o ishdev.

software
learn, share, grow ISe rve

unUMm DNM

Better benefits at work.

@ams N
& Cincom. eplC@nter

TECH N O LO GY ."""-slfatter;/ﬁ})

G YOUR POT

Qz} C I_O U [The Irish Software Show 2010

I O in{ ﬁ» Ay e
sppay 1gHIWAl

SUMMUcom lap sysTeEms

communications consulting itd

Trinity College, Dublin

08 — 11 June 2010

th

7 Unified Code for Units of Measure

Werner Keil

Agile Coach, emergn
emergn

Our Goal

Avoiding Interface
and

Arithmetic Errors

//"__. =
emergn eDic©n\ter
Success is a planned event _ __,/

Emphasis

Most of today’s technologies including the
current Java Language Releases lack
support for common non-trivial Arithmetic
problems like Unit Conversions.

(/_'___ ,_\
emergn eo@@n/ter

Summary

* Present Situation

— Historic IT Errors and Bugs
— Cause of Conversion Errors

* Proposed Changes

— Unit and Measure Support
— Type Safety

e Case Studies
* Demo
e Q&A

/’___ =
emergn enfc@nier
Success Is a planned event _ ____/

What do these disasters have in common?

 Patriot Missile
The cause was an inaccurate calculation of the time since

boot due to a computer arithmetic error.

* Ariane 5 Explosion
The floating point number which a value was converted

from had a value greater than what would be
represented by a 16 bit signed integer.

emergn enic@nter
Success Is a planned event \\ /

What do these disasters have in common?

* Mars Orbiter
Preliminary findings indicate that one team used

English units (e.g. inches, feet and pounds) while
the other used metric units for a key spacecraft

operation.

— NASA lost a $125 million Mars orbiter because a Lockheed Martin engineering team used
English units of measurement while the agency's team used the more conventional metric

system for a key spacecraft operation
— This also underlines the added risk when 3™ party contractors are involved or projects are

developed

/‘_'_ i
emergn ep€©n/\ter

NASA “Star Wars” Experiment, 1983

234 March 1983. Ronald Reagan
announces SDI (or “Star Wars”): ground-
based and space-based systems to
protect the US from attack by strategic
nuclear ballistic missiles.

emergn

a planned event

http://upload.wikimedia.org/wikipedia/en/e/e5/C13571-8a.jpg

Mirror on underside
of shuttle

SDI Experiment:
The Plan

Big mountain in Hawaii

emergn

Success s a planned event

http://upload.wikimedia.org/wikipedia/commons/9/97/Sts-51-g-patch.png

SDI Experiment:
What really

C>i° happened

Success s a planned event

http://upload.wikimedia.org/wikipedia/commons/9/97/Sts-51-g-patch.png

1985: What happened?

ACM SIGSOFT BSOFTWARE ENGINEERING NOTES vol i0 no 3/ Jul 1985 ¢

age 10

Attention All Units, Especially Miles and Feet!

Much to the surprise of Mission Control, the space shuttle Discovery flew upside-down over Maui on
19 June 1985 during an attempted test of a Star-Wars-type laser-beam missile defense experiment.
The astronauts reported secing the bright-blue low-power laser beam emanating from the top of Mona
l{ea, but the experiment failed because the shuttle's reflecting mirror was oriented upward! A
statement issued by NASA said that the shuttle was to be repositioned so that the mirror was
pointing (downward) at a spot 10,023 feet above sea level on Mona Kea; that number was supplied to
the crew in units of feet, and was correctly fed into the onboard guidance system -- which
unfortunately was expecting units in nautical miles, not feet. Thus the mirror wound up being
pointed (upward) to a spot 10,023 nautical miles above sea level. The San Francisco Chronicle article
noted that ‘‘the laser experiment was designed to see if a low-energy laser could be used to track a
high-speed target about 200 miles above the earth. By its failure yesterday, NASA unwittingly proved
what the Air Force already knew -- that the laser would work only on a ‘cooperative target’ -- and is
not likely to be useful as a tracking device for enemy missiles.” [This statement appeared in the S.F.
Chronicle on 20 June, excerpted from the L.A. Times; the NY Times article on that date provided
some controversy on the interpretation of the significance of the problem.| The experiment was then
repeated successfully on 21 June (using nautical miles). The important point is not whether this
experiment proves or disproves the viability of Star Wars, but rather that here is just one more
example of an unanticipated problem in a human-computer interface that had not been detected prior
to its first attempted actual use,

Success s a planned event

emergn epé@ﬁer

NASA Mars Climate Orbiter, 1999

emergn

Success s a planned event

MAIN PAGE
WORLD
us.

