
Eclipse UOMo

Units of Measurement

Version 0.6 - May 31, 2013

Eclipse UOMo – Units of Measurement – Version 0.6 2

Content
1. Introduction...3

1.1 Related work...3
2. Requirements and Design Goals...5

2.1 Requirements...5
2.2 Aspirations..5
2.3 Source Code and Binary Compatibility...5

3. Definitions...6
4. API..7

4.1 Terms used in this API...7
4.2 Packages and fundamental types..8
4.3 The Quantity Interface..8

4.3.1 Quantity instantiation..9
4.3.2 Quantity as a parameter type...9

4.4 The Unit Interface..10
4.5 Systems of Units...11

4.5.1 Metre or Meter?..11
4.6 Obtaining Unit Instances..12

4.6.1 Units Obtained From Predefined Unit Constants...12
4.6.2 Units Obtained From Algebraic Operations..12
4.6.3 Units Obtained From Unit Symbol Parsing...14

4.7 Unit Parametrization...14
4.8 Unit conversions...15

4.8.1 Creating UnitConverters...16
5. Implementation...17

5.1 Terms used in UOMo...17
5.1.1 Example..17

5.2 ICU4J..17
5.3 Supported units..18

5.3.1 Supported quantities...18
6. Integration ...20

6.1 Existing API..20
6.1.1 JDK...20
6.1.2 Other JSRs...20

7. Frequently asked questions...22
8. Addendum..24

8.1 JavaDoc..24
9. References...25

Eclipse UOMo – Units of Measurement – Version 0.6 3

1. Introduction
A framework supporting robust representation and correct handling of quantities is a basic need of Java
developers across domains including science, engineering, medicine, finance or manufacturing.
Currently, developers have the unenviable option to either use an inadequate model of measurement or
to painstakingly create a custom solution. Either choice can lead to significant programmatic errors.
The default practice of modeling a measure as a simple number with no regard to the units it represents
creates fragile code, as the value may easily be misinterpreted if the unit must be inferred solely from
contextual clues. For example, it may be unclear whether a person's mass is expressed in pounds,
kilograms, or stones.

A standard solution is both safer and more efficient, saving developers' valuable time for domain-
specific work. Unit-API proposes to establish safe and useful methods for modeling physical quantities.
The specification includes:

● Interfaces and abstract classes with methods supporting unit operations including:

● Checking of unit compatibility

● Expression of measurement in various units

● Arithmetic operations on units

● Concrete classes implementing standard unit types (such as base and derived) and unit
conversions

● Concrete classes for parsing and formatting textual unit representations

● A “database” or equivalent repository of predefined units

1.1 Related work
The library presented in this API takes its inspiration from some sources:

● Scientific and Engineering C++ [BART_NACKMAN] presents the implementation strategy used in
this framework, which is to derive every every kind of units from a small set of base units raised to
arbitrary integer power. Barton and Nackman provide type safety by using the C++ template
feature in a way that can not be transposed to Java, nevertheless their principles still apply.

● University Corporation for Atmospheric Research (UCAR)1 implements a Java units library based
on Unit and Converter types, which are the foundation of this API (despite Quantity being
the facade that many users will see). The UCAR library is used in the NetCDF Java products,
which are extensively used in the oceanographic and meteorological communities.

● Brochure on the International System of Units defines base and derived units, and provides the
minimal set of units that this API expects to be present in every implementation.

● Curl, a dynamic language for Web Applications and RIA development which includes Units of
Measure support, especially Quantity and Unitas the two main parts of the API. While the
language is not in all parts comparable to Java, Unit support is to a large extent. [CUL_QUANT]
and [CURL_WHIRL]

● Andrew Kennedy, both with his thesis and works on the topic [KENNEDY1996] as well as recent
implementations using languages like F# and others [AKENN]

1 http://www.unidata.ucar.edu/software/netcdf-java/v4.1/javadocAll/ucar/units/package-summary.html

http://www.unidata.ucar.edu/software/netcdf-java/v4.1/javadocAll/ucar/units/package-summary.html

Eclipse UOMo – Units of Measurement – Version 0.6 4

● In [FOWLER1996], Martin Fowler analyzed this problem but we needed and implemented a more
general model.

● Works on other Object-Oriented languages like Smalltalk which clearly had influence on Java in
other areas [ACONCAGUA] or [INGALLS] while similar to other languages some elements like
multiple polymorphism are out of scope.

● Contributions came from JSR-275 [JSR-275] and JSR-108 an earlier JCP approach to Units of
Measurement in Java [JSR-108]

● While specific to Date and Time only and currently inactive, [JSR-310] is somewhat related and
where beneficial to the platform synergies may arise should JSR-310 progress further.

Java language changes – like the ones proposed in Object-Oriented Units of Measurement
[ALLEN2004] and A Java Extension With Support for Dimensions [DELFT1999] – are out of scope for
this API.

Eclipse UOMo – Units of Measurement – Version 0.6 5

2. Requirements and Design Goals

2.1 Requirements
Core API requirements include the following:

● No change to the Java Virtual Machine

● Do no numerical harm. The unit framework should in no way impact business logic.

● Interoperability with code that does not use the unit framework defined in the API

● Support for user-defined dimensions, units, quantities and systems of units.

● Support for strict symbol parsing, including:

● Metric Prefixes (as described in § 5.3) solely for use with Système International (SI) units.

● Other Prefixes (e.g. locale or culture specific) with all units, but with contextually limited
parsing and formatting (they may be displayed simply as “unit*N” in another context).

● Support for run-time queries on (and printing of) units, measurements, and dimensions. For
example, a unit that is (kg1·m1·s-2) should be able to expose the dimensions (kg, m, s), the
exponents of those dimensions (1, 1, -2), and/or the name of the unit (if there is a defined name)
at run-time.

2.2 Aspirations
The following features are considered important to the success of the API:

● Small or no run-time overhead compared with an implementation not using Unit-API.

● Support for the use of more than one unit system simultaneously. For example, a program should
be able to simultaneously operate on SI, CGS, and imperial units.

● Compile-time detection of dimension errors when sufficient information is available for a compile-
time check.

● Support for fractional exponents, such as kg3/2. Fractional exponents sometimes appear as a
partial result on the way to a final value.

