

Sébastien Gérard

25/11/2011

PAPYRUS USER GUIDE SERIES
About UML profiling, version 1.0.0

This document is part of a series of documents called, Papyrus User
Guides Series, and dedicated to assist the usage of Papyrus. The focus of
this volume is to describe how to use the concept of profile within
Papyrus. It handles both following aspects, firstly their design and
definition and secondly their application and usage.

 25/11/2011

 1

Table of Contents

Historic of the document .. 2

Introduction .. 3

Profile Modeling and Definition ... 5

Introduction to UML Profiles .. 5

Profile Creation and Modeling .. 7

Profile creation ... 7

Profile authoring .. 12

Profile Definition and Export .. 21

Profile Applying and Use .. 24

Applying a profile .. 24

Using the stereotypes of a profile .. 26

Applying a stereotype .. 26

Assigning values to properties of stereotypes ... 28

Displaying options of a stereotype application .. 29

References ... 32

 25/11/2011

 2

ISTORIC OF THE DOCUMENT

Version # Contributors
<Name>, <Affiliation> Comments

1.0.0

Sébastien Gérard, CEA,
LIST, Laboratory of model

driven engineering for
embedded systems

This is the initial version of the document.
It is based on the Papyrus version 0.8.2.

H

 25/11/2011

 3

NTRODUCTION
The complexity level reached today for the development of computer-intensive
systems requires for new design paradigms. In this context, the most promising
used principle is commonly referred to as “raising the level of abstraction” and is
one of the main distinguishing features of model-based approaches.

The principle of separation of concerns is indeed widely used in engineering, including
model-based engineering, to address the ever growing complexity of system designs.
This principle implies specialization of technologies, and in the context of model-based
engineering, it has led to the development of domain specific modeling languages
(DSML). Those DSMLs provide constructs that are directly aligned with the concepts of
the domain in question. Yet, the large majority of systems, including software-intensive
systems, are still denoted using general purpose languages. The main reasons are
probably the ready availability of tools, language documentation and training courses for
these languages, as well as the ready availability of expert practitioners. Also, for many
enterprises, using general-purpose languages appears as the less risky and less
expensive alternative. Consequently, various domain-specific program libraries, written
in a general purpose language, are often developed in place of DSLs. Main drawbacks of
this approach are modeling tools are then not domain-oriented, and automated tools,
such as compilers, cannot recognize and take advantage of domain-specific knowledge
(e.g., for optimization). Behind those aforementioned disadvantages, the issue is that the
positive impact of using model-based engineering for designing complex systems is then
reduced: models are more difficult to be authoring, and their automatic exploitation is
limited, and any way much more difficult to implement.

In addition, a key design principle for industry is to maximize reuse of technology,
knowledge, and tools—an argument that usually resonates in industry, where reducing
cost is a primary objective. Unless they serve core business purposes or provide major
competitive advantages, enterprises generally prefer well-known standard technologies.
The Object Management Group (OMG, www.omg.org) is one of the principal
international organizations promoting standards supporting the usage of model-based
software and systems development. The Unified Modeling Language (UML) standard (1)
is probably the most representative of these and has had definitively significant
successes in the software industry as well as in other domains, such as IT and financial
systems. UML was designed as a general-purpose modeling language as well as a
foundation for deriving different domain-specific
languages, mainly through its profile mechanism.
Consequently, when an industry needs a DSML, the
best advice we can give is: “Don’t reinvent the wheel,
adopt UML instead, but tailor it to your needs!”

Papyrus is the Eclipse graphical editing tool for UML2: www.eclipse.org/papyrus. In
accordance with its primary goal to implement the complete standard specification of
UML2, Papyrus provides an extensive support for UML profiles. It includes hence all
the facilities for defining and applying UML profiles in a very rich and efficient manner.
But, it also provides powerful tool customization capabilities similar to DSML-like meta-
tools. This way, Papyrus is a tool enabling to gather the advantages of using a general-
purpose language such as UML2, but also those of DSML-based approaches.

