“?  Tutorial on Sequence Diagrams in Papyrus MDT Version 0.1

Papyrus Tutorial:
How to use Sequence Diagrams in Papyrus MDT?

Editor LANUSSE Agnes, CEA LIST
Status First version

Version number 0.1

Date of preparation 26/08/10

[J 2010 The Papyrus Consortium 1/35



“#  Tutorial on Sequence Diagrams in Papyrus MDT Version 0.1

Authors
Editor name (first/last name) Company E-mail Initial
LANUSSE Agnés CEALIST agnes.lanusse@cea.fr AL
Authors name (first/last name) Company E-mail Initial

CEALIST SL

[J 2010 The Papyrus Consortium 2/35


mailto:scott.lee@cea.fr

“#  Tutorial on Sequence Diagrams in Papyrus MDT Version 0.1

Revision chart and history log

Version Date Reasons

0.1 10/08/26 First contribution.

[J 2010 The Papyrus Consortium 3/35



“?  Tutorial on Sequence Diagrams in Papyrus MDT Version 0.1

Table of contents

AAULNOTS. ...ttt e oottt e e oottt e oo e s ettt e e e e e et et e e e e b et e e e e e e e e e nnn s 2
Revision chart and NISTONY 10Q.......... i e e e e e e e e e e e e e e aeaeas 3
TaDIE Of CONTENES. .....eiiie ettt e et e e o et e e e s b et e e e ab et e e sab b e e e e et e e e eeeeeenaaan 4
1 _Introduction and initial steps............eeeviieiieiiiiiiiiiiiiii 6
1.1 GetliNg PAPYIUS. ..ccoieeiiiieiiiiiiiiiiiei i 6
1.2 Creating @ Papyrus project. . ..cc..eeeeeiiiinneiiiiiiiiiiiiiiiiiiiieiiiiiiiiie 7
1.3 Creating @ NEW MOAEL.....cceieeiiiiieiiiiiiiiiiiiii i 9

2 Creating a simple sequence diagram...........oeeeeeeeeiiiiiiiieiiiiiiieiiiiiiieeeieiiee s 11
2.1 ADdiNg lIfElNES. ...ceiieeiieiiiiiiiiiiiiiiiii e 12
2.1.1 Select LifelineToolin the palette..................coooeeeeveeeieiiieeieeiiiiiiiieeeiiiiiieeeeiiieeeee 12
2.1.2 Set properties in the Properties VIEW............c...eeeeeeeeevveeeeeiiiiieeeeiiiiiieeeeeeiieeeeeeieeeeeeeeeeen 12

2.2 Adding messages (basiC - aSYNCAIrONOUS).......eeeviiveeeiiiiiiiiiiiiiiiiiiiiiiiiiiiiieee 13
2.2.1 Select desired tool from the Palefte. ................ccccveeeieeeeeiieeiiiiieiiieiiiieeiieeiieeiieeiieeene 14
2.2.2 Select source and target POINES. .......c...ueeeeeisiiiiieiieee st 15
2.2.3 Select/Create Operation/Signal aftached {0 MeSSaQe. ..............cceeeeeereeeiieeeeiieeeiieeeiieeeiieenn 15
2.2.4 Creating Create and Delete MeSSage.................ccccveeeeeeeiicuveeeeeiiiiieeeeiiiiieeeeeiiiieeeeeeeeeeen 16

2.3 Adding execution SpecCification.............cooveeieiiiiiiiiiiiiiiiiiiiiiiiii 16
2.3.1 Select desired tool from the Palette. .............c..ccecuveeeieeveeiiereiiiieiiiiiiieeeeieeieeeeieeee 17
2.3.2 Place the ES 0N the LifeliNe ..............ccocceveveeeieeeiiiineiiiiieeiiiieiiiieiiiieeeiieeiieeeieeeeeeeeeeee 17

2.4 Adding messages (COMPIEMENTS).....uuuiiieereiiiieiiiiiiii i 17
2.4.1 Adding synchronousSCall (reQUIAE)...................ccvveeeeeviieeeeeeiiieeeeiiiiieeeieeeeeeeeeeeen 17
2.4.2 Adding synchronousCall ( with dynamic ES creation).................ccoeeueeeeeiiccieeeeeesiiieeeeeaaaan. 18
2.4.3Adding a Reply MEeSSAQE..........uvveeeeiiieeeeiiiiieeeiiiiieeeeeieeeeeeeeeeeeeee e 19

3 Combined Fragments. . .....euueeeiiieiiiiiiiiiiiiiei i 20
3. A INtrOdUCHION. oo, 20
3.1.1 The different types of Combined Fragments..............ccoceeeeeveeeieeeeeiieeneiieiiiieeiiiieiiieeeeeeeeeenee 20

3.2 Creating CF With DAPYIUS.....ccecueiiiieiiiiiiiiiieiiiieiiiiiii e 20
3.2.1 GeNeral PriNCIPIOS. .......cccoeveeeeeeeeiiiiieeieiiiiieeeeiiiieeeeeeeeeeeeeeee e 21
322 86Q.cuuuieiiiiiiiiiiiiiiiiiiiiiii e 23

B2 3L 00D, e 23
B2AAf i 24
B2 5 Pal. i 26

B2 6 BrOAK. ..o 26

4 _Adding Timing Information to Sequence Diagrams.........o.ocoueeeiiiieiiiiiiiiiiieiiiiiiiiiieiieeeee 27
4.1 Adding ObSEervationS..........ooecuveeieiiiiiiiiiiiiiiiiiiie i 27
4.1.1 Tirme ODSEIVALIONS. ....cveeeieeeiiiiieiiiieiieiiieeie e 27

[J 2010 The Papyrus Consortium 4/35



“?  Tutorial on Sequence Diagrams in Papyrus MDT Version 0.1

4.1.2 Duration OBSEIVAUONS. ....ccccoeveeveeeiiiiiiiieeieiiiiieeeeiiiieeeeeieeeeeeeeeeeeeeeeeeeeeeeeeeeeenn 27

4.2 Adding ConstraintS.......o..eeeeeiiiiiniiiiiiiiiiiiiiiiiiiiei e 27
4.2.1 Time CONSHIQUNES. ....cccceeiiiiereiiiriiiiiiiieeiieeeie e 28
4.2.2 Duration CONSH@INES. ........cccecereiiiiiiiiiiiiiieiiiiiiiieiiee e 28

B ANNE X ittt eieieiei e iiiiiiieiiiiieieeeeieiiiiiiiiieiiireiieseeeiieieeiiiieeiiiceeiieeees 30
5.1 Building elements from UML €ditOr...........covvveeiiiiiiiiiniiiiiiiiiiiiiiiiiiiieiiiieiceeeeeeee 30
5.2 Creating Elements from Model EXPIOrer............couiiueieiiiiiiiiiiiiiiisie i, 32

[J 2010 The Papyrus Consortium 5/35



“?  Tutorial on Sequence Diagrams in Papyrus MDT

Version 0.1

1 Introduction and initial steps

The purpose of this document is to provide a tutorial for Papyrus users explaining how to use
UML2 Sequence Diagrams. In depth knowledge on Sequence Diagrams in UML2 specification

that can be found on the OMG site at http://www.omg.org/spec/UML/2.3/.

A Sequence Diagram is one way to describe interactions in UML2. The Behavior part of the
specification has a section devoted to interactions which provides a set of concepts to describe
interactions between parts in a system.

Basically, Lifelines represent parts life cycle, communication between parts are represented by
message exchanges and executions are represented by Execution specifications that can be

Action or Behavior execution.

Several diagrams are available in the specification :

* Sequence Diagram

*  Communication Diagram

* Interaction Overview Diagram

* Timing Diagram

Papyrus MDT implements support for the first two diagrams. In this document we describe

Sequence Diagram utilization.

We list here under a few prerequisites to start this tutorial.

