OPT‘

QAWARE

OptXware Research & DevelopmentLLC.

THE VIATRA-I MODEL TRANSFORMATION FRAMEWORK
USERS’ GUIDE

© 2007. OptXware Research and Development LLC. This document is property of the OptXware Research and Development
LLC. To copy the whole or parts of it, or passing the contained information to third parties is allowed only with prior approval
of OptXware Research and Development LLC.






Contents

1 Introduction 6
1.1 The VIATRA Model Transformation Framework 6
1.1.1 Mission statement . . . . .. ... ... . ... 6

1.1.2 Target application domains . . . . . ... ... 6

1.1.3 The approach . . . . ... ... ... ...... 7

1.2 The Current Release . . . . .. .. ... ... ..... 7
1.2.1  Product features . . . ... .. ... ... ... 7

1.2.2 The Development Team . .. . ... ... ... 9

2 Graphical User Interface of VIATRA 10
2.1 Initial Steps with Using VIATRA . . . . . .. ... .. 10
2.1.1 Imstallation . . .. .. .. .. ... ... 10

2.1.2  Setting up the VIATRA environment in Eclipse 17
2.1.3 Creating a new project . . . . . . .. ... ... 19
2.1.4 Creating a model space . . . .. ... ... .. 21
2.1.5  Opening and saving a model space . . . . . .. 23
2.1.6  Creating a metamodel or transformation . . . . 25
2.1.7 Parsing a metamodel or transformation . ... 27
2.1.8 Executing a transformation . . . ... ... .. 31

2.2 Syntax for Format String in the Tree Editor . . . . . . 32
2.2.1 Supported property names . . . .. .. .. .. 33
2.2.2 Examples . . ... ... o0 34



Contents

Writing Import Modules

3.1 Creating a metamodel . . . . . . ... ... ....
3.2 Handling concrete syntax . . . . ... ... .. ..
3.3 Buaildingupmodels . . . .. ... ... ...
3.4 Structure of an import plugin . . . .. ... .. ..

3.5 Installing a new importer . . . ... .. ... ...

Writing New Native Functions for VIATRA

4.1 Implementing a New Function. . . . . . ... ...
4.2 Data Type Mapping . . . . . .. . ... ... ...
4.3 Deployment . . . . .. ..o

String Manipulation Library

5.1 Requirements and Installation . . . . . . . ... ..
5.2 Native functions of the library . . . . . . ... ...
5.3 Usage . . . . . . e

Writing Code Formatters

6.1 Introduction. . . ... .. .. ... .. ...
6.2 Requirements and Installation . . . . . . ... ...
6.2.1 Requirements . . ... ... ... ......
6.2.2 Installation . . .. ... ... ... .....
6.3 Basic functionality . . . . ... ... ...
6.4 Settings . . . . .. ... e
6.5 Runtime settings . . . ... ... ... ... ...
6.5.1 Manual code separation related settings . . . .

6.6 Usage . . ... . ...

VIATRA Transformations by Example

7.1 Definition of Metamodels and Models . . . . . ..
7.1.1 Definition of metamodels . . . . .. .. ..

7.1.2  Definition of (instance) models . . . . . . .

36
36
37
38
40
42

43
43
44
44

45
45
45
47

48
48
48
48
48
48
49
49
20
51



Contents 4
7.1.3 Views of the model space . . .. ... ..... 60
7.2 Basic ASM Constructs . . . . . . ... .. ... .... 61
7.2.1 ASM Machines (Hello World) . . . .. ... .. 61
7.2.2  ASM Rules: Seq rule, Random rule, Log rule . 62
7.2.3 ASM Variables, Let rule, Update rule . . . . . 62
7.2.4 ASM Expressions and Functions . . . . .. .. 65
7.2.5 Rules calling other rules . . . . . ... .. ... 67
7.2.6 Advanced ASM control structures . .. ... . 70
7.2.7 Model manipulation rules . . . ... ... ... 72
7.3 Graph patterns and pattern matching . . . .. .. .. 74
7.3.1 Definition of simple graph patterns . . . . . . . 74
7.3.2 Graph pattern matching . . . . . .. ... ... 76
7.3.3 Scope of pattern matching . . . . .. ... ... 78
7.3.4 Negative, Recursive and OR-patterns . . . . . 79
7.4 Graph Transformation Rules . . . .. ... ... ... 83
7.4.1 Definition of graph transformation rules . . . . 83
7.4.2 Calling GT rules from ASM programs . . . . . 86
Sample Transformation: The Object-Relational Map-
ping 89
8.1 Scope of the Chapter . . . . . ... .. ... ...... 89
8.2 Theoretical Considerations. . . . . . . ... .. .. .. 90
8.3 Metamodels . . . . . ..o 91
8.3.1 The Relational Database Metamodel . . . . . . 91
8.3.2 The Trace Metamodel . . . . . . .. ... ... 92
8.4 Transformations . . ... ... ... ... ... . 92
8.4.1 The Object-Relational Mapping . . . . .. .. 93
8.4.2 Code Generation . . . . ... .. ... ..... 96

8.4.3 The Auxiliary Transformations . . . . ... .. 97



Contents 5

A Object-Relational Transformation Source Code List-

ings 98
A1l reldbmeta.vtml . . . . . ... ... ... ..., 99
A2 ref uml2reldbmeta.vtml . .. ... ......... 100
A.3 orderingOfCols.vtcl . . . . . .. .. ... ...... 101
A.4 modelManagement.vtcl . . . .. ... ......... 104
A5 uml2reldb xform.vtcl . . . . . . .. ... ... ... 107

A.6 orderingOfCols.vtcl . . . . . .. .. ... ...... 112



1 Introduction

1.1 The VIATRA Model Transformation Framework

1.1.1 Mission statement

The mission of the VIATRA-I (VIsual Automated model TRAnsfor-
mations) framework is to provide a general-purpose support for the
entire life-cycle of engineering model transformations including the
specification, design, execution, validation and maintenance of trans-
formations within and between various modeling languages and do-
mains.

1.1.2 Target application domains

VIATRA-I primarily aims at designing model analysis transformations
to support the precise model-based systems development with the
help of invisible formal methods. Invisible formal methods are hidden
by automated model transformations projecting system models into
various mathematical domains (and, preferably, vice versa).

More traditional model-to-model transformation within the context of
the Model Driven Architecture (MDA) are also targetted by VIATRA-
I, such as mapping platform independent models (PIM) to platform
specific models (PSM) or shortly, PIM-to-PSM mappings, or deploy-
ment transformations from a PSM to the designated target middle-
ware or execution environment.

VIATRA-I supports the model driven design of code generators as
special model-to-code transformations. Unlike in many off-the-shelf
modeling tools, VIATRA-I allows the designers to customize existing
code generators within the same transformation framework.

VIATRA-I also serves as a tool integration platform. A unified view
is provided for models of different front-end and back-end tools at
various levels of abstraction by extensible model importers and ex-
porters. This unified model space view allows to integrate tools by
means of model transformations.

Existing application domains of VIATRA-I include dependable embed-
ded systems, robust e-business applications and business workflows,
middleware, and service-oriented architectures.



1 Introduction

1.1.3 The approach

Models and modeling languages and transformations are all stored
uniformly in the so-called model space, which provides a very flex-
ible and general way for capturing languages and models on dif-
ferent meta-levels and from various domains, tools or technologi-
cal spaces following the Visual Precise Metamodeling (VPM) ap-
proach [1]. Models taken from different tools are integrated into the
model space by various importers and exporters.

Since precise model-based systems development is the primary appli-
cation area of VIATRA-I , it necessitates that (i) the model transfor-
mations are specified in a mathematically precise way, and (ii) these
transformations are automated so that the target mathematical mod-
els can be derived fully automatically. For this purpose, VIATRA-I
have chosen to integrate two popular, intuitive, yet mathematically
precise rule-based specification formalisms, namely, graph transfor-
mation (GT) [3] and abstract state machines (ASM) [1] to manipulate
graph based models.

The basic concept in defining model transformations within VIATRA-
I is the (graph) pattern. A pattern is a collection of model el-
ements arranged into a certain structure fulfilling additional con-
straints (as defined by attribute conditions or other patterns). Pat-
terns can be matched on certain model instances, and upon success-
ful pattern matching, elementary model manipulation is specified by
graph transformation rules. Like the Object Constraint Language
(OCL) [2], graph transformation rules describe pre- and postcon-
ditions to the transformations, but graph transformation rules are
always executable, which is a main advantage to OCL. Graph trans-
formation rules are assembled into complex model transformations
by abstract state machine rules, which provide a set of common con-
trol structures with precise semantics frequently used in imperative
or functional languages.

1.2 The Current Release

1.2.1 Product features

The current release of VIATRA-I is called Release 3.0 (shortly R3.0).

You can directly contact the developer team at
viatra [AT] optxware.hu

Release R3.0 supports the following main features:

e Modeling and transformation languages:



1 Introduction

an easy-to-understand textual language (called VTML) for
capturing models and modeling languages (supported by
a parser)

an intuitive textual language (called VTCL) for specifying
model transformations defined by ASM and GT rules

e Core engines

a library for supporting the VPM metamodeling core

a powerful graph pattern matching engine

an interpreter for executable ASM and GT specifications
extensible model importer and exporter framework

parsers for the VIML and VTCL languages, and a UML2
importer

e Graphical User Interface in Eclipse

a framework view for managing multiple model spaces at
a time

a tree viewer and editor for a model space
a textual editor for the VIML modeling language
a textual editor for the VI'CL transformation language

a code output view as a back-end for model-to-code trans-
formations

e Demonstrators/Examples

an initial set of examples for expressing models and trans-
formations in the family domain.

a case study on transforming UML class diagrams into
relational database tables

The current Users Guide is organized as follows

a brief overview on the Graphical User Interface (Chap-
ter 2) including how to carry out initial steps;

Chapter 3 discusses how to write import modules to
VIATRA-T ;

Chapter 4 describes how native functions can be imple-
mented to extend VIATRA-I functionality by problem-
specific Java code;

Chapter 5 specifies how to use the string manipulation
library in VIATRA-I transformations;



1 Introduction 9

— Chapter 6 defines how code formatters can be used to split
textual output of transformations into multiple files and
folders;

— Chapter 7 provides an introductory tutorial on core
VIATRA-I concepts by demonstrative examples;

— Chapter 8 is a description of an object-relational case

study.

1.2.2 The Development Team

The core development team of the current release of the VIATRA-I
framework consists of

e Project Leaders: Déniel Varré, Andras Balogh
e Principal Advisor: Andras Pataricza
e Chief Technological Architect: Istvan Rath

e Transformation engine (Interpreter): Gergely Varrd, Akos
Horvath, Péter Pasztor

e Graphical User Interface (editors): Istvan Rath, David Vago.
e Parser (and Various Importers): Andris Balogh
o Textual editors: Gergely Nyilas, Istvan Rath

e Specification, Documentation: Déniel Varré, Andris Balogh,
Balédzs Polgar

The team is also very much grateful to those people experimenting
and testing the VIATRA-I framework by developing various model
transformations: Lészlé Gonczy, Imre Kocsis, Maté Kovacs, Janos
Avéd, Attila Németh, Daniel Schmids (Kaiserslautern, Germany),
Andreas Schroder (Miinchen, Germany), Daniel Téth.

Furthermore, the following people read initial versions of the current
document: Imre Kocsis, Agnes Németh, Baldzs Polgar. Their work
is also highly acknowledged.



2 Graphical User Interface of VIATRA

2.1 Initial Steps with Using VIATRA

2.1.1 Installation

REMARKS

We now overview the first steps of using the VIATRA-I framework
including instructions on how to install of the framework, how to parse
models and transformations, and how to execute transformations.

The VIATRA-I framework can be installed as an ordinary Eclipse
plugin, thus we assume that Eclipse is already installed. The current
version of VIATRA-I was tested with Eclipse 3.1.x and 3.2.x, but we
had no problems so far with installing it under Eclipse 3.3.

Note that VIATRA-I is licensed under Eclipse Public Licence (EPL).
A prerequisite of the VIATRA plug-in is the existence of the EMF
and GEF plug-ins which you can download and install from the
Eclipse site: http://www.eclipse.org/emf and www.eclipse.org/

gef! You need the versions that are compatible with your Eclipse
SDK version!

Step 1: Start Eclipse and see the Welcome Screen.

Ele Edt Nevgats Seych Propct fam Window Eep

Welcome to Eclipse 3.1

® "3+

-
eclipse

10


http://www.eclipse.org/emf
www.eclipse.org/gef
www.eclipse.org/gef

2 Graphical User Interface of VIATRA 11

Step 2: Check the Eclipse version under Help — About Eclipse SDK.
(The Eclipse version should be 3.1.1 or above)

Ecipse SDK

Wargion: 3.1.1
B idl:

i) Copyriaht Eclise contributcrs and others 2000, 2005, Al rights reserved.,
Wisit hittp:ffwww ecipee orgfplatform

THs prochuct inciucks software devekoped by the
Apache Software Foundation hitp:faww.apache. crg/

tab.




2 Graphical User Interface of VIATRA 12

Step 4: Select Help — Software Updates — Find and Install

Feature Updates
(s The way you want i search for features o irstall

Figure 2.1: Find and Install

Step 5: Check "Search for new features to install” and press Next

Update sites to visit
‘Select Lpdae sites io visit while looking for new feares.,

Edw-wn




2 Graphical User Interface of VIATRA 13

Step 6: Press New Remote Site

Step 7: Add the Name: "VIATRA", add the URL:
http://wuw.optxware.hu/update and press OK

Update sites to visit
Salect update sites 1o v whils looking for new featres,



http://www.optxware.hu/update

2 Graphical User Interface of VIATRA 14

Step 8: Check the box beside VIATRA and press Finish

Search Results
Salect featres 1o nstall foem e search result L

the feabres to stal:

..

Feature License

Sorme of the featres have licerss agreaments that you resd o acoept before proceeding
with the nstallation.




2 Graphical User Interface of VIATRA 15

Step 10: Check the "I accept the terms and license agreement” and
press Next




2 Graphical User Interface of VIATRA 16

Step 12: Press Install All

& Install 'Update L|

\1) It is recommended you restart the workbench for the changes to take
¢ effect, but it may be possile to spply the changes bo the ourrent
configuration without restarting Wk you Bie o restart now?

— s | o | applchanges|

Step 13: Press Yes

After Eclipse has been restarted, you have successfully installed
VIATRA-T .



2 Graphical User Interface of VIATRA 17

2.1.2 Setting up the VIATRA environment in Eclipse

VIATRA uses some additional views, which should be opened first
Step 1: Select Window—Show View — Other

€ show view

-3 Bagie
(2 Cheat Shests

# i OVE

&G Debug

& & Help

B v

B Lava Browing

% s PDE

# (2 PDE Runtime

- Team

-2 Vigtra Framework B2

Step 2: Expand Viatra Framework R2

(€ showview ]
5 Bl
&= Cheat Sheets
&= OV
& G Debug
& Help
=
(2 Liva Browsng
& (= PDE
&= PDE Rurtims
& = Team
=2 Vistra Framéwork R2
M e Ut Vikw
“l viatra B2 Framewirks




2 Graphical User Interface of VIATRA 18

Step 3: Select Code Out View and VIATRA R2 Frameworks (placed
inside Viatra Framework R2 folder) and press OK.

Step 4: If not yet opened, also open the Properties View and the
Error Log View (placed under the Basic folder) as described above.

Step 5: The rest of the important views (Outline, Navigator, Prob-
lems) should be open by default. If not, open it as before.

After that you can save the perspective under a new name (Save
Perspective as) so that the environment could be set up easily next
time.

A fully customized VIATRA-I environment is depicted in Fig. 2.2.

€ VIATRAZ - example. vpmL - Eclipse SDK. [BEE]

File Edit MNavigate Search Project Run Window Help

09~ M Q- i -Q-iB ISR & o ®
T basic_asm.vicl = 0[5 outline 17 =8
i utline is not avalasle,

B | (7 viatraz |

5 Navigator £ =8 *example.vpml X
=G 7| E Bt

T Testnt -~

T TestSOAEMF
T TestSOAEMF.edit
T TestSOAEMF.editar
& Viskra
= [ viatraByExample
7 advanced_ssm. vl
P basic_asm.vtel
B0 Farmity_meta vl
P Earrity_modedn. vl
7 graph_patterns.vtcl
P b _rules.vbel
7 winasm. kel
P model_manipulation.vicl
% project
example.vpml
T viatra_sclipse_core2_r2
T vistra_framework_gui
T vistra_grasm_emf_model
T vistra_gtasm_interpreter
T wizkra tevhial ediror

<
Yistra R Frameworks £
&

framewark]

BE

exampled : Machine

&

[@ exampleda : Machine
exampledb : Machine
exampleS : Machine
exampleé : Machine
[E people

& vem

LR R RS a
E &

-
>
= 5| Tasks | ErrorLog Code Out View T Properties 52 | 5|2 ¥ =0
Property Yalue

0L, Name example

0z, FoN examplet

03, Comments

04, Instances

05, Subtypes

06, Supsitypes

07, Types asm.metamodel machines. Machine

08, 15 Final Type false

09, value

Figure 2.2: The VIATRA-I environment

Now you are ready to use VIATRA-I !



2 Graphical User Interface of VIATRA 19

2.1.3 Creating a new project

Before creating models and transformations in VIATRA-I , you need
to create a new project under Eclipse.

In order to create a new project in the second way, proceed as follows:

Step 1: Select File — New — Project

& roew Project il
Select a wizard —]
Create a lava project

Wizards:
o
& Java Project from Existing Ant Builfile
52 Plug-in Project

-

i Eclipes Modeling Franework:

e Java

B2 Other

& Plug-in Development

= Simple

Step 2: Expand Other

& mew Project il
Select a wizard ]
Craats & lava propEct

Wizards:
o |
# lawa Froject from Existing Ant Buikifile
&2 Plug-in Project

B ovs

2 Brlpse Modelng Franméwork:

o Java

B Other

P viatra Textual Editor Project
= Plug-in Déslopmernit
- Simple




2 Graphical User Interface of VIATRA 20

Step 3: Select Viatra Textual Editor Project and Press Next

Step 4: Type a project name and press Finish

Alternatively, you can create a General Eclipse project in the usual
Eclipse way (by selecting Project under General).