The purpose of this document is to detail all Papyrus features related to DSML-
engineering, including information about UML profiles, and Papyrus customization

I

“Don’t reinvent the wheel, adopt
UML instead, but tailor it to your

http://www.omg.org/
http://www.eclipse.org/papyrus

 25/11/2011

 4

facilities. To achieve this goal, the document is structured as follow: Next chapter is
dedicated to the UML profile concept. It will outline the concept of UML profiles and
then denote how to model, define and apply a profile within Papyrus. Then, the
document describes all parts of the modeling tool that may be customized. Then, an
example is given, and some conclusions are drawn before citing all the references cited
all along the document.

In order to illustrate this document, we will use a very simple example consisting in
engineering a very basic DSML for requirement engineering, named SimplifiedReqML.
The requirements for this DSML are shown in Figure 1 which was authored using the
Papyrus table editor of SysML requirements.

Figure 1 – Requirements description of SimplifiedReqML

 25/11/2011

 5

ROFILE MODELING AND DEFINITION
The purpose of this chapter is to provide the Papyrus users all the
documentation needed in order to be able to use UML profiles. It includes
the information for modeling and defining a profile using the Papyrus
UML profile editor, but also the information for the usage of a profile

within a user application model.

Introduction to UML Profiles
As already mentioned previously, because of the diverse nature of the disciplines needed
for designing real-time and embedded system, it is clear that a single modeling language
will not be enough to cover all the various concerns involved in this specific area.
Consequently, there has been much discussion about the suitability of UML for such
domains relative to custom domain-specific modeling language designed from scratch
(2). A custom language has the obvious advantage that it can be defined in a way that is
optimally suited to a specific problem. At first glance, this may seem the ideal approach,
but closer examination reveals that there it can have serious drawbacks. If each
individual sub-domain of a complex system uses a different modeling language, the
problem will be how to interface the various sub-models into a consistent integrated
whole that can be verified, tested, or simply unambiguously understood. Furthermore,
there is also the issue of designing, implementing, and maintaining suitable industrial-
strength tools for each custom language as well as providing teaching materials and
training, all of which can result in significant and recurring expenses.

Conversely, although UML was designed to eliminate the accidental complexity
stemming from gratuitous diversity, it provides the profile concept for deriving domain-
specific modeling languages from its set of general language concepts. An important
advantage of this approach to DSML design is that it allows reuse of existing UML tools
and widely available UML expertise. Note that we are not saying that UML profiles
completely avoid DSML integration problems. However, many of the fragmentation
issues1 stemming from diversity of individual domains and their languages can be
mitigated because all domain-specific modeling languages derived from UML share a
common semantic and syntactic foundation. There is typically a lot of commonality
between the various disciplines involved in system engineering. For instance, the
concepts of package, composition, property and connector, which are provided by UML,
are common to many disciplines, as are the basic notions of object, class, and interface.

The basic premise of profiles is that all domain-specific concepts are derived as
extensions or refinements of existing UML concepts, called UML metaclasses. These
extensions are called stereotypes. A stereotype definition must be consistent with the
abstract syntax2 and semantics of standard UML meta-classes it extends. Consequently,

1 This is used to refer to the situation that occurs when different domain-specific
languages are used to describe different aspects of a complex system. For example, one
language might be used to describe the user interface function while a different one for
the database management and access functions. The individual languages involved
could have very different models of computation, which raises the question of how to
meld the different specifications into a coherent and consistent whole.
2 In the domain of language engineering, the abstract syntax of a language usually
refers to the definition of the concepts of the language including their properties and

P

 25/11/2011

 6

a profile-based model can be created and manipulated by any tool that supports
standard UML. Moreover, because the concepts underlying a profile are specializations
of existing UML concepts, it is more easily learned by anyone with knowledge of UML.