1. getting Papyrus

2. creating a first papyrus project

3. creating a new model

1.1 Getting Papyrus

Before starting , you must have a version of Papyrus MDT installed. Papyrus MDT is one of the
incubating projects of Eclipse MDT. The official release (0.7.0) is now public and available under
Helios. You can easily download it using the Helios Modeling Discovery Ul and selecting the

papyrus Component.

Java - Eclipse

File Edit Source Refactor Mavigake Search Project Run Window | Help

T J%‘O'%'Jr'JtE,f@er‘@:lWelcome

[# package Explorer 532 =0

[#-1=F Test1Proj

[J 2010 The Papyrus Consortium

(?) Help Contents
357 Search
Drenamic Help

Eey Assist, ..
Tips and Tricks. ..

4 Report Bug or Enhancemertt. ..

Cheat Sheets, ..

Chrl+Shift-+L

Check For Updates
Install Mew Software...

£ Install Modeling Cormponents

Eclipse Marketplace. ..

About Eclipse

6/35


http://www.omg.org/spec/UML/2.3/
http://www.omg.org/spec/UML/2.3/

D

Tutorial on Sequence Diagrams in Papyrus MDT

Version 0.1

In this release, you will find all latest features: the main UML diagrams, several SysML diagrams,
advanced profile support, customization framework, XText and Modisco integration and many

other cool things! You can find documentation on the Papyrus website:

http://www.eclipse.org/modeling/mdt/papyrus/

1.2 Creating a Papyrus project

Once papyrus is installed, you can open the papyrus perspective.

& Java - Eclipse

File Edit Mavigate Search Project Run | window Help

- |

[% Package Explorer 2

.... and get the following display

Mew Window =
RN . S A | Y-
#6: [{ev Editar:
=
Open Perspective 4 3&; Debug
= <':==€> | @ Shov: Yiew Y 2 J 3ava Browsing
il & Open Perspective _1al x|
Customize Perspective. .. -
Other... D00 Explorer
Save Perspective As... [oba 5 Repsitory Exploring
Reset Perspective. .. F5Debug
. B Ecors
Close Perspective B 20a (def it
Cloze All Perspectives £ 2ava Browsing
T2 Java Type Hierarchy
Mavigation 3
1) Planning
Preferences - Plugrin Development:
[F5Resource
n 0
& Team Synchronizing
B
Fie Edt Window Help
£ |79 Papyrus &2 Java
B Model Explo [ L{) Project Exp 53 =8 =8
5w~
= Properties I3 =¥ =0
B2 Outline &3 7=
RS Properties are not available,
An outline is not available.
[ 0t selected ]

Now we can create a new project; this takes 4 steps.

1. In the main tool bar menu

Select File > New > Papyrus Project

[J 2010 The Papyrus Consortium

7/35


http://www.eclipse.org/modeling/mdt/papyrus/

“?  Tutorial on Sequence Diagrams in Papyrus MDT Version 0.1

& Papyrus - Eclipse

File Edit ‘Window Help

Alk+Shift+m
Er—

Close Chrl 4y, W R
Close Al Chrl+Shift-Hh % Folder
Save Chrl+5 <9 Papyrus Model
Ttz s = Example. ..
Save Al Chrl+Shift+5
Fevert = Other... Chrl-+h
Mave.., | H

2. Set project Name

& New Papyrus Project =1ol x|

Papyrus Project

Create 5 New Papyrus Project i

Project name: | SpeedRegulator

¥ Use default location

Location: I @:\PapyIl0. 7StableleHelios36Papy II07 ws TestPapy 01 SpeedRegu Etowse. .

‘Working sets

I add project ta working sets

Yarking sets; I LI Seleck.. . |

@ < Bark net > [ Emsh | cancel

3. Select Language (UML or SysML)

& New Papyrus Project P =]

Initialization information
Select language of the diagram i

Diagram Language:

v iUML

Prafils
rp‘t vofls

| E’;T SystL

2) <Back wext> [[ Fnish | cancel

4. Create first Diagram

The project is ready to be created, the wizard asks for a first diagram to be created. Usually we

start with a ClassDiagram, we can ask to pre-install basic types (template section) and provide a
name for the diagram.

[J 2010 The Papyrus Consortium 8/35



“?  Tutorial on Sequence Diagrams in Papyrus MDT Version 0.1

& New Papyrus Project ~1olx|

Initialization information —
Select name and kind of the diagram @

i~ Diagram Mame:

I RegulatorClassDiagram

r~Select a Diagram Kind:
D UML Composite Struckure Diagranm
D H‘UML Sequence Diagram

O EﬁUML Package Diagram

EEUI‘*‘\L Class Diagram j
-

L

~You can load a kemplate:
A UML model with basic primitive types {ModzlWithBasicTypes.uml)

I” Remember current selection

@ < Back | Text = | Finish I Cancel |

The project and a first model is created and we get the following display.

& Papyrus - SpeedRegulato i =10l x|
Fie Edt Diagram Papyrus Window Help

¥ -@ o e FpEHE fa-s- - 0B A0 e 1D G- BREE T e SR B 179 Papyrus £ Java

B ModelExglore. 52 (- Prosect Bxplor |~ 1| <2 #modeldi &2

(=]
®ABBeg T A 3
El B RegulatorModel
#-1 packagelmport (1)
B RequiatorclassDiagram 2 [sks @
El lass
[ Classifier Templa. ..
(=) Comment
7] Component

{2} Constraint
DataType
&4 DurationObsery ..
=] Enumeration
=1 Enumeration literal
% Irkerface
4 Edges 0
i, bstraction
/ Association
/' AssoriationBranch
£y AssociationClass
@- ContsinmentLink
 Dependency
- Dependencybra...
%7 ElementImport:

7 Generalization

]
By requiatorclassDiagram 23 |

7 GeneralizationSet

= praperties 53 @Ewormﬂ +veQg
5% Outine 53 . | 8]@ 8 T = 8] = <Model> Model
R

UML Marme: [ Requistorttadel

Profile
Appearance wisibility: | public -
Advanced

Package Merge:

| o |

1.3 Creating a new model

[J 2010 The Papyrus Consortium 9/35



“?  Tutorial on Sequence Diagrams in Papyrus MDT

Version 0.1

Following the wizard, we have created directly a model.
We can also create a model from the menu wizard
File > New > Papyrus Model

File Edit ‘Window Help

LSS (- Papyrus Project
=

Clase Ch{ . I
Clase Al Chr|+ShifE+5A [ Folder —
SavE ChHl+5
Save fis..,
Save Al Chrl+5hifE+S
Revert [ Other Chrl+M
Mave.., I

Normally we could create directly a sequence diagram, but since the sequence diagram describes
interactions between parts of the model. It is recommended to start by creating at least a class
diagram and a composite diagram (the composite diagram describes a system architecture
obtained by assembly of parts representing more or less instances of classes defined in the class
diagram. ). In the following figure, we show a simple example of CruiseControl Subsystem.

& Papyrus - SpeedRegulator/model.di - Eclipse I =] 57

Fle Edt Diagram Papyrus ‘Window Help

3 -lE o [[rehoms “le B T A S g | [ E B e || e [l - 5 eBE R T 7D papyrus & 2ova

B Modsl Exp 22 LDFm]ectEW = 0|~ *model.di £2 =0
gLl osg Y B4 2y

GlobalSystem

= B2 regulatortodel
-7 Usecases
-7 Architecture
B3 ModelElements
B3 Interactions
B3 Inkerfaces N
T—, packageImport (1) S

& RequistorClassDiagram oSt

—%

Speadsens

regulateSpesd

B RegulstarPackageOverviswDiagram
-BE RequlstorPackagelnternalfiewDiagra]

Difutton [1] ] + PorkL: SpeedAccess [1] Hji

+ regulator35: Reg. TN |

+ speedSensor: SpeedSensor (1]

+ Port0: RegulatorDisplay [1]

-+ motor: Motor [1]

Mata + Port2; ReqgulatorDisplay [1] []7
tartRegulating __ __\
[PV
OnOffButton b RegulakarDispk + requlatorDisplay: RegulatorDisplay
SiopRegulsting + Port3: Requlatorisplay [1] []7
4 | ] =

2 UseCaseDiagram £ J

B RequlatorPackageOverviewDiag. .. ‘Ee. RegulatorPackagelnternalview. . Fg RegulatorClassiagram RequlatorSystemCompositeDiag... 2 [

] Properties &2 lenorLog] = v =g

% <Actor> RegulatorDisplay

uML Hame: [ReadlatorDisplay ™

Profie:

= Is Abstract: Qe @ false Is Leaf: Otrue @ fake

Advanced Vishilty: [pueic =

Use Case:

4] I m L
( 5= outine 52 =1) o

| o

For this system, we have defined a Use Case Diagram (left view) and a Composite Diagram (right
view) corresponding to an external view of the system to illustrate its integration within the
environment. The Subsystem will itself be refined. We will now create a sequence diagram to
illustrate interactions between the subsystem and the environment.

