

Trinity College, Dublin 08 – 11 June 2010

UCUM Unified Code for Units of Measure

Werner Keil

Agile Coach, emergn

Our Goal

Avoiding Interface

and

Arithmetic Errors

Emphasis

Most of today’s technologies including the
current Java Language Releases lack

support for common non-trivial Arithmetic
problems like Unit Conversions.

Summary

• Present Situation
– Historic IT Errors and Bugs

– Cause of Conversion Errors

• Proposed Changes
– Unit and Measure Support

– Type Safety

• Case Studies

• Demo

• Q&A

What do these disasters have in common?

• Patriot Missile
The cause was an inaccurate calculation of the time since
boot due to a computer arithmetic error.

• Ariane 5 Explosion
The floating point number which a value was converted
from had a value greater than what would be
represented by a 16 bit signed integer.

What do these disasters have in common?

• Mars Orbiter

Preliminary findings indicate that one team used
English units (e.g. inches, feet and pounds) while
the other used metric units for a key spacecraft
operation.
– NASA lost a $125 million Mars orbiter because a Lockheed Martin engineering team used

English units of measurement while the agency's team used the more conventional metric
system for a key spacecraft operation

– This also underlines the added risk when 3rd party contractors are involved or projects are
developed Offshore

NASA “Star Wars” Experiment, 1983

23rd March 1983. Ronald Reagan
announces SDI (or “Star Wars”): ground-
based and space-based systems to
protect the US from attack by strategic
nuclear ballistic missiles.

http://upload.wikimedia.org/wikipedia/en/e/e5/C13571-8a.jpg

1985

Mirror on underside
of shuttle

SDI Experiment:
The Plan

Big mountain in Hawaii

http://upload.wikimedia.org/wikipedia/commons/9/97/Sts-51-g-patch.png

1985

SDI Experiment:
What really
happened

http://upload.wikimedia.org/wikipedia/commons/9/97/Sts-51-g-patch.png

1985: What happened?

NASA Mars Climate Orbiter, 1999

Unit Tests did not find these Errors

• All previous example illustrate three categories of
errors difficult to find through Unit Testing:
– Interface Errors (e.g. millisecond/second, radian/degree, meters/feet).

– Arithmetic Errors (e.g. overflow).

– Conversion Errors.

Causes of Conversion Errors

• Ambiguity on the unit
– Gallon Dry / Gallon Liquid

– Gallon US / Gallon UK

– Day Sidereal / Day Calendar

– ...

• Wrong conversion factors:
static final double PIXEL_TO_INCH = 1 / 72;

double pixels = inches * PIXEL_TO_INCH

Present Situation

• Java does not have strongly typed primitive types
(like e.g. Ada language).

• For performance reasons most developer prefer
primitive types over objects in their interface.

• Primitives type arguments often lead to name
clashes (methods with the same signature)

Unified Code for Units of Measure

UCUM

• The Unified Code for Units of Measure is a code system
intended to include all units of measures being
contemporarily used in international science, engineering,
and business. The purpose is to facilitate unambiguous
electronic communication of quantities together with their
units. The focus is on electronic communication, as opposed
to communication between humans. A typical application of
The Unified Code for Units of Measure are electronic data
interchange (EDI) protocols, but there is nothing that
prevents it from being used in other types of machine
communication. How does it relate?

Unified Code for Units of Measure

UCUM

The Unified Code for Units of Measure is inspired by and
heavily based on

• ISO 2955-1983

• ANSI X3.50-1986

• HL7's extensions called ISO+

Base Classes and Packages

JSR-275

• Namespace: javax.measure.*

• Only one interface and one abstract class
– Measurable<Q extends Quantity> (interface)

– Measure<V, Q extends Quantity> (abstract class)

• Three sub-packages
– Unit (holds the SI and NonSI units)

– Quantity (holds dimensions mass, length)

– Converter (holds unit converters)

Units and Systems of Unit

© 2007-2009 Creative Arts & Technologies

Unit Operations

Results with
Same Dimension Different Dimension

Binary Operations Binary Operations

plus (double) or (long) root(int)

times(double) or (long) power(int)

divide(double) or (long) times(Unit)

compound(Unit)divide(Unit)

Unary Operations

inverse()

Units of Measurement API

The King is Dead…

• Namespace: org.unitsofmeasurement.*

• Only interfaces and exception classes
– public interface Quantity<Q extends Quantity<Q>> (interface)

– public interface Unit<Q extends Quantity<Q>> (interface)

• Three packages
– Quantity (holds dimensions mass, length)

– Unit(holds units)

– Service (services, misc items and helpers)

Mobile Sensor API

JSR-256

• Namespace: javax.microediton.sensor*

• Focusing on Sensors, but it got a minimalistic Unit API
“in the closet”
– Unit

Essentially an SI singleton holding relevant unit constants, too.