A stereotype is defined either as an extension of a UML base metaclass or as a
specialization of an existing stereotype. The extension relationship of UML is not an
association but a kind of association directed from the stereotype to the extended
metaclass. Consequently, the metadata conveyed by the associated the attributes of the
stereotype are associated to the extended metaclass in a transparent manner for the
metaclass itself. This allows profiles owning the stereotypes to be applied and removed
dynamically without modifying the underlying models—a fundamental feature of the
profile mechanism.

A stereotype may have attributes and may be associated with other stereotypes or
existing UML metaclasses. A stereotype may be required (i.e., its isRequired
metaproperty must be set to true). In that case, the stereotype will be automatically
applied to all instances of the extended metaclasses the user will model. This feature is
very useful to impose a specific terminology.

Constraints, such as OCL constraints (3), can also be defined in a profile. They can apply
to stereotypes defined in the profile or those imported by the profile. They can also be
used to further constrain elements of the UML metamodel. For instance, one could
define an OCL constraint that all instances of Class in a model are active, or that all
instances of Class must have at least one Operation (regardless of whether the Class is
extended by a stereotype or not). However, not all constraints can be written in OCL. In
that case, it is common to denote those latter in natural language. The drawback is that
such constraints are no more automatically interpretable and need to be first rewritten
in some language the UML tool will understand. In the context of Papyrus, it is then
usual to use Java.

relationships. It is usual to denote such abstract syntax using a meta-model written as
for example in MOF. The abstract syntax is not dedicated to be manipulated directly by
the user. For that, the language engineer defines a concrete syntax, also called notation.

As an alternative to aforementioned constraints for pruning UML, this letter
provides a metaclass filtering function known as “isStrict”. The filtering rules allow
selecting the kinds of metaclasses that are visible in the model (details on the
filtering rules are defined in clause 18.3.6 of [1]). The actual filtering occurs when
the profile is applied. This feature can be used as a means to define viewpoints that
only filter out metaclasses.
Since “strict” filtering is merely a restricted view of a model, use of this feature does
not change conformance to the underlying metamodel. However, no specific
constraint is defined on how the subset is to be defined. Thus, the filtering
mechanism does not prevent hiding of mandatory metamodel elements; for example,
a poorly defined profile could specify that only Connector elements are visible,
despite the fact that a Connector needs at least two ConnectorEnds. This means
that a designer could create models through the view offered by the “strict”
application of the profile that are not compatible with standard UML (cf.
SelfFilterProtect definition).
PS: Let’s notice that this mechanism is not yet implemented within papyrus.

 25/11/2011

 7

Warning: Given that the primary constraint for profiles is that they cannot contradict
UML, filtering rules should always be defined to prune only optional constructs. This will
ensure self filtered protection, edit forward compatibility, and edit filtered backward
compatibility. However, again, defining a compatible pruning is necessarily a manual
task that requires deep UML expertise.

From a notational viewpoint, stereotypes can also be used to adapt the concrete syntax
of UML in order to provide a more domain oriented concrete syntax. Defining the
concrete syntax associated with a stereotype may be done in three ways which difficulty
to implement is growing:

• Use the pre-ordained UML notation of the base class and standard French
guillemets, « MySterotype ». The development cost is null. In addition, it reuses
a well-known UML notation so that the cost of ascending the learning curve is
reduced. Reuse and compatibility are maximized.

• Attach icons to the standard notations. With such a minimal effort, the standard
representation is illustrated with domain specific icons. The development cost is
then limited to the graphical design of the related icons. It reuses the standard
notation and thereby keeps a flat learning curve.

• Redesign the whole notation. With tools available today, the development and
maintenance cost of a specific notation is of course higher. However, it has the
advantage of providing a concrete syntax that domain experts may prefer, but it
also reduces reuse of UML expertise.

The rest of the chapter will now be focused on the Papyrus implementation of the UML
profile concept, and is mainly going to answer following questions:

• How to create and author a UML profile?
• How to define and export a UML profile?
• How to apply and use a UML profile?

