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Abstract

When following a vehicle, drivers change their acceleration at so called action-points
(AP), and keep it constant in between them. By investigating a large data-set of car-
following data, the state- and time-distributions of the APs is analyzed. In the state-space
spanned by speed-difference and distance to the lead vehicle, this distribution of APs
is mostly proportional to the distribution of all data-points, with small deviations from
this. Therefore, the APs are not concentrated around certain thresholds as is claimed by
psycho-physical car-following models. Instead, small distances indicate a slightly higher
probability of finding an AP than is the case for large distances. A SUMO simulation with
SUMO’s implementation of the Wiedemann model confirms this view: the AP’s of the
Wiedemann model follow a completely different distribution than the empirical ones.

1 Introduction

Car-following (CF) models are around since the early 1950ies [18], and they had been developed
ever since. They had their first hype in the early 1960ies [9], [8] where especially models that
use a description based on differential equations (ODE – ordinary differential equations, DDE –
delayed differential equations, or even stochastic SDE – stochastic differential equations) have
been used. Also during this time, the first action-point (AP) based models had been introduced
[21], [20]. Already this early work assumed that the APs are related to perception thresholds
of the human driver, with the idea that by crossing such a threshold, an appropriate action
is triggered. E.g., very small speed differences ∆v to the vehicle in front are impossible to
recognize by a human driver, once this speed difference crosses a critical value ∆vc(g) (which
depends on distance g, with larger distances making it more difficult to recognize a certain
speed-difference). The AP-models have then been introduced in a much more refined form in
the psycho-physical models [25], [7] that are being used in microscopic software packages (e.g.
VISSIM). The reaction is then measurable by a fast change in the acceleration a(t), where it is
assumed that acceleration is constant when no AP is active.

When looking at car-following trajectory data such as those collected by Naturalistic Driving
Studies (NDS) [5], [6], [2], [3], [1], [14], where data are typically resolved with a time-step size of
∆t = 0.1 s, and from the fact that vehicles are heavy objects it is clear that acceleration cannot
truly jump. For driver assistant systems, as well as in recommendations about comfortable
rides in public transit vehicles, typically there is a limit in the jerk j of the vehicle. The jerk is
the time-derivative of the acceleration, i.e. j = da(t)/dt, and this is typically limited to values
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smaller than |j| ≤ 2.5m/s3. This is also true for the data-set used in this work. However, when
analyzing these data it is not too difficult to find times where acceleration changes fast, and
times where it is constant. So, it seems that human drivers do have the habit of ”do nothing”
as long as possible, and then change to what is needed to avoid a collision, or to avoid falling
back to far behind.

The second important point is that the perception thresholds are most likely not precise
curves ∆v(g) in (∆v, g)-space. They have to be understood in a probabilistic sense, where the
probability to issue such an AP changes with the distance to this line, and the actual line e.g.
marking the point where with certainty such an AP is issued.

Surprisingly, there is little work found by the author related to the details of these thresholds,
and they are often ignored by most of the scientific literature on car-following. So, one may
wonder, whether they are important at all. Not to be mis-understood: there is not the shadow
of a doubt that human perception is limited, despite the fact, that the visual system of humans
is capable of truly astonishingly feats. And therefore, perception threshold do exist. But it
is quite another question whether they are needed to describe car-following behavior, and to
what extend the behavior of human drivers is constrained by them. The driving style chosen
by them might avoid them completely, and therefore be ignorant of these thresholds.

Let us note in passing, that the AP’s also occur in the other output of a human driver, that
is the steering. To the knowledge of these authors, this is not a very well researched area (see
[13] for an example).

2 The data-analysis

The data used here are from the German project simTD [2]. This project was not a NDS in the
strict sense, its goal was to look into car-to-car communication. For this purpose, about 100
cars had been instrumented with communication devices, and these devices collected anything
that could be collected from the CAN-bus of the vehicles, together with the proper geo-location
and GPS-time. So, some of the vehicles recorded the distance and speed-difference to the lead
vehicle, some of them recorded the gas-pedal (throttle θ(t)) and brake-pedal usage, and all of
them recorded the speeds v(t), accelerations (lateral, as well as longitudinal a(t)), and GPS
positions as well as the speeds from the GPS, together with a measure of the GPS error. The
recording was asynchronous and in different time granularity, it ranged from ∆t = 1 s for the
GPS readings, most variables had ∆t = 0.1 s, to even shorter intervals for the acceleration data
(∆t = 0.01 s). With the exception of the GPS-data, these data have been enforced for the
following analysis to a common time-step size of ∆t = 0.1 s. If more than one value appeared
in such a time-interval, only the average had been recorded together with a number telling how
many values had been averaged.

The data had been collected in four months from September 2012 to December 2012 by
about 1,000 volunteers who drove these vehicles around according to a certain protocol that
was invented to maximize what can be learned from car-to-car communication. So, although
the drivers where aware that they had been recorded, it was not done to look at their driving
behavior.