– ChannelInfo
Holding name, accuracy, data type,measurement ranges, scale and unit

– MeasurementRange
Range of possible values from minimum to maximum

Sensor States

JSR-256

Sensor Groups

JSR-256

• Context types categorize sensors into three groups:
1. ambient, sensors measuring some ambient property of the environment
2. device, sensors measuring properties related to the device
3. user, sensors measuring some function of the user

• By using context types, it is possible to find, for example, user-
related sensors for fitness, or ambient sensors for smart home
controlling. Although the granularity of this level does not qualify
the sensors very precisely, still in some cases it provides the way to
make the distinction, for example, cf. air thermometer (ambient) /
clinical thermometer (user).

Quantity

JSR-256

• The quantity provides a more precise qualifier. The unit and
the quantity has a close relation. Some quantities are listed in
tables of Unit class. When the quantity and context type is
known, it is often easy to guess the full purpose of the sensor.
Some examples are given here:

Quantity: electric_current + context type:

ambient = sensor measuring electric current,

amperemeter

Quantity: catalytic_activity + contex type:

ambient = sensor measuring catalytic activity

Measurement Package

OSGi

• Namespace: org.osgi.util.measurement

• SI only Unit API “in the closet”
– Unit

Essentially an SI singleton holding relevant unit constants, too.

– Measurement
Represents a value with an error, a unit and a time-stamp.

– State
Groups a state name, value and timestamp.

One Unit Framework to Measure them All

Eclipse project UOMo

• Namespace: org.eclipse.uomo.*

• Two main areas

– Static Type Safe Units of Measure Support

• Based on Units of Measure API

• On top of ICU4J, the Globalization standard at Eclipse and others
(Android, GWT, Google Financial, etc.)

– UCUM Reference Implementation

• Successor to Eclipse OHF UCUM Bundle

Case Study: Monetary System

Monetary systems are not subject to the JSR, but this

illustrates, how easily the framework can be extended

to non physical or scientific quantities.

Such extension can be valuable by leveraging the

framework’s capabilities (formatting, conversion,…)

and applying its usefulness beyond what e.g.

java.util.Currency now has to offer.

Currency Conversion Classes

Online Currency Conversion Example

Trading Application Example
What happens, if we use built in java.util.Currency and Standard
JSP formats

Money Demo (1)
We’ll extend MoneyDemo to show fuel costs in Indian
Rupees.

First by adding a new currency to MonetarySystem.

// Use currency not defined as constant (Indian Rupee).
public static final DerivedUnit<Money> INR = monetary(
new Currency(„INR")
);

UnitFormat.getInstance().label(INR, „Rp");

Then add this line to MoneyDemo.
(also change static import to MonetarySystem.*;)

Money Demo (2)

Next set the Exchange Rate for Rp.

((Currency) INR).setExchangeRate(0.022); // 1.0Rp = ~0.022 $

Note, the explicit cast is required here, because getUnits()
in SystemOfUnits currently requires a neutral <?> generic
collection type.

Money Demo (3)

Then we add the following line to the “Display
cost.” section of MoneyDemo

System.out.println("Trip cost = " + tripCost + " (" +
tripCost.to(INR) + ")");

Trip cost = 87.50 $ (3977.26 Rp)

Resulting in the additional output:

JCP – Java Community Process
http://www.jcp.org

UCUM
http://www.unitsofmeasure.org

Units of Measurement API
http://www.unitsofmeasurement.org/

Links

http://www.jcp.org/
http://www.jcp.org/
http://www.unitsofmeasure.org/
http://www.unitsofmeasurement.org/

Questions

werner@emergn.com

Or

info@catmedia.us

Twitter: @wernerkeil

mailto:werner@emergn.com
mailto:Info@catmedia.us