[J 2010 The Papyrus Consortium

10/35




“?  Tutorial on Sequence Diagrams in Papyrus MDT Version 0.1

2 Creating a simple sequence diagram

As any other diagram in Papyrus MDT, a sequence diagram can be created trough three different
ways :

» from toolbar
B =T
jv J\‘?'Jh%%@ﬂ%zﬂﬁ | 73 Papyrus &JJava

Treats a new Seguence Diagram | =8 |

¢ from main menu

& Papyrus - SpeedRegulator/model.di - Eclipse

File Edit Diagram | Papyrus Window Help

#-w o R
B Model Explor 52

4 h Create a new Activiby Diagranm | . . | | i . of .
: E_g Create a new Class Diagram - 00 @
L Project | E Create a new Communicakion Diagrann

ﬁ i lé Create a new Composite Structure Diagrarn
= = RegulatorModel H‘ Create a new Sequence Diagram

BT Usecases

‘B3 architecture

‘B3 ModelElements

‘B3 Interactions

- packageImport (13
EE RegulatorClassDiagram

tg Create a new StateMachine Diagrarn
¢= Create a new UseCase Diagram

fﬁl Create a new Package Diagram

« from model explorer

l & Papyrus - SpeedRegulator/model.di - Eclipse
Fil= Edit Diagram Papyrus Window Help

| |[rahema =l =l - - e | % - =8
5 Model Explor 53 L Praject Equ = EW ¥ *model di 3%

g ﬂ T ia - <‘)==:> v‘
£ o

W-E7 An  Creats Query
9 me  Execute Query

F5 be  Import package from registered ibrary
hild >

[ iz create anew activity Diagram
B cCreate a new Class Diagram

= || Rename, ..

%, Create a new Communication Diagram
cu

=| Copy
Paste

Create a new Composite Structure Diagram
B create a new Sequence Diagram

%5 Create a new StateMachine Diagram
Delete

< Unda Do Command
Redo

$= Create a new UseCase Diagram

Load Resource, ..
Cornitral,..
Uncontral

The result is the creation of an interaction element and a diagram.

[J 2010 The Papyrus Consortium 11/35



“?  Tutorial on Sequence Diagrams in Papyrus MDT Version 0.1

& Papyrus - SpeedRegulator/model.di - Eclipse
File Edit Diagram Papyrus SWindow Help

£ [Iraharma HlF | FA =& - 7 - —
#: Model Explo 53 [ Project Ex.ﬂ = O |~ *model.di 2

BE? N iET= <“='={> = ||[sd: interactiono]

= E=1 regulatoriodel
#-F3 Architecture
5B Interactions
L clientDependency (2)
Ellil interactionl
ﬁ MySeq3Diagram

Remark: If an interaction exists already and it is selected when creating the diagram, a new
diagram is created for this interaction, so several diagrams can be created providing different

views of a same interaction.

We recommend to create the diagram and the corresponding interaction in a separate package
named Interactions for instance, since many events will be created when we start creating
elements in the diagram.

Once the diagram is created, we can start populate it. The three main elements of such diagrams
are lifelines, messages and Execution specifications. Let's see how to create them.

2.1 Adding lifelines

In order to create a lifeline we have to do three things

1. Select the lifeline tool from the palette on the right side of the graphic view
2. Place the lifeline in the diagram (click in the diagram)

3. Set properties in the properties view

211 Select LifelineTool in the palette

[T | 73 Papyrus 33’ Java
=0
ﬂ L2 Palette 3
Nfeyes

3 Nodes @

5 Lifeline
E:I Action fFeecution Snacication
Create a Lifeling|

Eﬁ) Behavior Execution Specification

[EX] InkeractionUse

21.2 Set properties in the properties view

The property view displays properties attached to lifeline, support is provided to select .

* name. This is the name of the lifeline itseltf (notice that what generally appears in the
header of the lifeline is not it's name but the name of the part it represents when set).

[J 2010 The Papyrus Consortium 12/35



“?  Tutorial on Sequence Diagrams in Papyrus MDT Version 0.1

* represents. This is a reference to the part represented by the lifeline, a popup window
helps select it from a list of parts.

» selector. This is used when arity of part is greater than one in the composite diagram, the
selector helps specify which instance is represented by the part.

* decomposed as . Is used to refine Lifelines (this is not detailed here).

”3 *model.di 3 =0
sd: interactiono] 21| =& palette [»
[erel

‘ 55 Modes £l

O Lifeline

[&sAction Execution Specification
T & Select Represents: _ (O x|
1

Select the reference you wantk For Represents:

Tooltip: References the ConnectableElement within the classifier that contains the enclosing interaction, v
| *regulator
Matching items:

[=1 <Property > regulatoronoffbutton : RegulatorOnGffButton d

[=] <Property > regulatordisplay : RegulatorDisplay

[53 <Property > regulator : Regulator

[=] <Property = regulatoranoffbutton : RegulatorOnCFFButton

g <Port = Port2 : RegulatorDisplay

+ Requlk
I3

[E3 <Property = requlatorDisplay | RequlatorDisplay

1
1
1
1
1
1
1
1
1
: [ <Port > PortD : RegulatorDisplay
1
1
1
1
1
1
1
1
1

| |
EE: RegulatorPackageCverview. .. |EE| RegulatorPackageInternal. .. |EE R

-

|E¢‘. «<Propetty > regulatorSs : RegulatorSubsystem |

E Properties 2

.
T <Lifeline= Lifeline (2 Cancel

[
umML Marmne: | Lifeline
Profile
Appearance Wisibility: |publ|c El

Advanced
—— Decomposed As: |<UndeFined> Represents: <Undefined =
Selector: |<UndeFined>

Clicking the green “*" sign activates a selection pop-up. Just select the desired element.

Repeat the operation for each Lifeline to be created in the diagram

<3 *madel.di 22

sd: interaction2,

requlatoronoffbutton ; regulatorss : regulatordisplay :
RegulatoronoffEutton RegulatorSubsystem RegulatorDisplay

[nteractionCompartment|

Remark: You can change the appearance of the lifelines using the appearance tab as in any other
diagram. Here we choose the green colour to represent environment and orange colour to
represent the regulator subsystem.

2.2 Adding messages (basic - asynchronous)

Communication between parts is described through message exchanges.

[J 2010 The Papyrus Consortium 13/35



"

Tutorial on Sequence Diagrams in Papyrus MDT Version 0.1

Messages can represent operationCall (synchronous or asynchronous) or signal (asynchronous)
communication.

When a synchronousCall is created a replyMessage is expected.

Specific messages createMessage and deleteMessage denote dynamic management of
Lifelines during application lifecycle; they are respectively devoted to LifeLineCreation and
LifeLineDeletion.

Creating a message with Papyrus consists in:

1.

2
3.
4

selecting the desired tool from the palette;
clicking in the source Lifeline to set starting anchor point
clicking in the target lifeline to set the ending anchor point

select/create the corresponding signal/operation from the appearing pop-up

Notations

Asynchronous Messages have an open arrow head.

Synchronous Messages typically have a filled arrow head.

The reply message has a dashed line.

Object creation Message has a dashed line with an open arrow.

Lost Messages are described as a small black circle at the arrow end of the Message.

