in principle
possible to implement any library functionality in OCL and embed
that implementation as the body of a Complete OCL declaration.

However few users will be keen to transliterate existing imple-
mentations from their favorite language in order to use themwithin
OCL. We therefore have a vicious circle whereby the lack of any
OCL libraries imposes a significant barrier to development of any
OCL libraries.

Even if a good algorithm for tan is available, there may be Intel-
lectual Property issues that prevent its re-use. The transliteration

3 ... denotes functionality that has been omitted in order to focus on a relevant issue.

must be tested for interesting corner cases. Transliteration alone is
not sufficient.

OCL needs a mechanism to enable re-use of an implementation
already available in a foreign language.

2.4 Invoke
If the imported library declarations integrate well with other OCL
declarations, the existing call capabilities should be re-usable.

2.5e1.tan()

However when we come to implement the library declaration we
find that we have just moved the problem sideways; we still need
a mechanism to invoke a foreign language implementation. (And
once we provide a foreign language call, we don’t need a library at
all.)

A generalization of an existing solution can solve this call prob-
lem too. The existing problem arises when the surrounding OCL
context fails to provide an ‘import’ for MyPackage as in:

...oclIsKindOf(MyPackage::MyClass)

The existing solution exploits the _'...' escape mechanism for
identifiers with awkward characters. A URI-qualified name can be
specified as:

...oclIsKindOf(
_'http://org.my.spec/2022#MyPackage'::MyClass)

We can generalize this to exploit a Java String function that the
OCL String type does not support as:
thisString.

_'java:java.lang.String.compareToIgnoreCase'
(thatString)

The escaped name specifies a java language scheme followed by
a Java-specific java.lang.String.compareToIgnoreCase fully
qualified name.

The names are unpleasantly long, requiring multiple lines for
this paper, but at least they can work for object methods with
compatible types.

Once we support the invocation of arbitrary Java operations, we
undermine the guarantee that OCL is side-effect free. The author of
a foreign operation call is ultimately responsible for guaranteeing
that the called operation is side effect free. Section 6.3 discusses
enforcing the guarantee.

3 EXAMPLES
We have so far considered tan as an example. We will now change
to looking at the syntactically more challenging pow before moving
onto look at Complex numbers and then Employee::uniqueId().

3.1 Math.pow
Most languages support a functional call of tan as tan(2.5e1) or
tan 2.5e1 rather than the Object-Oriented 2.5e1.tan() which
can be supported by declaring a regular Real::tan() operation.
This OO style is strange if wewant pow(2, 4) rather than 2.pow(4).

An OO style is not actually necessary since OCL 2.2 [9] added
support for a static keyword when declaring operations and prop-
erties.

We may therefore provide a minimal maths.ocl as

Support for OCL Libraries and Static Features MODELS ’22 Companion, October 23–28, 2022, Montreal, QC, Canada

package maths
context Real
static def: pow(mant : Real, expt : Real) : Real

= _'java:java.lang.Math.pow'(mant, expt)
endpackage

This can support the call from regular OCL as
... maths::Real::pow(2, 4) ...

If the proprietary import mechanism exposes the contents of
the maths package, the maths:: qualification and perhaps even
the Real:: qualifications can be omitted giving a more optimal
exposition for the call.

While OCL 2.2 added the static keyword to the grammar, it is
hard to characterize the change as more than a me-too catch-up to
align with UML static features. Very little run-time semantics was
provided for OCL, and there is little to infer from UML [13]. Section
7.5.10 of the OCL specification provides an example that we shall
see in Section 3.3 is not fully implementable in OCL4. Whether and
how static is supported is down to the enthusiasm of the OCL
tooling implementer.

It may be noted that Ecore [4] has no support for static fea-
tures, so that if a UML model with static feature is converted using
UML2Ecore, the static keyword is ignored.

Using an OO style:
... 2.pow(4) ...

may workaround the absence of support for static in the gram-
mar, but the underlying Java function is static so internal support
for foreign static calls is unavoidable.