2 Graphical User Interface of VIATRA 21

2.1.4 Creating a model space

Models, metamodels and transformations are stored in a VIATRA-I
model space, which is serialized as a VPML file). You can create a
new model space as follows.

Step 1: Select File — New — Other

& New rz\

Select a wizard

This wizard will create a new YPM madelspace using the Wiatra framewark. |

Wizards:

| type filter kext

(= Exlipse Madeling Framewark

(= EMF Model Transformation

(== Example EMF Madel Creation Wizards

(= Jawa

(= Java Emitter Templates

(= TBoss Rules

(= Plug-in Development

(= Texlipse

(= TIGER

(=(= Wiatra Framework
Yiatra YPM m

(= Examples

£3

=

Step 2: Select Viatra VPM modelspace (under Viatra framework
folder), and click Next

& Create new ¥PML modelspace @

To sek the initial contents of the created modelspace, use the wpm.properties file of
the Viatra plug-in.

Enter or select the parent Folder;

| ViatraProject

File name: | example,vpml

@ [ <pack [ mest= |[ Fnsh [ cancel




2 Graphical User Interface of VIATRA 22

Step 3: Choose an appropriate Folder and Name for the model space,
and click Next

& Create new VPML modelspace rX‘

Select the appropriate modelspace fragments for your new modelspace

2} ve core |
Viatra Interpreters

Key Walue

[ < Back Mext = Finish I [ Cancel

Step 4: Check both checkboxes (the first is needed for the metamod-
eling core, the other is for the transformation metamodel), and click

Finish.
& VIATRA - Eclipse SDK

File Edit Source Refackor Mavigate Search Project
N il 7 EE TR "R -
i Package Explorer M Hierarchy =B

F = =

1=F \iatraBasics
[=1-1=F WiatraProject

example. vprl

Now you have successfully created a VPML file as the model space
representation in the designated folder.



2 Graphical User Interface of VIATRA 23

2.1.5 Opening and saving a model space

Step 1: In order to open a model space, double-click on the VPML
file in the Package Explorer tab. After that, a Tree View of the model
space will be opened with default entities under the root element:
asm, datatypes, vpm.

& VIATRA - example.vpml - Eclipse SDK
Fle Edit Mavigate Search Project Run Window Help

i (W E iU G0 Q- BEG- @@ |8 vama |
: L
[% Package Explorer 22 Hierarchy =0 =8lEEo =2 =0
&= AN outling is not
B= available,
= ViatraBasics
(== ViatraProject Bl datatypes : entity
i
example.vpml & & vem
=
vistra RZ Frameworks 23 g Problems | Dedlaration | Console | Properties | Code output buffer @Error Log B2 =0
kel = :
K =, | B =
Framework1 Message

When using VIATRA-I , you will make modifications to the model
space by parsing models, metamodels and transformations, and of
course, by executing transformations.

A model space can be saved, and thus it can be reloaded later. Note
that multiple model spaces can be open at a time in parallel. All
open model spaces are listed in the VIATRA-I Frameworks view.



2 Graphical User Interface of VIATRA

24

Step 2: In order to save a model space, press Ctrl-S (select or File —

Save).

Eile Edit Mavigate Search Project Run  Window Help
i B IR AL R R R N B @ - 5| &7 viaTra |
rAIR T I ®
[% Package Explorer E2 Hierarchy =0 example.vpml E2 =0 EE 0 & =0
P &K v A outling is nat
B= available,
= ViatraBasics
=1 ViatraProject % L
&
example.vpml vem
Praoblems | Declaration | Console | Properties | Code output buffer gError Log &% =0
Message
i Saved Ciljava\edipse_sensorialedipselviatralViatraProject|example. vpml
& 2/
o




2 Graphical User Interface of VIATRA 25

2.1.6 Creating a metamodel or transformation

Metamodels (and also models) can be described using VIML (Via-
tra Textual Modeling Language) files. Transformations are defined in
a regular file with VT'CL extension (Viatra Textual Command Lan-
guage). Both VITML and VTCL files can be created as follows:

Step 1: Select File — New — Other

& New

E5)

Select a wizard

Create a new file resource

Wizards:

| type filter kext

@ Class
E? Interface
1% Java Project
& dava Project From Existing Ant Buildfile
:-(Sﬁ Plug-in Praject
(= General
,_‘,’ File
[ Falder
i'_j Project
[EF Untitled Text File
= ovs
(= Exlipse Madeling Framewark
(= EMF Model Transformation

3

£3

Step 2: Select File (under General folder), and click Next

€ New File 3]
File

Create a new file resource,

Enter or select the parent Folder;

| ViatraProject |

= viatraBasics
1= WiatraProject

File name: | first, vicl]

[ <pack Hext = Finish | [ cancel




2 Graphical User Interface of VIATRA 26

Step 3: Choose an appropriate Folder and Name (with VTCL or
VTML extension) for the model space, and click Finish.

Step 4: Open the new file by double-clicking on them in the Package
Explorer. This opens a corresponding textual editor with syntax
highlighting.

& VIATRA - first.vicl - Eclipse SDK
Eile Edit Mavigate Search Project Run  Window Help

i H S HE Y -0 Q- R C R I TR 55| &7 viaTra |
-5 - B~
% Package Explorer £2 Hierarchy =0 example.vpml =0 EE o & =0
B <‘=:=',‘> = machine firstTransformation An outline is nok
{ available,
= ViatraBasics )
22 ViatraPraject rule main () = print ("Hello world");
example.vprl '
first wtel
. =
viatra Rz Framewarks £5 = Problems | Dedlaration | Console | Properties | Code output buffer @Error Log &2 =0
& FE X BEHFT
=l framewarkl Message

Ciljavaeclipse_sensorialedipsel¥iatraiVi i Saved Ci\java\adipse_sensorisiedlipseliatraiVistraProject|exsmple. vpml

|~
|
|~
|

P Wiitable Insert 4:2




2 Graphical User Interface of VIATRA 27

2.1.7 Parsing a metamodel or transformation

Existing VIML and VTCL files can be parsed in a similar way.

Step 1-2a: Drag-and-drop the VIML/VTCL file in the Package
Explorer to the designated framework in the Viatra R2 Frameworks
View.

(Note that you should drag and drop the file to the framework node
itself, and not to the VPML document placed inside).

& VIATRA - example.vpml - Eclipse SDK
File Edit Source Refactor Mawvigate Search Project Run ‘Window  Help

iM-HE  ¢¥8 9° W H - 0-Q-  BEGE- I ®F (E- I | & viaTra |
AR TR G P X I =
FIEEEEEE, e |~ O [ ool 52 el st =0)%o 5 =0
= | B G 7| =@ Eroot An outline is not
= E asm available.

= WiatraBasics
F
1= ViatraProject #-[E] datatypes

e
example,vpml #-E] vpm

2| Viatra R2 ks 2
1ara e Problems | Declaration | Console | Properties  Code output buffer @Errur Log 22 =0

R o o =

first vtel

. Message
valeclipse_sensoria\eclipseliatrali 9

i WPMParser Version 2.1.2: Program parsed successfully,
i Reference check ok,
i Nativeimport lasted for 16 ms

|~

| >

|~
v

o first, el - ViatraPraject




2 Graphical User Interface of VIATRA 28

Alternatively, parsing can be done as follows:

Step 1b: Right-click on the designated framework in Viatra R2
Frameworks View, and select the appropriate importer under Native
Importers

& VIATRA - example.vpml - Eclipse SDK
File Edit Mavigate Search Project Run  ‘Window Help

Ci"HE (98 9 M H$-0-Q  EFGE- ®4F - I |8 wiarea |
PR IR i e

[# Package Explorer 2 Hierarchy | *gxample.vpml E2 First.wtel

= 0| gge B~ =0

= G:b 7| E B et An qlu‘tjline is not
1= viatraBasics E :Sm available,
3
=1 viatraProject g atatypes
e
example, vpml P
Firsk, whel

B viatra Rz Fram =
B vy = Froblems Declaration | Console | Properties | Code output buffer | €] Error Log 52 8
Message
4

|= Merge a WPML file

@ Check modelspace
< > 5o Inta [ZI= >

A

Hely: |E}ViatraF‘roiect Vl QB

L project
52' 23 example, vpml
Legutébhi tel
dokumenturnak,

Draburnerturmak,

Sajatgep

Fajlnév: |first.vtcl hd | Megryitas ]

@

[
Hélgzati helyek. | Failtipus: (Al fles v Megse |




2 Graphical User Interface of VIATRA 29

Note that a successful parsing is reported by TWO information mes-
sages:

1. VPM Parser Version 3.0.1: Program parsed successfully (which
reports that syntactic parsing succeeded)

2. Reference check ok (which is for additional well-formedness
checks)

Error messages can be observed in the Error Log View.

Step 3: Note that only upon successful parsing of a VITML/VTCL
should the model space reflect the changes as seen below!

& VIATRA - example.vpml - Eclipse SDK
File Edit Wavigate Search Project Run  ‘Window Help

B-HE P8 Q9 @G % - 0-Q EFGE- &5 0B B | & viatra |
IR SR : X
[% Package Explorer 2 Hirarchy = O || [%] *example.vpml 52 First.wtel =0|Eo = =0
5 & 7 || =2 [E roct An outline is not
. B = B asm available,
= viatraBasics =
=
(== viatraProject = Iatatypes i
m firstTransformation : Machine
example, vpml a
&
First, vtel vem

=08
g o= 7
El &=
Message
i WPM Parser version 2,1.2: Program parsed successfully,
i Reference check ok,
i Mative import lasted for 16 ms
< 1 2 >




2 Graphical User Interface of VIATRA 30

Step 4: If a model / transformation was parsed successfully, it should
be deleted explicitly from the model space before reparsing by

e clicking on the entity / machine symbol in the Tree View, and
pressing Delete, or

e right clicking on the machine symbol and pressing Delete model
element.

& VIATRA - example.vpml - Eclipse SDK

File Edit Wavigate Search Project Run  ‘Window Help
i O G B-0-Q EEHE @ B [ | & viatra |
]~ 5] - ks o ;X <
[% Package Explorer % Hirarchy = 0| R First.wtel =0\ = =0
& < || = B root An outline is nat
SR El asm available,
= viatraBasics 4
&
(== viatraProject = katypes
-
exampla‘vpml g o Dolat
e ;7 Delete mo
First, vhel ven
=] Rename
JE Add Relation
[E] Add Entity
|=| Export as ¥TML
i = ———
‘iatra RZ Framewarks 2 hroblems | Dedls = Run... trutt biffer | @) Error Log. 0 =5
=
i x = Run As 3
3
=] frameswarkl Message Debug &5 »
Cihjavateclipse_sensoria\eclipselViatral Vi B T »
i veMPs e 4 successfully,
i Referer Compare YWith 3
i Mativei Replace With 3
Run As »
Debug As »
< £]|[ES —
e




2 Graphical User Interface of VIATRA 31

2.1.8 Executing a transformation

After successfully parsing a VITCL document, a transformation ap-
pears as an (ASM) Machine in the model space with red "M” icons.
Transformations can be executed by right-clicking on the icon, and
selecting ”Run”.

£ VIATRA - example.vpml - Eclipse SDK
File Edit Mavigate Seatch Project Run Window Help

ri- = Wl R HB-0-Q- EHE @Y - 5| & viatra |
TR R e e
[% Package Explorsr 22 . Hisrarchy =8 R T ] Fivst, vkl = 8|8e . ~ 8
L An outline is not
< B% available.,

= WiatraBasics
(== ViatraProject

Fexample‘-vpm‘ 51 vor| % Delee morkl dament
| first, wtcl o Rename

JE Add Relation
[E] Add Entity

\=| Export as WTHL

_— O
Eltecaizipre i mare o[PS — =0

SR
& X = Run fis 4 ER .-
2[R Frameworkl " Debug &s »
Ct\javaleclipse_sensorialecipsel viatralvi esfaqe Team »
1 YPMPat successfully,
i Referer Compare With 4
i Matwei  Replace Witk »
i veMpa  Runhs *  successfully.
i Referen  Debugés L
i Mative import using hu.bme.mit, viatra.imparts.vtcl ¥TCLImport lasted For 16 ms
& 2|9 | »
mé

If a transformation takes an input parameter, then a dialog box ap-
pears, where parameters should be listed separated with SPACES.

Error messages are listed again in the Error Log, while the textual
output of the transformation is listed in the Code Out View.

& VIATRA - example.vpml - Eclipse SDK
Fle Edit Navigate Search Project Run Window Help

Ci-HE i@ 9 G- 0-Q-  EHWE- @ - | & viara |

RERCR e e
Package Explorer Hierarchy 2] *example, vpml 'c] first. vl o= o =
[# Packa lorer 54 r = * Jovpml 55 Vel f | = O[5 b =
EH 7 An outline is nok
2% awailable.

1= ViatraBasics
= 1= MiatraProject
example. vpml

first.viel
Viatra R2 Frameworks 50 =0

Problems | Declaration | Consale | Properties Y2 ReSSEMEmANG =00 M Erorlog) 3 — O

EaR = Bl world

=] Framewarkl
C:\javaecipse_sensarialeclpselitraiyi

[~
|w




2 Graphical User Interface of VIATRA 32

2.2 Syntax for Format String in the Tree Editor

To allow the customization of the appearance of model elements in
the tree editor, we provided a framework property called “format
string”, which defines what is displayed for a given model element.
Using the format string, you have access to various properties of the
model element, and you may decide what should be shown and how
that information is formatted.

The format string is a C printf() style string, where certain escape
sequences refer to the various model element properties.

Each escape sequence is started with a 'width (in characters), an
optional formatting environment, and the actual property name.

<formatString> = <formatElement> <formatString> | empty string
<formatElement> ::= <characterFmt> | <escapeSequence>
<characterFmt> ::= any Unicode character except for ’%’
<escapeSequence> 1:= Y’ <escapeBody>

<escapeBody> ::= %’ | ’#° | <escapeProperty>

There are two trivial escape sequences, *% %’ and *%#’, the first shall
be used when a "%’ character is contained in the output string. The
second (*%#’) represent the empty string, it may be used, when a
property value is followed by a English letter ("A’-’Z’, ’a’-’z’), for ex-
ample ” %value%#apple” displays the value of a VPM entity and the
string ”apple” concatenated without any separating space characters
between them.

<escapeProperty> = [ <propertyWidth> ] [ <propertyEnv> ] <propertyName>

<propertyName> = <letter> <propertyName> | <letter>

<letter> = any letter of the English alphabet (’A’ - ’Z’ and
’a’ - ’z’ inclusive)

<propertyWidth> ::= [’ <widthValue> °’]’

<widthValue> = <digit> <widthValue> | <digit>

<digit> = any decimal digit (’0’ - ’9’)

For every displayed property, a maximal width may be specified. If
the property value is longer than this specified width, only the first
(width - 3) characters are display, followed by three dots (”...”). If
the width is not specified, or is greater than 99,999,999, the entire
property value is displayed.

<propertyEnv> ::= ’{’ <environmentChars> ’}’

<environmentChars> ::= <environmentChar> <environmentChars> | empty string
<environmentChar> ::= <characterEnv> | ’\$’ | <environmentEsc>
<characterEnv> = any Unicode character except for ’\’%’, ’\}’ and ’\$’



2 Graphical User Interface of VIATRA 33

<environmentEsc> L A VAREAVANE BEAVAREAY LR EEAVAREAY

Optionally, every property reference (escape sequence) may contain
an additional formatting specifier called the property environment.
Such an environment is useful, when we want to use a kind of con-
tainer (like "value”) for a property value, but when the property is
empty, we do not want to see empty pair of ”-s displayed. The prop-
erty environment is something like a format string within the format
string, it refers to exactly one property, it just gives some extra char-
acters, whose appearance is determined by whether the property value
is empty or not.

Within this property environment, you must use the ’$’ character
to specify where the actual property value should be placed. If you
want to use '$’, ’%’ or '}’ within the environment as characters being
displayed, you must escape them with a leading %’ character. Note
that the escape sequences %%’ and "%}’ cannot be used outside of
environment definitions. If an environment contains not exactly one
(non-escaped) ’$’ character, the behaviour is undefined (the actual
implementation replaces only the last occurence of the ’$’ character
with the property value and leaves other ’$’ characters unchanged).

So the processing of the property escape sequences is the following:

1. The property value is computed

2. If width was specified and the property value is longer than
'width’ characters, the value is truncated to (width - 3) charac-
ter and ”...” is appended at the end of that truncated string.

3. If a property environment is not specified, the property value is
simply displayed.

4. If a property environment was specified and the property value
is not empty, the ’$’ token in the property environment is re-
placed by the (possibly truncated) property value, and that is
displayed.

Finally every property has a name, which is a case-sensitive sequence
of English letters. The list of supported property names, their abbre-
viation and their semantics are listed in the table below.

2.2.1 Supported property names

See Fig. 2.3 for supported properties in the format string.

Certain properties (value, source, target*) are only valid for either en-
tities or relations. The value of these properties for an inappropriate
model element will be an empty string.