Found Messages are described as a small black circle at the starting end of the Message.

2.21

Select desired tool from the palette

Possibilities offered by the palette are the following:

Edges

B, Message Sync
&, Message Async
4--Message Reply
- Message Create
—x Message Delete
— Message Lost

—p Message Found

Notice that some restrictions apply.

Up to now, we have not created Execution Specifications so Sync Message and Reply
cannot be used (we will see this later on).

Message create can be created only if the target point is already present (the Lifeline has
been drawn before).

Message Delete must have a delete event as target point.

Message Lost and Message Found management is not stable (still under development)

[J 2010 The Papyrus Consortium 14/35



“?  Tutorial on Sequence Diagrams in Papyrus MDT Version 0.1

2.2.2 Select source and target points

Source and target points can be selected on two different lifelines (normal case) or on the same
lifeline in which case it denotes a “recursive” call (see figure below).

Restrictions on target points depend on the type of target element; for instance as said in the
previous section, a Synchronous Call must start from an Execution Specification.

Known problem: It may happen that a message cannot be created if target point is a selected
element. If this happens, just deselect the element and try again.

2.2.3 Select/Create Operation/Signal attached to message

Papyrus provides support to create/select dynamically operation or signal to be attached to the
message. This is provided through pop-up windows.

=
Create a new Message

) Select an existing element Select an existing element

| ] |

1o ]
%

Create a new Message

4% =Operation> maintainspeed ()

O Create anew elament

Type: IS\gnaI

=

Mame: |

Owiner of the created element: | <Package RegulationSystem

£ =Operation> WaitForMNextperiod ()
4% =Operation> waitForMextPeriod ()
=Signal= displaystatus

=Signal= getSpead

=Signal= startRegulating

=5ignal= updateSpeedDisplay

@ Select an existing slement

| <Signal> startRegulating

O Create anew element

Type: ISlgnaI

|

NMame: |

O Mo element

wner of the created slement: | <Package = Regulationsystem

cancel O no element

You can select an existing element (signal or operation), create a new one or do nothing (in case
of a preliminary general overview scenario).

If a creation is required then the signal will be created after a name is set and a directory selected.
We can obtain a diagram like the one hereunder.

[J 2010 The Papyrus Consortium 15/35



“?  Tutorial on Sequence Diagrams in Papyrus MDT Version 0.1

B *model.di &2 =0
21| 27 Palette [
sd: inkeractionZ
o MNodes 4
- || Interaction Operand
regulatoronoffbutton reqgulatorss ; regulatordisplay .
RegulatoronoffButton Regulatorsubsystem RegulatorDisplay = Continuation

£%) Statelnvariant

=y Comment

{7} Constraint

T
i
|

startRegulating() i
i
: =] CoReqion

&4 Duration Obseryation

maintainSpead( {1} Time Constraint

<

displayStatusd o4 Edges 0

|
i
|
i
|
|
1
|
|
|
|
|
|
i
:
: & Message Sync

: B Message Async
i +--Message Reply

: --3Message Create
|

i

|

|

i

|

i

|

i

|

i

|

1

|

|

|

|

i @i s I
|

J

|

i

|

i

|

i

|

1

|

|

| —x Message Delete
|
1

—+ Message Lost

— Message Found
-

< _ | 3

EEI RegulatarPackageCverviewDiagram ‘EE RegulatorPackagelnternalviewDiagram |E'é RegulatorClassDiagram | RegulatorSystemCompasiteDiagram IH' SeqzDiagram £ ]

= Comment link

= x =~ =0
=
E] <Message: startRegulating
]
umML Marme: | startRequlating
Frofile
Appearance Message Sort: IasynchS|gnaI |Z| Visibility: public E
advanced asyrchCall =~
Argument: createMessage IEI @
deleteMessage =
repl =

Notice that the nature of the message sort property can be set from the property view.

2.24 Creating Create and Delete Message

The process of creation is exactly the same as above but restrictions apply.
* Create Message
The message must target towards a lifeline already existing in the diagram.
* Delete Message

The message must target a destruction event

2.3 Adding execution specification

Until now we have used Sequence diagram only to show communication scenarios. But, sequence
diagram can represent complete execution trace including communication events as long as
execution events. The Execution Specification concepts is an abstraction to represent execution. It
can be of two sorts: Action Execution Specification or Behavior Execution Specification. Actually,
what is really handled are events attached to start and end of these execution specification.

So a lifeline can be considered as a trace of events corresponding to communication and/or
executions. In the diagram, execution occurrences are represented by one of these two UML
entities. The notation - a rectangle - is similar in both cases.

Creating an Execution Specification with Papyrus consists in:

[J 2010 The Papyrus Consortium 16/35



“#  Tutorial on Sequence Diagrams in Papyrus MDT Version 0.1

selecting the desired tool from the palette;
clicking in the desired Lifeline to set ES

if necessary resize ES

D=

select/create the corresponding signal/operation from the appearing pop-up

2.3.1 Select desired tool from the palette

Select Action Execution Specification or Behavior Execution Specification.

5 Modes £
5 Lifeline
E:i Action Execution Specification
Ee} Behavior Execution Specification
EL] InteractionUse
L] Combined Fragment
|| Inkeraction Operand
t:::l Continuation

{?} Stakelrvariant

o

2.3.2 Place the ES on the Lifeline

To place the ES on the desired Lifeline proceed quite naturally:
» Click within the Lifeline at the point where you want to add an Execution Specification
* Maintain the mouse down and drag it downward on the lifeline
* Release the mouse

Remark : You can also place an ES on an existing ES, in this case it represents recursive
execution.

2.4 Adding messages (complements)

Once Execution Specification exist we can improve the first design and add synchronous
messages to the sequence diagram.

In a development process one could consider that at preliminary design all messages are
asynchronous and that at design we start more detailed specification.

241 Adding synchronouscCall (regular)

Adding a synchronous call is done in the same way as for an asynchronous message.
1. Select tool in the palette
2. Select source point
3. Select target point
4

Select operation

[J 2010 The Papyrus Consortium 17/35



“?  Tutorial on Sequence Diagrams in Papyrus MDT Version 0.1

However there are two differences.
* The starting point must be within an ES.

* The ending point should normally be also an ES in which case the target anchor must
coincide with the target ES start point as shown hereunder. However, Papyrus MDT
provides support for dynamic creation of target ES (see next section).

sd: interactionl,

regulator : Haw @
Regulakar RegulatingLaw

maintainSpesd)

bu

i

calculated

2.4.2 Adding synchronousCall ( with dynamic ES creation)

In this case the target point at step 2 can be one point on the target Lifeline not covered by an ES.
The message pop-up helps select/create the operation involved, then an Action Execution
Specification is created.

3 *madel.di 52 =08
sd: inkeraction1] 21| 2% Palette
Koe

regulator : rlaws : o Modes 4
Regulatar RegulatinglLaw

1
: maintainSpeed(
[

& Lifeline

E:' Action Execution Specification

Bﬁ) Behavior Execution Specification

|

i

|

i

|

i

: Bl InkeractionUse
: [&L] Combined Fragment:
|

|

calculate |#| Interaction Operand

e
= Continuation

{?) Statelnvariant

o+ Edges ]

B Message Sync

B Message Async

e 4--Message Reply
: -- Message Create
|
| —x Message Delete
|
: —# Message Lost
|
1

—+# Message Found

-

[=1 Comment link,

4] 3 =
fE: RegulatorPackaged, . |EE| RegulatorPackagel. .. ‘EE RegulatorClassDia. .. | RegulatorSystemCa, .. |'H' SeqzDiagram |'H' GlobalviewSequenc., .. 'ET Seq3Diagram lﬁ RegulatorInteracti,.. &3 ]—

El Properties 52 - ¥ = A

[ <Action Execution Specification> ActionExecSpec2

(|
UML Marmne: | ActionExecspec?
Prafile
Appearance visibilley: [ pubic
Advanced
Ackion: |<Undeflned> Finish: |—U «Execution Qccurrence Specification s ActionExecSpec2Finish
Start: |—U <Execution Occurrence Specification > ActionExecSpec2Start

[J 2010 The Papyrus Consortium 18/35



“#  Tutorial on Sequence Diagrams in Papyrus MDT Version 0.1

243 Adding a Reply message

Adding a reply message is done in a similar way as any other message, but the message must
start from an ES (involved in a Synchronous Call) and arrive to the initiating ES .

sd: inkeractionl
regulator ; rlaw
Regulatar RegulatingLav
I
I P
| maintainSpeed{)
1,

calculated)

deltaTorgued

]

[J 2010 The Papyrus Consortium 19/35



“#  Tutorial on Sequence Diagrams in Papyrus MDT Version 0.1

3 Combined Fragments

3.1 Introduction

The introduction of combined fragments within Sequence Diagram results from the will to write
complex traces in a synthetic way that is to say in a rather caricatural way “grouping several
scenarios within one with more expressive power”. Through the use of Combined Fragments the
user can describe a number of traces in a compact and concise manner.