LOCAL
POLITICS
WEATHER
BUSINESS
SPORTS
TECHNOLOGY

HEALTH
ENTERTAINMENT
BOOKS

TRAVEL

FOOD

ARTS & STYLE
NATURE
IN-DEPTH
ANALYSIS
myCNN

Headline News brief
News quiz
dsily simsnsc

MULTIMEDIA:

video
video srchive

sudio

multimedia showcase

more services

E-MAIL:

Subscribe to one of our
news e-mail lists.
Enter your address:

[

Metric mishap caused loss of

NASA orbiter

September 30, 1999
Web posted at: 4:21 p.m. EDT (2021 GMT)

In this story:

Metric system used by NASA for many
years

Error points to nation's conversion lag

RELATED STORIES, SITES ¥

September 23, 1999

By Robin Lloyd
CNN Interactive Senior Writer

(CNN) -- NASA lost a $125 million Mars orbiter because a Lockheed
Martin engineering team used English units of measurement while the
agency's team used the more conventional metric system for a key
spacecraft operation, according to a review finding released Thursday.

The units mismatch prevented navigation information from transferring
between the Mars Climate Orbiter spacecraft team in at Lockheed Martin in
Denver and the flight team at NASA's Jet Propulsion Laboratory in
Pasadena. California.

Unit Tests did not find these Errors

* All previous example illustrate three categories of
errors difficult to find through Unit Testing:

— Interface Errors (e.g. millisecond/second, radian/degree, meters/feet).
— Arithmetic Errors (e.g. overflow).

— Conversion Errors.

/‘_'. =
emergn ep€©}er

Causes of Conversion Errors

 Ambiguity on the unit
— Gallon Dry / Gallon Liquid

— Gallon US / Gallon UK
— Day Sidereal / Day Calendar

* Wrong conversion factors:

static final double PIXEL TO INCH = 1 / 72;

double pixels = inches * PIXEL TO INCH

Success 1s a planned event

/‘___ =
eDic©n\ter
o

Present Situation

e Java does not have strongly typed primitive types
(like e.g. Ada language).

* For performance reasons most developer prefer
orimitive types over objects in their interface.

* Primitives type arguments often lead to name
clashes (methods with the same signature)

emergn enic@nter
Success Is a planned event \\ P

UCUM

Unified Code for Units of Measure

 The Unified Code for Units of Measure is a code system
intended to include all units of measures being
contemporarily used in international science, engineering,
and business. The purpose is to facilitate unambiguous
electronic communication of quantities together with their
units. The focus is on electronic communication, as opposed
to communication between humans. A typical application of
The Unified Code for Units of Measure are electronic data
interchange (EDI) protocols, but there is nothing that
prevents it from being used in other types of machine
communication. How does it relate?

/’___ =
emergn enfc@nier
Success Is a planned event _ ____/

UCUM

Unified Code for Units of Measure

The Unified Code for Units of Measure is inspired by and
heavily based on

* 1SO 2955-1983
* ANSI X3.50-1986

e HL7's extensions called ISO+

-
emergn epic®
Success Is a planned event

JSR-275

Base Classes and Packages

* Namespace: javax.measure.*

* Only one interface and one abstract class

— Measurable<Q extends Quantity> (interface)

— Measure<V, Q extends Quantity> (abstract class)

* Three sub-packages
— Unit (holds the SI and NonSI units)

— Quantity (holds dimensions mass, length)

— Converter (holds unit converters)

Success is a pla nt

a planned even

/"_“_
epic©>ter
L\ 4

Units and Systems of Unit

Unit<Q extonds Quantity> SystomOfUnits
Units are _
immutahle. — _|+onE FaStUnks0) ~
Fay RS
+getStandardUnits() | LF N\
+getDimension()
+getConverterTo(Unit) sl NonSl \
=~ \
i \
BaseUnit<Q extends Quantity>| [DerivedUnit<Q extends Quantity> SystemOfUnits groups units together
for historical or cultural reasons.
T 7 i
-
-~
\ - -
\ ProductUnit<Q extends Quantity> CompoundUnit<Q extends Quantity>
\ T
\ e \
Base units are mutually \ TransformedUnit<Q extends Quantity>|
independent, which means they \ \
cannot be derived from any 4 \
other base unit {m, s, kg). 5% \ :
£ AlternateUnit<Q extends Quantity> »

\
/

Compound units are multi-radix

Product units are formed by the product of

/ (units used for formatting

raional powers of existing units {m/s?, N-10),

/ purposes (hr/min/sec).