For the semantics of static operations, intuitive common sense
seems adequate. For static properties we need to clarify the se-
mantics in respect of when a ‘new’ static instance is created and
initialized. See Section 4.

Once we have a foreign call syntax, the user has a choice. The
foreign calls can be used directly avoiding any need for a library
at the expense of some clumsiness in the call expressions. Alterna-
tively the foreign calls may be hidden within a library that provides
friendly declarations that delegate to the foreign call.

In practice development/prototyping may use the direct call and
evolve to use the more readable library delegation.

3.2 Complex
The foreign call delegation for pow can be appropriate when the
types are simple and when the implementation is too complicated
to re-implement.

But consider a Complex class, which strangely Java does not
provide. Even if there was a Java implementation, we might choose
to re-implement since Complex is rather simple. Except that we
cannot, since, in general, addition of two complex numbers creates
a new complex number. OCL provides no new capability since con-
struction of a new object creates a side effect in the memory system.
This can be seen by considering how a new capability might work:
new Complex{real=2,imag=3} = new Complex{real=2,imag=3}

4Diligent readers of the OCL specification may find a StaticValue class that is nothing
to do with the static declaration of a feature. Rather it is a confusing throwback to
when UML 1.x referred to the embedded DataType-typed attribute slots of an instance
as its static structure.

Obviously two same-valued complex numbers should be equal;
this is the UML DataType semantics. But if Complex is a Class,
each call to new creates a new instance; they should therefore be
different in accordance with UML Class semantics. (Java provides
alternative = and equals facilities that allows a free and confusing
choice of DataType or Class semantics.)

The problemwith newwas discussed at the Aachen workshop [2]
where the helpful term ‘shadow’ object was coined for the solu-
tion [16].

In principle, let all possible instances of all possible classes have
a permanent shadow existence, so that whenever the Tuple syntax
is used to ‘create’ an object, the appropriate shadow instance is
returned avoiding the side effect. Rewriting our example:
Complex{real=2, imag=3} = Complex{real=2, imag=3}

the two creations each return the same immutable shadow object
and so the equality is satisfied.

In practice, creation of all possible instances of all possible classes
will run out of time andmemory long before any useful computation
can be performed. Each required shadow instance must therefore
be created lazily.

This shadow object ‘creation’ is exactly what is needed to enable
a library to support the operations of a Complex type.

context Complex
def: real : Real
def: imag : Real
static def: new(real : Real, imag : Real) : Complex

= Complex{ real = real, imag = imag }
static def: add(x1 : Complex, x2 : Complex) : Complex

= Complex{
real = x1.real + x2.real,
imag = x1.imag + x2.imag

}

3.3 Unique id
Section 7.5.10 of the OCL specification provides half an example
demonstrating how the static Employee::uniqueID operation can
be used to provide a unique ID for each Employee.

context Employee::id : String
init: Employee::uniqueID()

Lazy (Java) Solution.

private static int counter = 0;
public static String uniqueID() {

return Integer.toString(counter++);
}

As shown above, Employee::uniqueID can easily be realized in
Java by defining a static counter for the IDs and incrementing the
counter for each invocation.

An alternative eager approach in which all IDs are allocated
together is awkward since it requires access to all instances that
may need IDs. This includes those instances that are yet to be
created.

Eager (OCL) Solution.

static context Employee::insts : Sequence(Employee)
init: Employee::allInstances()->asSequence()

MODELS ’22 Companion, October 23–28, 2022, Montreal, QC, Canada Edward D. Willink

context Employee::uniqueID() : String
init: insts->indexOf(self).toString()

context Employee::id : String
init: Employee::uniqueID()

The lazy approach cannot be written in OCL since the updates
to the static counter constitute a side effect that is illegal in OCL.
The eager approach above is possible since allInstances() can
find the instances and since the lack of side effects guarantees that
no later creation of instances can occur.