To identify APs in the data set, several approaches had been tested (using the acceleration
a(t), the throttle position θ(t), or the speeds v(t)). It turns out, that the speed data v(t) of each
vehicle yield the clearest signal to find the APs, a result that has also been reported in [11].
Identification of APs has been done, then, by applying the Ramer-Douglas-Peucker (RDP) [17],
[4] and the Visvalingam-Whyatt (VW) [22] algorithm to the time-series {t, v(t)}t≥0. These
algorithms have each one parameter that determines the degree of simplication to the time-
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series, and these have been chosen by try-and-error – there are no objective criteria that can
be used here. (These algorithms have been invented originally to simplify geographical objects;
there the goal is to eliminate detail but still keep the visual appearance e.g. of a coast line intact
and recognizable.) The analysis has been done with the Python library simplification [12]. The
rest of this analysis has been done with R [16], and the front-end RStudio [19].

The Figure 1 shows an example of the effect of the two simplification methods on these
data. It could also been seen, that the VW algorithm seems to do a slightly better job, but
this of course depends on the parameters chosen.
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Figure 1: A short piece of the a speed time-series v(t) (in gray), together with the results of
the two simplification algorithms described in the text. RDP is in red, VW in green.

Note, that not all driving maneuvers allow for the proper assignment of APs. Especially
periods of strong acceleration and deceleration often are more volatile, with acceleration chang-
ing faster than is visible in these data. However, car-following periods typically have small
accelerations, and in these cases the method seems to work very well.
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2.1 Distribution of the time intervals between APs

From such a division, the distribution of time-differences δt between subsequent APs can be
computed as well, see Figure 2 for the result. Note, that due to holes in the data, some APs
might have been missed. The distribution is compatible with a log-normal distribution. The
two maxima are around a value of 1.5 s, while the mean values are about 3 s.
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Figure 2: Probability density p(δt) of the time-difference δt between subsequent APs. Red line
is for the RDP, green line for the VW algorithm. Data are cut-off at ten seconds.

2.2 Car-following

So far, all data have been used for the analysis to state some basic facts about the APs. Now,
a cloaser look at car-following episodes are performed. Car-following is identified as follows.
First of all, there should be a data-point that has both distance and speed-difference to the
vehicle in front. To give an estimate, this is the case for about 25% of the data. Additional tests
have been applied to clean the data. The most important of them is to check for a dynamic
consistency. Note g(t) as the gap at time t, and g(t + ∆t) the gap at a (small) time-step ∆t
later. The speed-difference is named ∆v(t) = V (t)−v(t), where V (t) is the speed of the leading
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vehicle. Then:

g(t+ ∆t) = g(t) + ∆t∆v(t) +O((∆t)2) (1)

The size of the O-term is the difference between the acceleration of the lead and the following
car, multiplied by the square of the time-step size. By assuming ”normal” accelerations of
2.5m/s2 and a time-step size ∆t = 0.1, the expected error here is of the order of 0.05m. So,
the gap error εg:

εg = g(t+ ∆t)− (g(t) + ∆t∆v(t)) (2)

can be used to filter out bad data-points. The same can be done with the speed and
acceleration by defining a speed error εv:

εv = v(t+ ∆t)− (v(t) + ∆ta(t)) (3)

By setting a limit of 1 m for the gap-error and 0.25 m/s for the speed-error (the interquartile
distance for the gap-error is of the order 0.2 m, and 0.05 m/s for the speed-error), about 25%
of the data gets eliminated.

The remaining data are now being used to search for a difference between the distribution of
the APs in the CF-plane (∆v, g) and the distribution of all the data. This is done by sampling
the data into two histograms h(∆v, g) and H(∆v, g) for the APs and all the remaining data.
There are several means how two distributions can be compared. Here, a method is chosen
that bears a strong resemblance with the well-known χ2-test. It works as follows: let hij be
the histogram sampled from the APs by a particular tesselation of the CF-plane, and Hij the
histogram for all the data-points, using the same tesselation of the CF-plane. Then, each bin in
the AP-histogram is related to the same bin in the full histogram. The simplest assumption one
may have is that the AP-histogram is just a down-scaled version of the full histogram, i.e. it is
expected, that the AP histogram can be computed by the multiplication of the full histogram
with an empirically defined factor, which for the data here turned out to be around f = 0.05:

ĥij = f Hij (4)

Then, the Pearson residuum χij can be defined:

χij =
hij − ĥij√

ĥij

. (5)

Clearly, the sum over χ2
ij is just the χ2 value. However, in the context here, more can be

learned than the simple fact that these two distributions are different: by plotting χ(∆v, g) as
function of (∆v, g), the Figure 3 is found.