2.3 Source Code and Binary Compatibility
Java 6 source code constructs and compilers will be used. Many uses of the proposed package have
been discussed on Java ME platforms, such as remote monitoring and sensor equipment. These
platforms currently support only limited subsets of the Java 2 APIs. However, Oracle's proposed
unification of Java SE and ME opens the possibility that Unit-API could one day work in a mobile subset
or profile. Unit-API implementations should avoid creating additional barriers to eventual support for the
Java ME platform.

Eclipse UOMo – Units of Measurement – Version 0.6 6

3. Definitions
The measurement of a physical quantity is an estimation of its magnitude in relationship to a well-
known quantity of the same kind, which we take for unity. For example “5 metres” is an estimate of an
object's length relative to another length, the metre, which we adopt in this example2 as the standard
unit of length. A similar approach can be taken for monetary quantities, providing that a monetary unit is
properly defined.

This definition assumes a zero-based linear scale. However measurements can be expressed using
different scales for convenience. For example a measurement in Celsius degrees can be though as a
measurement in Kelvin degrees offset by 273.15 degrees for convenience. A measurement in decibel
can be though as a power measurement expressed on a logarithmic scale.

The term 'measurement' is also used in a looser fashion, to refer to the arbitrary assignment of numbers
to represent scale. For example the Mohs scale of mineral hardness characterizes the scratch
resistance of various minerals according to the ability of a harder mineral to scratch a softer mineral.
This scale indicates that quartz is harder than calcite, but not how much harder. It is a strictly ordinal
scale. Quantities expressed according such scales are comparable but not additive.

A measurement can also be an exact quantity. For example, we can determine that there are exactly 12
eggs in a carton by counting them.

2 This specification does not mandate the use of any particular quantity as a standard unit. However, we
expect SI to be the standard system of units for most applications.

http://en.wikipedia.org/wiki/Mohs_scale_of_mineral_hardness

Eclipse UOMo – Units of Measurement – Version 0.6 7

4. API

4.1 Terms used in this API
The Java classes defined in this specification are not limited in application to physical quantities. The
same API can be applied to monetary quantities, or to user-defined scales, including ordinal scales.

Consequently, the terms “quantity” and “unit” should be taken in their general sense unless otherwise
specified, as in “physical quantity” or “physical unit”.

Quantity:
Any type of quantitative property or attribute of a thing.

For example, 'temperature', 'volume', 'pressure', 'molecular mass' and 'internal energy' are
quantitative properties which can be used to describe the state of a confined gas.

● A unit is not needed to express a quantity. For example, Alice can quantify the mass of her
shoe by handling it. A unit is not needed to do quantitative arithmetic, either. Alice can add
the mass of her left shoe and the mass of her right shoe by placing them both in the pan of a
balance.

● Units are needed to represent measurable quantities in a computer, on paper, on a network,
etc.

In this API, quantities are restricted to the measurable ones: only the quantities that can be
expressed as the combination of a numerical value and a unit are supported. This is sometime
considered as a partial3 definition of Measure rather than Quantity. Nevertheless this API uses the
“quantity” term for consistency with usage in other frameworks, because the concept of quantity is
needed anyway for units parametrization, and for avoiding the introduction of both concepts in the
library.

Dimension:
One of the fundamental aspects of quantities, such as length (L), mass (M), time (T), or a
combination thereof (ML/T², the dimension of force).

Dimension expresses a property without any concept of magnitude. We can talk about length (L)
without any implication that we are talking about any particular length. Two or more quantities are
said to be commensurable if they have the same dimensions. Quantities that are commensurable
can be meaningfully compared.

Unit:
A quantity adopted as a standard, in terms of which the magnitude of other quantities of the same
dimension can be stated.

Units are created from some well-known quantity taken as a reference. Regardless of how it is
created, a unit can be expressed as a quantity of other units with the same dimension. For example,
the foot unit corresponds to a quantity of 0.3048 metres.

System of units:
A set of base and derived units chosen as standards for specifying measurements. Examples
include the SI and Imperial System.

3 A more complete definition would include information about the precision of the measurement.

Eclipse UOMo – Units of Measurement – Version 0.6 8

4.2 Packages and fundamental types
This specification comprises two packages:

 org.unitsofmeasurement.quantity and org.unitsofmeasurement.unit

There is no org.unitsofmeasurement package4. The two main types of this API, Quantity and
Unit, are defined in packages of the same name.

The org.unitsofmeasurement.quantity package defines the quantity types (e.g. Mass, Length),
while the org.unitsofmeasurement.unit package defines the units in which quantities can be
expressed (e.g. gram, metre). Quantities and units work in synergy through use of parametrization
features added to the Java language in Java 5.

4.3 The Quantity Interface
The parent interface for all quantities is org.unitsofmeasurement.quantity.Quantity:

This interface represents a quantitative property or attribute of some thing. Mass, time, distance, heat,
and angular separation are among the familiar examples of quantitative properties. This API supports
only measurable quantities – all Quantity instances are conceptually (Number, Unit<Q>) tuples.

It further contains a converter method getValue(Unit<Q>)to convert the value to a desired target
unit:

public Number getValue(Unit<Q> unit) {
return getUnit().getConverterTo(unit).convert(getValue());

}

For lower level or performance critical applications (like measuring devices, POS, RFID,...) Quantity
provides 2 additional methods to convert values directly into a target unit. They are more useful as
meta-data converted to the application internal representation (typically a double primitive type in
some fixed units) before computation or further processing begin. For this purpose, the Quantity
interface provides the longValue(Unit<Q>) and doubleValue(Unit<Q>) convenience methods.
We encourage developers to prefer them when possible, because they are safer (they force the target
unit to be specified) and avoid significant boiler plate. For example the doubleValue(Unit<Q>)
method is equivalent to the following code5:

4 Similar situations exist in the standard Java library. For example there is a javax.sound.midi package
and a javax.sound.sampled package, but no javax.sound packages. See also javax.security
and javax.enterprise packages.

5 Implementations of this API are likely to provide more efficient code to their users, for example avoiding
the value boxing followed by an un-boxing.

Eclipse UOMo – Units of Measurement – Version 0.6 9

public double doubleValue(Unit<Q> unit) {
 return getUnit().getConverterTo(unit).convert(getValue().doubleValue());
}

With such method, user code like below are much easier to write:

Time calculateTravelTime(Length distance, Velocity velocity) {
 double seconds = distance.doubleValue(METRE) /
 velocity.doubleValue(METRE_PER_SECOND);
 return QuantityFactory.getInstance(Time.class).create(seconds, SECOND);
}

The more fundamental getValue() and getUnit() methods are more useful in situations where the
Quantity type (and consequently the valid units that can be passed to doubleValue(Unit<Q>))
are unknown at compile-time, or when the measurement need to be expressed in its original units6.