The static Employee::insts property is initialized once with
a sequence of all Employee instances. Thereafter each access of
the Employee::uniqueID() operation is able to compute a dis-
tinctive self-dependent value by searching for the index of self
in Employee::insts. The derived Employee::id() property del-
egates to Employee::uniqueID() for the first access. Subsequent
accesses should benefit from a cache.

It seems unreasonable that the simple efficient lazy approach
cannot be written in OCL. The semantics of static OCL features
is unspecified, so there are opportunities for a resolution. Perhaps
the initializer for a static property should be re-evaluated for each
access. Alternatively the semantics could be refined so that the
init initializes on the first access and a der updates on subsequent
accesses. This would allow the count to evolve, but an unstable
static property seems deeply suspect.

It also seems unreasonable that further instances cannot be cre-
ated after some unique IDs are allocated. But for pure OCL, this
is not a problem since OCL has no ability to assign or mutate; the
counter with its incrementing value cannot exist. Once OCL is em-
bedded, perhaps in QVTo [12], the imperative capabilities allow
successive assigns and so the lazy approach can work. Alternatively
when embedded in a strongly declarative context such as QVTr, all
instances exist before the ‘atomic’ transformation completes and
so it is just a scheduling challenge for the tooling to assign the IDs
to the output in a timely fashion that satisfies the write/read depen-
dencies. For pragmatic OCL enriching a model, it is the modeling
environment’s responsibility to reset all caches before each exe-
cution of some OCL-defined functionality; allInstances() must
be ‘recomputed’ each time the modeling environment makes a
significant change to the system state.

Unfortunately the indexOf() in our solution contributes to a
quadratic implementation cost. We can linearize the cost by using
a Map [17].
static context Employee::inst2id : Map(Employee,String)

init: let insts = Employee::allInstances()
->asSequence()

in insts->collectBy(e with i | i.toString())
context Employee::uniqueID : String

init: inst2id->at(self)
context Employee::id : String

init: Employee::uniqueID()

At start up, or first access, the Employee::inst2id initializa-
tion computes the sequence of allInstances() to the insts let-
variable. The collectBy() collection-to-map iteration then popu-
lates the map result from an iteration over all the instances. The
iteration declares, but does not directly use, the primary element
iterator e. It also declares the co-iterator i, which provides the

index of the primary iterator in the ordered source collection. The
co-iterator provides the same value as insts->indexOf(e) with-
out the need to re-compute what the iteration evaluation already
‘knows’. Each map entry is keyed by the iteration element e and
maps to the iteration body i.toString().

We can see that provision of globally coherent static facilities is
much easier when each per-element property can be cached as an
entry in a static global Map.

4 FEATURE SEMANTICS
The OCL specification does not define the semantics of static fea-
tures, perhaps because the semantics is too obvious. But is it? We
can answer this by reviewing the semantics of non-static features
for which the specification is rather thin.

OCL supports two kinds of feature:
• Regular features declared in a UML / Ecore / ... metamodel
• Additional features declared in a Complete OCL document

4.1 Regular Features
Regular features are provided and maintained by the modeling
environment to which the OCL contributes. When objects are cre-
ated/deleted or properties initialized/updated is nothing to do with
OCL. The modeling environment may implement and must refresh
caches as appropriate.

Themodeling environment may invoke an OCL expression when
initializing a property. How an OCL expression evaluation accesses
a slot is unspecified. But obviously it must route the access through
the modeling environment to ensure that any access protocols are
observed.

A modeling environment may similarly invoke an OCL expres-
sion when evaluating an operation. How an OCL expression may
invoke an operation is also unspecified. Logically it should do
so via the modeling environment, which would allow the mod-
eling environment to implement the virtual dispatch policy that
is not specified by OCL5. However operations are modeled using
an ExpressionInOCL to provide bindable parameters so there is a
clear intent that OCL should be able to invoke at least OCL opera-
tions directly. Eclipse OCL does this and applies a Java-like virtual
dispatch.

4.2 Static Regular Features
For regular features, the static keyword in OCL may just echo
the corresponding declaration in UML to ensure that a Complete
OCL complement complements the correct feature. (Ecore does not
support static features.)