2 Graphical User Interface of VIATRA

34

Property name
name

NAME

value

source
SOURCE
target
TARGET

type

TYPE

instance

INSTANCE

supertype

SUPERTYPE

subtype

SUBTYPE

alltype

ALLTYPE

allinstance

ALLINSTANCE

allsupertype

ALLSUPERTYPE

allsubtype

ALLSUBTYPE

targetvalue

targettype

TARGETSUPERTYPE

targetalltype

TARGETALLTYPE

targetallsupertype

TARGETALLSUPERTYPE

Abbreviation

src
SRC

trg
TRG

ST

at

AT

ai

Al

TAT

tas

TAS

Semantics

relative name of the model element

fully qualified name of the model element

value of the entity

relative name of the source element

fully qualified name of the source element

relative name of the target element

fully qualified name of the target element

comma separated list of the direct types of the element

comma separated list of fully qualified names of the direct
types of the element

comma separated list of the directinstances of the
element

comma separated list fully qualified names of the direct
instances of the element

comma separated list of the direct supertypes of the
element

comma separated list fully qualified names of the direct
supertypes of the element

comma separated list of the direct subtypes of the
element

comma separated list fully qualified names of the direct
subtypes of the element

comma separated list of all types of the elem ent

comma separated list of fully qualified names of all types
of the element

comma separated list of all instances of the element

comma separated list of fully qualified names of all
instances of the element

comma separated list of all supertypes of the element

comma separated list of fully qualified names of all
supertypes of the element

comma separated list of all subtypes of the elem ent

comma separated list of fully qualified names of all
subtypes of the element

the value of the target entity

comma separated list of the directtypes of the target
element

comma separated list of fully qualified names of direct
supertypes of the target element

comma separated list of all types of the target model
element

comma separated list of fully qualified names of all types
of the target model elem ent

comma separated list of all supertypes of the target model
element

comma separated list of fully qualified names of all
supertypes of the target element

Figure 2.3: Viatra Editor format string property names

2.2.2 Examples

1) ?%value”

Displays the value of the model element (only valid for entities)

2) ”%[10]value”



2 Graphical User Interface of VIATRA 35

Displays the value of the entity truncated to 10 characters.
3) "%[20]{”$” }value”

Displays the value of the entity (truncated to 20 character) between
apostrophes, but the apostrophes are not shown, when the value is
empty.

4) " %[20]{{$%} }value%#apple”

Displays the value of the entity (truncated to 20 characters) between
curly braces, and the curly braces are immediately followed by the
string apple. For example if the value is ”cat”, the displayed string
will be ”{cat}apple”, if the value if ”"This sentence is much longer
than 20 characters”, the displayed string will be ”{This sentence
is ...}apple”. Note that the end of the curly braces within the en-
vironment string must be escaped with the %’ character, since an
unescaped '}’ marks the end of the environment string.

5) " %n%[201{ {$% % { : $}t%{ [$]}s

Displays the name of the element, followed by the truncated value
within curly braces, followed by colon and the list of direct types (the
colon is displayed only if there is at least one direct type) and at the
end come the list of direct supertypes within brackets (this is the
default format string for entities).



3 Writing Import Modules

Import modules are one of the most important parts of the VIATRA-I
Framework. They act as the entry point for all models and other
source files that are needed for transformations. Importers are
concrete-syntax specific, which means that even if a modeling lan-
guage has a fixed metamodel, but the various modeling tools use
diverse concrete syntax for model export and import, separate model
importers must be implemented for each tool. For instance in the
case of UML the metamodel is fixed and standardized, but the con-
crete syntax of XMI output of the modeling tools varies between
tools and even between versions. This requires the implementation
(or tailoring) of model importers for each new tool. To ease the
integration of model import modules to the framework, a simple
plug-in extension point is defined in the VIATRA-I core plugin that
accepts new import modules. The importers can be implemented as
separate Eclipse plug-ins in order to let the user control the active set
of importers using the standard Eclipse configuration mechanisms.

We introduce the importer plug-in facilty and extension point of
VIATRA-I in this Chapter and walk through the steps of plugin im-
plementation using a simple running example, the implementation of
a Petri Net import module. Petri Nets are used in formal verification
and validation and system analysis processes. They provide a simple
and powerful language to model concurrent systems.

Petri nets contain places (data stores, processing units) and transi-
tions (action executions). Places and transitions are connected with
directed arcs. Places may contain tokens (uninterpreted data units)
that flow between places through transitions. A firing of the net is
the execution of a transition. The execution takes the tokens from
the places that are connected to the transition (incoming places) and
generates tokens to the places that are reachable from the transition
via a single arc. The detailed firing rules can be found in many books
and articles. From our point of view, a Petri Net is a model that has
to be imported to VIATRA-I .

3.1 Creating a meta model

If we want to integrate a new modeling language to VIATRA-I the first
thing we have to do is to create its meta model. Meta models describe
the structure of a modeling language by defining the possible elements

36



3 Writing Import Modules

37

3.2 Handling concrete

and their connections. Viatra uses the VPM metamodeling language
for model and meta model representation, so we have to compose
the meta model using VPM entities, relations, and functions. The
metamodel can be created either by hand as a textual (VTML) file, or
using the Visual Editor of Viatra. If the metamodel has been already
prepared in the form of an UML model, it can be imported with the
appropriate UML importer and transformed to VPM metamodel by
a simple model transformation program.

The Petri net language has a simple structure so we can easily create
the metamodel even in textual format that can be seen in the next
listing.

entity (petrinet.metamodel)

{
entity (pnet)
{
entity(place);
entity(trans);
relation(inArc,trans,place);
relation (outArc,place,trans);
relation(places ,pnet,place);
relation(transs,pnet,trans);
function(token,place,datatypes.’Integer’);
}
}

The entity named petrinet.metamodel defines a container in the
VPM model space that stores the Petri net meta model elements.
The entity named pnet represents a Petri net instance. It contains
places (place) and transitions (trans), and input and output arcs
between them (inArc, outArc). Function token defines the token
number for each place. Relations places and transs represent the
explicit containment relation between the Petri net and its parts.

syntax

The metamodel represents only the abstract syntax of a modeling
language, but for interfacing to modeling tools we also have to use
the concrete syntax of that tool. For this reason, we have to create
an import module, which consists of a parser that parses the input
file (which was exported from the modeling tool), and a module that
builds up the model in the VPM modelspace. As most of the modeling
tools use XML-based format for model export and import, we can
use the XML parsers that are included in the J2SE (Java 2 Standard
Edition) contribution. We recommend the use of a DOM (Document
Object Model) parser, even it is much slower than the SAX-based



3 Writing Import Modules 38

(Simple API for XML Processing) ones. If a DOM parser is used,
the model importer only has to traverse the DOM tree to explore the
elements of the model and create the appropriate model elements in
the model space.

For the Petri net example we want to export models from an XML-
based format that is quite simple. This format has been created only
for demonstration purposes but it can represent any simple Petri nets.
The next listing is an example of the input file format.

<?7xml version="1.0" encoding="UTF-8" 7>
<pnet name="exampleNet">
<place id="pl" name="placel" token="2"/>
<place id="p2" name="place2" token="0"/>
<trans id="trl" name="t1">
<input idref="p1"/>
<output idref="p2"/>
</trans>
</pnet>

The <pnet> tag marks the whole net, and has a unique name. The
<place> tag represents a place, with its id (for referencing between
transitions and places in the xml file), its name, and its marking
(number of tokens). The <trans> tag represents a transition between
places, with its unique id and name. The <trans> tag may have child
tags (<input>, and <output>) that represent input and output places
of the transition. In the example, there is an arc between place pl
and transition trl, and between trl and p2. The input plugin only
has to traverse the DOM tree of the input file, and create a Petri net
for each <pnet> element, and the appropriate child elements in it for
places, transitions, and arcs.

3.3 Building up models

To build up models in the VPM modelspace, the importer has to
use the hu.bme.mit.viatra.core.IModelManager interface that
provides primitive model manipulation methods. This is the only
interface that connects the Framework components to the actual
modelspace. Its model management methods include queries, ele-
ment creation, and element modififaction functions. The complete
reference of all methods can be found in the VIATRA-I Framework
Javadoc document. The model elements are represented through
objects (IEntity, IRelation, and IFunciton, respectively) that
contain methods only for getting information about the element
(name, value, connections, types, supertypes, and so on). Manipula-
tion of these properties is only possible through the model manager
interface.

If we create an instance model we have to instantiate its elements from



3 Writing Import Modules

39

the elements of the meta model of the language. This means that the
meta model must be in the model space if we want to import instance
models, and that the importer has to ensure the proper instantiation
of the elements from the meta model. For doing this the importer has
to have references to the meta elements. We recommend the use of
attributes in the importer class for each meta element, and store the
references to the VPM elements in these attributes. The references
can be built up in the initialization phase of the import process, and
can be used during the import. It is important to note that the
references must be rebuilt before each file import, because the model
space references can be become outdated between two imports.

The following listing is a part of the Petri net importer and demon-
strates the usage of the concepts discussed above.

//Attribute for storing reference to the Petri net meta element
IEntity PNET = null;

public void init(IModelSpace m, Logger 1)
throws VPMRuntimeException {
//Getting reference to the model manager
IModelManager mm = m.getModelManager();

//getting reference to Petri net meta element
PNET = mm.getEntityByName ("pnet");
if (PNET==null)
{ //if the element is not in the model space, throw an exception
l.error("Petri net meta element not found.");
throw new VPMRuntimeException(
"Error while initializing Petri net model importer");

First, we declare an attribute (PNET) to store the reference to the
Petri net meta element. Then, in the initialization phase, we query
the model space for the meta element, and store it in the attribute. If
the element is not present in the model space, the program throws an
exception. This simple pattern can be applied to any meta models
and importers. (the UML importers supplied with the VIATRA-I
Framework also use this pattern.)

If the initialization is complete, the next step is the actual parsing
of the file, and building up the instance model in the model space.
The parsing is done by the XML DOM parser, and the result is a
reference to the root of the DOM tree. The traversal of the tree can
be done by using one of the traditional tree traversal alghorithms, but
we recommend using separate methods for all tag (for node, trans,
pnet tags in our example). This way it is easy to find the sources of
import problems, and it is easy to extend or modify the program in
case of format or meta model changes. The next example shows the



3 Writing Import Modules 40

place processing part of the input module.

HashMap hm = new HashMap();
void processPlace(IEntity pn, Element e) throws Exception
{
String n = e.getAttribute("name");
String id = e.getAttribute("id");
String t = e.getAttribute("token");
//create a new entity in the model space
IEntity p = mm.newEntity(n,pn);
//set its type to pnet.place
mm.newInstance0f (PNPLACE,p) ;
//store it in the hash map
hm.put(id,p);
//create the pnet.places relation
IRelation r = mm.newRelation(pn,p,pn);
//between the net and the place
mm.newInstanceOf (PLACES,r) ;
//create an entity for the token number
IEntity ii = mm.newEntity(p);
mm.setValue(ii,t);
mm.newInstanceOf (INTEGER,ii) ;
//create another relation to connect the place
IRelation r2 = mm.newRelation(p,ii,p);
//and the token number
mm.newInstanceOf (TOKEN, f2) ;
}

We create a hash map that contains references for the places in the
model (to create arcs between them) based on their XML ids. The
processing of a <node> tag starts with the query of its attributes
(name, id, token number). Then, we create a new entity in the model
space, and set its type to pnet.place (this means that the new entity
is an instance of the pnet.place meta element). After that we create
a relation between the actual Petri net and the new place that rep-
resents the containment relation between them, and finally we create
an entity and a funciton to represent the number of tokens in the
place. The whole model is built up using simple methods like this.

If the whole model is built up, the import process ends and the import
module is deactivated. Please note, that there is no guarantee that the
module instance will be reused, so it has to release any resources that
have been used during the import period (files, network resources,
and so on).

3.4 Structure of an import plugin

The structure of an import plugin is highly determined by the Eclipse
plugin concept. Eclispe plugins consist of at least a plugin manifest
(plugin.xml), and a plugin class. The manifest describes the proper-
ties of the plugin, including the name, vendor, version information as
well as the list of extension the plugin provides and extension points



3 Writing Import Modules 41

it offers to other plugins. The extension mechanism of Eclipse plu-
gins is discussed in details in many online books so we focus on the
importer-specific issues.

The VIATRA-I import modules have to extend the hu.bme.mit.viatra.-
core2.modelimport extension point. The definition of the extension
can be seen in the next Listing. The Listing contains the manifest
of our sample Petri net import module. The extension must have an
unique id, the reference to the extension point, and in this case, an
<importer> element that contains a reference to the importer factory
class.

<?xml version="1.0" encoding="UTF-8"7>
<?eclipse version="3.0"7>
<plugin
id="viatra.nat.gen.test"
name="Test Plug-in"
version="0.0.1"
provider-name="BUTE"
class="hu.bme.mit.viatra.natives.gen.test.TestPlugin">

<runtime>
<library name="test.jar">
<export name="x"/>
</library>
</runtime>

<requires>
<import plugin="org.eclipse.ui"/>
<import plugin="org.eclipse.core.runtime"/>
<import plugin="hu.bme.mit.viatra.core2"/>
</requires>
<extension
id="hu.bme.mit.import.petrinetimport"
point="hu.bme.mit.viatra.core2.modelimport">
<importer class=
"hu.bme.mit.viatra.natives.gen.test.PNImporterFactory"/>
</extension>
</plugin>

The importer must follow the factory design pattern, and the factory
class must implement the hu.bme.mit.viatra.imports.NativelmporterFactory
interface. This interface contains only two methods. The getlmporter-
Name() method must return a descriptive name for the importer, and
the getlmporterinstance method must return an importer instance.
The factory is responsible to properly initiate the importer instance
using the supplied reference to the model space. Importer instances
have to implement the hu.bme.mit.viatra.imports.Nativelmporter inter-
face. This interface defines several methods, but the key method is
the processFile() that is called by the framework to start the import
process.



3 Writing Import Modules 42

The purpose of the factory pattern is to ensure that the framework
has a permanent connection to its importers (the reference to the
factory classes), but the importer instances can be garabage collected
right after the import is done. If the importer instances cannot be de-
stroyed, the whole model space will reside in the memory, because of
the cross references bewteen them. This leads to an extensive mem-
ory consuption or even to memory leakage. Because of this, importer
implementors have to ensure that the factory will not held any refer-
ences to the created importer instances, or the importer instances will
clean up all references to the model space after the import is done.
We recommend the usage of the first option, that way the importers
are destroyed after the import process, because the framework will
clear all references to them.

We can state that an importer has to have at least four components.
One is the plugin manifest, the second is the default plugin class,
the third is the importer factory class, and the last is the importer
class itself. This simple structure ensures the easy extension of the
framework and also the proper memory management.

3.5 Installing a new importer

If a new importer is implemented, it can be packaged using the Eclipse
plugin development environment, and then can be easily copied to the
plugins directory of the target Eclipse framework instance. After
restarting Eclipse, the new importer will be ready to use. Please
note, that the appropriate meta model has to be parsed or imported
into the model space before the importer can be used.



4 Writing New Native Functions for VIATRA

Native functions can be used to implement complex computations,
user interaction (through GUI), or other functionality in VIATRA-I
model transformations. Native functions are implemented in Java and
are parts of an Eclipse plug-in; therefore they can utilize all standard
Java libraries and other Eclipse plug-ins.

4.1 Implementing a New Function

In order to implement a native function, a new Eclipse plug-in
project must be created. The project must depend on the via-
tra_eclipse_core2_r2 plug-in. A native function is declared using the
nativefunction extension point of the core plug-in. An extension to
this point should contain at least one function element. The function
element has three attributes: a unique id, a VI'CL function name,
and the fully qualified Java class name that implements the native
function. This data builds up the declaration of the function.

The implementation of the function is a Java class (referred in the
function configuration element). The implementation class must im-
plement the hu.bme.mit.viatra.natives. ASMNative Function interface.
This interface declares the following methods:

e public String getId();

Returns the unique id of the native function.
e public String getName();

Returns the VIT'CL name of the native function.
e public String getDescription();

Returns the textual description of the native function (op-
tional).

e public Object evaluate(IModelSpace msp,
Object[] params) throws VPMRuntimeException

Contains the implementation of the native function. The msp
parameter is a reference to the actual model space. The func-
tion gets full access to the VPM model space, and can execute
arbitrary model manipulation instructions on it. The params
input parameter contains the input parameters of the function.

43



4 Writing New Native Functions for VIATRA 44

As the number and type of input parameters is not declared, a
single native function can implement operations with different
signatures. The number and type of input parameters should
be validated by the function.

The return value of the method contains the return value of
the native function. If runtime error occurs, the method should
throw VPMRuntimeFEzception that will terminate the execution
of the model transformation and the message will be displayed
in an error dialog to the user.

4.2 Data Type Mapping

4.3 Deployment

As Java and VTCL data types are different, there is a mapping be-
tween them. The following Table summarizes the mappings:

VTCL Type Java Type

Double java.lang.Double

Integer java.lang.Integer

String java.lang.String

Boolean java.lang.Boolean

Entity reference hu.bme.mit.viatra.core. IEntity

Relation reference | hu.bme.mit.viatra.core.IRelation
” JavalNative Value” Any other Java type

The basic and model element types can be used freely both in Java
and VTCL and can be exchanged between native functions and
GTASM code. In case of JavaNative Value the value can be stored
in ASM variables, and can be passed to other native functions, but
no computation can be done using it on the GTASM side. This
allows the interaction between subsequent native function calls (e.g.,
passing session variables).

The plug-in containing native functions can be deployed using
the standard Eclipse deployment process, and can be used in any
VIATRA-I environment (containing all prerequisites of the plug-in).

The plug-in must be present in the environment both during transfor-
mation parse and runtime in order to be able to use native function
calls to its functions.



5 String Manipulation Library

This chapter is the reference guide of the String manipulation library
of VIATRA-I . The aim of the library is the implementation of the
Java-like String manipulation functions in VIATRA-I model trans-
formations. This enables the complex attribute manipulations and
supports formatted code output generation.

5.1 Requirements and Installation

e The library is compiled for Java SDK 5.0. It requires VIATRA-I
version (R3.0) or greater, and Eclipse 3.1 or greater.

e The library consists of a single jar (if already not present in the
framework) file that has to be copied into the Eclipse plugins
directory. After restarting Eclipse, the functionalities of the
library will be automatically enabled.