4.3.1 Quantity instantiation

A QuantityFactory can be used to generate simple quantities.

Time t = QuantityFactory.getInstance(Time.class).create(12, MILLI(SECOND));
Length len = QuantityFactory.getInstance(Length.class).create(34.5, MILES);

4.3.2 Quantity as a parameter type

Classes implementing the Quantity interface, sometimes referred to as 'quantity types', are typically
used as type parameters to characterize a parametrized class, allowing generics' compile-time type
checking to detect mismatches between a parametrized variable and the instantiated value assigned to
it.

Thread.wait(long, Unit<Time>); // Unit parametrized with Quantity.
Sensor<Temperature> sensor ... // Generic sensor.

QuantityFactory factory = QuantityFactory.getInstance(Mass.class);
Mass mass = factory.create(180, POUND);
Vector3D<Velocity> aircraftSpeed
 = new Vector3D(12.0, 34.0, -45.5, METRE_PER_SECOND);

6 The original unit gives some indication about the historical period and the instrument. For example a
measure of 0.04 metre suggests that the measurement has been done with some instrument designed for
metre-scale phenomenons, while a measure of 4 cm suggests that the measurement has been done with
an instrument better suited to that scale. Ideally such assumptions are irrelevant since every
measurement shall be associated with information about its precision. In practice, information are often
incomplete and an access to the original data is desirable.

Other example: oceanographers traditionally expressed salinity in ‰ prior 1978, and using the Practical
Salinity Scale since that time. Conversions are possible between the two systems, but expressing the
measures in their original units give sometime useful hints to oceanographer about the measurement.

Eclipse UOMo – Units of Measurement – Version 0.6 10

4.4 The Unit Interface
The second (and last) fundamental interface with which the user needs to become familiar is
org.unitsofmeasurement.unit.Unit. The unit class represents a well-known quantity that has
been adopted as a standard of measurement. For example “kilometre“ and “watt“ are units.

Units and quantities are defined in terms of each other, but are distinct. “5 kilometres” is a quantity, but
is not a unit. While Unit could have been defined as a subtype of Quantity, in the sense of “is a
kind of”, this specification avoids creating this relationship in order to discourage the abuse of Unit as
a general-purpose implementation of Quantity.

Quantity and Unit are both parametreized by a quantity type (§ 4.7).

The dimensions of a unit (org.unitsofmeasurement.unit.Dimension) can be retrieved at run-
time from the unit class. At compile-time, the dimensions must be inferred from its quantity type.

Example: “centimetre“ is a unit. “2.54 centimetres“ is a quantity of type Length. This quantity
can also be used as the definition of a new length unit called “ inch”. Note that “1 inch” (the
quantity) and “inch” (the unit) are not synonymous. In this API, they are represented by two
distinct types having no common ancestor other than Object.

All numerical values that result from a measurement are associated, directly or indirectly, to a unit. The
simplest measure is the combination of a numerical value with a unit. Such measures can be created
directly through the QuantityFactory class.

Eclipse UOMo – Units of Measurement – Version 0.6 11

The association of many numerical values to the same unit can be aggregated into container objects
such as vectors, columns in a table, remote sensing data, etc. Such constructs outline a means of
storing homogeneous measurements. For example, a vector can be defined as a quantity with both a
magnitude and a direction, specified by an array of values associated with a shared unit:

public class Vector<Q extends Quantity> implements Quantity<Q> {
 double[] values;
 Unit<Q> unit; // Single unit for all vector components.
 ...
}

Associating a single unit with a large set of numerical values is not only more efficient of storage space,
it is also more performant since the formula to convert the values to another unit must be determined
only once for a whole vector. A single unit can also be associated to more complex objects, like
matrices or collections.

Since the same Unit instances are typically referenced by a large number of quantity objects,
immutability is essential as the cost of cloning each unit (defensively copying) would be prohibitive.
Unit instances are immutable and thus thread-safe. They are safe for use as final static constants.

4.5 Systems of Units
A system of units is a set of units chosen as standards for specifying measurements. A system
contains a small set of well-defined units, called base units, which by convention are regarded as
dimensionally independent of other base units. It also contains a larger set of derived units formed as
products of exponentiated base units. A widely used units system is the Metric System, or SI.

Base units in SI include metre (m), kilogram (kg) and second (s). Derived units in SI comprise square
metre (m²), watt (m²∙kg∙s-³), etc. Some derived units have been given special names and symbols for
convenience. For example the above-cited watt derived unit is represented by the symbol W.

In the MetricSystem, the base and derived units form a coherent set of units, where coherent means
that those units are mutually related by rules of multiplication and division with no numerical factor other
than 1 (BIPM, 1998).

Systems of units may share the same units. For example, the Imperial System would have many of the
units already defined in USCustomarySystem (e.g. ImperialSystem.FOOT).

4.5.1 Metre or Meter?

The former is British spelling and the later is U.S. An on-line dictionary of English gives the following
explanation: “a metre is a measure and a meter a measuring device”. The BIPM brochure, ISO 31 and
Wikipedia use “metre”, while NIST use “meter” (e.g. NIST SP 1038). For this specification, we retained
the BIPM "meter" spelling in the text unless explicitely required otherwise. All SI constants names (e.g.
MetricSystem.METRE) use the BIPM spelling, but for USCustomarySystem and systems which may
derive from it an alias called METER is offered. Similarly for other cases like liter vs. litre. Those unit
types are equal.

Eclipse UOMo – Units of Measurement – Version 0.6 12

4.6 Obtaining Unit Instances
Unit instances can be obtained in a number of ways. The easiest way is to use one of the predefined
constants provided in various SystemOfUnits subclasses like MetricSystem (§ 4.6.1). Because the
constants are known to the compiler, this approach also provides compile-time checking as discussed
in § 4.7. New units can also be created by applying algebraic operations to existing units (§ 4.6.2), or by
parsing a unit symbol (§ 4.6.3).

4.6.1 Units Obtained From Predefined Unit Constants

System units can usually be obtained as class members of a system of units. SystemOfUnits
subclasses are encouraged (but not required) to expose all their system units as static final constants.
For example the MetricSystem class provides static constants like METRE (a basic unit) or WATT (a
derived unit).