With the modeling environment responsible for providing and
maintaining the static features, the modeling environment is also
responsible for their usage.

For OCL purposes, use of staticFeature can be regarded as just
syntax sugar for dummyObject.staticFeature saving the user the
need to provide a suitable dummyObject that will be ignored by the
execution. Use of self within a static feature initializer or body
should be a Well-Formedness Rule violation.

5For UML, the lack of a virtual dispatch specification is worked around by defining all
the overrides as redefinitions.

Support for OCL Libraries and Static Features MODELS ’22 Companion, October 23–28, 2022, Montreal, QC, Canada

4.3 Additional Features
A Complete OCL document may complement pre-existing oper-
ations and properties by defining missing bodies and initializers.
It may also extend pre-existing classes with additional operations
and properties. These additions are specified to behave as regular
features. This is necessary to avoid new forms of PropertyCallExp
and OperationCallExp in the Abstract Syntax, but with the addi-
tional features not actually part of a regular model, it is unclear
where the target of a PropertyCallExp.referredProperty may
be found.

It is not clear if the modeling environment is aware of the addi-
tional features, so it is unclear whether additional properties are
lazily or eagerly initialized. There is no doubt that the additional
operations are only invokable from OCL expressions within the
transitive closure of Complete OCL documents that import the addi-
tional feature definition. Whether caches should be used is neither
specified nor configurable.

4.4 Static Additional Features
OCL provides no mechanism to update a property value, so an
additional static property is almost useless. It can only be a constant
since nothing is able to change it. It cannot contribute useful system
state. However the good practice of localizingmagic constant values
behind a symbolic name can be supported:
context Real
static def PI : Real = 3.14159265359

A static additional operation is also rather boring. It differs from
a non-static additional operation by requiring no access to a self
context, and no need to perform a virtual dispatch of overloads.
Although boring, we have seen in Section 3 that static operations
avoid the need for OO-style.

4.5 Summary
Static features have very limited utility. As with non-static features,
the structural functionality is provided by the modeling environ-
ment. OCL is just a client of what is available.

OCL provides facilities to initialize properties and variables, but
no ability to assign or re-initialize. In Section 6.2 we consider an
opportunity that arises if the ‘static’ keyword is permitted for a
Tuple part.

5 STATUS
The facilities described so far in this paper are all working as part of
JUnit tests for the development version of Eclipse OCL [5]. Addition
of support for interpreted execution was fairly straightforward.
However enhancing the OCL2Java code generator justified a code
refactoring. Each different style of operation and property access
was handled by an appropriate branch of a substantial if-tree. The
additional styles for static support and foreign access combined
with a lack of Ecore support pushed this style of coding too far. The
refactoring therefore reifies each different style via an appropriate
CallingConvention class. This refactoring is still in progress.

Once this refactoring is tested and released, the library tutorial
can finally be written and a maths library provided as a demonstra-
tion of the principles.

6 FURTHERWORK
The inability in Section 3.3 to provide the obvious implementation
of Employee::uniqueID is disappointing, but perhaps there are
solutions that do not stretch OCL semantics too far.

6.1 Lazy Maps
The solution in Section 3.3 uses a global map to provide overall
coherence. A similar functionality could be provided if there was
an additional operation for Map(K, V).
operation lazyAt(key: K, init: Lambda K() : V[?]) : V[?]

If the map already contains an entry for key, the corresponding
value is returned just like Map::at(key). If there is no entry, one
is created using the init lambda expression to define the value for
the new key. The lazy OCL solution could then be:
static context Employee::inst2id : Map(Employee,String)

init: Map{}
context Employee::id : String

init: inst2id->lazyAt(self,
inst2id->size().toString())

The Employee::inst2id is initially empty, and each access to
Employee::id uses lazyAt to provide a distinct value.

Employee::inst2id->size() can be accessed from anywhere,
with unstable results depending upon Employee::id access to oc-
currence. There is therefore an observable side effect. This is not
OCL.