5.2 Native functions of the library

o str.compareTo(String, OtherString) This function takes exactly
two parameters. It compares the two parameters lexicograph-
ically. It returns 0 if the two strings are identical, a value less
than zero if the first parameter is lexicographically less, and a
value greather than zero if the second parameter is less than
the first. If the parameter count is not 2, the function returns
undef.

o str.compareTolgnoreCase(String, OtherString) This function
takes exactly two parameters. It compares the two parameters
lexicographically omitting the case of characters. It returns 0
if the two strings are identical, a value less than zero if the
first parameter is lexicographically less, and a value greather
than zero if the second parameter is less than the first. If the
parameter count is not 2, the function returns undef.

o str.ends With(String,Substring) This function takes exactly two
parameters. It returns true, if the String ends with the given
Substring. If the parameter count is not 2, the function returns
undef.

45



5 String Manipulation Library 46

o str.equalsIgnoreCase(String, OtherString) This function takes
exactly two parameters. It compares the two parameters lex-
icographically (normalizing all characters to lower case) and
returns true, if they are equivalent. If the parameter count is
not 2, the function returns undef.

o str.format(Format,Objects) This function takes at least one
parameter. Creates a formatted string based on the Format pa-
rameter (for information on the possible formattings, please see:
http://java.sun.com/j2se/1.5.0/docs/api/java/util/Formatter.html-
#syntax). The 2nd and following parameters are optional, and
are used as parameters for the format string. If the parameter
count is 0, the function returns undef.

o str.indexOf(String,SubString, Offset?) This function takes two
or three parameters. It returns the index of the first occurence
of SubString in String. If the Offset is specified, it starts from
that point in String. If the parameter count is less than two or
greather than three, the function returns undef.

o str.lastIndezOf(String,SubString, Offset?) This function takes
two or three parameters. It returns the index of the first oc-
curence of SubString in String starting from the end of the
character string. If the Offset is specified, it starts from that
point (as endpoint) in String. If the parameter count is less
than two or greather than three, the function returns undef.

e str.length(String) This function takes exactly one parameter. It
returns the length of the string. If the parameter count is not
1, the function returns undef.

o str.matches(String, RegFEzp) This function takes exactly two pa-
rameters. It returns true, if the RegExp regular expression
matches the String. If the parameter count is not 2, the function
returns undef.

o str.regionMatches(String1, Offset1,String2, Offset2, Length,Ignore-
Case?) This function takes at least 5 or 6 parameters. It re-
turns true, if the following sub strings (each containing Length
characters) is equal: String! from position Offset, and String2
from position Offset2. The sixth, optional parameter specifies
whether to ignore the case of characters during comparison. If
the parameter count is 0, the function returns undef.

o str.replaceAll(String, Pattern, Replacement) This function takes
exactly three parameters. It replaces all occurences of Pattern
in String to the Replacement substring. The Pattern parameter
is a regular expression (see Java API documentation). If the
parameter count is not 3, the function will return undef value.



5 String Manipulation Library

47

5.3 Usage

str.replaceFirst(String, Pattern, Replacement) This function takes
exactly three parameters. It replaces the first occurence of Pat-
tern in String to the Replacement substring. The Pattern
parameter is a regular expression (see Java API documenta-
tion). If the parameter count is not 3, the function will return
undef value.

str.starts With(String, Substring,toffset?)  This function takes
two or three parameters. It returns true, if String starts with
Substring. If toffset is specified, then the original string is
evaulated from the given index (instead of the start). If the
parameter count is not 2 or 3, the function returns false.

str.substring(String,start,end?)  This function takes two or
three parameters. It returns a part of String starting from
position start and ending at position end-1. If parameter end
is unspecified, the function extends the string part to the end
of the original String. If parameters 2 and 3 are not integers,
the function returns undef.

str.toLowerCase(String) This function takes exactly one param-
eter. It converts all the characters of String to lower case using
the settings of the current system locale. If the parameter count
is not 1, the function returns undef.

str.toUpperCase(String) This function takes exactly one param-
eter. It converts all the characters of String to upper case using
the settings of the current system locale. If the parameter count
is not 1, the function returns undef.

str.trim(String) This function takes exactly one parameter. It
returns a copy of the String parameter with leading and trailing
whitespace characters omitted. If the parameter count is not 1,
the function returns undef.

After installation, the functions of the library are usable in GTASM
transformation programs. The user can use them everywhere, where
normal embedded functions and operators can be used. For instance
a useage of the format function in a print rule:

print (str.format ("apple: %d %d",1,2));



6 Writing Code Formatters

6.1 Introduction

The current chapter is the reference guide of the Eclipse Code Output
Formatter of VIATRA-I . The aim of this component is to support
the source code generation from VIATRA-I to an arbitrarty target
language.

6.2 Requirements and Installation
6.2.1 Requirements

The component is compiled for Java SDK 5.0. It requires VIATRA-I
version (R3.0.0) or greater, and Eclipse 3.1 or greater.

6.2.2 Installation

The component consists of a single jar file that has to be copied into
the Eclipse plugins directory. After restarting Eclipse, the function-
alities of the component will be automatically enabled.

6.3 Basic functionality

The component acts as a filter and router for the character stream
that is produced by the GTASM print rules. The output of these
rules is the input of the code formatter, and the output is a set of
files in the Eclipse project structure.

The basic features of this component include

o Multiple output file support. The output can be redirected to
files, multiple files can be generated in a single code generation
run

o Multiple output folder support. The output files can exist in
multiple folders. If a destination folder does not exist, the for-
matter will create it.

o Multiple output project support. The output of the coed gener-
ation can be written to multiple projects. If a project does not
exist, the formatter will create it.

48



6 Writing Code Formatters

49

6.4 Settings

6.5 Runtime settings

e Support for hand-coded part preservation There is a possibility
to preserve hand-coded parts of the generated files between code
generation runs. This enables the mixing of automatically and
manually generated parts in a single file.

The basic code formatter settings can be found in the framework
properties. To open the properties, first select the actual VIATRA-I
framework in the VIATRA-I frameworks view. After that, the stan-
dard Eclipse Properties view will show the framework properties. The
Eclipse code output formatter properties can be found on the code-
out page. The following properties are defined for the Eclipse code
output formatter:

o cfile.project: The name of the initial output project. This will
be the target of the generated files unless the code generator
specifies an other runtime.

e c¢file.basedir: This will be the base folder in the output project.
All target file paths will be relative to this.

e efile.autolinefeed: If this property is set to yes, the formatter
will print an additional line feed character after each output
string (after each print instruction). This can be used for de-
bugging purposes.

There are several special character strings that can be sent to the
formatter via normal print rules, and are interpreted as commands
(and are not printed to the output). The runtime setting are valid
only for a single transformation execution. At the begining of a new
transformation execution the framework default settings will be reset.

e Output project specification

Syntaxz: 7 //NPROJECT=< projectname >" Description:
This string instructs the code output formatter to use the
specified project as output. If the project does not exist in the
actual workspace, it will be created. If the project exists, but
it is closed, it will be opened.

Example:

print ("//!'!PROJECT=sample_project");
//This will redirect the output into project
// sample_project.



6 Writing Code Formatters 50

e (Output base folder specification
Syntaz: 7/ /' BASEDIR=< foldername >"

Description: This string instructs the code output formatter to
use the specified folder as base folder. If the folder does not
exist in the actual project, it will be created. The name can be
a path that is relative to the actual project.

Ezample:

print ("//!!BASEDIR=src/examples");
//This will set folder src/examples as base folder.

e Output file specification
Syntaz: 7/ /NFILE=< filename >"

Description: This string instructs the code output formatter to
use the specified file as output. If the file does not exist in the
actual project, it will be created. The name can be a path, that
will be relative to the base folder.

Example:

print ("//!'!'FILE=src/example.txt");
//This will redirect the output into file ezample. tzt
// in the src folder.

e Qutput file end
Syntaz: 7 //NENDFILE

Description: This string instructs the code output formatter
to close the actual output file. After that, all output will be
ignored until a new file is opened using the !!//FILE= instrcu-
tion.

Example:

print ("//!!'ENDFILE");
//This will close the actual file.

6.5.1 Manual code separation related settings

These commands support the manual code separation in the output
files.
e Comment prefix setting

Syntaz: 7 //NCOMMENT= < string >"

Description: This string sets the code output comment pre-
fix that is used for prefixing manual code block markers in the
source code. The default setting is 7 //!", as 7 //” is interpreted



6 Writing Code Formatters 51

as one-line comment by several programming language compil-
ers (C/C++/C#/Java). In case of other languages (for instance
Python) the prefic can be set to any appropriate string (in case
of Python ’#’ is the comment prefix character).

Example:

print ("//!! COMMENT =\#\#!!");
// This will set the comment prefiz to "\#\#!!".

e Manual block statement

Syntaz: 7 //MUSER CODE BEGIN < blockid >” 7 //INUSER
CODE END”

Description: These strings mark the begining and end of a man-
ual code block. The comment prefix is always the actual com-
ment prefix (that means that the command format can change!).
The block id is a unique id (in the file) that identifies the man-
ual code block. The new and old files will be merged based
on these ids. If an old block id cannot be matched, it will be
deleted. This is the only command that will also be printed to
the output file. The user can write any code between the two
lines.

Ezample:

print ("//!!'USERCODE BEGIN main,1");

print ("//Place your code here ");

print ("//!!USER CODE END");

//This will print a manual block into the output file.

6.6 Usage

We illustrate the usage of the Eclipse Code Output formatter on a
basic example:

machine hello{
rule main() = seqf{
//setting output project
print ("//!'!'PROJECT=my_java_project");
//setting base folder
print ("//!!BASEDIR=src");
//setting comment prefiz
print ("//! ! COMMENT=//***x");

//new file
print ("//!!FILE=hu/optxware/demo/Hello. java");

print ("package hu.optxware.demo;");

print ("public class Hello{");

print ("\tpublic static void main(String argl[l) {");
print ("\t\tSystem.out.println(\"Hello world!\");");



6 Writing Code Formatters 52

//manual code block

print ("//***x*xUSER CODE BEGIN (main,1)");

print ("//Please write your custom hello message here!");
print ("//***xxUSER CODE END");

print ("\t}");
print("}");

//closing file
print ("//!'ENDFILE");

} )



7 VIATRA Transformations by Example

In the current chapter, we give an insight into the main modeling
transformation concepts of VIATRA-I by using small examples. Our
intention here is to encourage VIATRA-I users to start experiment-
ing with the system without reading the entire specification of the
language. The following step-by-step introduction of will guide the
reader through the most important VIATRA-I constructs.

7.1 Definition of Metamodels and Models

The role of the VPM model space is to provided a permanent and
well-structured storage of information uniformly for models, meta-
models and transformations following the Visual and Precise Meta-
modeling paradigm [1].

After starting VIATRA-I a default model space is initialized contain-
ing some core metamodels. This model space can be extended with
additional models and metamodels by using the Viatra Textual Meta-
modeling Langauge (VTML).

In the current section, we only demonstrate the most crucial meta-
modeling concepts how to define a VPM model space using the VTML
language. These issues will be discussed by using the domain of pedi-
grees.

7.1.1 Definition of metamodels

In a typical scenario, transformation design starts with the construc-
tion of a metamodel. This phase captures the main concepts of a
domain (or a modeling language) and the relations between these con-
cepts in an abstract graph representation. In the following example,
we describe a metamodel of the domain of pedigrees capturing family
relations of people first in a graphical MOF notation (Fig. 7.1), then
step-by-step in VT ML.

Entities. Entities define the main concepts of a modeling domain.

// Definition of the domain
entity (people)
{
// Compound entity definition
entity (metamodel)
{

93



7 VIATRA Transformations by Example 54

REMARKS

members
Father
‘ l * refines

- parent
Family Person
familyName:String firsthame:String

lastname: String | mather

refines
parent

parent

husband

Figure 7.1: MOF metamodel of a pedigree

// Simple entity definition
entity (family) ;
entity (person) ;
entity (woman) ;
entity (man) ;

3
entity (models) ;

}

Above we defined altogether seven entities in the pedigree domain:
four entities for MOF classes (person, woman, man and family). The
domain of pedigrees can be organized into a containment hierarchy
by introducing additional entities (as equivalents for MOF packages).
These compound entities (e.g. people, metamodel, models) may con-
tain other entities as their content (as denoted by the pair of braces

“0):

Comments in VIATRA-I follow the Java convention: one can use
“//" for single-line comments, and “/* ... */” for multi-line com-
ments.

Relations. Relations define binary edges between two model ele-
ments. Most typically, these model elements are entities, which im-
pose a graph structure on VPM models. However, relations may lead
between relations as well. For instance, a relation leading from a re-
lation to a class is basically an equivalent of an association class in
traditional MOF notation.

relation (parent ,person,person);
relation(father ,person,man);
relation(mother ,person,woman) ;

Relations are directed in the sense that they lead from a source
model element to a target model element. Naturally, both
source and target elements are required to be resolved to a valid
element in the model space after parsing a VI ML file, but the defini-
tion of an entity does not need to precede the definition of a relation
which refers to it as source or target.



7 VIATRA Transformations by Example 55

REMARKS

For instance, in case of the the husband relation above, its source
model element is the woman entity and its target model element is
the man entity.

// Default multiplicity: many_to_many
relation (parent ,person,person);

// Multiplicity: many_to_one
relation(father ,person ,man);
multiplicity (father, many_to_one);
relation(mother ,person,woman) ;

// Multiplicity definition
multiplicity (mother, many_to_one);

Multiplicities of relations. Relations also have multiplicities,
which impose a restrictions on the model structure. Allowed multi-
plicity kinds in VPM are

e one_to_one: for each source element at most one target ele-
ment can be in relation, and for each target element at most
one source element can be in relation for each instance of the
relation,

e one_to_many: for each target element at most one source ele-
ment can be in relation each instance of the relation,

e many_to_one: for each source element at most one target ele-
ment can be in relation for each instance of the relation

e many_to_many: an arbitrary number of source and target el-
ements can be in relation.

The default value of a multiplicity is many_to_many.

Aggregations in relations. Property isAggregation tells whether
the given relation represents an aggregation in the metamodel. In
case of an aggregation relation, an instance of the relation implies that
the target element of the relation instance also contains the source
element.

relation(members, family, person);
isAggregation (members, true);

Above we declare the members relation leading from entity family to
entity person to be an aggregation. This means that if a concrete
family (instance) is linked to a concrete person (instance) then this
person should be contained by the family.

The default value of the isAggregation property is false.

Note that an aggregation relation declares containment between



7 VIATRA Transformations by Example 56

model elements on the model (instance) level, and not on the meta-
level as in case of compound entities.

Inverse of relations. The inverse points to the inverse of the re-
lation (if any). In a UML analogy, a relation can be considered as an
association end, and thus the inverse of a relation denotes the other
association end along an association.

entity (woman)

{
relation (husband, woman, man);
}
entity (man)
{
relation(wife, man, woman);
}

inverse (man.wife, woman.husband);

For instance, the inverse of the husband relation (leading from a
woman to a man) is the wife relation (leading from a man to a
woman).

Generalization / Inheritance. Generalization/Inheritance can
be defined between two entities, two relations and two functions us-
ing the supertypeOf (or subtypeOf) construct. The semantics of VPM
inheritance is in accordance with the traditional UML generalization
mechanism, but it is also extended to relations (i.e. attributes and
associations).

entity (people)
{
entity (metamodel)
{
entity (person)
{
relation (parent ,person,person) ;
relation(father ,person ,man);
relation(mother ,person,woman) ;

// Generalization / Inheritance of relations
supertypeOf (parent ,father);
supertypeOf (parent ,mother) ;

}
entity (woman) ;

// Generalization / Inheritance of entities
supertypeOf (person, woman) ;
entity (man) ;
supertypeOf (person ,man) ;

}
}

Fully qualified names. Entities are arranged into a strict con-
tainment hierarchy, which constitutes the VPM model space. Within



7 VIATRA Transformations by Example 57

a container entity, each model element has a unique local name,
but each model element also has a globally unique identifier which is
called a fully qualified name (FQN). A fully qualified name is the
concatenation of model element names according to the containment
hierarchy using a dot (“.”) notation.

Since people is defined at the root of the model space in the example
above, the fully qualified name of person is people.metamodel.person.

The fully qualified name of a relation is defined as the concatena-
tion of the fully qualified name of its source model element and its
local name '. For instance, the fully qualified name of mother is
people.metamodel.person.mother.

Visibility of names. While fully qualified names uniquely identify
model elements, their use can be inconvenient due to their lengthy
names. In order to shorten such names, local names can also be used
everywhere (i.e within the definition of any entity or relation) for the
unique identification of model elements.

If a local name is used which is not found within the current entity
(which is the scope / container of the definition where the name is
used), the search continues in the container (parent) of the current
entity as long as the local name can be resolved.

If a fully qualified name is used then it is first tried to be resolved as
an absolute fully qualified name. If this fails, then the FQN is
considered to be a relative fully qualified name, and a search is
initiated from the current entity. If this fails, the search continues in
the container of the current entity towards the root model element.

For instance, the following piece of code provides alternative defini-
tions for relation father.

entity (people)
{
entity (metamodel)
{
entity (person)
{
// Absolute FQN: Thtis definition can be used everywhere
// and it has the same effect each time
relation(father ,people.metamodel.person,
people.metamodel .man) ;
// Local: Neither man, nor person %s found inside entity
// ’person’, but they are found in the container entity
// of person (i.e. ’‘metamodel ’).
relation(fatherl ,person ,man);

}

1 As a consequence of this rule, relations between relations are required to be
acyclic, i.e. the transitive sources should evaluate to an entity sooner or later.



7 VIATRA Transformations by Example 58

entity (man);
// Local: Both man and person are found locally inside
// entity ’metamodel ’.
relation(father2,person,man);
}
// Relative FQN: metamodel.person %is not found as an
// absolute FQN, therefore it %s searched as a Telative
// FQN starting from the current entity people
relation(father3 ,metamodel.person,metamodel .man);
// Local names cannot be used as search for local names
// proceeds outwards.
// Error: relation(fathers,person,man);

}

REMARKS A VTML file may refer to model elements not defined in the same
VTML file. This is due to the fact, that all element names are resolve
with respect to (i) the defintions in the VTML file itself and (ii) an
open VIATRA-I model space.