In the particular case of the MetricSystem class, a set of static methods is also provided for obtaining
multiples or sub-multiples of system units. Method names mirror SI prefix names but are uppercase.
Examples7:

Unit<Length> m = MetricSystem.METRE;
Unit<Length> km = MetricSystem.KILO(MetricSystem.METRE);
Unit<Energy> kW = MetricSystem.KILO(MetricSystem.WATT);

Unit instances returned by one of these methods provide type safety through unit parametrization (the
<Length> and <Energy> type parameters). This feature will be discussed more extensively in § 4.7.

4.6.2 Units Obtained From Algebraic Operations

Units can be created dynamically as the result of algebraic operations on existing unit objects. With the
exception of the static convenience methods defined in the MetricSystem (§ 4.6.1), all operations are
defined as member methods of the Unit class. The MetricSystem methods are omitted from
discussion below8.

Operands:
All binary operations expect (Unit, Unit) or (Unit, n) operands where n stands for a real value
(sometime restricted to an integer value). The first operand is always the Unit instance on which
the Java method is invoked.

Example: let “m“ and “s“ be two instances of Unit. Some valid operations are “m/s”, “m·s”, “m²“
or “m·1000“, where the operations represented by “/”, “·“ and raising to a power correspond to
the Java methods divide(Unit), multiply(Unit) and pow(int) invoked on the Unit
instance named “m”.

Result:
All operations – both unary and binary – return a new or an existing instance of Unit. Operations
can be categorized by comparing the dimension of the returned unit to the dimension of the first
Unit operand:

● Result has the same dimension as the operand.

These operations define new units by either scaling existing units by some factor, or by
translating existing units by some offset. Quantities expressed in terms of the resulting unit are

7 We keep the MetricSystem class name in those examples for clarity. For many applications, usage of
static imports will make the reading easier, as in KILO(METRE).

8 All static methods defined in the MetricSystem class can be implemented in terms of calls to Unit
member methods. For example MetricSystem.KILO(Unit) can be mapped to Unit.times(1000)

Eclipse UOMo – Units of Measurement – Version 0.6 13

convertible to the original unit. For example, the inch unit can be defined as 2.54 centimetres, or
equivalently as the centimetre unit scaled by a factor of 2.54.

The following examples define the inch unit as 2.54 centimetres. This unit is defined in three
different ways, which are all equivalent up to some rounding error. The algebraic functions
appear in bold characters. Note that CENTI(x) is a convenience method for x.divide(100)
with prefix symbol management added. The CENTI and METRE members are defined in the
MetricSystem class, which is assumed implicit through a static import statement. The
result is a new unit (inch) of the same dimension (length) as the scaled unit (metre).

● Unit<Length> INCH = CENTI(METRE).multiply(2.54);
● Unit<Length> INCH = METRE.multiply(0.01).multiply(2.54);
● Unit<Length> INCH = METRE.multiply(254).divide(100); // Recommended.

The last definition (using only integer values) is recommended as it does not introduce double
imprecision (the internal representation of 2.54 is actually something like
2.540000000000000036...)

● Result has a different dimension than the operand.

These operations are used for derivation of new units from existing ones (often from base
units). Quantities expressed in terms of the resulting unit are usually not convertible to the
original unit. For example, the watt unit can be defined as the joule unit divided by the second
unit.

The following example defines the watt unit as the joule unit divided by the second unit. Joule
has the dimension of energy, while second has the dimension of time. The result is a unit with
dimension of power.

● Unit<Power> WATT = JOULE.divide(SECOND).asType(Power.class);

The following table summarizes the algebraic operations provided in the Unit class.

Result with same dimension Result with different dimension

Binary operations:

● add (double) or (long)
● multiply (double) or (long)
● divide (double) or (long)
● compound (Unit)

Binary operations:
● root (int)
● pow (int)
● multiply (Unit)
● divide (Unit)

Unary operations:
● inverse()

Instead of add(), plus() is also a proposed method name. It has been reported
that some users expect “A.add(B)” to perform an addition in place (i.e. the new value
replace the old value into A), while “A.plus(B)” suggests the same behavior as the +

operator.

Futhermore, the 'plus' operation over Unit is semantically different from the add operation between
numbers, as it does not mean that something is added to the unit (which would not make sense) but
rather that the unit is offset by the specified amount. Therefore offset() like proposed by JSR-275
precursor JSR-108 seems the best option to most team members for this case. Unit-API 0.6.2 (to be
used by future UOMo versions) takes this change into consideration.

Eclipse UOMo – Units of Measurement – Version 0.6 14

4.6.3 Units Obtained From Unit Symbol Parsing

Units can be created dynamically from their string representation – usually their unit symbol, although
other kinds of string representations are allowed as well. Bidirectional transformations between units
and string representations (parsing and formatting) are performed by the UnitFormat class. This class
serves three purposes:

● Maintenance of associations between an arbitrary number of unit instances and their string
representations. This usually includes all base units together with the derived units that have a
special name and symbol. For example, a UnitFormat instance for SI symbols should map the
“W” string to the WATT unit instance.

● Mapping of prefix symbols to the corresponding scaling methods, where applicable. For example
a UnitFormat instance for SI symbols should map the “kW” string to the KILO(WATT) unit.

● Mapping of operator symbols to the corresponding arithmetic methods. For example a
UnitFormat instance for SI symbols should map the “m/s” string to the expression
METRE.divide(SECOND).

UnitFormat is defined as a subclass of java.text.Format in order to facilitate its usage with
existing libraries like javax.swing.JFormattedTextField. Like most format classes, it contains a
set of getInstance(…) static methods. They are detailed together with the rest of the UnitFormat
API. Users can get Unit objects directly from a UnitFormat instance – this approach provides the
greatest flexibility – or from the Unit.valueOf(CharSequence) convenience static method, which
delegates to the standard UnitFormat instance. This standard format recognizes all units enumerated
in the SI brochure and U.S. customary units (§ 5.3).

Examples:

Unit<Length> metre = Unit.valueOf("m").asType(Length.class);
Unit<Length> feet = Unit.valueOf("ft").asType(Length.class);
Unit<Energy> kilojoule = Unit.valueOf("kJ").asType(Energy.class);
Unit<Force> newton = Unit.valueOf("m.kg/s2").asType(Force.class);

The asType(Class) method checks that the return value of the valueOf(...) method, Unit<?>,
is of the proper quantity type (e.g. Unit<Length>). Quantity type checking is further elaborated in
§ 4.7.