6.2 Mutable Statics
Implementing the incrementing counter requires an ability to assign
diverse values to a variable. This is possible in OCL, but only for
the specific case of the result/accumulator of an iterate iteration:
myList->iterate(e; acc = '' | acc + ' ' + e.toString())

The multiple assignments to acc do not create a side-effect since
the acc is private to the iterate and only accessible on a per-
iterator basis in the body. The prevailing state of acc is not arbi-
trarily visible so the changes are not visible. acc is not part of the
observable side-effect-free system state.

The example above gives a consistent result, for an ordered
source, but could give diverse results if the source is a set. This is
not a side effect; it is a lack of determinism for which [15] provides
solutions.

If we could somehow generalize iterate to make each step
independent, we could re-assign to our unique counter rather than
acc, discount the unique counter from the observable system state
and similarly discount inconsistent step sequencing as a lack of
determinism.

There are other mechanisms of assignment in OCL
• let-variable initializer
• property / part initializer
• iterator initializer

but each is a single assignment. The assignment that occurs, when
for instance a new let-variable is created within a loop, is not a
re-assignment. Can any of these mechanisms be the basis of a
re-assignment?

It was noted in Section 4 that the semantics of statics are poorly
specified, so we could be more imaginative and allow private static

MODELS ’22 Companion, October 23–28, 2022, Montreal, QC, Canada Edward D. Willink

parts or properties to be changed by constructors as in the following
lazy OCL solution:
static context Employee::initTuple : Tuple(id : String)
init: Tuple{ -- Tuple constructor
static count : Integer = 0, -- private static part
id : String = null -- regular public part

}
context Employee::id : String
init: Tuple{ -- Tuple constructor
static count : Integer = count+1, -- private static
id : String = count.toString() -- regular public

}.id

At start-up, static Employee::initTuple creates an initial
Tuple(id : String)with a regular id : String part and a novel
private static count : Integer part initialized to zero.

Subsequently, each first invocation of Employee::id initializes
the employee-specific cache of the Employee::id property with a
new Tuple(id : String). The new Tuple re-initializes the novel
private static count : Integer part with an incremented value.
The regular id : String part is given a unique string value based
on the previous count. The new tuple ceases to exist once its id
part is accessed to initialize the Employee::id cache.

We call the static part a private part since it can only be accessed
by an expression within the constructor, and its value can only be
exported from the constructor via a regular part whose initializer
accesses the static part. Re-assignment of the static part can only
occur in the constructor, and can only be observed if the constructor
uses the private part to initialize a regular part. However this does
not guarantee no side-effects. We have to ensure that a re-execution
can never produce a different result, which is impossible when the
whole purpose is to have changes. We must therefore guarantee
that execution only ever happens once. This is already guaranteed
when the underlying implementation of an operation or property
uses a cache to avoid re-execution. This is a very good practice,
although not mandatory, for non-trivial operation bodies or prop-
erty initializers. For static parts we need execution to a cache to be
mandatory.

Construction of a shadow object re-uses the Tuple construction
syntax and so could reasonably apply the same policy to main-
tain/exploit the statics of a regular class.

6.3 Side-effect Free
A foreign feature call was introduced in Section 2.4 enabling OCL
expressions to exploit functionality already available in foreign
languages. In practice re-use of Java operations is very desirable.
However evaluation of an OCL expression must be side-effect free
and so any invocation of a Java operation such as List.add() has
a side-effect that may invalidate the use of OCL.

Introduction of a foreign language call is therefore a danger-
ous compromise between utility and validity. Can the danger be
mitigated?

Compile-time analysis of the invoked functionality will not gen-
erally be possible since Java has too many side-effecting mecha-
nisms and too many deep overload alternatives.

At run-time, comparison of the total system state before and
after a suspect foreign call is technically possible, but could be

unrealistically expensive. Less expensive in memory, but not time,
could be a comparison of a hash of the total system state.