/
/

Alternate units are used in expressions to distinguish
hetween quantities of a different nature but of the
same dimensions (e.g., ¥, Pa, Rad).

Transformed units are derived from other
units through a converter (ft, °C, dB).

emergn

Success is a planned event

Unit Operations

Results with

Same Dimension Different Dimension

plus (double) or (long) root(int)
times(double) or (long) power(int)
divide(double) or (long) times(Unit)
compound(Unit) divide(Unit)

Inverse()

The King is Dead...

Units of Measurement API

* Namespace: org.unitsofmeasurement.*

* Only interfaces and exception classes

— public interface Quantity<Q extends Quantity<Q>> (interface)

— public interface Unit<Q extends Quantity<Q>> (interface)

* Three packages

— Quantity (holds dimensions mass, length)
— Unit(holds units)

— Service (services, misc items and helpers)

emergn

anned even

/"__. —
eDic©n\ter
-

JSR-256
Mobile Sensor API

* Namespace: javax.microediton.sensor*

* Focusing on Sensors, but it got a minimalistic Unit API
“in the closet”

— Unit
Essentially an Sl singleton holding relevant unit constants, too.

— Channelinfo
Holding name, accuracy, data type,measurement ranges, scale and unit

— MeasurementRange
Range of possible values from minimum to maximum

/"__. =
emergn enic@nter
Success Is a planned event _ __f/

JSR-256

Sensor States

Connector.op
\L setDataLlistener
OPEHNED LISTEHING
removeDatalistener
close
CLOSED

!

emergn eoic_@er
Success is a planned event \&_\—_/

)

JSR-256
Sensor Groups

e Context types categorize sensors into three groups:
1. ambient, sensors measuring some ambient property of the environment
2. device, sensors measuring properties related to the device
3. user, sensors measuring some function of the user

* By using context types, it is possible to find, for example, user-
related sensors for fitness, or ambient sensors for smart home
controlling. Although the granularity of this level does not qualify
the sensors very precisely, still in some cases it provides the way to
make the distinction, for example, cf. air thermometer (ambient) /
clinical thermometer (user).

/‘_'. =
emergn ep€©}er

JSR-256
Quantity

* The quantity provides a more precise qualifier. The unit and
the quantity has a close relation. Some quantities are listed in
tables of Unit class. When the quantity and context type is
known, it is often easy to guess the full purpose of the sensor.
Some examples are given here:

Quantity: electric current + context type:
ambient = sensor measuring electric current,
amperemeter

Quantity: catalytic activity + contex type:
amblent = sensor Eéasuring catalytic activity

/’___ =
emergn enfc@nier
Success Is a planned event _ ____/

OSGi
Measurement Package

* Namespace: org.osgi.util.measurement

* Slonly Unit APl “in the closet”

— Unit
Essentially an Sl singleton holding relevant unit constants, too.

— Measurement
Represents a value with an error, a unit and a time-stamp.

— State
Groups a state name, value and timestamp.

emergn epic©>ter
Success is a pia nt \ /

a planned even

Eclipse project UOMo

One Unit Framework to Measure them Al

 Namespace: org.eclipse.uomo.*

* Two main areas
— Static Type Safe Units of Measure Support

e Based on Units of Measure API

* On top of ICU4J, the Globalization standard at Eclipse and others
(Android, GWT, Google Financial, etc.)

— UCUM Reference Implementation
* Successor to Eclipse OHF UCUM Bundle

emergn enjcanter

Case Study: Monetary System

Monetary systems are not subject to the JSR, but this
llustrates, how easily the framework can be extended

to non physical or scientific quantities.

Such extension can be valuable by leveraging the
framework’s capabilities (formatting, yent)

and applying its usefulness beyond what e.qg.
java.util.Currency now has to offer.

/‘_'_ i
emergn ep€©n/\ter

Currency Conversion Classes

Quantity O Unit<Q@ extonds Quantity> UnitConverter SystemOfunits
X -IDENTITY Y
-+
HME +concatenate(UnitConverter) =
J +getStandardUnits() +inverse() T
Money O +getDimension()
+getConverterTo(Unit) T MonetarySystem
‘ i
\ CurrencyConverter)
' Currency \
+getExchangeRate()
The Quantity type for . 7 | AN
parameterization is Money. 3 / The monetary system is based
7 N, [on ISO 4217, which is the
: : international standard describing
CurrencyConverter is unusual in three-letter codes (also known as
Currency is a particular type that its values change with time, the currency code) to define the
of unit, with 2 dimension of (3] and the conversion from Ato B is Aames GrEarenciGs:
' ; not the inverse of the conversion

from B to A (because a currency's
buying price can differ from its
selling price).