If you use external model elements, then it is a parsing error if this
element is not present in the active model space.

It is a good modeling practice to explicitly import such elements by
import declarations (see later in Sec. 7.1.2).

Built-in datatypes, Value of an Entity. VIATRA-I supports the
manipulation of basic built-in datatypes, such as Strings, Booleans,
Integers and Doubles. These built-in datatypes are also defined as
entities within the model space inside the datatypes domain. Meta-
models refer to these elements by fully qualified names.

relation(familyname, family, datatypes.String);

For instance, the above code defines a familyname relation from entity
family to the built-in string datatype (datatypes.String).

The instances of the built-in datatypes will be represented in an
object-oriented way.

datatypes.Integer (il) -> "2";

This means that a string value may be assigned to any entity using
the — notation, and the conversion of this string value to built-in
datatypes is resolved automatically according to the type information
(e.g. the string value of i1 is converted into an Integer in the example.

7.1.2 Definition of (instance) models

After defining a metamodel for a certain domain, we may define (in-
stance) models, that is type-conformant instances of the metamodel.
Although in many cases, these models are created using VIATRA-I



7 VIATRA Transformations by Example 59

REMARKS

importers, model creation can also be carried out using VITML in the
same way as in case of defining metamodels. This is demonstrated in
the following pedigree of Fig. 7.2.

———e@ mother Family Gyapay1
—> father
Ella
husband Family Varro1
Sandor Gabriell Gyozo Maria |

Family Varadi1 B
e

|Vera | |Szilvia| | Eva | | Daniel | |Gerge|y|

Figure 7.2: A sample pedigree model

Instance-of relationship in VIATR A models As the main con-
ceptual difference between the UML/MOF modeling philosophy, the
VPM model space does not distinguish between classes and objects:
in VPM we only have a type entity and an instance entity related to
each other by an instance-of relationship. In this sense, an en-
tity may have a type in various domains (multiple classification), but
circular typing, and similar peculiarities are disallowed, naturally.
entity (Daniel) ;

instanceOf (Daniel, people.metamodel.man);

relation(1lnl, ’Daniel’, str);

instanceOf (1nl, people.metamodel.person.lastname) ;

entity(str) -> "Varro";
instance0f (str, datatypes.String);

For instance, Daniel is first defined above as a general entity, and
then its type is constrained to man (from our previous domain peo-
ple.metamodel). The notation for element names with and without
apostrophes (”) — such as Daniel, and 'Daniel’ in the above code —
are identical in VTML.

Model elements with names starting with capital letters will require

some precautions later on in transformation programs where they
might interfere with the use of variables. A variable compulsorily
start with a capital letter (Prolog-convention), thus in case of name
clashes (with capital initials), names of model elements need to be
surrounded with a pair of apostrophes (), which is again a Prolog-
convention.

Domain specific predicates and import declarations. For a
more convenient use, type of a model element can also be specified by



7 VIATRA Transformations by Example 60

using the model elements defined in the domain metamodel as fully
qualified predicate names. Local names and relative FQNs can also
be used as predicate names using the import construct.

import people.metamodel;

man (Daniel);
person.lastname (1nl, Daniel, str);
datatypes.String(str) -> "Varro";

For example, man(Daniel) is a valid definition for entity Daniel as there
is an entity called man in the imported people.metamodel domain,
which implies that unary predicate man can be used when defining
instance models for that domain.

Furthermore, person.lastname is again a valid type reference in the
definition person.lastname(Inl, Daniel, str), since (i) person is available
as a local name after importing people.metamodel, and lastname is a
relation in the metamodel with person as source entity.

Finally, datatypes.String(str) — " Varro” is a valid instance of the built-
in datatype datatypes.String, which is accessed by its fully qualified
name.

REMARKS We recommend to use the domain-specific notation wherever possi-
ble, which is much more legible. In fact, the generic notation with
explicit instance-of relationship is mainly used in generic and meta-
transformations.

Namespace declarations. In the previous example, entity Daniel
is defined right below the root element of the model space, which is
not a good practice as the model space will become rather chaotic
after a while. Namespace declartions enable to override the default
root element of the model space, and define a new scope (root) for
VTML declarations.

namespace people.models;
import people.metamodel;

man (Daniel);

For instance, in the modified example above, entity Daniel is now
placed inside the container entity of people.models.

7.1.3 Views of the model space

The VIATRA-I model space can be observed from two different view-
points?, namely, the containment view and the graph view, both

2 Currently, only the tree view of the containment hierarchy is supported by the
tool



7 VIATRA Transformations by Example 61

7.2

depicted in a small sample model in Fig. 7.3.

| Graphical notation | [ Containment View |
—ae@ mother Family Varro1 +-[E] ASM : entity
—> father +[E] DsM
. +-[E] datatypes : entity
—  wife/ - &) people
husband + [E] metamodsl
- [E] models
Gergel +[E] Gyapay! : family
woman =l +-[E] Varadit : Family

[E] varrol : Family

B ot o

m.mother BT 1 : Father
\l, JE' m1 : mother

- -[E] Gergely : man

Gyozo:Man | | Maria:Woman & F1 : Father
1‘ f1father /t BT m1 : mother

1 father m.mother + [E] Gyozo : man
| +[E] Maria : woman
Daniel:Man | Gergely:Man [E] str : String

& Fn : Familyname
mb3:members ,RI: mb1 : members
mb2 members JEI' mb2 : members
JE' mb3 : members
JEI mbd : members
+[E] uml : entity

+-[E] vpm

mb4.members
mb1:members

Varro1:Family

fn:familyname

str:String > "Varro"

| Graph view |

Figure 7.3: Conceptual views of the VIATRA-I model space

e The containment view is a tree view visualizing the containment
hierarchy of entities in the way as defined by fully qualified
names. Thus, relations are placed inside their source entities.

e The graph view presents the model space as a graph where
entities are nodes and relations are edges®.

Basic ASM Constructs

7.2.1 ASM Machines (Hello World)

Our first example is the traditional “Hello World” example, which
prints “Hello Viatra World!” on the Code Output View console.
machine examplel

{

rule main() = print("Hello Viatra World!\n");
}

The most elementary behavioral concept in VIATRA-I is the ma-
chine. Each (GTASM) machine has a unique name (also organized
in a strict containment hierarchy addressed by fully qualified names).
After parsing the machine this will be the name of the entity that
represents the internal model representation of the machine. After
successful parsing, you can find your machine by this name, and run
the associated interpreter on it.

3 Since relations may lead between relations as well, formally, this is a hypergraph.



7 VIATRA Transformations by Example 62

REMARKS

Each machine has a single main ASM rule that defines the rule
which is first called when the transformation specified in the machine
has been started.

The print rule is a built-in ASM rule which evaluates the expression
passed as an argument using a Java-like notation and prints it to the
Code Output View.

It is recommended that each VT CL file contains a single machine.

7.2.2 ASM Rules: Seq rule, Random rule, Log rule

REMARKS

ASM machines consist of a set of ASM rules, where ASM rules
provide us with the most traditional control structures of imperative
programming languages.
machine example2
{
rule main() = seq {
print("first line\n");
print ("second line\n");
// Random rule random rule will execute ezactly one
// of its subrules selected nmon-deterministically
random {
print ("third line\n");
print("3. line\n");
}
print ("last line\n");
log(info, "Transformation terminated successfully");
}
}

The sequential (seq) rule executes all rules listed inside in the
defined order. The random rule executes a non-deterministically
chosen rule from the rules listed inside. The log rule prints a message
into the Eclipse Error Log, which is either an info, a warning or an
error message.

The use of semicolons (;) at the end of VIATRA statements normally
follows that Java convention, that is, semicolons are superfluous after
closing braces (}) of complex rules, but they are compulsory otherwise
after calling elementary rules.

7.2.3 ASM Variables, Let rule, Update rule

Now we discuss the definition and use of ASM wvariables on the
following ASM machine.

The let rule defines a variable Var and initializes it with a term, and
then calls its internal rule. Variable Var is accessible inside the scope
(i.e. in the body) of let.



7 VIATRA Transformations by Example

63

If variable Var accessed by the update rule is already defined then
its value is updated to Term. Otherwise, if a variable is not defined
previously, a compile-time error is reported.

machine example3

{

rule main()= seq {
// Vartable definition by let rule
let X = 0 in seq

};

// Value of X is undefined here

// Update the walue of X

update X=5+6
// Print the
print ("Value
// Print the
print ("Value

// Define a wvariable Y with one rule scope
let Y=4*X in print("Value of Y (Lev 2):" + Y);
// Value of Y ts undefined after the block
// Define again variable Y with one rule scope
let Y=4%3 in seq {
// Update wvariable X
update X=Y+10;
print ("Value of Y (Lev 2):"
print ("Value of X (Lev 2):"
// Redefinition of wariable Y 4s
10 4n print ("Value of

// let Y
i

// X preserves the walue asstigned
// the previous

{

3

value of a wvariable

of X (Lev 1):"
value of a term

+ X);

of X+58 (Lev 1):" X+58);

let

print ("Value of X (Lev 1):" + X);
// Value of Y is undefined here

+ Y);
+ X);
NOT allowed
Y (Lev 3):"

inside

When running the example above, the output of the transformation

should be

Value
Value
Value
Value
Value
Value

of
of
of
of
of
of

as follows.

X (Lev 1):
X+58 (Lev 1
Y (Lev 2):
Y (Lev 2):
X (Lev 2):
X (Lev 1):

11
VE:
44
12
22
22

69

e The code above first defines variable X by using the let rule

and initilizes it to 11.

e Then the term X458 is evaluated and printed, which results in
69 appearing in the Code Output window.

e Next, we define a variable Y locally, within the scope of a let
rule (let Y = 4*Xin seq ...). As a result, the value of variable Y



7 VIATRA Transformations by Example 64

REMARKS

REMARKS

is equal to 44. But as soon as we exit the scope of this internal
(Level 2) let rule, variable Y becomes undefined.

e Variable Y is defined again within the scope of a second let rule
(at Level 2) to be equal to 12. Then an update rule reassigns a
value to variable X as Y+10, which is 22.

e Variable Y can NOT be redefined at the next level with another
let construct.

e However, the value of variable X is kept even after the let rule at
Level 2 has terminated since it was updated inside, and variable
X within this scope.

Definition of variables. An ASM variable needs to be defined ex-
plicitly prior to its first use using the let rule (or forall rule and choose

rule). Alternatively, they can also be passed as input parameters of
ASM rules.

ASM variables should start with capital (upper case) initials, and
should always be defined prior to first use.

Variables are untyped. ASM variables are untyped, i.e. we can-
not assign types at compile-time. Thus the type of a variable is
induced at run-time, and this run-time type may change during ex-
ecution, i.e. the same variable may store once an integer value and
then a string, but this is not a good modeling practice.

Variables can contain constants of the following types: string, integer,
double, boolean, and model elements.

Scope of variables. The scope of an ASM variable can be
defined according to the place where the variable was defined first,
thus it can be rule-scope or block-scope. ASM rules that define
variables with block-scope are the let rule, the forall rule and the
choose rule.

Each variable is visible and accessible anywhere inside its scope in-
cluding sub-blocks at arbitrary depth, but it becomes undefined out-
side its scope (compare the use of variables X and Y in the previous
example). As a result, ASM variables that are undefined within a
certain scope cause compilation errors.

ASM variables cannot be redefined within an internal scope.



7 VIATRA Transformations by Example 65

7.2.4 ASM Expressions and Functions

REMARKS

ASM Constants and Expressions. ASM expressions are con-
structed in the traditional way from constants, variables and ASM
functions (see later in this section). Currently, only constants have
types (string, boolean, integer, double or fully qualified name) that
are evaluated at compile-time, while the type of variables and ASM
functions are determined dynamically at run-time.

The following example demonstrates the use of ASM constants.

rule main () = seq
{
// String
print ("String:" + "A string");
// Integer
print ("Integer:" + 12);
// Double
print ("Double:" + 12.3);
// Boolean
print ("Boolean:" +true);
print ("Boolean:" +false);

// Multiplicity kind
print ("Multiplicity:" +many_to_many);
// Model elements
print ("Model element:" + people.metamodel.man);
print ("Model element:" + ref ("people.metamodel.man"));

}

The final ref construct retrieves a model element constant “converted”
from a string.

It is worth summarizing the notation of constants of different types.
e String constants are printed between quotation marks (7).
e Integer constants are numerical values.

e Double constants are numerical values with a “.”

point) separator.

(floating

e Boolean constants are true and false.

e Multiplicity kind values are one_to_one, one_to_many, many_to_one,
many_to_many

e Name constants are alphanumerical literals starting with a let-
ter. Fully qualified names are name constants concatenated by
dots (“.7).

e undef: the undefined value

Note that name constants starting with an upper-case initial may



7 VIATRA Transformations by Example 66

rarely clash with variables in ASM programs. In case of such a con-
flict, the name constants have to be surrounded with apostrophes
()-

ASM terms are untyped expressions constructed from ASM constants,
variables and functions using traditional operators overviewed below.

e String operators: <,>,+,==,! =, <=,>=

e Integer and Double operators: <, >, +, —, ==, = %, /, <=, >=
e Boolean operators: ||, &&,!,==,!=

e Multiplicity operators: ==,! =

e Name operators ==,! =

REMARKS If an expression is evaluated to a type where such a comparison
operation is not supported (e.g. “strl” || “str2” is invalid), a run-
time exception is thrown.

ASM functions. While ASM variables have a local scope in the
sense that a variable becomes non-accessible as soon as the execution
leaves the rule (or the block) of its scope, ASM functions have a
global visibility, thus they are accessible from anywhere during the
entire run of an ASM machine (but not afterwards as in case of models
in the VPM model space). The use of ASM functions is demonstrated
in the following example.

machine example4
{
// asmfunction name/arity {(Optional) Intitial assignments}
asmfunction name2hair / 1 {("John")="brown";("Jill")="red";}
rule main() = seq {
// We can use the wvalue of the slot in any expression
print (name2hair ("John"));
// We can update the wvalue in a slot.
update name2hair ("John")="white";
// The ASM functions have a global scope
let ="Jack" in update name2hair (X)="purple";
print (name2hair ("Jill"));
print (name2hair ("Jack"));
print (name2hair (" John"));
// Slots with no wvalue set wtill contatin the undef wvalue
print (name2hair ("Alice"));

The output of the previous ASM machine is as follows.

brown
red
purple
white



7 VIATRA Transformations by Example 67

undef

In terms of structured programming languages, an ASM function is
an associative array (dictionary, map, etc.), which stores data values
at locations (slots) defined by its index elements. However, a
main difference is that these arrays are very dynamic in the sense that
they may store an arbitrarily large number of elements, and the size
of the array can be increased at any time during execution in order to
store a new element at a specific location (index). Unused locations
of arrays are implicitly storing the undef value. Mathematically, an
ASM function is a partial mapping from its index domain to its value
domain. (called location or slot)

First, we have to declare an ASM function at the global (machine)
scope (that is, outside any rules) prior to its first use by defining an
an arity (dimension of indexes). In addition, we may initially provide
partial definitions of some slots initially storing some values at certain
locations

7.2.5 Rules calling other rules

Rule parameters. An ASM rule may contain input (in), output
(out) and inout parameters (input/output) which are passed in
and/or out when executing the rule as demonstrated by the following
example.

machine exampleb
{
rule main (in AName, in ModelElement) = seq {
print (AName) ;
print (ModelElement) ;
let X = ref(ModelElement) in print (name(X));
}

// rTule definition with in, and out parameter
rule double(in X, out Y) =
update Y=2xX;

// rule definttion with tn, and out parameter
rule square (inout X) =
update X=X*X;

}

Here double(in X, out Y) doubles the value passed as the input pa-
rameter, while square(inout X) calculates the square of X and writes
it back to X.

As a brief summary, an ASM rule defined in a machine is allowed to
have (an arbitrary number of) parameters, where each parameter is
either



7 VIATRA Transformations by Example 68

e input (in) parameter: the value of an input variable will be
equal to the value passed to the rule when it is called.

e output (out) parameter: when the execution of the rule
terminates, the value of an output variable will be copied to
the variable in the caller rule.

e inout parameter: when the value of this variable will be
passed both in and out from the called rule.

Thus, each time an ASM rule is called, all of its input (and inout)
parameters should be bound to constant values. As a result of the rule
call, all the output and inout parameters of the rule are assigned new
values and the execution is passed back to the caller rule. Naturally,
the values of variables (calculated as output and inout parameters)
are available in the caller.

REMARKS If the main rule of a machine has an input parameter then this
parameter can set by the user when the transformation starts execu-
tion. The actual values of the input parameters should be separated
by spaces ’ ’ in the pop-up window.

REMARKS Currently, each input parameter is considered to be a string.

Rule calls. As many rules can be defined within the same machine,
VIATRA-I allows that ASM rule calls to each other (or recursively
to the rule itself). Calculated values are passed between these rules
by using rule parameters as demonstrated by the following example,
where factorial(in N, out Fact) calculates the factorial of its input
parameter N and returns it in the output parameter Fact.

machine example6

{
// This ASM rule calls itself recursively
rule factor (in N, out Fact) = seq {
if (N==1) update Fact=N;
else seq {
call factor (N-1,Fact);
update Fact=Fact*N;
}
}
rule main() = seq {

// Output wariables used in the call to factor should
// also be predefined e.g. by assigning the "undef" wvalue
let F = undef in seq {
call factor (5, F);
print ("Factor (5, F):" + F);
}
let X = undef in seq {
// Rules calling rTules in other machines
call exampleb.double(3,X);



7 VIATRA Transformations by Example 69

REMARKS

REMARKS

print ("X: "+ X);
// Previous value of X 4is overwritten
call exampleb5.double(2,X);
print ("X: " + X);
// X 4is an tnout wvariable in square,
// thus its input value is compulsory
call example5.square (X);
print ("X: " + X);
// The following code %s not a run-time exzception
// as any arithmetic operation ezecuted on undef
// ts wundef
let Y = undef in seq {
call exampleb.square(Y);
print("Y: " + Y);

}
}

In order to facilitate modular transformation design, rules are allowed
to call rules located in other machines. In such a case, the called
rules can be referred to by their fully qualified names composed of
the location of its machine container (example5 in the example) and
the name of the ASM rule (e.g. square() and double()).

