

Interface between proprietary controllers and SUMO

SUMO2014 Modeling Mobility with Open Data May 15+16, 2014 - Berlin-Adlershof, Germany

Robbin Blokpoel
Senior researcher at Imtech Traffic & Infra,
robbin.blokpoel@imtech.com, +31 629409806

Contents

- Introduction
- Architecture
- Detection
- Signal groups
- Simulation speed
- Comparison to Vissim
- Conclusion

Introduction

Why simulate controllers in SUMO?

- Simulation studies required before deployment
- Commercial packages costly
- Realism comparable to commercial alternatives
- Research requires full control:
 - ✓ TraCl interface, access to almost everything
 - ✓ Open source allows for quick extensions

Why external controllers?

- Real-world controllers give realistic results
- Copying them into SUMO source very complex:
 - Many different local rules
 - Dynamic behaviour according to complex algorithms

Architecture - components

Only the SumoInterface is a new component, the others are reused

Architecture – process flow

- 1. Start up controller executables
- 2. Read signal group conversion file (see signal groups)
- 3. Start up SUMO
- 4. Request SUMO detector list
- 5. Execute a SUMO timestep (100ms)
- 6. Request SUMO detector status
- 7. Update detector status in SimInterface dll
- 8. Execute a TLC timestep through SimInterface
- 9. Request signalgroup status from SimInterface dll
- 10. Update signalgroup status in SUMO
- 11. Go back to 5

Detection – using E2 detector

- Addition of E2 (lane area) detector to Traci required
- Command 0x8E (get laneAreaDetector), variable 0x10 (number on loop)
- Long area detectors often used for vehicle actuated:
 - Vehicle leaves loop close to stopline, accurate moment for amber
 - Length of loop detects gaps and thus end of platoon

Detection – identification with TLC

- In the TLC, detectors are simply numbered 0,1,2,...
- Skipping numbers possible on simulator side
- Conversion table detector "SG1_entry = controllerID 2" possible
- Previously used solution for Vissim was numbering convention:

Intersection ID *1000 + detector number

Logical names can be added as comment

```
<laneAreaDetector id="37000" lane="29_0" pos="40.394" length="1.5" freq="3600" file="NUL" /> <!--d011-->
<laneAreaDetector id="37001" lane="29_0" pos="7.963" length="20.0" freq="3600" file="NUL" /> <!--d012-->
<laneAreaDetector id="37002" lane="89_0" pos="38.517" length="1.468" freq="3600" file="NUL" /> <!--d021-->
<laneAreaDetector id="37003" lane="89_0" pos="0.996" length="25.0" freq="3600" file="NUL" /> <!--d022-->
<laneAreaDetector id="37005" lane="90_0" pos="40.202" length="1.5" freq="3600" file="NUL" /> <!--d031-->
```


Detection – positioning and timing

- Short fast vehicles require regular polling
 Motorcycle of 2m length on 1m loop at 30 m/s occupies loop for 100ms
- Can be slower for urban situations
- Distance to stopline and default stopping distance important SUMO 0.19.0 2.5m, 0.20.0 1.0m

Signal Groups - numbering

- Signal group, always green at the same time
- Signal head, per lane per direction

Signal Groups - conversion

- Numbering convention not possible
- Conversion XML file required

- SUMO state gGyYrRoO
- TLC state enum, flashing states alternate with O
- Red + amber = red in SUMO
- Flashing red = red
- Update every second command 0xC2, new state tuple 0x20

Simulation speed

- Network with large amount (168) of detectors
- Core 2 duo 2.53 GHz
- Single Traci calls 1x real-time speed
- 1 call per intersection 2x real-time speed
- No calls for detection 50x real-time speed (Imflow limiting factor)

Comparison with Vissim – simulation scenario

- Pedestrians + bikes at 1 intersection
- 1500 vehicles per hour north-south
- Conflicting large streams at bottom intersection
- Demands created with duarouter
- Evaluation with MeMe/E3 detectors
- Position could be optimized

Comparison with Vissim - results

- Vehicle counts not accurate, only 35% measured in busy areas
- Free flow time acquired using a run with all "O"
- Could be distance divided by desired speed as well
- Pedestrian/bike delay 2.0 seconds higher than Vissim
- Vehicle delay 1.3 lower than Vissim
- Standard SUMO settings were used and no specific pedestrian model, this leaves room for improvement
- Poisson distribution adds realism

Conclusion

- Possibility to couple real-world controllers to SUMO allows commercial urban simulations with SUMO
- Detector and signal group translation
- Simulation speed needs to be addressed
- Results comparable to Vissim

Questions