Profile Creation and Modeling

Profile creation
Table 1 denotes step-by-step the actions required to create a new UML profile with
Papyrus. If it is the first time you are using Papyrus after installing it, you will first
have the screen as shown in step 1 of Table 1, otherwise you will directly get Eclipse
open with the Papyrus perspective3 selected as shown in step 2 of Table 1.

For creating a UML profile model, as it is also the case for a UML model, you need first
to have created a Papyrus project which will be the folder for your profile model. One
Papyrus project can consist of several UML models or/and profiles models. As shown in
step 3 of Table 1, for creating a new Papyrus project, select in the menu bar: File > New
> Papyrus Project. While you are creating a new Papyrus project, the project creation
wizard will also enable you to create either a UML model or a UML profile as show in
step 4 of Table 1.

 25/11/2011

 8

During the process creation of a model or a profile, as shown in step 5 of Table 1, the
creation wizard will ask you if you want to create a default profile diagram (if yes, let’s
set a name for this diagram), and if you want to import the basic primitive types
package of UML. We advocate you to select at least this latter option that will be very
useful later to design your profile. Hence, the basic types of UML are used for typing the
stereotype’s properties of the profile.

Finally, once the new model is created, you have to select the model explorer in order to
start to model your application as shown in the figure shown at step 6 of the following
table.

Table 1 – Steps for creating a new Papyrus project

Step Number Screen Snapshots

Project Creation

Step 1

Project Creation

Step 2

 25/11/2011

 9

Project Creation

Step 3

Project Creation

Step 3

Project Creation

Step 4

Project Creation

Step 5

 25/11/2011

 10

Project Creation

Step 6

Next table denotes step-by-step the actions to create a new UML profile if you have
already created a Papyrus project as previously denoted. For creating a new profile, you
first have to select the project where you want to add your new profile and then right-
click on the project folder and select Menu>New as shown in step1 of Table 2, and apply
next steps as denoted in this table. You can also select the project folder and hit the
keys, CTRL + N. Then, you have to choose Other and select Papyrus Model as shown in
step 2 of Table 2. Once you are there, just let you drive by the wizard as illustrated by
next steps shown in Table 2.

Table 2 - Steps for creating a new UML profile

Profile Creation

Step 1

 25/11/2011

 11

Profile Creation

Step 2

Profile Creation

Step 3

Profile Creation

Step 4

 25/11/2011

 12

Profile Creation

Step 5

Profile Creation

Step 6

Stereotype definition
Once a profile has been created, it is now time to populate this latter with UML
extensions, i.e. stereotypes, and their related concepts such as properties, extensions,
and metaclasses.

Stereotype creation
A stereotype is created as any other UML model elements in Papyrus: select the related
tool in the palette of the profile diagram editor, and then click in the place you want to
create this element on the background of the diagram. If the palette is not open, just
click on the small arrow on the upper right corner of the diagram editor. Papyrus will
then ask you to provide a name. Once done, hit the return key and that all.

 25/11/2011

 13

Table 3 - Steps for creating a stereotype

Stereotype
Creation

Step 1

Stereotype
Creation

Step 2

Metaclass import
Once you have created a stereotype, you need to import the UML2 metaclasses you want
to extend. Next table illustrate all the steps required to do it. First, you have to select
the tool “Import Metaclass” within the palette of the profile diagram editor. Then, let’s
click on the profile diagram where you want to drop the imported metaclass. A Papyrus
dialog box is then opened in order to ask you to specify which metaclasses you want to
import. Select the metaclasses in the left list and either drag and drop these latter in the
right list or press the button with arrow directed from left to right and located between
both aforementioned lists. Then, let’s press the button “ok” and it is done. The imported
metaclasses are then shown in the diagram as illustrated in the step 3 of the Table 4.