A less ambitious comparison of shallow rather than transitive
state could be feasible to catch obviously unsuitable operations
such as List.add(). A database of known bad operations could be
gradually built-up, but progress would be slow since new entries
only appear after a programming violation.

Realistically, observing the no-side-effect rule must be the pro-
grammer’s responsibility. Configuring the Operation::isQuery
property in a UML model is of course already a programmer re-
sponsibility.

7 RELATEDWORK
The inadequacies of the OCL specification make it hard for authors
to do more than express enthusiasm for the concept of an OCL
library.

Baar [1] argues for a standard mechanism to support OCL re-use
but offers no solution.

Cabot and Gogolla [3] observe that the specified OCL Standard
Library is too large for new users, but inadequate for more expe-
rienced users. They identify the provision of OCL libraries as a
Research Agenda item.

Lano [6] enumerates at least eight different OCL libraries many
of which require an imperative extension to OCL.

Willink [14] introduces a model, grammar and editor for the OCL
Standard Library, but as noted in Section 1 this has not matured
sufficiently to support custom libraries.

At the 2016 OCLworkshop, a lightning talk by Cabot and Gogolla
called for a repository of OCL benchmarks, which could no doubt
also accommodate OCL libraries.

7.1 Turing Complete
Mandel [7] provided an early assessment of the expressive power
of OCL and cast doubt on its Turing completeness because an
infinite WHILE loop was neither feasible nor breakable. However
the authors overlooked the utility of Tuples.

An unbreakable iteration that computes some function f(e, acc)
at each step:

...iterate(e; acc : Acc = ... | f(e, acc))

may be rewritten with a Tuple to be breakable:

...iterate(e; acc2 = Tuple{
break : Boolean = false,
acc : Acc = ...

}
| if break then acc2

else Tuple{
break = ... ,
acc = f(e, acc)

}
endif

)

The data flow associated with the break part is very simple;
initially false, unchanging once true, never reset to false. Tooling can
easily recognize this to terminate promptly. Perhaps OCL should

Support for OCL Libraries and Static Features MODELS ’22 Companion, October 23–28, 2022, Montreal, QC, Canada

have a break value that may be returned during an ordered iteration
to abandon the current and all future steps.

A forever loop is awkward in OCL 2.0, but it can be achieved
by a function f() that recurses to collect the value of g() for each
loop element:

def: f(x : Integer, r : Set(Result)) : Set(Result)
= f(x+1, r->including(g(x)))

This will obviously run out of stack in a naive implementation.
As of OCL 2.3 [10] there is a closure iteration with which we can
write a infinite loop.

1->closure(e | e+1)

The closure can be broken after computing something useful by:
OrderedSet{seed}->closure(e |

if ... then e else e->including(...) endif)

For the harder case of a Sequence or Bag return, a first pass clo-
sure can compute the Sequence of Integers one per result followed
by a second pass to collect the required result for each iteration
index.

8 CONCLUSION
We have identified the inadequacy of the OCL specification as the
primary impediment to provision of OCL libraries. In resolving the
problems, we find that many facilities not clearly available in OCL
2.4 are necessary to make a library implementation possible.

• An import capability loads the library declarations.
• Static features facilitate typical non-OO usage such pow(2,4).
• Foreign operation calls allow direct re-use of e.g. Java.
• Shadow objects allow operations to return ‘new’ objects.
• Maps facilitate coherent all-instances functionality.
• Co-iterators eliminate gratuitous re-calculation.

and in future
• Mutable static parts support a typical counter idiom.

The introduction of foreign feature calls and the consideration
of static features is new to this paper. Other facilities have been
presented before, but their integration to make a custom library
feasible is again new to this paper.

REFERENCES
[1] Thomas Baar. 2011. On the Need of User-defined Libraries in OCL. (01 2011).

https://doi.org/10.14279/tuj.eceasst.36.447.451
[2] Achim Brucker, Dan Chiorean, Tony Clark, Birgit Demuth, Martin Gogolla,

Dimitri Plotnikov, Bernhard Rumpe, Edward Willink, and Burkhart Wolff.
2013. Report on the Aachen OCL Meeting. http://www4.informatik.tu-
muenchen.de/publ/papers/CKR+99.pdf.