Formally, a combined fragment defines an expression of interaction fragments.
In the specification, the Combined Fragment is characterized by an interaction operator.

The interaction operator tells the kind of combined fragment is considered. Several generic types
have been defined to express loops, alternatives, parallel sections efc...

Depending on the kind of interaction operator, one or several operands are defined. For instance
in alternatives CFs, there must be several operands, while in Loops CFs, only one operand is
required.

Operands contain fragments representing the events included in the CF. It is important to notice
that only events are considered and not elements such as ES or messages. These events
represent occurrence specifications (start or finish event corresponding to an execution, send or
receive events corresponding to messages). However, these events are not represented
graphically, only messages and ES are.

The different CFs are considered as sub parts of the diagram and may appear in sequence (or
imbricated) in a sequence diagram. This leads to very expressive general scenarios, while basic
sequence diagrams represent only one particular scenario.

3.1.1  The different types of Combined Fragments

The UML2 specification describes generic Combined Fragments (see section 14.3.3 of the
specification UML Superstructure Specification, v2.2). The kind of Combined Fragment is determined
by setting the Interaction Operator attribute.

The possible values are : alt, opt, par, loop, break, critical, neg, assert, seq, strict, ignore,
consider.

These different kind of Combined Fragments are of different nature.

For instance, seq, loop, alt represent classical programming control structure for sequential, loops,
conditional structures.

Opt represents an optional section. That is depending on the value of a guard, the internal is done
or nothing happens.

Seq is a weak sequential section. Occurrence specifications is strict within one operand) but
occurrence Specifications on different lifelines from different operands may come in any order. A
variant is a Strict combined fragment where a strict order is obsereved between the behaviors of
the internal operands.

3.2 Creating CF with papyrus

[J 2010 The Papyrus Consortium 20/35



“?  Tutorial on Sequence Diagrams in Papyrus MDT

Version 0.1

Papyrus provides a first implementation of combined fragments that is described below. We first
describe the general principles for CF construction then we detail specific issues for each type of

interaction operator.

3.21 General principles

Creating a Combined Fragment consists in 6 steps

1. select the CF tool in the palette

place the CF on the diagram

o > N

6. set operand properties in the property view

select the type of combined fragment consider/ignore or other

select the type of Interaction operator (by default a Seq CF is created).

create the operands if necessary (by default one is created)

Steps 4., 5., 6. vary according to the interaction operator selected and specific rules may apply.

We illustrate hereunder the first three steps.

1. Select CombinedFragment in the palette

"= Palette [=

e

)5 Modes £
S Lifeline

EC! Action Execution Specification
Eﬁ} Eehavior Execution Specification
EL] InteractionUse

L] Combined Fragment

=] Inketaction Operand

&= Continuation

{‘:’ » StateInwariant

=y Commenkt

{7} Constraint

L] CoRegion

Zd Duration Shservation

£21 T I,

2 + 3 Select the type Consider/Ignore or regular CF, and place CF over Lifelines (covered)

[J 2010 The Papyrus Consortium

21/35



“?  Tutorial on Sequence Diagrams in Papyrus MDT Version 0.1

=1oix|

s ZB I|A-~®-g-— |08 -B-H-5- 0[5 [ 100 = | < - 5 [PD pemms &' 2eva

79 *model.di £2 =0
o2 Palette

sdt interactiont]
[SEre]

regulator : tlaw ¢ - Modes &
Regulator RegulatingLaw
O Lifeline

ED Action Execution Specification

|»

maintainSpeed(

o

T
1
1
|
| Eﬁ) Behavior Execution Specification
1
1
'
|
|

ELl Interactionl tse
EQJ calculatef) . |22 Combined Fragment
|| Interaction Operand
{=) Continuation
deltaTarqued <3 Statelnvariant
=) Comment
[21] Create ConsiderlgnareFragment {7} Constraint
binedFragment B CoRegion
&4 puration Observation

- Edges @
B Message Sync

8, Message Async

U

+--Message Reply

4. The resulting CF is a Seq combined fragment. By default an interaction operand has been
created also.

5. Do nothing only one operand must be created
6. Set operand properties in the property view.

To do so it is necessary to click within the CF in order to select the operand, then the property
view correspond to the operand selected (if several operands areas are separated by
discontinuous lines).

The appearance of the property view depends on the type of operand. In the default case, we
have to set the name of the operand.

= Properties 2 =¥ =0

[ <Interaction Operand=

1 "
umML Hame; I -
Frofile:

Appeararce visibiliy: [public -

o d
S Guard: [<ndefined =
Fraament: @

L« |

In the current implementation, property views do not handle yet all operands initialization. So we
have to use specific turnarounds. This should be fixed soon. In the mean time we suggest to follow
the procedure given in annex.

The main point concerns the specification of the guard which cannot be created directly from the
property view but must be defined by an Interaction Constraint and then selected through the
property view. See details in Annex.

[J 2010 The Papyrus Consortium 22/35



“?  Tutorial on Sequence Diagrams in Papyrus MDT Version 0.1

3.2.2 Seq

The Seq CF describes an ordered sequence of events. The order can be partial or strict.

Seq creation is the simplest one since it is the default case and has been described in the
previous section. Nothing else has to be done.

3.23 Loop

A Loop describes an iteration structure. Internal events are repeated a certain number of times
depending on loop parameters and a guard condition.

A Loop CF has exactly one operand, this operand contains the events enclosed within the area
drawn by the CF.

Creating a Loop follows the same algorithm as the Seq CF until step 4.
1., 2., 3 Apply generic procedure
4. Change the interaction operator through the property view.

& Papyrus - SpeedRequlator /model.di - Eclipse ] 3
Fle Edt Diagram Papyrus Window Help
%2 - |[Tahoma - = | = o Rl I R I - S | [00% 2 | %~ |79 Papyrus &5 Java
|EREBHes%
& Model Expl | [ Project Ex 82 = 0|72 *model.di 32 =
0 B | || [sdt interactiont] 2l 5 palette [
B SpeedRegulator INEE
“P modsl.di
P regulator : rlaw : o Modes o
i 5l model.notation Regulator RequlatingLaw o
&) model.uml T T 7 Ufeline
E TestiProj ' ! &> Aiction Execution Speciication
| maintainSpeed() |
g 1 @ Behavior Execution Specification
1
! L] Interactionlise
loop] calculate) o H (] Combined Fragment
[+ | Interaction Operand
& Continuation
deltaTorqued i i3 Statelnvatiant
! =
1 . Edges <
1
: & Message Sync
H 8 Message Async
1
= i +--Message Reply
| ]
! ! —| s Message Create
} : —xMessage Delete
! ! b Message Lost
I 1
' 1 —# Message Found
|
hd =) Comment link
4 | e
B, RequiatorPackageO. . ‘thRagu\atanaqueIm ngegulamrc\assma... Requlatany;tean... ‘Tﬁ'SEuZD\agram‘E‘G\nhaMawSequencm ‘E‘SEQSD\agramlTﬁ' Regulatorlnteracti,. 52 ]'
1 Properties &2 =¥ =0
] <Combined Fragment > CombinedFragment
o =g
o Cutine 4 uML Narme: [ yLoopcF
Profile
pppecrance | Interact.perator; [ [=] visibiley: public
Advanced &
critical
neg
assert
ignare hd
i

5. Nothing special has to be done for this step
Loop requires one unique operand as Seq.
6. Set Loop Operand parameters

In the current implementation, property views do not handle yet all operands initialization.