Note: When you import UML2 metaclasses, Papyrus is creating ImportElement model
element referent to the metaclasses of the UML2 metamodel itself. Those so-called specific
model elements, the ImportElement, are indeed a kind of proxy to the model elements
contained in another model, in the UML2 metamodel. If a metaclass has already be
imported, you do not need to import it again to use it in another context. You can select
the imported meta-class from the model browser and drag and drop this latter on the
diagram you want to use it.

Table 4 - Steps for importing UML2 metaclasses

Metaclass
Import

Step 1

Selection of the palette tool
for Stereotype modeling.

When model elements are created,
Papyrus asks you for a name.

Selection of the palette tool for importing
UML metaclass modeling.

 25/11/2011

 14

Metaclass
Import

Step 2

Metaclass
Import

Step 3

Extension creation
Once the stereotype is created and the meta-class is imported, you may then model the
extension relation from the stereotype to the meta-class as shown in the following figure.
The extension relationship is modeled using the extension tool in the profile diagram
palette, . Within the diagram shown in Figure 2, both stereotypes «Requirement» and
«Refinement» extend respectively both meta-classes Class and Dependency.

Selection of the meta-class to import.

 25/11/2011

 15

Figure 2 - Example of profile model

Subprofile creation
Some profile may be complex due as for example to their scope that may be large. In
order to cope with this complexity, it is then possible to decompose a profile into a
hierarchy of subprofiles. A subprofile behaves such as a sub-package; it is a container of
stereotypes.

To create a sub profile, select the profile tool in the profile diagram palette () and then
click on the profile diagram where you want to create your new profile.

In the example denoted in Figure 3, we have created two sub-profiles of the
SimplifiedReqML profile in order to gather in one hand the extensions that apply to
node elements of the models and in the other hand the extension defined in the DSML
for modeling relationships between those nodes.

 25/11/2011

 16

Figure 3 - Example of profile model with sub-profiles

Stereotype Generalization
When designing a profile, it is possible to reuse existing stereotypes defined in other
existing profiles. Stereotypes can indeed be generalized enabling to create child
stereotypes that inherit features of one or more generalized stereotype define either
locally in the profile or externally other profiles.

To create a stereotype generalization using the profile diagram editor, let’s draw a
generalization relationship using the tool from the palette. As any relationship
within Papyrus, you need to click first on the source and then on the target of the
relationship you want to model.

In our example, there exists in the UML predefined profile a stereotype extending the
dependency relationship in order to introduce the concept of refinement: «Refine».
Consequently, we will redesign our sub-profile SRMLRelationship in order our
stereotype «Refinement» to be a specialization of this UML stereotype instead of directly
extending the UML dependency meta-class.

As previously mentioned, you may extend a stereotype defined in your profile or a
stereotype defined in another external profile. In the latter case, the first thing to do is
to import the profile where the stereotype has been defined as denoted in Table 5 from
step 1 to step 4. Once the profile has been imported, you can select the stereotype you
want to generalize from the imported profile and drop this latter in the diagram of
profile description. Now, let’s draw the generalization relationship from your stereotype
(e.g., «Refinement» in figure shown at step 6) to the generalized stereotype (e.g.,
«Refine» in the figure shown in step 6). At this point, your diagram should look like
something like the one shown in figure of step 7.

 25/11/2011

 17

Table 5 - Steps for generalizing a stereotype

Stereotype
Generalization

Step 1

Stereotype
Generalization

Step 2

Stereotype
Generalization

Step 3

Stereotype
Generalization

Step 4

 25/11/2011

 18

Stereotype
Generalization

Step 5

Stereotype
Generalization

Step 6

Stereotype
Generalization

Step 7

Stereotype display options
When a stereotype application is shown in a diagram, the by-default way to show it
within diagrams is using a string where the name of the stereotype is shown within a
pair of French guillemets above or before the name of the model element. However, it is
also possible to modify the graphical appearance of the annotated model element using
icons. If the graphical representation of the model element is something like a box
(including ellipse of the use cases), the icons can be displayed inside and on top of the

 25/11/2011

 19

figures, or it may replace this latter. In that latter case, the property of the element
cannot be shown and the name of the model element appears within a label displayed
near the icon. If the model element is graphically denoted by a line, the icon is shown in
front of the name of the link (let’s see example in section “Displaying options of a
stereotype application” in page 29).