4.7 Unit Parametrization
Units are always checked for compatibility at run-time prior to any operation. For example, any attempt
to convert a quantity from kilogram units to metre units will result in a ConversionException being
thrown. Rigorous run-time checks are needed because in some cases units may be unknown at
compile-time, and because it is possible to defeat the compile-time checks with unchecked casts. Note
that the performance impact of systematic run-time checks is not always significant (§ 4.8).

In addition to run-time checks, some limited compile-time checks can be achieved in the Java language
using parametrized types. Units can be parametrized with the appropriate quantity type for a type
parameter. For example, the Unit class should be parametrized as Unit<Length> for any units of
length to restrict the units they can accept.

There are two ways to obtain a parametrized unit:

● Assignment from one of the predefined constants, such as those defined in the MetricSystem
class.

Eclipse UOMo – Units of Measurement – Version 0.6 15

● The return value from any operation returning a unit of the same type as the operand – or, in
terms of Java language, all Unit methods where the return type is exactly Unit<Q>. This
includes multiplication (times) and division (divide) by a dimensionless factor.

The following assignments are examples of type safe expressions:

Unit<Length> m = METRE;
Unit<Length> cm = CENTI(m);
Unit<Length> inch = cm.multiply(2.54);

However, because the result is a type that can not be determined statically by the Java type system the
assignments below are not type safe, and require an explicit cast to avoid a compiler error. The Java
compiler emits a “unchecked cast” warning for such code.

Unit<Length> m = (Unit<Length>) Unit.valueOf("m");
Unit<Area> m2 = (Unit<Area>) m.pow(2);
Unit<Pressure> Pa = (Unit<Pressure>) NEWTON.divide(m2);

As of Java 5, checks can not be performed at compile time for such code. However, the above code
can be rewritten in a slightly safer way as follows:

Unit<Length> m = Unit.valueOf("m").asType(Length.class);
Unit<Area> m2 = m.pow(2).asType(Area.class);
Unit<Pressure> Pa = NEWTON.divide(m2).asType(Pressure.class);

The asType(Class) method, which can be applied on a Unit instance, checks at run time if the unit
has the dimension of a given quantity, specified as a Class object. If the unit doesn't have the correct
dimension, then a ClassCastException is thrown. This check allows for earlier dimension mismatch
detection compared to the unchecked casts, which will throw an exception only when a unit conversion
is first requested.

4.8 Unit conversions
Conversions involve two steps: 1) obtain a UnitConverter object for a given pair of source and target
units, and 2) use it to convert an any number of floating point values. The example below converts 4
and 6 metres to 400 and 600 centimetres respectively:

Unit<Length> sourceUnit = METRE;
Unit<Length> targetUnit = CENTI(METRE);
UnitConverter c = sourceUnit.getConverterTo(targetUnit);
double length1 = 4.0;
double length2 = 6.0;
length1 = c.convert(length1);
length2 = c.convert(length2);

This example illustrates the advantages of having a UnitConverter class as opposed to simply
including a method in the Unit class along the lines of convert(double, Unit). The process of
checking unit compatibility and computing the conversion factor (Unit.getConverterTo(Unit)) is a
costly operation compared to the conversion itself (UnitConverter.convert(double)). This way,
the conversion factor needs to be computed only once for a series of floating point values. The
UnitConverter class encapsulates the result of this operation. Once available, it can be applied
efficiently on a large number of values. Different implementations exist for different kinds of unit scales
(identity, linear, logarithmic, etc.).

Eclipse UOMo – Units of Measurement – Version 0.6 16

4.8.1 Creating UnitConverters

There is no factory for creating UnitConverter instances directly. Converters of different kinds are
created indirectly by the various Unit.getConverterTo methods. For example the two following
lines create the same UnitConverter, but the second one is the expected use case since Unit-API is
about unit conversions (as opposed to a general mathematical library):

UnitConverter scale1 = new MyCustomConverter(...);
UnitConverter scale2 = KILOMETRE.getConverterTo(METRE);

Eclipse UOMo – Units of Measurement – Version 0.6 17

5. Implementation

5.1 Terms used in UOMo

Base Unit:
A well-defined unit which, by convention, is regarded as dimensionally independent of other base
units. The SI system defines only 7 base units (including metre, kilogram and second), from which all
other SI units are derived.

For example in the imperial system, only one of “inch” or “foot” can be selected as a base unit.
All other units in the same dimension are defined as the selected base unit scaled by some factor.

Derived Unit:
A unit formed as a product of exponentiated base units. Some derived units get a special name and
symbol for convenience. In the SI system, derived units with special name include hertz, Newton and
Volt.

The term 'derived unit' is also used in a looser fashion for the result of a base unit scaled to some
factor (for exemple kilometre defined as 1000 metres) or transformed in any other way (logarithmic,
offset).

Prefix:
A leading word that can be applied to a unit to form a decimal multiple or sub-multiple of the unit.
Prefixes are primarily used in the Metric system, for example kilo- and centi-.

5.1.1 Example

The result of an experience measuring the wavelength of some monochromatic light emission may be
expressed in the SI system of units as:

λ = 698.2 nm

where:

● λ is the symbol for the physical quantity (wavelength)
● nm is the symbol for the physical unit (nanometre), where:

– n is the symbol for the sub-multiple (nano, meaning 10-9)
– m is the symbol for the base or derived unit on which the prefix is applied

● 698.2 is the numerical value (magnitude) of the wavelength in nanometres.

The dimension of length is typically represented by the letter L in dimensional analysis. However, this
dimension does not appear explicitly. Instead, it can be inferred from the commensurable quantity “λ“,
or from the unit “m”.

5.2 ICU4J
This open library [ICU4J] driven and developed by an industry group of companies like IBM, Oracle,
Adobe, Apple or Google has created at least two main libraries. One for C which is not directly relevant
here. One for Java used in many parts of Eclipse projects and also other platforms like Android.

Where Measure and Unit types come into place they are visible (despite OSGi at least in Java) but
neither documented much nor recommended to be used. The only purpose at the moment is being
used by enhanced and improved copies of java.util.Currency or other types, especially those

Eclipse UOMo – Units of Measurement – Version 0.6 18

relevant to localization. Therefore minor parts (only the Measure and MeasureUnit) seem to overlap
with Unit-API. Especially The Quantity Interface not being a concrete class may allow usage by the
ICU4J Measure class. While not a reason for removing types like Measure from our prior approach it
indirectly makes usage more appealing without having to rename or remove parts of its API. The fact,
MeasureUnit is not named Unit like in Unit-API would also allow its adoption by future ICU versions.
Minor differences in the Quantity/Measure exist like its value method called getNumber(), again other
approaches “closer” to this API like 310 (see below) call it getAmount()

Eclipse UOMo effectively “marries” the type-safe Unit of Measurement framework defined by Unit-API
with ICU4J.