[J 2010 The Papyrus Consortium 23/35



“?  Tutorial on Sequence Diagrams in Papyrus MDT Version 0.1

So we have to use specific turnarounds (as described in the annex). This should be fixed soon.

We finally get the Loop CF.

. “ 9 *model.di 22
2| MyLoopCF

I L covered (2 sd: interactiont]

: I:I Lffelfnel
#-7 Lifelinez Regulator RegulatingLaw
#- Ls enclosingInteraction (1) !
EIT_, operand (1) i
&[] MyLoopOperand =
nn
g1 et = T —
B-12] MyLoopiGuard [l
=1, minint (1)
[0, loopMin deltaTorqued)
B2, maxink (1)
E loophax

|

maintainSpeed(

Iessane (3]
i’p maintainSpeed
8 calculate !

-+ deltaTorque

3.24 Alt

To obtain a parallel CF, just proceed as in general case except that an Alt CF has several
operands.

So after having created the Alt CF, you must add a new operand. This is done by selecting the
operand tool in the palette.

o= Paletts [
HEe
) Modes )
O Lifeline

E:v Action Execution Specification
Ee} Eehavior Execution Specification
7] InteractionlUse

(L] Combined Fragment

|| Inkeraction Operand

=) Continuation

£33 Statelnvariant
o

) Edges )

Then click within the CF area, a new area is created for the new operand.

[J 2010 The Papyrus Consortium 24/35



“?  Tutorial on Sequence Diagrams in Papyrus MDT Version 0.1

sd: inkerackion]

regulatar : tlaw :
Reqgulator RegulatingLaw
|
=

1
I
: maintainSpeead() :
| 1
I
i
\
1
|

EI;J calculate)

deltaTaorque)

L
|
|

Then we have to set the guards for If and Else conditions of the Alt sections. For the moment we
have to follow the same procedure as described for the Loop CF.

-10] x|
R R | Adl-%-H-c- 6B 2BEBFes 9|72 Papyres & dava
‘odel.di E2 =8
intsraction, JES [
HEE
- Modes
o Edges <0
requiator : — & Message Sync
Regulato RegulatingLaw &, Message Async
T
: : 4--Message Reply
! maintainSpaad | - Message Create
¥ I
: —sx Message Delste
E'EJ i —» Message Lost
I —» Message Found
[1f x=2] ! link.
+ [« t
laop, calculated | = Comment i
. {7} Constraint link
[2,10]
deltaTorqued :
1
1
I
H —
e 1
]
‘ i
[Elsz] ! 1
! i
! I
| displayStatus) :
i =1
! i
I
i
1
|
i ! i
B
AegulatorClassDiagram ‘g: UseCaseDiagram ‘ RegulatorSystemCompositeDiagram ‘H' GlobalSeqDiagram ‘ﬁ' GlobalSeqzDiagranm IH' DetailedSeqiDiagram &3 I'H' GlobalSeqabiagram ‘
ropertiss £ @Ermrmﬂ S - =0
<Interaction Constraint:> InteractionConstraint0
ja— -
L Marne: | interactioncanstrainto i
ile
anced Wisibility: |puhhc =
Cankexk: ‘<Undefined> Maxink: ‘E <Literal Integer > max
Minint: ‘E <Literal Integer = min Specification: 5 <literal String LiteralStringd —
Constrained Element:
I &l

[J 2010 The Papyrus Consortium 25/35



“#  Tutorial on Sequence Diagrams in Papyrus MDT Version 0.1

3.25 Par

To obtain a parallel CF, just proceed as for a Seq CF, then change Seq to Par then add as many
operands as wanted.

3.2.6 Break

The break CombinedFragment represents “a break scenario”. The operand (it must be unique)
represents a “scenario that is performed instead of the remainder of the enclosing
InteractionFragment”.

Normally the break combined fragment has a guard. If the guard is set to false, then the operand
is ignored and the rest of the enclosing operand is executed. If it evaluates to true then the break
scenario is executed.

If no guard is specified, the behaviour is not defined deterministically. This should be avoided.
Rules:

A break CombinedFragment should cover all Lifelines of enclosing Interaction Fragment.

A break CF is normally included within an other CombinedFragment.

To create a Break CF, just do as for a Loop CF and set the guard constraint instead of min and
max properties.

[J 2010 The Papyrus Consortium 26/35



“#  Tutorial on Sequence Diagrams in Papyrus MDT Version 0.1

4 Adding Timing Information to Sequence Diagrams

Two classes of concepts are used to set temporal information onto diagrams.

The first one is the concept of Observation, it covers two types of information: Time Observation to
tag instants on a lifeline, and Duration Observation to tag a duration (for instance the transmission
delay of a message).

The second one is the concept of Timing Constraint, they can be a constraint on an instant on a
lifeline or a constraint on a duration. Both constraints are expressed as a Time Interval.

<3 model.di &3
<d: interactioni]
regulator @ rlaws
Regulator RegulatingLaw

: maintainSpeedd

Duration Observation

7|\

calculate( &d

@tl=now

deltaTorgue(
{d.d + delta}

TimeObservation
4d ..d + 3*d}

Time Constraint

Duration Constraint

4.1 Adding Observations

Adding Observations can be achieved directly from the palette

411 Time Observations

To set a Time Observation on a sequence diagram, just select the tool from the palette then click
on the target location on a lifeline. This must coincide with an occurrence specification (Execution
Start, Finish, MessageEnd).

4.1.2 Duration Observations

Duration Observation can be set only on messages in the current implementation.

Select the tool in the palette click on the message starting point maintain the mouse down and
follow the message, release mouse button on the message end. A “&<duration_label>” (here &d)
is displayed above the message. This label can be used in constraints expressions.

4.2 Adding Constraints

[J 2010 The Papyrus Consortium 27/35



“#  Tutorial on Sequence Diagrams in Papyrus MDT Version 0.1

Constraints can concern durations (duration constraints) or instants (time constraints).

4.21 Time Constraints

Time constraints may be set using the tool in the palette and clicking on the event corresponding
to the constrained event. An interval appears. The values can be either constants or expressions
involving observations. Up to now, nothing is provided in Papyrus to set these values, it is thus
necessary to use a similar procedure as the one described in the annex to set parameters of
Combined Fragments.

4.2.2 Duration Constraints

Duration constraints apply on interval between two events. In the current implementation, duration
constraints can be set between events located on the same lifeline, or to specify a communication
delay constraint on a message.

Select the tool from the palette, click at starting position within Lifeline, maintain the mouse down
and drag it downward until the target event (end of the duration interval), then release mouse
button. A figure appears showing top, bottom of the interval with a vertical arrow between and a
label in which default interval bounds are displayed. In the case of a duration constraint on a
message, select the message ends instead and the display appears as an interval under the
message.

By default the values min and max are integer set to 0. They can be changed via the property
view. To do so, follow the procedure hereunder:

1. go the model explorer
2. select the Duration elements attached to the Durationinterval of the constraint.

It is located in the rule entry of the interaction enclosing the duration constraint.