In order to specify the icons you want to attach to a stereotype, select the stereotype and
the tab UML of the property view. In the right-upper corner of the widget named “icons”,
press the button to add a new icon as shown in step 1 of Table 6. Once done, the
dialog box shown at step 2 is open. Within this latter, let’s fill in a name and select an
image file using the button defining the content of the icon. Next, you have to define
the kind value: icon or shape. Using this property, you can choose to associate the
selected image either as an icon or as a shape.

It is possible to associate only one shape to a stereotype, but you can associate different
icons to a same stereotype. In that latter case, there is a description property that is
used to select which one to display. By default, if no expression is defined, the first one is
the list is chosen for displaying. The expression has to be on a property of the stereotype
which type is an enumeration type.

In our example, we can set different icons to the stereotype «Requirement» depending on
the value of its importance property. This latter is indeed type by the ImportanceLevel
enumeration which values may be High, Medium of Low (figure shown at step 7 of Table
7). For this example, we will then associate the three following images, , and ,
to the stereotype «Requirement» and their related expression will be respectively
importance=High (e.g. figure shown at step 6 of Table 6), importance=Medium and
importance=Low.

Table 6 – Steps for attaching icons to stereotypes

Icons for
Stereotypes

Step 1

Icons for
Stereotypes

Step 2

 25/11/2011

 20

Icons for
Stereotypes

Step 3

Icons for
Stereotypes

Step 4

Icons for
Stereotypes

Step 4

Icons for
Stereotypes

Step 5

 25/11/2011

 21

Icons for
Stereotypes

Step 6

Profile Definition and Export
Once a profile has been modeled (stage we are now for our example as denoted in Figure
2), we need to define it before being able to apply it on user models. The definition of a
profile consists in:

“When defining a dynamic profile representation, the contents of a profile are converted to
an equivalent Ecore format that is stored as an annotation on the profile. Then, when a
profile and its stereotypes are applied to a model and its elements, dynamic EMF (see the
EMF book for details) is used to store property values for the stereotypes. For the most
part, you can ignore this complexity, as long as you remember to define your profile before
using it.” (This definition has been extracted from
http://wiki.eclipse.org/MDT/UML2/Introduction_to_UML2_Profiles)

PS: The implementation of profile support in the UML2 component of MDT supports
defining both dynamic and static profile representations. In this the document, we will
focus on dynamic profiles.

To define a profile within Papyrus, you just need to save it doing as for example
following actions: either through the menu bar action File > Save or using the key
shortcut “CTRL S”.

Let’s notice, that it is not mandatory to define a profile each time you save it. If you do
not want to define your profile when saving it, just answer no to the related question
asked by Papyrus when saving profile modifications as shown in Figure 4. However, if
you want to apply the modifications you have done on a given profile, this you have to
define it again in order the modifications may be taken into account at the user model
level.

http://wiki.eclipse.org/MDT/UML2/Introduction_to_UML2_Profiles

 25/11/2011

 22

Figure 4. Dialog box about profile definition

Next, Papyrus will interact with you asking some additional information about your
profile definition, mainly versioning information, as denoted in Figure 5. Once you have
pressed the ok button your profile will be usable at user model level as denoted in the
next chapter.

Figure 5. Dialog box about meta-information for the profile versioning

 25/11/2011

 23

 25/11/2011

 24

ROFILE APPLYING AND USE
Once a profile has been designed and defined as previously explained, it
now times to use it. The first step to process is to apply the profile on your
model or a part of the model. This is the purpose of the next section to
explain this first step. Then, we will explain how to use the applied profile

and mainly how to use its extensions, i.e. its stereotypes.