emeran epicenter

Online Currency Conversion Example

|@ Currency Converter - Windows Internet Explorer g|
@:—;: - |g, http: /flocalhost/cgi-bin fourr _v1.pl Iil 9 [2¢ e
ﬂ? “1'?? I@Currenq« Converter [_l @ < E Qéa < Ij’ Page - {j} Tools = -
&
Currency rates from 03/08/2007 12:00pm EST
100 |US Dollar [v] Convert |
| Currency Name |C|1rre|1(:}' Code |Ex(:|13|1ge Rateto US S |Ex(:|13|1ge Amount
Austratian Doflar ~ AUD 1.287830006 | 128.78
Baht THB 327 | 3270.00
Bolivar VEB 21446 | 214460.00
Brazilian Real BRL 2114 | 211.40
(Canadian Dollar ~ |CAD [1.1785 | 117.85 =
Danish Krone DKK |5 6645 | 566 45
[Euro EUR 0.76057195 | 76.06
Hong Kong Dollar HKD [7.8177 | 781.77
Indian Rupee INR l44.18 | 4418.00
Malaysian Ringgit | MYR 3500 | 350.90
Mexican Nuevo Peso MXN 11155 | 111550
New Taiwan Dollar TWD 3292 | 3292.00
New Zealand Dollar NZD 1.462202076 | 146.22
Norwegian Krone NOK 6.1983 | 61983
Pound Sterling \GBP [0.517732332 | 51.77 1
Rand ZAR [7.4247 | 742.47
Singapore Dollar ~ [SGD 1526 | 152.60
Sti Lanka Rupee KR 108 85 | 10885.00
Swedish Krona ~ |SEK [7.0432 | 704.32 m
Done %J Local intranet | 100% -

emergn

Success is a planned event

Trading Application Example

What happens, if we use built in
JSP formats

and Standard

Cash: 64102.56 € Market: FRA

Symbol|[Company]|_Price |[Change||% Change|Shares|| Open | Volume |Current Value *|Gain/Loss|
M B (|[=115.43)0.37 |[32% 50 |[=115.80]2,655,471 [3699.68 € |-215.98 |
JAVA ["JAVA" 976756 |[n0.44 [[273% [200 |[a16.12 |[5,750,460 (2123.08 € [1545.90 |
DELL ["DELL" [[=19.52 [[=0.08 [[41% 1200 [[219.44 |[14,293,0152502.56 € 82.30 |
IGOOG |['GOOG" (n426.88)[1.62 (38% 100 |[n425.26(5,523,309 (27363.97€ |m38.05 |
IMSFT |'MSFT" [28.58 |[<0.20 |[71% 100 |[~28.38 [47,317,464|1832.15 € [71.00 |

emergn

Success 1s a planned event

*in local Currency

Make a trade
Log out

/‘__
eDic©>ter

Money Demo (1)

We’'ll extend MoneyDemo to show fuel costs in Indian
Rupees.

First by adding a new currency to MonetarySystem.

// Use currency not defined as constant (Indian Rupee).

public static final DerivedUnit<Money> INR = monetary (
new Currency (,,INR")

) ;

Then add this line to MoneyDemo.
(also change static import to Monetarysystem.*;)

UnitFormat.getInstance() .label (INR, ,Rp");

emergn epic@nter

Success is a planned event

Money Demo (2)
Next set the Exchange Rate for Rp.

((Currency) INR).setExchangeRate(0.022); // 1.0Rp =~0.022 S

Note, the explicit cast Is required here, because getUnits()

In SystemOfUnltS currently requires a neutral <?> generic
collection type.

emergn epic.z@)ter

Money Demo (3)

Then we add the following line to the “Display
cost.” section of

System.out.println("Trip cost = " + tripCost + " (" +
tripCost.to(INR) + ")");

Resulting in the additional output:
Trip cost = 87.50 $ (3977.26 Rp)

emergn eDic@er

Links

JCP - Java Community Process
http://www.jcp.org

UCUM
http://www.unitsofmeasure.org

Units of Measurement API
http://www.unitsofmeasurement.org/

/"__. =
emergn enic@nter
Success Is a planned event _ __f/

http://www.jcp.org/
http://www.jcp.org/
http://www.unitsofmeasure.org/
http://www.unitsofmeasurement.org/

Success is a planned event

Questions

werner@emergn.com

Or

Info@catmedia.us

Twitter: @wernerkell

mailto:werner@emergn.com
mailto:Info@catmedia.us