- Model Explarer 53 L' Project Explorerw

= = RegulatorModel
#-E0 Usecases
#-E3 Architecture
#-E3 ModelElements
=BT Interactions
] interactiont
E‘lil interactionz
Bt ownedrule (1)
El-{d} DurationConstraint
-- L, constrainedElement (23
E| 1. spedification (1)
B 4 Durationlnterval
=L min(1)
=] c"d DurationIntervalting
-4, expril)
: -1, T ——
= Ly maxi1)
[h¢*d DurationTntervalat
E|T_, expr (1)
B0 <iteral Inkteger=0

3. in the property view change the values (min and max)

[J 2010 The Papyrus Consortium 28/35



“?  Tutorial on Sequence Diagrams in Papyrus MDT Version 0.1

= Properties X Q;_-|Err0r Log} 4 B :::9 ¥ =0
a0 <Literal Integer> 0
E—

umML Mame: | mirvealuel Yalue: 10

Prafile

Tehaag Wisibility: IDUth E

Type: | <lndefined =

4. The duration constraint is updated in the diagram

Requlat RequlatingL
R SRR regulator : tlaw
Regulatar RegulatingLaw

|._________

calculate)
calculated)
{10..15}
1.3
{10..15}
deltaTarqued) :

: deltaTorquel) :

| 1

| |

] ]

| 1

| |

1 |

| |

| |

1 1

| |

T | |
| | 1
| | |
I I ]
|

|

|

[J 2010 The Papyrus Consortium 29/35



“?  Tutorial on Sequence Diagrams in Papyrus MDT Version 0.1

5 ANNEX

This annex describes turnarounds to palliate current lacks in Papyrus MDT to set properties of
Combined Fragments. This should be solved soon, but for the moment, we describe two
possibilities : the first one is to use direct UML edition of the model following the procedure
provided hereunder; the second one is to create some elements from the model explorer and then
to reference them in the properties view

5.1 Building elements from UML editor

a) go to model explorer and select interaction operand

You can see the tree structure of interaction1 whith MyLoopCF and its operand.

5 Model Expl  E2 LDProjectEx] =
B L% 0 =S

= inkeractiont

-t lifeling (2)

= Fragment {13

[;l

R E R E

E: ActionExecSpec

Aﬂ ActionExecSpecStart
AU ActionExecSpecFinish

i maintainSpeedSend
maintainSpeedhecy
calculabeSend
calculateRrecy
ActionExecSpecl
ActionExecSpeclStark
ActionExecSpec 1Finish
deltaTorguesend
deltaTorqueRecy
MyLoopCF

L covered i(2)

Le enclosingInteraction (13
1. operand (i}

8- 8- B B - P - - B

. covered (20
=5 Lifelinet
B 5 Lifelinez

Bt message (3)
H RegulatarInteractionDiagrarm

Normally, we should be able to add a guard as a child of this element using a right click menu, but
this is not available either. So we will have to build it directly through UML.

b) close the model
c) go to ProjectExplorer
d) select model.uml then right click to get the pop-up menu

e) select open with Uml Model Editor

B Model Expl [ [ Project Ex 53 = O]

0 | =
=

E--b SpeedReqgulator
7D model.di

: model.notation
| g
-1 Testiproj  Mew b I

£ MaDisco Made Brawser
> Copy ChileC Ll Sample Reflective Ecore Model Editor
Paste Chrly EllletEdtoy
3¢ Delete Gelie ® [ UML Model Editor

Remove from Gontext  Chrl+al+Shift+ Do System Editar

Iark as Landmark Chrl+-Ale+Shif b+ In-Flace Editar

Move, .. Default Edior

Rename... Fz Other...

[J 2010 The Papyrus Consortium 30/35



“?  Tutorial on Sequence Diagrams in Papyrus MDT

Version 0.1

f) create a guard (interaction constraint).

=<Combined Fragment = MyLoopCF
(|
- B, <Message> mai

ey Siblin
B <Message> calc d
oo 2Message dell Unda CEHHE
03 «Packagers inberact 4 e n

1 <Interaction= inter.
B3 <Packager interact of Cut
[l <Send Signal Evert = Copy

(: Properties &3 Raste

E&nnotations
Element Import
Fragrent
General Ordering

Mame Expression
Ownied Comment:
Owned Rule
Package Impaort

rd

»
»
»
»
ld [ Interaction Constraint
»
»
3
»

Create the min and max value

1] <Interaction Operand:> MyLoopOperand

@p <Message > maintainspeed
- B, <Message caloulate

Mew Sibling

13

- zMessage’> delkaTorgue
1 <Package > interactioni Events
| <Interaction= interaction2

< Unda Set
' Redn Mew Minint | Literal Integer

1 «<Package > interactionZEvents of Cut ]
=| Copy
Paste
endency 1 BERE
2d Element Yalidate
Contral,.,,

Create Query

Execube Query..,
ression

e Run As

— Debug As

ament Team
Compare ‘YWith

srarlaba Darsmakar Danlara Wikh

Set the values of min and max

g) save the model

h) close and come back to papyrus editor

[J 2010 The Papyrus Consortium

- v v -

-

EAnnotations 3
Maxint »

Mame Expression  »

Owned Corment  »
- s+ Expression
Specification 3

p— - NstaNCE Yalue

4" Duration Interval

# Interval

T/ Literal Boolean

rutl Literal Mul

=¥ Literal String

0.1% Literal Unlimited Natural
#1¥ Opaque Expression

4% String Expression

1+t Time Expression

£ Time Inkerval

31/35



o

Tutorial on Sequence Diagrams in Papyrus MDT

Version 0.1

5.2 Creating Elements from Model Explorer

Another possible procedure is now also available
1.

[ - TR TR - RN ]

B t. operand {1}

EHE ]
B L cow Import package from registered library
-t frac  Create Query
-t lifeline (23

#H-t message (3) 4

Go to the interaction operand in the model explorer

E:' Create a new ActionExecutionSpecification

£3 interactionZEvents Mew Diagrarn » = Create a new Comment
B3 Interfaces )
= 2] Create a new ConsiderIgnoreFragrent -
C3 ModelElements 2 RemaiE:0, 21 Crent e %
t packagelmpart (1) o {7} Create a new Canskrainl
EEDI RegulatorClassDiagram u c {d} Create a new DurationConstraint E
EED, RequlatorPackagelnkermalyi == et '] Create a new Interaction
B8 RegulatorPackageOverview Faste '
O Usecases X Delete {7} Creake a new IntervalConstraink -
< Undo Editing Property : )
ne 54 <ty Create a new Statelnvariant
Pads %4 Create a new SkringExpression
Loz Pesaures. . {1} Create a new TimeConstraint -
— — Contral... LT T
2. Create an interaction constraint
* you get an owned rule
E-EL MyLoopCombinedFragment
L covered (2
* Le enclosingInkeraction (13
E|T_, operand (1)
yLoopC
L covered(2)
Y Fragment ()
E|T_ ownedRule (1)
E|'"[?] InteractionCaonstraint0
[ Ly context (1)
[?] <Interaction Constraint:> InteractionConstraint0
P
umML MName: I InkeractionConstraintd
Profile
acdvanced Visitility: [ pubiic |
Conkext: 2| «Inkeraction Operand > MyLoopOperand Maxint: |<Undefined>
TMinint: |<Undefined> Specification: |<Undefined>
Constrained Element:

[J 2010 The Papyrus Consortium

32/35



“?  Tutorial on Sequence Diagrams in Papyrus MDT Version 0.1

3. Select this interaction constraint from the properties view to set the guard attribute

L=l Properies 24 ) Error Log | = L
[ <Interaction Operand:> MyLoopOperand
R
umML Mame: | MyLoopOperand
Profile
Appeatance Wigibility |pubhc E
Advanced
Guard: |<UndeF|ned>
Fragment: & select Guard: o =] EI EI
—
Select the reference you want For Guard: -
Toalkip: Constraint of the operand.
Matching items:
[?] =Interaction Constraint = InteractionConstraintd
=
| [?] <Interaction Constraint= InteractionConstraintd |
G
k?,' [a]'4 I Cancel |

We get the constraint attached to the guard of the operand.

E Properties 53 O Error Log} il = = =0
[?] <Interaction Constraint:- InteractionConstraint0
P
uML Mame: | InteractionConstraint0
Prafile
Advanced Yisibility: Ipubllc Iz‘
Conkesxk: |<Undefined> Maxink: |<Undefined>
Iinint: |<Undefined> Specification: |<Undefined>
Constrained Element:

4.

The current implementation of properties view does not support element creation. So we
create the literals corresponding to values in a separate Package (DataToSetParameters).