Applying a profile
To apply a profile, first you need to open your model and then you can follow the steps
denoted in the Table 6.

The first step consists in selecting the part of the model you want to apply the profile
on4. Then to apply the profile on this part, let’s select the profile tab in the property view
as shown in the figure denoted in the step 2, and press the button as shown at step 3.

Then, Papyrus will ask you firstly to choose the profile to apply from your workspace
(Step 4), and secondly to choose which part of the selected profile you want to apply. It is
indeed possible that your profile may be composed of sub-profiles as explained in the
previous chapter. It is then possible to apply partially a profile by applying one or more
of its sub-profiles (Step 5).

At this point, your Papyrus should looks like both figures shown at steps 6 and 6bis in
the Table 6.

Table 7 – Steps for applying a profile

Profile
Application

Step 1

Profile
Application

Step 2

4 The parts of the model can be denoted in UML either as a package () or as a model (

), and UML profiles can be applied on both kinds of element.

P

 25/11/2011

 25

Profile
Application

Step 3

Profile
Application

Step 4

Profile
Application

Step 5

 25/11/2011

 26

Profile
Application

Step 6

Profile
Application

Step 6 bis

Using the stereotypes of a profile
Once the profile is applied on you model, its extensions, i.e. stereotype, are available in
the modeling tool and can be used in your model to annotate it.

Applying a stereotype
To annotate a model element, you first need to select it either through the model
explorer or in one open diagram. Then, select the tab named “profile” in the property
view as shown in the figure shown at step 2, and add your stereotype using the button

 of the widget named “Applied stereotypes”.

A dialog box enables you to select the stereotype(s) you want to apply (left part of the
dialog box) and using the button located in the middle of the dialog box enables to
define which stereotypes have to be applies. The list located on the right of the dialog
box denotes the list of applied stereotype. If you want to unapply stereotypes, you can
select those latter from the right list and use the button to unapply them.

At this point, your Papyrus should looks like the figure shown at steps 6 in the Table 7.

 25/11/2011

 27

Table 8 – Steps to apply a stereotype

Stereotype
Application

Step 1

Stereotype
Application

Step 2

Stereotype
Application

Step 3

Stereotype
Application

Step 4

Stereotype
Application

Step 5

 25/11/2011

 28

Stereotype
Application

Step 6

Assigning values to properties of stereotypes
As already mentioned, Stereotypes may have properties. Consequently, when applying a
stereotype to a model element, it may be necessary to set the values of those properties.
For that, you will go to the profile tab of the property view and then you can unfold the
stereotype application as shown in figures shown at step 1 and 2 of Table 8.

Once you have selected the property to edit as shown at setp3, its value (if already set,
as for example if there is a default value defined in the profile for the property) appear
in the right part of the property view. If the property has not yet been valued, you can
add a value by using the button located on the top right of the widget named
“Properties values”. If there is a value, double-click on the value o edit this latter. A
dialog box will then appear enabling you to change the value of the property as
exemplified at steps 4 and 5.

At this point, your Papyrus should looks like the figure shown at steps 6 in the Table 8.

Ps: If you want to delete a value set to property, let’s use the button located on the top
right of the widget named “Properties values”.

Table 9 – Steps for assigning values to stereotype properties

Stereotype
Properties
Assignment

Step 1

Stereotype
Properties
Assignment

Step 2

 25/11/2011

 29

Stereotype
Properties
Assignment

Step 3

Stereotype
Properties
Assignment

Step 4

Stereotype
Properties
Assignment

Step 5

Stereotype
Properties
Assignment

Step 6

Displaying options of a stereotype application
As shown in the Figure 7, stereotype applications may be graphically rendered under
different forms, either textually, or using specific icons. Details to specify those icons
associated to a stereotype are given in section “Stereotype display options” in page 18.