The result in Figure 3 displays no one-dimensional lines where the AP-distribution would
have been larger. In general, the difference between the two distributions is weak, but it displays
a clear pattern. For large distances, the AP density is smaller than what can be expected on
the basis of Equation (5), while for smaller distances, drivers issue more APs. There is a slight
asymmetry between positive and negative ∆v, which is as expected: negative values of ∆v
belong to the dangerous area where the vehicle is approaching. However, the difference itself is
weak, values of |χ| ∼ 2 correspond to a 5% error probability.

Note the unequal tiling of the plane: this has been chosen so that roughly the same number
of data-points fall into each box in ∆v as well as in g-direction. It improves the statistics, at
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Figure 3: Distribution of the difference between the AP distribution and the distribution of the
full frequency distribution p(∆v, g). Note, that this plot is roughly divided into two areas: for
large distances, less APs are issued, while for short distances, more APs are needed.

the expense of the accuracy in the location of the boxes. Small boxes corresponds to a large
probability to find the system there, and in fact, that maximum of the p()-distribution is around
20m. About 1.4M data-point had been used to compute this diagram, about 5% of those have
been labelled as APs.

3 Running SUMO with Wiedemann’s model

To use SUMO [15] to generate similar data, the following set-up has been used. A large
rectangle of a one-lane road has been built with netedit, with changing speed limits to sample
from different car-following regimes. Altogether six vehicles had been put to this network, at
the start of the simulation they were at a standstill. The first (lead) vehicle was a SUMO
default vehicle that drove with constant speed. Its speed-factor had been set to 0.5, so that is
drives with half of the speed-limits on the four edges, i.e. at 35, 30, 25, and 20m/s. The five
following cars were configured as

<vType id="followVIS" length="4.61" maxSpeed="70.0" minGap = "1.0">

<carFollowing-Wiedemann accel="1.8" decel="4.5" sigma="0.9"/>

</vType>
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SUMO’s own deterministic AP mechanism default.action-step-length value="0.1"

had been set to the step-size of 0.1 s, to be close to the empirical data. The data had
been sampled from the simulation by using the netstate dump mechanism netstate-dump

value="wiedemannAP.xml" and subsequently analyzed with R [16]. AP’s have been found by
searching for points where the acceleration of the vehicle has changed by more than 0.1 m/s2,
the acceleration itself has been computed from the (recorded) speed by a simple difference
scheme a(t) = (v(t) − v(t −∆t))/∆t. All the data from the five following cars had been used
and analyzed together, as had been done with the simTD data. This yields the results in
Figure 4.
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Figure 4: Distribution of the difference between the AP distribution and the distribution of
the full frequency distribution p(∆v, g) for the Wiedemann model, together with the AP’s
themselves.

The results in Figure 4 demonstrate that there is a strong difference between the APs gener-
ated by the Wiedemann model, and the APs identified in the empirical analysis. Nevertheless,
these results are completely in line with what to expect from Wiedemann’s model of the AP
distribution: they are lined up in a scattered manner along the perception thresholds as defined
in the Wiedemann model.
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4 Conclusions

These results indicate, that human car-following is not controlled in any manner by perception
thresholds. Similar results have also been found in [23] and [10]. The statistical analysis above
demonstrates, that APs in fact have a non-trivial distribution: they are issued more often when
the situation is dangerous, but the effect is not a very strong one.

There is still a (small) loop-hole in this analysis for the existence of perception thresholds:
to gain statistical power, all the data for all the drivers have been put together, in this case
these had been 96 drivers. The data from just one driver are not enough to find those patterns,
since they do not happen that often, they are roughly 5% of the total amount of car-following
data. So, an experimental design that would look explicitely for those thresholds would try
to collect long car-following data from just one driver. However, we think it is highly unlikely
for such an approach to succeed, since the distribution of APs found in the simTD data is so
completely different from the one from the simulation with Wiedemann’s model.

If this result holds true, it might be asked why do the thresholds do not play a prominent role.
One of the answers comes from the average time between two APs of 1. . . 3 seconds. Drivers
correct their driving style much more often than what would be needed by the thresholds.
Therefore, they do not take care of the thresholds. In addition, especially when in car-following,
drivers are typically relaxed, at least this can be concluded when looking at the accelerations
that are realized in this mode. And this means, that they are also not fully concentrated, and
it might be assumed that their perception error is larger too. And again, this would lead to a
smoothing out of any threshold.

Let us finally note that this does not mean that the Wiedemann model is a bad model.
On average, the acceleration function a(∆v, g, v) of this model does still the correct things. It
indicates, however, that this model has a feature (the perception thresholds) that cannot be
found in the simTD data. However, some papers have seen these thresholds (at least we have
found this reference [24], but we remember to have seen others) and the associated increase in
APs issued at these thresholds. It can only be speculated what has been seen in these data, and
as mentioned already, it might well be that with a more careful preparation of the car-following
experiments those thresholds can be seen.
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