5.3 Supported units
The out-of-the-box units database shall include support for the units defined in the following documents:

● BIPM units (same as ISO 1000), including:

● Base units

● Dimensionless derived units

● Derived units with special names

● Non-SI units accepted for use with SI

● SI prefixes from 10 -24 to 10 +24 .

● ISO 31 including:

● ISO 31-1: Space and time

● ISO 31-2: Periodic and related phenomena

● ISO 31-3: Mechanics

● ISO 31-4: Heat

● ISO 31-5: Electricity and magnetism

● ISO 31-6: Light and related electromagnetic radiations

● ISO 31-7: Acoustics

● ISO 31-8: Physical chemistry and molecular physics

● ISO 31-9: Atomic and nuclear physics

● ISO 31-10: Nuclear reactions and ionizing radiations

● ISO 31-11: Mathematical signs and symbols for use in the physical sciences and technology

● ISO 31-12: Characteristic numbers

● ISO 31-13: Solid state physics

● NIST

● NIST Handbook 44 - 2002 Edition; Specifications, Tolerances, And Other Technical
Requirements for Weighing and Measuring Devices.

● Appendix C - General Tables of Units of Measurement

● Federal Standard 376B

● NIST Special Publication 811 - Guide for the Use of the International System of Units (SI);
1995. (Specifically units defined in appendix B8)

5.3.1 Supported quantities

Quantity subtypes are defined only for a subset of the supported units. The table below lists the
minimal set of quantity types that compliant implementations shall define, together with the name of the
Unit constant declared in the MetricSystem class.

http://physics.nist.gov/cuu/pdf/sp811.pdf
http://ts.nist.gov/ts/htdocs/200/202/fs376-b.pdf
http://ts.nist.gov/ts/htdocs/230/235/h4402/appenc.pdf
http://www.bipm.fr/en/si/prefixes.html
http://www.bipm.fr/en/si/prefixes.html
http://www.bipm.fr/en/si/prefixes.html
http://www.bipm.fr/en/si/prefixes.html
http://www.bipm.fr/en/si/si_brochure/chapter4/4-1.html
http://www.bipm.fr/en/si/derived_units/2-2-2.html
http://www.bipm.fr/en/si/derived_units/2-2-3.html
http://www.bipm.fr/en/si/base_units/

Eclipse UOMo – Units of Measurement – Version 0.6 19

This table can be extended with user-defined quantities. However for any quantity not included in this
API, interoperability between the quantities defined in different libraries is reduced. For example if two
independent libraries named “A” and “B” define a Torque quantity in their own respective packages, it
is not possible to use a Torque instance of library A in places where a Torque instance of library B is
expected. Their associated Unit<Torque> instances can not be interchanged neither, but they are
nevertheless compatible if the units use only the standards Dimension instances. Consequently
quantities of library A are convertible to quantities of library B, and conversely.

Quantity type Unit constant Symbol
Acceleration METRES_PER_SQUARE_SECOND m/s²
AmountOfSubstance MOLE mol
Angle RADIAN rad
Area SQUARE_METRE m²
CatalyticActivity KATAL kat
DataAmount BIT bit
ElectricCapacitance FARAD F
ElectricCharge COULOMB C
ElectricConductance SIEMENS S
ElectricCurrent AMPERE A
ElectricInductance HENRY H
ElectricPotential VOLT V
ElectricResistance OHM Ω
Energy JOULE J
Force NEWTON N
Frequency HERTZ Hz
Illuminance LUX lx
Length METRE m
LuminousFlux LUMEN lm
LuminousIntensity CANDELA cd
MagneticFlux WEBER Wb
MagneticFluxDensity TESLA T
MagnetomotiveForce AMPERE_TURN At
Mass KILOGRAM kg
Power WATT W
Pressure PASCAL Pa
RadiationDoseAbsorbed GRAY Gy
RadiationDoseEffective SIEVERT Sv
RadioactiveActivity BECQUEREL Bq
SolidAngle STERADIAN sr
Temperature KELVIN K
Time SECOND s
Velocity METRES_PER_SECOND m/s
Volume CUBIC_METRE m³

Eclipse UOMo – Units of Measurement – Version 0.6 20

6. Integration

6.1 Existing API

6.1.1 JDK

Java 5 defines a java.util.concurrent.TimeUnit enum which overlaps the purpose of the
Unit<Time> construct defined in this API. The two constructs can be made interoperable by the
addition of the following methods in the TimeUnit enum:

● public Unit<Time> toUnit();

● public static TimeUnit valueOf(Unit<Time> unit)
 throws IllegalArgumentException;

Every TimeUnit constant can be represented as a Unit<Time> instance, but not every Unit<Time>
instance has an equivalent TimeUnit.

We do not recommend any change in the current API using TimeUnit for the following reasons:

● Because Unit<Time> can not be retrofitted as a subclass of TimeUnit, supporting
Unit<Time> would require a duplication of every API currently working with TimeUnit.

● Conversions between two Unit<Time> are slower than conversions between two TimeUnit,
because Unit<?> is a more generic class which need to check the dimension of the source and
target units. In contrast TimeUnit doesn't need to perform such check since it is restricted to
the time dimension.

● Using the Time quantity would be yet slower because of the number auto-boxing.

● Another proposed JCP standard, [JSR-310] – Time & Date deals specifically with the detailed
modeling of time aimed to replace types currently in the java.util Package like Date or
Calendar. Its current stage contain several types one of which named PeriodUnit. The Curl
language [CUL_QUANT] being a key inspiration here defines Date & Time also side by side with
Units & Quantities.

Unit<Time> and TimeUnit serve different purpose. The TimeUnit enum is used in contexts where
performance is critical, since it is an argument given to methods controlling execution time with
nanoseconds precision. Using an enum, restricted to the time dimension and a universe of six
TimeUnit, is efficient. On the other hand, org.unitsofmeasurement.unit.Unit is a generic
and extensible framework used in context where performance is less critical, but the task wider.