Let’s remain that in UML, you can apply several stereotypes on a same model element.
In Papyrus, it is then possible to select the one you want to show per diagram. For
showing or hiding a stereotype application, you have to select the tab “appearance” in
the property view. As shown in the Figure 6, there is one widget named “Applied
stereotypes” that denotes the list of stereotypes applied on the current selected model
element. On the example illustrated within this figure, you can see on the upper corner
of the icon placed in front of the stereotype name Requirement” an overlay denoting that
this stereotype application is shown.

Warning: Let’s notice that the appearance tab of the property view is only visible if you
select a model element from one of the open diagram. In other case, if you select the model
element from the model explorer, the concept of graphical does not make sense because the
information specified within this view are only related to graphical information.

Consequently, the values set to the appearance properties of model element are valid only
in the context of the diagram where the element is selected. It is then possible to show a
stereotype on a diagram and hide it in another diagram depending on the concerns of the
view realized by the diagram.

To hide or show stereotype applications, you have to select them from the list of applied
stereotypes available within the appearance tab and then either press the button or

Selection of the properties
the value has to be edited.

Double-click on the value to edit it.

 25/11/2011

 30

. The former is to be used if you want to display the stereotype application with its
qualified name, and the latter is to be used if you want to show it without qualified
name. Using one of both depends if you may have ambiguities or not on the origin of the
stereotype when as for example applying several profiles defining similar stereotypes.
As for example, both profiles, MARTE and SysML, define a stereotype named
«FlowPort».

Figure 6. Extract of the tab appearance of the property view, stereotype display options

In addition, there are three other widgets dedicated to configure the stereotype display
options (Figure 6):

• “Stereotype display” is an enumeration which values may be Text, Icon, Text and
Icon or Shape. In UML, as explained previously, a stereotype may be denoted
either as a string between a pair of French guillemets (e.g., «Requirement»), or
as an icon embedded in the figure or as a shape with a label. In case of the shape
option, it substitutes the normal graphical figure used to represent the element
and its label denotes the name of the element.

• “Text alignment” is an enumeration which values may be Horizontal or Vertical.
When several applied stereotypes are shown, it is rendered as a list of string
separated by a comma and enclosed between a pair of French guillemets. By
default, this string is shown horizontally. But some times for aesthetic reasons,
it may be useful to show it vertically, that is to say showing one stereotype per
line.

• “Display place” is an enumeration which values may be Compartment, Comment
or With brace. This appearance property is used to set where to show the
properties values of the applied stereotypes. In UML, those values can be shown
either within a pair of braces located just near (above or on top) the name label
of the model element (“With brace” option), or into a dedicated compartment, or
in a text note associated with the annotated model element. This latter option is
currently not implemented in papyrus.

PS: if you display several stereotype applications, and if you select the options to display
them with icon or with icon and text, this is the icon of the first stereotype application in
the list which is chosen to be displayed.

 25/11/2011

 31

Figure 7. Examples of possible display option for stereotype applications

 25/11/2011

 32

REFERENCES
1. OMG. OMG Unified Modeling LanguageTM (OMG UML), version 2.3. s.l. : OMG,
formal/2010-05-05, 2010.

2. On the semantic foundations of standard UML 2.0. Selic, Bran. 2004, SFM-RT,
LNCS, pp. 181-199.

3. OMG. Object Constraint Language (OCL) - Version 2.2 - formal/2010-02-01,
http://www.omg.org/spec/OCL/2.2/. 2010.

	H
	istoric of the document
	I
	ntroduction
	P
	rofile Modeling and Definition
	Introduction to UML Profiles
	Profile Creation and Modeling
	Profile creation
	Stereotype definition
	Stereotype creation
	Metaclass import
	Extension creation
	Subprofile creation
	Stereotype Generalization

	Stereotype display options

	Profile Definition and Export

	P
	rofile Applying and Use
	Applying a profile
	Using the stereotypes of a profile
	Applying a stereotype
	Assigning values to properties of stereotypes
	Displaying options of a stereotype application

	References