As a result of executing the ASM machine above, the following output
is generated:

Factor (5, F): 120

X: 6
X: 4
X: 16
Y: undef

e First we calculate 5!, by calling factor(5, F);

e Then exampleb.double() is called twice with X as output vari-
able. Thus, this variable is updated by the second call.

e Variable X is passed as an inout parameter for square, thus its
input value is 4 (current value of X), and its output value is 16.

e Finally, note that arithmetic operations on the undefined value
does not cause a run-time exception but the undef value is re-
turned as result.

Two rules may have identical names as long as their arity (the number
of parameters) is different.

Note that if an output parameter is also passed when calling the rule,

then no exception is thrown by the interpreter: it is simply ignored.
Obviously, the value of this output variable will be changed as the
result of the rule call.



7 VIATRA Transformations by Example 70

If the undef value is assigned to an input parameter, then it is passed
to the rule execution in the normal way. But (in the very rare case)
if the value of an input parameter is not defined then a run-time
exception is thrown.

7.2.6 Advanced ASM control structures

In addition to user-defined rules, ASMs provide a predefined set of
rules for advanced control structures such as choose, iterate, forall,
if-then-else and try.

Their use is demonstrated by the following ASM machine. As the first
step, we define an ASM function price and an ASM rule reduce_price.

machine example7

{

asmfunction price / 1 {
("apple")= 5;
("peach")= 10;
("grape")= 15;
("malone")= 18;
("pineapple")= 20;

}

rule reduce_price(in X) =
let P = price(X) in
if (P - 5 > 0) seq {
update price(X) = P - 5;

print ("Price of " + X + ":" + price(X));
}
else seq {
print ("Final price of " + X + ":" + price(X));
fail;
}
rule main () = seq { ... }

}

Then the main rule is executed as follows.

If-then-else. The if-then-else rule evaluates a Boolean condition
and then branches according to the result. In our example, we use
an arithmetic Boolean condition testing the value stored in the ASM
function price.
if (price("peach") > 5)
print ("Peach is more expensive than 5");

else
print ("Peach is less expensive than 5");

Try. The try rule attempts to execute its body rule, and executes
the (optional) else part if the execution of the body rule fails. It
is conceptually similar to exception handling in Java (but without



7 VIATRA Transformations by Example 71

REMARKS

finally block). In the example, we try to reduce the price of grapes,
and since it succeeds, the else branch is not executed.
try call reduce_price("peach");

// The following line is optiomal in this case
else print("Unable to reduce price");

Iterate. The iterate rule applies its body rule as long as possible,
i.e. until its body fails. In our example, the price of a fruit is reduced
by 5 as long as it is positive.

iterate call reduce_price("malone");

Choose. The choose rule tries to find one substitution of variables
defined in its head, which satisfies a Boolean condition, and then
the body rule is executed. If more variable substitutions satisfy the
condition, then one is chosen non-deterministically. If there are no
such substitutions then the choose rule fails. The body rule may
use to the head variables of the choose construct. In our case, we
non-deterministically select a fruit which price is over 10.

choose Y with (price(Y) > 10) do
print ("Chosen: Price of " + Y + ":" + price(Y));

Forall. The forall rule finds all substitution of variables defined in
its head, which satisfies a Boolean condition, and then executes the
body rule for each substitution separately. If no variable substitutions
satisfy the condition, then the forall rule is still successful, but nothing
is changed. The body rule may use to the head variables of the forall
construct. In our case, we select all fruits which price is over 10.

forall Y with (price(Y) > 10) do
print ("Price of " + Y + ":" + price(Y));

As a result, the following output is printed in the Code Output View:

Peach is more expensive than 5
Price of peach: 5

Price of malone: 13

Price of malone: 8

Price of malone: 3

Final price of malone: 3
Chosen: Price of pineapple: 20
Forall: Price of pineapple: 20
Forall: Price of grape: 15

Note that in a typical model transformation, these control constructs
will drive the execution of elementary graph transformation rules. In
this respect, wherever a Boolean condition is expected, we may use a
graph pattern as condition, and wherever an ASM rules is executed,



7 VIATRA Transformations by Example 72

we may apply a GT rule. More details on graph patterns and graph
transformation rules are provided in Sec. 7.3.

7.2.7 Model manipulation rules

Now we extend standard ASMs with rules for manipulating the
VIATRA-I model space. These rules can be used directly in ASM
programs; however, more typically, model manipulation is carried
out by graph transformation rules.

New, Rename, SetValue, Move, SetFrom, SetTo. First we
discuss how to create and alter model elements continuing the pedi-
gree example of Sec. 7.1 (please recall Fig. 7.1 and 7.2).

Creation of entities and Renaming. In case of element creation
(new rule), we can (optionally) specify the container where the new
element is to be stored by using fully qualified names.

In case of the rename rule, the new name to be assigned to an existing
model element is a local name, thus it is required to be unique within
the container (in case of entities) or within the source element (in
case of relations).

Such name clashes are resolved automatically by the VIATRA-I inter-
preter at run-time by renaming the new or renamed model elements
that caused name clash.

As the first step, we create two families F1 and F2 inside people.models
and rename them.

namespace people;
import people.metamodel;

machine model_manipulation_create
{
rule main () =
// Definition of wartables used later
let F1 = undef, F2 = undef, M = undef, W = undef
FNew = undef, FNew2 = undef in seq {
// Creation of mew entities
new (family(F1) in people.models);
new (family(F2) in ref ("people.models"));
// Renaming of model elements
rename (F1, "Familyl");
rename (F2, "Family2");



7 VIATRA Transformations by Example 73

REMARKS

Creation of built-in relationships. Then we create a man M
(and set the name and the value of this entity to Peter) and a woman
W (renamed as Rita). Then we demonstrate how the new rule can be
applied for built-in relationship (such as instanceOf).

new (man(M) in F1);
rename (M, "Peter");
setValue (M, "Peter");

// Generic creation
new (entity(W));
rename (W, "Rita");
new (instance0f (W, people.metamodel.woman));

Note the difference between the two creations:

e Peter is created inside family F1, and its type is assigned right
at creation;

e Rita is created in the root of the model space (as no con-
tainer is specified) while its type is only assigned by an ex-
plicit creation of the instanceOf relation between W and peo-
ple.metamodel.woman.

The explicit creation of other built-in relationships (instanceOf,
typeOf, supertypeOf, subtypeOf and contains) can be handled simi-
larly.

Creation of relations (and implicit relocation of entities).
While the creation of a relation is specified in the same way as in
case of entities (and built-in relations), it is crucial to point out that
the creation of relations has to be carried out consistently with move
operations. The aggregation parameter of a relation is only checked,
but no implicit moves are carried out, which may result in temporarily
inconsistent models.

Deletion of model elements. The deletion of model elements can
be carried out by a single delete rule, which takes (the fully qualified
name of ) a model element as parameter.

The following program removes all the entities and relations created
previously by machine model_manipulation_create.

machine model_manipulation_delete
{
pattern persons (X) =
{
person (X);
}



7 VIATRA Transformations by Example 74

rule main () =

let
F1 = people.models.Familyl, F2 = people.models.Family2,
F3 = people.Familyl, F4 = people.Family2 in

seq

{

forall X below F1 with find persons(X) do delete(X);
delete (F1);

choose X in F2 with find persons(X) do delete(X);
delete (F2);

forall X below F3 with find persons(X) do delete(X);
delete (F3);

forall X in F4 with find persons(X) do delete(X);
delete (F4);

7.3 Graph patterns and pattern matching

In VIATRA-I | complex logical conditions on (some parts of) the model
space can be expressed by using the powerful means of graph pat-
terns.

A graph pattern expresses that there should be a part of the model
space, which “resembles” to the graph pattern it self. This “resem-
blance”, when all the (graph) elements in a pattern are tried to be
mapped to elements in the model space, is called graph pattern match-
ing.

7.3.1 Definition of simple graph patterns

A graph pattern expresses a complex (derived) structural condition
(or constraint) on model elements captured by a prototypical instance
model.

A graph pattern is handled as a (user-defined) Boolean predicate with
variables. However, unlike ASM variables, we do not need to declare
in advance if a variable in a pattern is input or output. In other
terms, if a pattern variable is bound when the pattern is matched, it
is handled as an input variable, otherwise, if the variable is unbound
then it is handled as an (existentially quantified) output variable,
which gets instantiated when the pattern is matched.

The definition of a simple graph pattern expressing the brother re-
lationship in the pedigree domain of Sec. 7.1 can be observed in the
following example (also depicted in a graphical way in Fig. 7.4).



7 VIATRA Transformations by Example 75

machine graph_patterns
{
// B s a brother of X
pattern brother (X, B) =
{
person (X);
person.parent (P1, X, P);
person(P);
person.parent (P2, B, P);
man (B) ;
check (X != B)

| Pattern definition | | Graphical notation |

pattern brother(X,B)
Family Varro1
P: Person 11
|_>-<_| - ol :_‘Maria

P1:person P2:person

—e mother
—> father

wifef
husband

-B
woman

{ X: Person | | B: Man }

> Daniel

1 check (x1=8) 7

..-':‘Amat‘:h ing father

— m :‘Smother refines Person
i {7 . : parent

- firstname:Strin
|Gyozo:|\/|an |6| |I\/Iar|a:Woman| Iastname:String
f2:father

1:father m2:mother_.-': ?

1"
-I Dan‘ij\l: Man | Gerge'li:-Man :_;‘ —

parent

hushand

[ Instance Model | | Metamodel ]

Figure 7.4: Patterns and graph pattern matching

The pattern expresses that in order to find a brother B of a person
X, one needs to find a person X, and a man B who have a common
parent P as expressed by the parent relation. Furthermore, B and X
is not allowed to be the same persons (i.e. nobody is a brother of
himself) as expressed by the logical condition of the pattern (after
the check keyword).

Note that the family model in Sec. 7.1.2 contained only father and
mother relations between different persons. However, since parent is a
generalization (supertype) of both father and mother, it is sufficient to
use this more general parent term in order to obtain a more succinct
pattern. The same argument also holds when searching for the more
general person instead of a man or a woman.



7 VIATRA Transformations by Example 76

7.3.2 Graph pattern matching

REMARKS

REMARKS

REMARKS

When a pattern is used in an ASM program, graph pattern match-
ing is performed, which tries to bind all variables of a pattern to ele-
ment from the model space which satisfy type and structural consis-
tency constraints. A corresponding variable substitution (in a certain
part of the model space) is called a matching.

e Type consistency means that the type of a model element
should be identically typed or a subtype of the pattern element
it is matched to.

e Structural consistency means that if a pattern relation
(edge) is matched to a model relation, then the source and
target elements of this model relation need to be matched
successfully to the source and target elements of the pattern
relation (edge) in accordance with the graph view of the model
space.

In addition, further constraints in a graph pattern may impose a cer-
tain inheritance, containment and instance-of restrictions on entities
and relations in the model space.

By default, the free variables in the pattern will be substituted
by existential quantification, which means that only one (non-
deterministically selected) matching will be obtained. This can
be overruled by parallel pattern matching using the forall construct
(to be discussed later).

For instance, a matching of pattern brother inside model (entity) peo-
ple.models is X = 'Daniel’ and B = 'Gergely’ (i.e. Gergely is a brother
of Daniel — see also Fig. 7.4). In fact, there is a symmetric matching
of the same pattern in the same model, namely, X = 'Gergely’ and B
= 'Daniel’ (Daniel is a brother of Gergely).

Side effects of pattern matching: There are no side effects of
pattern matching other than instantiating the variables in the head
of the pattern (e.g. X and B in brother(X, B)).

Attribute conditions: The check keyword refers to a logical condi-

tion which should be satisfied in addition to the successful matching
of the pattern. Typically, arithmetic conditions are checked in the
context of the matched model elements this way.

Injectivity of pattern matching: Currently, each variable of in a
pattern should be matched to different model elements during pattern
matching (in technical terms, the pattern matching is injective).



7 VIATRA Transformations by Example 7

Use of graph patterns in ASM programs. A graph pattern
can be used in ASM programs exactly where a Boolean expression
is expected using the find keyword as demonstrated by the following
example.
rule main () =
choose X below people.models, B below people.models

with find brother (X, B) do
print (name (X) + "->" + name(B));

Here we non-deterministically select an assignment for X and B from
the subtree of the model space starting from the container entity
people.models, which satisfies the pattern brother(X,B), and then print
the names of both persons.

Parallel pattern matching. Patterns most frequently are used
together with the forall construct, which processes all matchings of
a pattern in parallel. Note that while matchings are not required to
be completely disjoint (i.e. certain model elements may overlap), it is
forbidden that such parallel actions contradict with each other (e.g.
one removes a model element while the other preserves it).
rule main () =
forall X below people.models, B below people.models

with find brother (X, B) do
print (name (X) + "->" + name(B));

The above piece of VI'CL code prints both symmetric pairs of X and
B, namely:

Daniel -> Gergely
Gergely -> Daniel

Use of pattern parameters. The parameters of graph patterns
are different from that of ASM rules in the sense that the parameters
of a graph pattern do not have directions (in, out, in/out). In fact,
the direction of a pattern parameter is only determined at execution
time when pattern matching is initiated for that pattern. In this way,
the same pattern can be called with different settings for parameter
directions at various parts of a VI'CL program.

In order to seamlessly interact with ASM rules, non-deterministic
variable assignments can be carried out by pattern matching using
the choose construct. All pattern variables which are intended to be
used in the do part of the choose rule should be declared within the
choose rule (or before) as demonstrated by the following example.
rule main () =
choose X below people.models

with find brother (X, B) do
print (name(X) + " has a brother");



7 VIATRA Transformations by Example 78

In this example, we only declare variable X to be used as an ASM
variable. As a consequence, a model element gets assigned to vari-
able B when matching pattern brother(X,B), but only the predeclared
variable X can be used within the do block.

Obviously, input parameters can also be passed to the pattern match-
ing process as seen in the example below.
rule main () =
let B = people.models.’Varrol’.’Daniel’ in
choose X below people.models
with find brother (X, B) do
print (name (X) + " has a brother called Daniel");

7.3.3 Scope of pattern matching

Scope of pattern variables: Below vs. In. The scope of a
variable to be instantiated by pattern matching can be restricted to
take values only from a subtree of the model space (below scope),
or only from the direct children of a certain entity (in scope).

For instance, the following piece of VT'CL code fails to find any broth-
ers in our example model space of Sec. 7.1.2 as all persons are direct
children of a family entity.
rule main () =
choose X in people.models, B in people.models

with find brother (X, B) do
print (name(X) + "->" + name(B));

Here people.models is called the scope entity.

REMARKS From a pure specification point of view, one can safely use the below
scope instead of the in scope as all the direct children of the scope
entity. However, the pattern matching process can be significantly
faster if one is more (but not too) restrictive concerning the scope.

Global scope for pattern matching. As an alternate solution,
we may restrict the scope of pattern matching globally, i.e. for each
element matched within a pattern in the following way.
rule main () =
choose X, B

with find brother (X, B) below people.models do
print (name (X) + "->" + name(B));

In this solution, the scope variables X and B becomes people.models
since the scope is specified globally when initiating the pattern match-
ing (find pattern below scope). However, a main difference is that also
the internal variables of the pattern have a scope restriction (i.e. vari-
able P in case of pattern brother) unlike in the case of local scoping
of the ASM variables themselves.



7 VIATRA Transformations by Example 79

Patterns spanning across multiple domains (models). Graph
patterns are not restricted to take values from a single subtree of the
model space. In fact, in case of model transformations, which are
the most typical applications of the VIATRA-I framework, models are
frequently taken from models of different modeling languages. Such
scope restrictions can be specified in the pattern as well, and not only
in the caller of that pattern.

In the example below, we search for cousins in two families.

// X of family F1 <s a cousin of Y in family F2
pattern cousin(X, F1, Y, F2) =
{
family (F1);
family (F2);
person(X) in F1;
person.parent (Parl, X, P1);
person (P1);
person.parent (Par2, P1, GP);
person (GP);
person.parent (Par3, P2, GP);
person (P2);
person.parent (Pard, Y, P2);
person(Y) in F2;
check (F1 != F2)

Here we specified that X is only considered to be a cousin of Y if
they have a common grandparent GP, but they are not in the same
family. This is prescribed by constraining the scope of person(X) to
be a subentity of family F1 (and person(Y) likewise for family F2).

7.3.4 Negative, Recursive and OR-patterns

VIATRA-I supports the use of some advanced constructs in graph
patterns such as e.g. negative, recursive and OR-patterns, which will
be demonstrated in the sequel.

Patterns calling other patterns. In order to facilitate the reuse
of graph patterns, patterns may initiate the matching of other pat-
terns in turn using the find keyword. For instance, a cousin pattern
could also be defined by matching a grandparent pattern twice. As
a result, we obtain a much higher level of reuse in transformation
design.

// GP ts a grandparent of Z

pattern grandparent (Z, GP)
{

person(Z);

person.parent (Parl, Z, P1);
person(P1);

person.parent (Par2, P1, GP);



7 VIATRA Transformations by Example 80

REMARKS

person (GP) ;

}
// X of family F1 <s a cousin of Y in family F2
pattern cousin(X, F1, Y, F2) =
{
family (F1);
family (F2);
person(X) in F1;
find grandparent (X, GP)
person (GP);
find grandparent (Y, GP)
person(Y) in F2;
check (F1 != F2)
}

Here person GP should be a common grandparent of both X and Y,
thus a joint matching satisfying both grandparent(X,GP) and grand-
parent(Y,GP) needs to be found.