Set the attributes of the guard

Then we select these elements from the properties view to set the guards attributes.

5. Create literals fro min and max attributes

= 4 Create a new DurationInteryal

%E?'-\lazv:'j

=

- Model Explarer &3 =
P I‘_? DetailedseqlDiagram

[E] Create a new Enumeration

=1 Create a new EnumerationLiteral

interaction1Events

interactionzEvents [ Create a new ExecutionErvironment
ExecutionEvent #+y Create a new Expression
ExerutionEvent 1 &® Create anew FunctionBishavior
SendOperationEvent [Z] Create a new Instancespecification
ReceiveOperationEvent

Creat: Inst Yl
L dientDependency (2) 12 Create a new Instanceialue

B3 Interfaces ['] create a new Interaction

= [?] Create a new InterackionConsktraint
. T " Import package from registered library
%2 MyLoopMil Create anew Interface
s — . Creake Query
-2 Likeral3trin I ? Create anew Interval
Bt packagelmpart HERME CE R

{7} Create a new IntervalConstraint

----E'g RequlatorClass

Redo

[J 2010 The Papyrus Consortium

Mew Diagram » T/F Create anew LiteralBoolean
5= outline 52 ; - -0, Create a new Literallnteger
———— sIRename... —
null Create a new Literalkull
of Cuk 01* Create a new LiteralUnlimitedhatural
= Copy
| Faste
¥ Delete [F] Create a new Node
<',’) Undo Create UML::LiteralString =1y Create a new OpagqueExpression

3 Create a new Package

33/35



“?  Tutorial on Sequence Diagrams in Papyrus MDT

Version 0.1

set values in the properties view.

EProperties = Q;_-|Err0r Log} =_’ ¥ =0
*» «<Literal String> MyLoopMaxLiteralStringD
P
uML Marne: IMyLnanaxLiteraIStringD Yalue: I 10
Prafile
B Wisibility: IDubllc Iz‘
Type: |<Undefined>

Remark : semantics of attributes actually depend on the kind of combined fragment.

Min and max values are used for Loop , the specification is used as a constraint
applied to the combined fragment. The sepcification can be created directly from
the guard in the Model Explorer with a right click (using contexte menu).

6. Reference attributes from the guard properties view

Select elements on pop-up after clicking on green “+” sign.

=] Properties (3 @ Efrar Log} =_} B :::9 =
[?] <Interaction Constraint:- InteractionConstraint0
|
uML Mame: I InteractionConstraint0
Prafile
Tehaag Wisibility: IDubllc Iz‘
Conkesxk: |<Undefined> Maxint: |<Undefined>
Iinint: |<Undefined> Specification: |<Undefined>
Constrained Element:
& Select Maxint: _ 3l x|
Select the reference you want For Maxink: -
Tooltip: The maximum number of iterations of a loop
| *ma|
IMatching items:
5 <literal String: MyLoopMaxLiteralstringd
il | i

|E <Literal String> MyLoopMaxLiteralStringd |

©)

=]

Cancel |

[ Propetties &3 O Error Log} == 3 =0
[7] <Interaction Constraint> InteractionConstraint0
1 -
uML Name: |interactionConstraintd I—
Profile
advanced Wisibility: Ipuhh( E
Context: ‘<Undsﬁned> Maxint: |E <Literal Integer > max
Minink: ‘E =Literal Integer > min Specification: |Z <Literal String: LiteralStringd =
Constrained Element:
I =l

[J 2010 The Papyrus Consortium

34/35



“?  Tutorial on Sequence Diagrams in Papyrus MDT Version 0.1

Remark: the Specification property is set directly from the model explorer with the contextual
menu. We temporarly use a string to set the constraint.
ngard(l)

(2] S ————— ! |

Import package From registered library

Create Query

Execute Query

C =1 Create a new Comment

Mew Diagram * "4 Create a new Duration
gg s8]l Rename. .. d Create a new DurationInteryal
J— #+y Create a new Expression

o e 45 Create a new InstanceValue
_[_ 5] Copy 7 Create a new Inkerval

Pate T¢F Create a new LiteralBoolean
_ ¥ Delete 10, Create a new Literallnteger

< Undo Edting Property null Create a new Liceraliiul

Redo =

0.1* Craate a new LiteralUnlimitedNatural

Load Resaurce, .,

Contral...

#1y Create a new OpagqueExpression

Unzantrol

%°¢ Create a new StringExpression
t+c Create a new TimeExpression

I Create a new TimeInkerval

tor/model.di - Eclipse

ram  Papyrus MWindow Help

| [FA e || 100 - oo hREBEWEh E

= Q:H o 7 T 079 madeldi 22
sd: interactionz 2| 55 Palette
|K‘l+' =
1 Nodes
o Edges
regulatar : Hlawy : 8, ves
Regulatar RequlatingLaw B, Mes
|
I
--Mes
LB m&~=0 | ‘
ﬁ A 1% = } maintainSpeed] ! 5 Mes
B B |
EI--[?] InkeractionCanstraintIF } “xMes
- specification (1) _@ ; — Mes
: s TFConstraintLiteralStringd 4 ! —p Mes
H |
=1 fragment (5) [IF x=2] |
; I Cor
MyLoopCombinedFragment ook, calculated) | =
L covered (2) - {2} Con
: Le enclosingoperand i1) [2,10]
=8 T_, operand (1)
= | MyLoopOperand — ‘
L covered (2) deltaTargue( |
|
;
£ 7] InteractionConstrainkd }
T Fragment () ! s
B4 caloulateSend ! }
=2 E:' ActionExecSpec ; |
[Else] | !
[ —U ActionExecSpecstart - | |
[ ! |
5 I displayStatust !
lslme 0 | 5
|
|
|
|
|
| I
- | 1 z
Fotnics 4| | B

E'g RegulatorClassDiagram | S UseCaseDiagram | RegulatorSystemCompositeDiagram |H GlobalSeqbiagram ‘H‘ GlobalSeqzDiagram lH‘ DetailedseqlDiagram &3 ﬁ Globalseqabiac

= Properties £3 QT Error Log} -
i .
|| [7] <Interaction Constraint InteractionConstraint0
e
uML Hame: | [nteractionCanstrainto
Prafile
] Wisibility: IDubllc
Conkexk: ‘<Undefined> Maxink: ‘E <Literal Integer > max
Minint: ‘E <Literal Integer> min Specification: 5 <literal String> LiteralStringd
Constrained Element:
|

[J 2010 The Papyrus Consortium 35/35



	1 Introduction and initial steps
	1.1 Getting Papyrus
	1.2 Creating a Papyrus project
	1.3 Creating a new model

	2 Creating a simple sequence diagram
	2.1 Adding lifelines
	2.1.1 Select LifelineTool in  the palette
	2.1.2 Set properties in the properties view

	2.2 Adding messages (basic - asynchronous)
	2.2.1 Select desired tool from the palette
	2.2.2 Select source and target points
	2.2.3 Select/Create Operation/Signal attached to message
	2.2.4 Creating Create and Delete Message

	2.3 Adding execution specification
	2.3.1 Select desired tool from the palette
	2.3.2 Place the ES  on  the Lifeline 

	2.4 Adding messages (complements)
	2.4.1 Adding synchronousCall (regular)
	2.4.2 Adding synchronousCall ( with dynamic ES creation)
	2.4.3 Adding a Reply message


	3 Combined Fragments
	3.1 Introduction
	3.1.1 The different types of Combined Fragments

	3.2 Creating CF with papyrus
	3.2.1 General principles
	3.2.2 Seq
	3.2.3 Loop
	3.2.4 Alt
	3.2.5 Par
	3.2.6 Break


	4 Adding Timing Information to Sequence Diagrams
	4.1 Adding Observations
	4.1.1 Time Observations
	4.1.2 Duration Observations

	4.2 Adding Constraints
	4.2.1 Time Constraints
	4.2.2 Duration Constraints


	5 ANNEX
	5.1 Building elements from UML editor
	5.2 Creating Elements from Model Explorer