[3] Jordi Cabot and Martin Gogolla. 2012. Object Constraint Language (OCL): A
Definitive Guide, Vol. 7320. 58–90. https://doi.org/10.1007/978-3-642-30982-3_3

[4] Eclipse EMF Project. [n. d.]. https://projects.eclipse.org/projects/
modeling.emf.emf.

[5] Eclipse OCL Project. [n. d.]. https://projects.eclipse.org/projects/
modeling.mdt.ocl.

[6] Kevin Lano and Shekoufeh Kolahdouz Rahimi. 2022. OCL libraries for software
specification and representation. In 22nd International Workshop on OCL and
Textual Modeling (OCL 2022). Montreal.

[7] Luis Mandel and María Cengarle. 1999. On the expressive power of pure OCL.
854–874. https://doi.org/10.1007/3-540-48119-2_47

[8] Object Management Group. 2006. Object Constraint Language Specification,
Version 2.0. https://www.omg.org/spec/OCL/2.0/PDF.

[9] Object Management Group. 2010. Object Constraint Language Specification,
Version 2.2. https://www.omg.org/spec/OCL/2.2/PDF.

[10] Object Management Group. 2012. Object Constraint Language Specification,
Version 2.3.1. https://www.omg.org/spec/OCL/2.3.1/PDF.

[11] Object Management Group. 2014. Object Constraint Language, Version 2.4.
formal/2014-02-03.

[12] Object Management Group. 2016. Meta Object Facility (MOF) 2.0
Query/View/Transformation Specification, Version 1.3. formal/2016-06-03.

[13] Object Management Group 2017. Unified Modeling Language, Infrastructure (ver-
sion 2.5.1, OMG Document Number: formal/17-12-05 ed.). Object Management
Group. http://www.omg.org/spec/UML/2.5.1/

[14] Edward Willink. 2011. Modeling the OCL Standard Library. (01 2011). https:
//doi.org/10.14279/tuj.eceasst.44.663.673

[15] Edward Willink. 2018. Deterministic Lazy Mutable OCL Collections. 340–355.
https://doi.org/10.1007/978-3-319-74730-9_30

[16] Edward Willink. 2018. Shadow Objects. In 18th International Workshop on OCL
and Textual Modeling (OCL 2016). Copenhagen.

[17] Edward Willink. 2019. An OCL Map Type. In OCL
2016: Workshop on OCL and Textual Modeling. Munich.
http://www.eclipse.org/modeling/mdt/ocl/docs/publications/
OCL2019MapType/OCLMapType.pdf.

[18] Edward D. Willink. 2020. Reflections on OCL 2. The Journal of Object Technology
19 (01 2020), 3:1. https://doi.org/10.5381/jot.2020.19.3.a17

https://doi.org/10.14279/tuj.eceasst.36.447.451
https://doi.org/10.1007/978-3-642-30982-3_3
https://doi.org/10.1007/3-540-48119-2_47
http://www.omg.org/spec/UML/2.5.1/
https://doi.org/10.14279/tuj.eceasst.44.663.673
https://doi.org/10.14279/tuj.eceasst.44.663.673
https://doi.org/10.1007/978-3-319-74730-9_30
https://doi.org/10.5381/jot.2020.19.3.a17

	Abstract
	1 Introduction
	2 Library Ergonomics
	2.1 Import
	2.2 Declare
	2.3 Implement
	2.4 Invoke

	3 Examples
	3.1 Math.pow
	3.2 Complex
	3.3 Unique id

	4 Feature Semantics
	4.1 Regular Features
	4.2 Static Regular Features
	4.3 Additional Features
	4.4 Static Additional Features
	4.5 Summary

	5 Status
	6 Further Work
	6.1 Lazy Maps
	6.2 Mutable Statics
	6.3 Side-effect Free

	7 Related Work
	7.1 Turing Complete

	8 Conclusion
	References