Time units are particular since they are the only units in the dimension of the quantity that performance
concerns try to minimize (neglecting the memory dimension on the assumption that Unit instances are
small enough). TimeUnit may be deserve a special status because of that.

6.1.2 Other JSRs

JSR-310
As mentioned, [JSR-310] the JCP Date & Time proposal for Java 8 shows a few similarities we want to
list without going into specific detail about them. Since the JSR won't be finalized till Java 8 is released
about a year from now, thus only a future Java 8 based version of UOMo could allow synergies where
appropriate.

Eclipse UOMo – Units of Measurement – Version 0.6 21

Beside the basic idea of modeling the Time/Duration quantity with relevant units being a subset of
mostly SI or ISO units similar to those used in this API, there are 3 main points of interest:

• PeriodUnit
Not only called a unit but also very similar in aim and name to the enum Java Concurrency API.

• PeriodField
This while trying to sound and feel a bit like the old java.util.Calendar field attributes
actually has many elements of a Quantity:

/**

 * The amount of the period.
 */
 private final long amount;
 /**
 * The unit the period is measured in.
 */
 private final PeriodUnit unit;

with equivalent getter and setter methods where getUnit()is even identically named.

• Duration
Interconnected with PeriodUnit this is not related to PeriodField in JSR-310. Possibly a slightly
different interpretation, or work in progress? The README for the JSR says Duration or Instant
are mostly for machine purposes while other types in its extensive calendar package are
meant for human interaction like UI or as the name says calendars.

• Chronology
With the fewest methods and its main sub-class declared “The ISO-8601 calendar system” this
is a System of (Period/Time) Units. Its concrete sub-classes all act and behave very much like
Systems of Units.

Like seen in other areas and a main idea of standardization like that by the JCP interoperability or at
least something like a “bridge” would benefit both APIs. After all people who pick a date using a
calendar widget usually wish to do something with it.

JSR-354
Calculate how many TB of data their customers downloaded, the remaining quota, banner clicks in a
certain period or how many gold medals their team won during the Olympic Games. All those are
quantities and while it exceeds the scope of the spec, not only [AKENN] or [ACONCAGUA] clearly
define monetary units and the financial industry as one of their target groups.

As a result, the Money and Currency API for the Java Platform [JSR-354] was accepted by the Java
Community Process in 2012, passed a JCP Renewal Ballot in early 2013 and just published its first
Early Draft Release in May of the same year.

UOMo Business, an optional/early bundle of UOMo 0.6 aims to implement JSR-354 for the Eclipse and
OSGi ecosystem based on ICU4J in its future releases.

Eclipse UOMo – Units of Measurement – Version 0.6 22

7. Frequently asked questions

Why are units parametrized with Quantity? Wouldn't Dimension be more appropriate?
The first concept from which all others are derived is Quantity (§ 3). Quantities are suitable to
parametrize units because they answer an important question at compile time: What kind of quantity
a unit represents. The standard parametrization mechanism in Java works reasonably well with
quantities for most operations. For example, a length unit after being scaled is still a length unit.
Using a Dimension class for parametrization of units can lead to problems:

● Dimensions change with the model. For example the dimension of the Watt unit is [L]²·[M]/[T]³ in
the standard model (SI system of units), but become [M]/[T] in the relativistic model.

● Units may have the same dimension and still apply to different quantities. For example both
Torque and Energy have a dimension of [L]²·[M]/[T]² in the standard model. Nevertheless it is
convenient and safer to consider them as two different quantities with their own units. Other
examples are sea water salinity (PSS-78), some kind of concentration and angles, which are all
dimensionless but still convenient to treat as different kind of quantity.

● Users will work primarily with Quantity and Unit objects. The need to work with Dimension
objects is less common. If the units were parametrized with dimension instead of quantity, the API
would need to define many Dimension subtypes in the same way that it currently defines many
Quantity sub-interfaces, resulting in a large increase of API size – almost doubling the amount
of types.

Why doesn't the API use more Enum or Annotation types?

● Enums
The first thought for one of the few strictly limited parts of the API, the dimension was in fact the
enum type. It is final and is defined only by a small set of well-known elements. The fact, that
NONE (Dimensionless) has no symbol but a default unit made it harder to deal with enums and
their default constructors. A default yet extensible model and dimensional calculations made it
even harder..

Enums are used in other areas, e.g. the internals of unit parsing and formatting. In most other
parts of the API we need to keep it open and flexible towards extensions. Which a final
type like enum wouldn't work for. In cases where a quantity implementation shall be final and
values would be a selection of choices rather than a numeric value, using enums to implement
such quantity seems tempting. Using interfaces to interconnect different but related sets of enums
is suggested by . It works in various practical frameworks EG members worked on in other areas.
And looking at restrictions some already final JSRs are bound to by their use of enums lets one
hope its next releases find alternatives here, too.

The following example of how to use unit declarations instead of primitive or simple Number
objects was based on code from the Enums chapter in [EFFECTIVEJAVA] (p. 150ff)

Eclipse UOMo – Units of Measurement – Version 0.6 23

import org.unitsofmeasurement.quantity.Length;
import org.unitsofmeasurement.quantity.Mass;
import org.unitsofmeasurement.unit.Unit;
import static org.eclipse.uomo.units.impl.system.USCustomary.METER;
import static org.eclipse.uomo.units.SI.KILOGRAM;

public enum Planet {
 MERCURY (KILOGRAM.multiply(3.303e+23), METER.multiply(2.4397e6)),
 VENUS (KILOGRAM.multiply(4.869e+24), METER.multiply(6.0518e6)),
 EARTH (KILOGRAM.multiply(5.976e+24), METER.multiply(6.37814e6)),
 MARS (KILOGRAM.multiply(6.421e+23), METER.multiply(3.3972e6)),
 JUPITER (KILOGRAM.multiply(1.9e+27), METER.multiply(7.1492e7)),
 SATURN (KILOGRAM.multiply(5.688e+26), METER.multiply(6.0268e7)),
 URANUS (KILOGRAM.multiply(8.686e+25), METER.multiply(2.5559e7)),
 NEPTUNE (KILOGRAM.multiply(1.024e+26), METER.multiply(2.4746e7)),
 PLUTO (KILOGRAM.multiply(1.27e+22), METER.multiply(1.137e6));

 private final Unit<Mass> mass; // in kilograms
 private final Unit<Length> radius; // in meters
 Planet(Unit<Mass> mass, Unit<Length> radius) {
 this.mass = mass;
 this.radius = radius;
 }
 public Unit<Mass> mass() { return mass; }
 public Unit<Length> radius() { return radius; }

[...]
}

● Annotations
Also mentioned by [EFFECTIVEJAVA] is, that defining new types is better done by interfaces than
annotations. Again using annotation-based JSRs like 330 (DI) or Bean Validation together with
Unit-API seems an almost natural choice. Allowing full usage of new custom types and unit-safety.
This said, annotations in such areas will have their place and purpose, but the API as such
defines the types for this first.