Patterns may also refer to patterns defined in other machines by
using its fully qualified name.

Negative patterns. A pattern may restrict its own applicability
by specifying negative application conditions by negative patterns. A
negative pattern is an ordinary pattern preceded with the neg key-
word.

The semantics of negative patterns prescribes that if a matching of a
pattern is found, and this matching can be extended to a matching
of (one of) its negative patterns then the original matching of the
pattern is rejected, and the pattern matching process continues to
find a new variable assignment.

Unsurprisingly, an existing pattern can also be called as a negative
pattern using the find construct. Furthermore, negative patterns may
also contain negative patterns in turn to yield a pattern language
equivalent with first order logic.

In the example below, we define patterns for an only child (has neither
brother nor sisters) and an orphan (who has no parents).

// Z ts an only child

pattern onlyChild(Z) =

{
person(Z);

// Calling predefined patterns as negative patterns
neg find brother(Z, B);
neg find sister(Z, S);

3

// X is an orphan



7 VIATRA Transformations by Example 81

REMARKS

REMARKS

pattern orphan(X) =
{
person (X);
// Defining a local negative pattern,
// which %s mnot accessible from outside
neg pattern hasParent(X) =

{
person (X);
parent (Par, X, P);
person(P);

}

Each pattern itself has to be a well-formed graph, i.e. (i) all source
and target nodes of relations, and (ii) parameters of called patterns
have to be included explicitly in the local pattern.

OR-patterns. In many cases, the notion of a single pattern cov-
ers alternative situations. OR-patterns provide a primary means to
uniformly capture such different patterns under a single name.

The following piece of VICL code demonstrates the use of OR-
patterns by defining the notion of a sister in a slightly different way
compared to brother (in Sec. 7.3.1).

// S is a sister of S
pattern sister(X, S) =

{
person (X);
person.father(P1, X, F);
man (F) ;
person.father (P2, S, F);
woman (S) ;
check (X != 8)

}

or

{
person (X);
person.mother (P1, X, M);
woman (M) ;
person.mother (P2, S, M);
woman (S) ;
check (X != 8)

}

This way, a sister of a person X is a woman S, if there is a common
father F of X and S or if there is a common mother M of X and S.
As a consequence of using OR-patterns, both cases can be handled
identically when aiming to find a matching of sister(X,S).

While subpatterns of an OR-pattern are evaluated in the given order,
it is still a good practice for transformation engineering to create



7 VIATRA Transformations by Example 82

mutually exclusive subpatterns so that the same matching only fulfills
one subpattern.

Visibility and parameter passing in patterns. FEach graph pat-
tern is local in the sense that it can directly access locally defined
elements only (those in one subpattern in case of OR~patterns). This
means that variables can be named identically in different patterns
(or different subpatterns of an OR-pattern).

In case of pattern calls, local pattern variables are passed as param-
eters for the called pattern in a bidirectional way, i.e. the pattern
matcher engine imposes no restrictions whether a variable is already
substituted or not when the other pattern is called.

Since negative patterns are treated as special pattern calls, parameter
passing is also very similar. The main difference is that parameter
passing is unidirectional, i.e. the (external) positive pattern may pass
parameters to the (internal) negative pattern. Furthermore, in the
case when a negative pattern is defined inside a pattern and not just
called by find (compare patterns orphan and onlyChild), common ele-
ments in the positive and the negative pattern share the same names,
but they are still coupled by parameter passing from the positive to
the negative pattern.

Recursive patterns. By combining pattern calls and OR-patterns,
we can specify recursive patterns, which are true generalizations of
traditional path expressions used in many graph transformation tools.
A recursive pattern is also very similar to a recursive Prolog-program
(being evaluated over a set of dynamic predicates describing the
model).

The following recursive pattern defines the transitive descendant pat-
tern.

// D is a descendant of X
pattern descendants (X, D) =

{
person (X);
person.parent (P1, D, X);
person (D) ;

}

or

{
person (X);

person.parent (P2, Ch, X);
person(Ch);

find descendants (Ch, D)
person(D);



7 VIATRA Transformations by Example 83

As defined by this pattern, person D is a descendant of person X, if
D is a child of X or if there is a person Ch who is a child of X, and D
is a descendant of Ch.

7.4 Graph Transformation Rules

Graph transformation (GT) is the primary means for elementary
model transformation steps in VIATRA-I . Graph transformation pro-
vides a rule and pattern-based manipulation of graph-based models.
The application of a GT rule on a given VPM model (i.e. part of the
model space) replaces an image of its precondition (left-hand side,
LHS) pattern with an image of its postcondition (right-hand side,
RHS) pattern, and additional actions can be executed after that as
further side effects.

7.4.1 Definition of graph transformation rules

VIATRA-I provides different ways for defining graph transformation
rules in order to adapt to the different programming style of trans-
formation developers.

The traditional way of defining GT rules is to provide a pair of graph
patterns: the precondition (left-hand side, LHS) pattern and the post-
condition (right-hand side, RHS) pattern. In VIATRA-I , there is also
an action part which defines additional side-effects for rules

The following example defines a GT rule for marriage, when a man
and a woman founds a new family.
// Man M and Woman W get married to found a new family F
gtrule marry (in M, in W, out F) =
{
precondition
postcondition

action

3

Precondition The precondition part is defined by a graph pattern
which should be found in the instance model by pattern matching in
order to enable the application of the GT rule.

In the sample marry rule, we prescribe the presence of a man M and
a woman W who are (i) not married yet (see the find pattern calls
as negative application conditions) and (ii) living in different families
(F1 and F2, respectively).

precondition pattern lhs(M, W, F1, MB1, F2, MB2) =

{

man (M) ;
family (F1);



7 VIATRA Transformations by Example 84

family .members (MB1, F1, M);
woman (W) ;
family (F2);
family .members (MB2, F2, W);
neg find married (M)
neg find married (W)

// This check is not required!
check (F1 != F2)

REMARKS Note that the check condition where additional logical conditions
can be prescribed is superfluous this time, since VIATRA-I applies
injective pattern matching policies, thus F1 and F2 are matched au-
tomatically to different model elements.

REMARKS Note that precondition and postcondition (as well as negative condi-
tions) of a GT rule can also be defined using the predefined pattern
by the find construct.

Postcondition The postcondition pattern describes what condi-
tions should hold as result of applying the GT rule. The result of GT
rule application is calculated as the difference of the postcondition
and precondition in the following way:
gtrule marry (in M, in W, out F) = {
precondition pattern lhs(M, W, F1, MB1, F2, MB2) = {...}
)

postcondition pattern rhs(M, W, F1, MB1, F2, MB2, F
{

man (M) ;

family (F1);

woman (W) ;

family (F2);

family (F);

family .members (MB3, F, M);
family .members (MB4, F, W);
man.wife(WF1, M, W);

Parameter passing. Matchings are passed to the postcondition as
parameters, thus a parameter of the precondition pattern can be (but
not compulsory to be) used in the postcondition pattern.

e All the parameters of the postcondition which are (i) shared
by the precondition or (ii) by an input parameter of the entire
GT rule are treated as input parameters for the postcondi-
tion. These parameters are already bound before calculating
the effects of the postcondition.

In the example above, input parameters of the postcondition
are derived either from the GT rule parameters (such as M and



7 VIATRA Transformations by Example 85

W) or the precondition (e.g. F1, F2, MB1 or MB2).

e Additional parameters of the postcondition are output pa-

rameters, which will be bound as the direct effect of the post-
condition.

The single output parameter of the postcondition is F.

The postcondition may prescribe three different operations on the
model space.

e Preservation. If an input parameter of the postcondition also

appears in the pattern itself, then the matching model element
is preserved.

Model elements matched by variables M, W, F1, and F2 in the
example above are thus preserved.

Deletion. If an input parameter of the postcondition does not
appear in the postcondition pattern itself then the matching
model element is deleted.

Model elements matched by variables MB1 and MB2 are thus
deleted.

Creation. If a variable which appears in the postcondition pat-
tern itself is not an input parameter of the postcondition, then
a new model element is created, and the variable is bound to
this new model element. Naturally, this variable can be used as
an output parameter of the postcondition.

In our example above, variable F is not an input parameter,
thus it prescribes the creation of a new family F in accordance
with the postcondition pattern. This F is an output parameter
of both the postcondition and also the GT rule itself.

Actions After resolving the difference of the precondition and post-
condition patterns, the GT rule may execute a sequence of additional
actions defined as ordinary ASM rules.

As the postcondition pattern is not compulsory in a GT rule, we can
define the effects of a GT rule directly in the action part as well as
done in the following example.

action

{

delete (MB1);

delete (MB2);

// Family F 4s created in the root of the model space
new (family (F));

// Same effects defined with different mnotation

new (family .members (MB3, F, M));



7 VIATRA Transformations by Example 86

new (people.metamodel . family.members (MB4, F, W));
new (man.wife(WF1, M, W));

REMARKS Note that all parameters of both the precondition and the postcon-
dition can be used in the action part, but internal pattern variables
(i.e. those that does not appear as parameter of the pattern) are not
visible.

7.4.2 Calling GT rules from ASM programs

Graph transformation rules can be invoked by using the choose and
forall ASM constructs as demonstrated in the following examples.

First, rule marry is applied for the marriage of Szilvia and Daniel.

rule main () = seq {
let X = ref("people.models.Varrol.Daniel") in
let Y = ref("people.models.Gyapayl.Szilvia") in
// Vartable definition is required for all wvariables
let F = undef in
// Marriage of Daniel and Szilvia, new family F 4s created
choose with apply marry(X, Y, F) do

seq {
rename (F, "Varro2");
move (F, people.models);
}

Syntactically, the GT rule is called in the with part of the choose
(and forall), which seems to introduce logical conditions (i.e. pattern
matching) with side effects at first sight.

However, on the semantic level, the application of the GT rule starts
with an ordinary find pattern call for the precondition (see pattern
matching in Sec. 7.3.2), which is directly followed by the actual GT
rule application (i.e. resolution of the postcondition and the execution
of the action part) in an atomic step prior to executing the do part
of the choose (forall) construct.

Thus our example, we first apply rule marry in an atomic step, and
only after that do we start executing the sequence of rename and
move rules.

REMARKS When applying a GT rule using the choose and forall constructs,
scoped variable declarations (e.g. X below M) are allowed there as
well (none of such are present in the example above).

Iterate vs. forall. In model transformations, we frequently use the
iterate and forall constructs to initiate the multiple application of a



7 VIATRA Transformations by Example 87

REMARKS

REMARKS

GT rule. Note, however, that the choice between these two constructs
in the context of GT rules have some semantic consequences.

The iterate construct combined with a single choose execution of a
GT rule (as its body) applies the GT rule as long as possible, i.e.
as long as a matching of the GT rule can be found by the choose
construct. In other terms, first we apply the GT rule on a single (non-
deterministically selected) matching and only after rule application
do we select the next available matching.

As a consequence, the incorrect precondition of the GT rule may
cause non-termination when combined with the iterate construct. For
instance, the most typical problem is when a transformation designer
does not prevent to apply the GT rule twice on the same matching
(by using an appropriate negative condition).
rule main () =

let F2 = undef in

// Random marriage of unmarried people

iterate

choose M below people.models, W below people.models
with apply marry(M, W, F2) do move(F2, people.models);

On the other hand, non-termination is normally not a critical issue
when using the forall construct, which first collects all available match-
ings, and then applies the rule for all of them in a single deterministic
(parallel) step.

Note that the forall construct always succeeds, even if no matchings
were found. Thus it directly causes non-termination if we switch to
forall instead of choose in the example above.

However, if different matchings of a GT rule are overlapping, parallel
rule application may result in conflicts when conflicting operations
are issued on a model element (e.g. delete vs. preserve). This is
demonstrated by the following example:

// The following call <s not erroneous since one

// application of marry may disable other matchings

// of the same rule (rule conflicts)

forall M below people.models, W below people.models
with apply marry(M, W, F2) do move(F2, people.models);

Here there are multiple wife (husband) candidates (matchings) for
each man (woman), but these matchings are conflicting since the
negative condition of rule marry prevent the rule from being applied
to already married couples. Thus if we marry someone along one
matching, other matchings are invalidated.

VIATRA-I currently does not provide support for detecting such con-



7 VIATRA Transformations by Example 88

flicts, thus it is the role of the transformation designer to assure that
a GT rule applied in forall mode is not conflicting with itself.



8 Sample Transformation: The Object-Relational Mapping

This chapter discusses a classic transformation task, the problem
of object-relational mapping: how to transform a UML class dia-
gram into a relational database schema. The example will only par-
tially elaborate this task as our intention is to demonstrate the work-
ings of VIATRA-I on a simple example, not to give a complete and
production-ready transformation. Nevertheless, this transformation
has practical significance as it is altogether not uncommon to use
object oriented modeling in the initial design phase of databases.

8.1 Scope of the Chapter

In this chapter we demonstrate a whole transformation development
life cycle starting with the theoretical formulation of the problem
and reaching a transformation ready for full automation (see 8.1 for
the intended functionality on a specific input-output pair). On the
technical side, we first develop the metamodels describing the source
and the target domain; in addition, we also define a trace metamodel
for recording mappings between the domains. Second, we develop a
set of transformations realizing the tasks. Accordingly, the following
files constitute the example:

e Metamodels:
— uml2.vtml: the metamodel of UML 2.0

— reldb_meta.vtml: a simplified metamodel of relational
database structures

— ref_uml2reldb meta.vtml: a reference (also commonly
called trace) metamodel for recording mappings between
the two domains

e Transformations:

— uml2reldb_xform.vtcl: a transformation realizing the
mapping from the UML domain to the relational domain

— ordering0fCols.vtcl: an auxiliary transformation
— modelManagement.vtcl: an auxiliary transformation

— codegen.vtcl: SQL code generator transformation

89



8 Sample Transformation: The Object-Relational Mapping 90

Full code listings can be found in the Appendix, here we will discuss
only the conceptually important parts. For instructions on how to
process the metamodeling and control language files and how to run
transformations please refer to the technical introductory part of this

guide.
T UM
= 8| aModdelLibrary»
=8 Primiive Types Humez
wpackageimports
E1UML2ReIDB S
- suthar
(]
B (%)
o isbn - book.
/ (author: Author }book: Book)
i fumL2)
) (& Book

create table Book (id INTEGER primary key, isbn INTEGER)

create lable Author (id INTEGER primary key, name VARCHAR(50), birth INTEGER)
create lable author_Author_book_Book (id INTEGER primary key,

Author_id INTEGER, Book_id INTEGER)

alter table author_Author_book_Book add foreign key (Author_id) on Author {id);
alter table author_Author_book_Book add foreign key (Book_id) on Book (id);

Figure 8.1: The object-relational mapping task

8.2 Theoretical Considerations

The main ’theoretical’ question is that how can we map the concepts
of object oriented modeling to relational modeling. In the following
we summarize the main ideas commonly used in the literature and in
the industrial practice.

1. UML classes are mapped to tables (from a more theoretical
point of view, object types are mapped to relation types).

2. Object structure. If classes are mapped to tables, then it is
straightforward that atomic attributes are mapped to simple
relational attributes. (We omit the handling of list- and set-
valued attributes.)

3. Object identity. In object-oriented modeling we assume that all
objects have a unique identity. However, this is not captured ex-
plicitly in the model (on the conceptual level —implementations
certainly use object identifiers), therefore the identity of an ob-
ject mapped into a table row needs to be assured by a so-called
surrogate key (an artificially established primary key). This is



8 Sample Transformation: The Object-Relational Mapping 91

8.3 Metamodels

crucial for establishing foreign keys for the mapping of object
associations.

. Associations. The most natural way to map (undirected) as-

sociations into a relational model is to use association tables-
a relation type reflecting the binary relation between object
pairs. Hence, the respective association table of an association
type will have as columns a surrogate key and two foreign key
columns to identify the according two rows in the class tables.
Note that this is not the only solution - however, it is one of the
simplest ones.

. Inheritance. The relational model does not contain any notion

of inheritance or subtyping. Therefore there are multiple pos-
sible solutions to mimic inheritance; each with its own quirks
and constraints. As this is only a simple example, we refrain
from handling inheritance.

. Information hiding, methods and other concepts of object-

oriented modeling. There are concepts and notions in object-
oriented modelling—or specifically, in UML —that simply can
not be expressed naturally in relational modeling. This is a
fairly trivial consequence of the discrepancy of the domains
intended to be modeled by the two paradigms; certainly there
are some special cases where problem-specific solutidirectons
can be given (for instance one can map object methods to
database stored procedures under special sets of constraints),
but generally when discussing the transformation task at hand
we restrict its scope to pure information modeling without
encapsulation.

Two different modeling domains play a direct role in the transfor-
mation: UML for the input models and the domain of relational
databases for the 'result’ models. In addition it is usual to maintain
a model of the mappings established by the executed transforma-
tions, a so-called trace model. These three modeling languages have
to be defined in VIATRA via their metamodels before we can be-
gin elaborating the transformations themselves. Due to its size and
complexity, here we refrain from discussing the UML2 metamodel —
in fact, the usual way to use it is beginning the development with a
model space already containing it.

8.3.1 The Relational Database Metamodel

The relational database metamodel (reldbmeta.vtml) is quite sim-
ple - or better to say, simplified; it defines tables, columns and for-



8 Sample Transformation: The Object-Relational Mapping 92

eign keys, all of which are '‘DBElements’. The relations defined be-
tween them are self-explanatory and reflect our usual concept of re-
lational databases. To note is the containment hierarchy defined in
the file: the entity reldb will appear as a root-child level element
in the model space, containing the entities metamodel, models and
transformations. Arranging the model space structure for a newly
defined domain this way is certainly by no means compulsory or the
only possible way — it is just a sensible solution. For a visual repre-
sentation of the reldb namespace see 8.2.