Eclipse UOMo – Units of Measurement – Version 0.6 24

8. Addendum

8.1 JavaDoc
Units of Measurement API Docs at project site:
http://www.unitsofmeasurement.org/apidocs/index.html

http://www.unitsofmeasurement.org/apidocs/index.html

Eclipse UOMo – Units of Measurement – Version 0.6 25

9. References
[JSR-275] JCP proposal JSR 275, Source Code at
 https://kenai.com/projects/jsr-275/pages/Home
 JSR proposal at http://jcp.org/en/jsr/detail?id=275

[BIPM] Bureau International des Poids et Mesures
Brochure on the International System of Units

[ISO] International Organization for Standardization

● ISO 31 (Quantities and units)

● ISO 1000

● ISO 10303 STEP Part 41 .

● STEP Part 41 EXPRESS Schema .

[NIST] US National Institute of Standards and Technology

● International System of Units (SI)

● Guide for the Use of the International System of Units (SI)

[UCUM] The Unified Code for Units of Measure: Full Specification

[BART_NACKMAN] Barton J.J and Nackman L.R., 1994. Scientific and engineering C++ – an
introduction with advanced techniques and examples. Addison-Wesley.

[ACONCAGUA] Arithmetic with Measurements on Dynamically-Typed Object-Oriented Langages
Hernán Wilkinson, Máximo Prieto, Luciano Romeo
OOPSLA’05, October 16–20, 2005,

[AKENN] Andrew Kennedy: Units of Measure

[ALLEN2004] Allen E., Chase D., Luchangco V., Maessen J.-W. and Steele G.L. Jr., 2004.
Object-Oriented Units of Measurement.
Sun Microsystems Laboratories.

[DELFT1999] Delft, A., 1999 – A Java Extension With Support for Dimensions.
 Software - Practice and Experience 29(7).

[JSCIENCE] JScience – Java Library for the Advancement of Sciences: Home Page

[JSR-108] JCP proposal JSR 108, Source Code at
 http://jsr-108.sourceforge.net/javadoc/javax/units/Unit.html
 JSR proposal at http://jcp.org/en/jsr/detail?id=108

[JSR-310] Date & Time JSR: proposal at http://jcp.org/en/jsr/detail?id=310

[ICU4J] ICU4J see http://icu-project.org

[CURL_QUANT] Curl – Quantities and Units

[CURL_WHIRL] Taking Curl for a Whirl

[EFFECTIVEJAVA] Bloch, Josh, Effective Java Second Edition
http://java.sun.com/docs/books/effective/

[FOWLER1996] Fowler, M. Analysis Patterns: Reusable Object Models.
 Addison-Wesley, Reading, MA, 1996

[INGALLS] Ingalls, D. A simple technique for handling multiple polymorphism. ACM
SIGPLAN Notices, 21(11):347—349, Nov. 1986

http://jcp.org/en/jsr/detail?id=275
https://kenai.com/projects/jsr-275/pages/Home
http://java.sun.com/docs/books/effective/
http://www.wired.com/science/discoveries/news/2001/12/48818
http://developers.curl.com/userdocs/docs/en/dguide/quantities-basic.html
http://icu-project.org/
http://jcp.org/en/jsr/detail?id=310
http://jcp.org/en/jsr/detail?id=108
http://jscience.org/
http://research.microsoft.com/en-us/um/people/akenn/units/
http://aurora.regenstrief.org/~ucum/ucum.html
http://physics.nist.gov/Pubs/SP811/contents.html
http://physics.nist.gov/cuu/Units/
http://www.tc184-sc4.org/SC4_Open/SC4_Work_Products_Documents/STEP_(10303)/Files/p41dos.exp
http://www.steptools.com/support/stdev_docs/express/part41/index.html
http://en.wikipedia.org/wiki/ISO_31
http://www1.bipm.org/utils/en/pdf/si-brochure.pdf

Eclipse UOMo – Units of Measurement – Version 0.6 26

[KENNEDY1996] Kennedy, Andrew J. Programming Languages and Dimensions. PhD Thesis,
University of Cambridge. Published as Technical Report No. 391, University of
Cambridge Computer Laboratory, April 1996

[JSR-354] JCP proposal JSR 354, Source Code at http://javamoney.java.net
 JSR proposal at http://jcp.org/en/jsr/detail?id=354

http://jcp.org/en/jsr/detail?id=354
http://javamoney.java.net/

	1. Introduction
	1.1 Related work

	2. Requirements and Design Goals
	2.1 Requirements
	2.2 Aspirations
	2.3 Source Code and Binary Compatibility

	3. Definitions
	4. API
	4.1 Terms used in this API
	Quantity:
	Dimension:
	Unit:
	System of units:

	4.2 Packages and fundamental types
	4.3 The Quantity Interface
	4.3.1 Quantity instantiation
	4.3.2 Quantity as a parameter type

	4.4 The Unit Interface
	4.5 Systems of Units
	4.5.1 Metre or Meter?

	4.6 Obtaining Unit Instances
	4.6.1 Units Obtained From Predefined Unit Constants
	4.6.2 Units Obtained From Algebraic Operations
	Operands:
	Result:

	4.6.3 Units Obtained From Unit Symbol Parsing

	4.7 Unit Parametrization
	4.8 Unit conversions
	4.8.1 Creating UnitConverters

	5. Implementation
	5.1 Terms used in UOMo
	Base Unit:
	Derived Unit:
	Prefix:
	5.1.1 Example

	5.2 ICU4J
	5.3 Supported units
	5.3.1 Supported quantities

	6. Integration
	6.1 Existing API
	6.1.1 JDK
	6.1.2 Other JSRs
	JSR-310
	JSR-354

	7. Frequently asked questions
	Why are units parametrized with Quantity? Wouldn't Dimension be more appropriate?
	Why doesn't the API use more Enum or Annotation types?

	8. Addendum
	8.1 JavaDoc

	9. References