[ e |
L1

reldb
metamodel |

col_name 1

col_type 1
]

pkey

<
. -« feys
column [ g s ¢ Table 1_?| Fkey
B 1

1 A .
Iy vl — references

i thi_name
datatypes.String ] - next

fley_cols

Figure 8.2: The relational database schema metamodel

8.3.2 The Trace Metamodel

8.4 Transformations

The uml2reldb metamodel (ref_uml2reldb meta.vtml) defines a
metamodel for models that can capture 'mapped to’ relations be-
tween model elements in the two domains. Technically, this means
special 'mapping’ entities - for example, class2table- in relation (in
the VPM sense) with one uml2.metamodel.Element (for example,
uml2.metamodel.Class) and one reldb.metamodel.DBElement (for
example, reldb.metamodel.Table). For a visual representation of
the uml2reldb namespace see 8.3.

We define four ASM machines: ordering, modelManagement,
uml2reldb_xform and codegen. The machine uml2reldb_xform con-
tains the transformation for mapping a UML model in the model
space to the relational domain and recording the mappings; the ma-
chine codegen generates code from a given database model in the
relational domain, thus it is actually independent from the fact that
we reach the relational model via a transformation from UML. The
machines ordering and modelManagement have auxiliary functions.



8 Sample Transformation: The Object-Relational Mapping 93

umi2reldn

| models |

transformations

srcRef trgref
attr2column

unl2 metamodel Property

RI<

1
srcRef v traRef
ref_unl2rel reldb.netanodel.DBE lenent

srcRet trgRef
uml2.netamodel Class | class2table »| reldb.netamodel. Table
srcRef
unlz.netamodel . Association | assoc2table LrgRer

Figure 8.3: The trace metamodel

8.4.1 The Object-Relational Mapping

The file uml2reldb xform.vtcl defines the ASM machine
uml2reldb _xform for the actual transformation. The body of
the main rule is as follows:

//main rule of the machine uml2reldb_zform
rule main (in UMLStr, in RefStr, in DBStr) = seq

{

call initModels (UMLStr, RefStr, DBStr); //(1.1)

forall C below
forall C below

forall A below
forall A below
forall A below

models ("uml") with apply class2tableR(C) do skip; //(1.2)
models ("uml"), A below models ("uml")

with apply attr2columnR(C, A) do skip; //(1.3)
models ("uml") with apply attrOfStringTypeR(A) do skip; //(1.4)
models ("uml") with apply attrOfIntTypeR(A) do skip; //(1.5)
models ("uml") with apply assoc2tableR(A) do skip; //(1.6)

Input parameters are:

e the name of the UML class model (inside VIATRA —i.e. it
has been already imported from file or constructed in the VPM
model space by other means);

e the name of the 'reference’ model to be created, and
e the name of the database model to be created.

The call initModels (1.1) checks for the existence of the UML
model under the entity um12 and creates the according entities under
reldb.models and uml2reldb.models in the model space. These



8 Sample Transformation: The Object-Relational Mapping 94

three entities are placed in the indexed global array models with in-
dices uml, db and ref. These indices are used as references to the
according subtrees in the upcoming calls.

Now let us revise what graph transformation rules are applied in the
forall constructs. The class2tableR graph transformation rule (1.2,
2.1) - after matching the name of the input class onto the unbound
variable C1sNM-creates a new table in db with this name, creates
in this table a column id and sets it as a primary key, creates the
mapping reference entity in ref and its source and target relations
and prints out a notification with the fully qualified name of the class
and the table.

//graph transformation rule for mapping classes to tables
gtrule class2tableR(in Cls) = { //(2.1)
precondition pattern lhs (Cls, ClsNM) = {
Class (Cls) below models ("uml");

NamedElement .name (N1,

Cls, ClsNM);

String (C1sNM) below models("uml");

}

action {
let T = undef in
let R = undef in
let RS = undef in

let RT = undef in seq {

call createNewTable(value(ClsNM), T);

call createPrimaryKeyInTable(T);

new (class2table(R) in models("ref"));

new (class2table.srcRef (RS, R, Cls));

new (class2table.trgRef (RT, R, T));

print ("Class "+ fqn(Cls)+ "-> Table" + fqn(T) +"\n");

The attr2columnR graph transformation rule (1.3, 3.1) is called for
all entity pairs under uml - the precondition filters out all pairs that
are not associated class-property pairs. Using the mappings recorded
in ref, the precondition identifies the table created in db from the
class of the attribute. The action part of the graph transformation
rule creates a new column in the table with the respective name and
also establishes the mapping reference entity.



8 Sample Transformation: The Object-Relational Mapping 95

//graph transformation rule for mapping attributes (nmot assoctation type)

gtrule attr2columnR(in Cls, in Attr) = {

//(3.1)

precondition pattern lhs (Cls, Attr, NMAttr,
Class (Cls) below models ("uml");
StructuredClassifier.ownedAttribute (F, Cls,
Property (Attr) below models("uml");
NamedElement .name (N1, Attr, NMAttr);

String (NMAttr) below models("uml");
class2table.srcRef (RS, R, Cls);
class2table (R) below models("ref");
class2table.trgRef (RT, R, Tab);

Table (Tab) below models("db");

neg pattern assocProperty(Attr) =

Tab) = {

Attr) ;

{
Property (Attr) below models("uml");
Association.memberEnd (ME, Asc, Attr);
Association(Asc) below models("uml");

}

action {

let Col = undef in

let R = undef in

let RS = undef in

let RT = undef in seq {

call createNewColumn (value (NMAttr), Tab, Col);

new (attr2column(R) in models("ref"));
new (attr2column.srcRef (RS, R, Attr));
new (attr2column.trgRef (RT, R, Col));

print ("Attribute: "+ fqgn(Attr)+ "-> Column:

W ay fqn(Col) +||\nu);

The graph transformation rules attr0fStringTypeR (1.4) and
attr0fIntTypeR (1.5) search for attributes in the UML model with
types 'String’ and ’int’ and determine the columns to which these
attributes are mapped (via the mapping model). As action a new
instance of the VIATRA built-in datatype String is created with the
respective type name as its name and is bounded to the respective
column in a new Column.col_type relation instance.

Last but not least, the graph transformation rule assoc2tableR (1.6)
is called. Here the precondition part searches for the table-pairs to
which the source and the target classes of associations were mapped
earlier; in the action part the association is mapped into a new table
with two foreign key columns (referring to the class-tables). Addition-
ally, a surrogate key column is also created. The mapping is recorded
in ref. As the structure of this transformation is almost identical to
the previous two, we do not discuss it in detail.



8 Sample Transformation: The Object-Relational Mapping 96

8.4.2 Code Generation

As a last step we want to generate SQL code that generates the
database structure we gained with the transformation; the code gen-
erator ASM machine is defined in codegen.vtcl under the name
codegen. Note that before calling this machine the machine ordering
must be run on database models reached with the transformation
above for establishing a column- and foreign key column-ordering
that codegen implicitly expects. The body of the main rule of the
machine is as follows:

//The main rule of the code generator
rule main (in A) = seq

{

let DBModel = ref(A) in
forall T below DBModel, TName with find isTable(T,TName) do seq
{
print ("create table "+value(TName)+" (");
forall C below DBModel, Cn, Ct with

find notLastColumn(T,C,Cn,Ct) do

call printTableColumn(T,C,Cn,Ct);
choose C below DBModel, Cn, Ct with

find lastColumn(T,C,Cn,Ct) do

call printLastTableColumn(T,C,Cn,Ct);
print (")\n");

let TRefName = undef in
let RefTable = undef in
forall Fk below DBModel with find isFKey(T,Fk,TRefName ,RefTable) do
forall FC below DBModel, Col, ColNm with
find isFKeycolumn (Fk,Col,ColNm) do
choose PC below DBModel, Col2, ColNm2 with
find isPKeycolumn (RefTable,Col2,ColNm2) do
print ("alter table "+value (TName)+
" add foreign key (" + value(ColNm) +
") on "+value (TRefName)+" (" +
value (ColNm2)+ ");\n");

Input parameter is a string identifying the VPM model space subtree
where database model elements are to be searched for. The rule
iterates on all tables in this subtree; for each table, the CREATE TABLE
statement is formulated first (note that we know a priori that only
one primary key is possible per table, so the syntactical peculiarities
of compound key building do not have to be addressed). After the
CREATE TABLE statement the foreign key declarations are generated.



8 Sample Transformation: The Object-Relational Mapping 97

8.4.3 The Auxiliary Transformations

The ordering0fCols.vtcl file defines the ASM machine ordering
that establishes

e reldb.metamodel.Table.tab_cols.next and
e reldb.metamodel.FKey.fkey_cols.next

relations on all tables and foreign keys in the model space subtree
given as input parameter. The modelManagement.vtcl file defines
the ASM machine modelManagement which can be used for model
space management purposes as creating/deleting elements given by
name and fully qualified parent name. Both machines have auxiliary
functions; discussing them in detail is out of the scope of this chapter.
For further details please refer to the code listings in the Appendix.



Appendix A Object-Relational Transformation Source Code
Listings

98



Appendix A Object-Relational Transformation Source Code Listings

A.1 reldb meta.vtml

entity (reldb)
{
entity (metamodel)
{
entity (’DBElement ’);
entity (’Table’)
{
relation(fkeys, ’Table’, ’FKey’);
multiplicity (fkeys, one_to_many);
isAggregation (fkeys, true);

relation (pkey, ’Table’, ’Column’);
multiplicity (pkey, many_to_many);

relation(tab_cols, ’Table’, ’Column’);
multiplicity(tab_cols, one_to_many);
isAggregation(tab_cols, true);

relation(next, reldb.metamodel.Table.tab_cols,
reldb.metamodel .Table.tab_cols);

relation(tbl_name, ’Table’, datatypes.’String’);
multiplicity (tbl_name, one_to_one);
isAggregation(tbl_name, true);

}

supertypeOf (’DBElement ’,’Table’);

entity (’FKey ) ;

supertypeOf (’DBElement ’,’FKey ’);

entity (’Column’)

{
relation(col_name, ’Column’, datatypes.’String?’);
multiplicity (col_name, one_to_one);

isAggregation(col_name, true);

relation(col_type, ’Column’, datatypes.’String’);
multiplicity(col_type, one_to_one);
isAggregation(col_type, true);

}

supertypeOf (’DBElement ’, ’Column’) ;

relation(references, ’FKey’, ’Table’);
multiplicity (FKey.references, many_to_one);

relation(fkey_cols, ’FKey’, ’Column’);
multiplicity (FKey.fkey_cols, many_to_many);
relation(next, FKey.fkey_cols, FKey.fkey_cols);

}
entity (models);
entity(transformations);

}



Appendix A Object-Relational Transformation Source Code Listings

100

A.2 ref uml2reldb meta.vtml

import uml2.metamodel;
import reldb.metamodel;

entity (uml2reldb)

{
entity (metamodel)
{
entity (ref_uml2rel)
{
relation(srcRef, ref_uml2rel,
relation(trgRef, ref_uml2rel,
}
entity (class2table)
{
relation(srcRef, class2table,
relation(trgRef, class2table,
supertypeOf (ref _uml2rel.srcRef, class2table.srcRef);
supertypeOf (ref _uml2rel.trgRef, class2table.trgRef);
}

supertypeOf (ref _uml2rel, class2table);

entity (attr2column)

{
relation(srcRef, attr2column,
relation(trgRef, attr2column,
supertypeOf (ref_uml2rel.srcRef, attr2column.srcRef);
supertypeOf (ref _uml2rel.trgRef, attr2column.trgRef);
}

supertypeOf (ref_uml2rel, attr2column);

entity (assoc2table)

{
relation(srcRef, assoc2table,
relation(trgRef, assoc2table,
supertypeOf (ref_uml2rel.srcRef, assoc2table.srcRef);
supertypeOf (ref _uml2rel.trgRef, assoc2table.trgRef);
}

}
entity (models);
entity(transformations);

Element) ;
DBElement) ;

Class);
Table) ;

Property);
Column) ;

Association);

Table);



Appendix A Object-Relational Transformation Source Code Listings

101

A.3 ordering0fCols.vtcl

namespace reldb.transformations;
import reldb.metamodel;
import datatypes;

machine ordering

{
pattern selectFirst_TabCols (T, CL) =
{
Table (T);
Table.tab_cols(CL, T, C);
Column (C) ;
neg pattern noNext(T, CL, C) =
{
Table (T);
Table.tab_cols(CL, T, C);
Column (C) ;
Table.tab_cols (CL2, T, C2);
Column (C2);
Table.tab_cols.next (N1, CL, CL2);
}
}
pattern selectNext_TabCols (T, CL, PrevCL) =
{
Table (T);
Table.tab_cols(CL, T, C);
Column (C) ;
Table.tab_cols (PrevCL, T, PrevC);
Column (PrevC) ;
neg pattern noNext(T, CL, C) =
{
Table (T);
Table.tab_cols(CL, T, C);
Column (C) ;
Table.tab_cols (CL2, T, C2);
Column (C2);
Table.tab_cols.next (N1, CL, CL2);
}
}
rule collectNext_TabCols(in T) =
try
choose FirstCol with find selectFirst_TabCols (T,
call setNext_TabCols(FirstCol, T);
else

skip;

FirstCol) do



Appendix A Object-Relational Transformation Source Code Listings 102

rule setNext_TabCols(in 01dCol, in T) =

try
choose NextCol with find selectNext_TabCols (T, NextCol, 01dCol)
do
let Next = undef in seq
{
print (fqn(NextCol)) ;
new (’Table’.tab_cols.next(Next, 01dCol, NextCol));
call setNext_TabCols (NextCol, T);
}
else
skip;

pattern isTable(Table) =

{
Table (Table);
}
pattern isFKey (FKey) =
{
FKey (FKey) ;
}
pattern selectFirst_fkeyCols(F, CL) =
{
FKey (F) ;
FKey.fkey_cols(CL, F, C);
Column (C) ;

neg pattern noNext(F, CL, C) =

{
FKey (F) ;
FKey.fkey_cols(CL, F, C);
Column (C);
FKey.fkey_cols(CL2, F, C2);
Column (C2) ;
FKey.fkey_cols.next (N1, CL, CL2);
}



Appendix A Object-Relational Transformation Source Code Listings 103
pattern selectNext_fkeyCols(F, CL, PrevCL) =
{
FKey (F) ;
FKey.fkey_cols(CL, F, C);
Column (C) ;
FKey.fkey_cols (PrevCL, F, PrevC);
Column (PrevC) ;
neg pattern noNextFKey(F, CL, C) =
{
FKey (F) ;
FKey.fkey_cols(CL, F, C);
Column (C) ;
FKey.fkey_cols (CL2, F, C2);
Column (C2) ;
FKey.fkey_cols.next (N1, CL, CL2);
}
}
rule collectNext_fkeyCols(in F) =
try
choose FirstCol with find selectFirst_fkeyCols(F, FirstCol) do
call setNext_fkeyCols(FirstCol, F);
else
skip;
rule setNext_fkeyCols(in 01dCol, in F) =
try
choose NextCol with find selectNext_fkeyCols(F, NextCol,
01d4Col) do
let Next = undef in seq
{
new (’FKey’.fkey_cols.next(Next, 01dCol, NextCol));
call setNext_fkeyCols(NextCol, F);
}
else
skip;

rule main (in A) =
let DBModel

= ref (A) in seq {

forall T below DBModel with find isTable(T) do
call collectNext_TabCols(T);

forall F below DBModel with find isFKey(F) do
call collectNext_fkeyCols(F);

}



Appendix A Object-Relational Transformation Source Code Listings 104
A.4 modelManagement.vtcl
machine modelManagement
{
pattern entityExists (M) =
{
entity (M) ;
}
rule cleanupModel(in M) = seq
{
forall X below M with find entityExists(X) do
delete( X );
}
rule lookupAndCreate(in ParentStr, in ModelStr, in Mode, out Model) = seq
{
print ("Processing:" + ParentStr + ":" + ModelStr + ":" + Mode + "\n");
let PARENT = ref (ParentStr) in
if (PARENT == undef) seq
{
log(error ,"Container entity " + ParentStr+ " does not exist.");
fail;
}
else seq
{
update Model = ref(ParentStr+"."+ModelStr);
if (Model == undef)
if (Mode == "LOOKUP_AND_CLEAN" || Mode ==
"LOOKUP_NO_CLEAN")
seq
{
log(error,"Model element " + ModelStr + " does not
exist.");
fail;
}
else if (Mode == "CREATE_ONLY" || Mode ==
"CLEAN_OR_CREATE")
seq
{
new (entity (Model) in PARENT);
rename (Model, ModelStr);
}
else seq
{
log(error,"Unknown model creation mode: "+Mode);

fail;



Appendix A Object-Relational Transformation Source Code Listings 105

else

seq

if (Mode

3

else if

{

else if

else seq

{

== "LOOKUP_AND_CLEAN" || Mode ==
"CLEAN_OR_CREATE")

call cleanupModel (Model) ;
(Mode == "CREATE_ONLY") seq
log(error,"Model element " + ModelStr + " already
exists and not overwritten.");
fail;
(Mode == "LOOKUP_NO_CLEAN" )

log(info, "Model element " + ModelStr + "
initialized successfully.");

log(error,"Unknown model creation mode: "+Mode);
fail;



Appendix A Object-Relational Transformation Source Code Listings 106




Appendix A Object-Relational Transformation Source Code Listings

107

A5

uml2reldb_xform.vtcl

namespace uml2reldb.transformations;

import
import
import
import

uml2.metamodel;
reldb.metamodel;
uml2reldb.metamodel;
datatypes;

machine uml2reldb_xform

{

asmfunction models / 1 ;

rule main (in UMLStr, in RefStr, in DBStr) = seq

{

rule

call initModels (UMLStr, RefStr, DBStr);
forall C below models("uml") with apply class2tableR(C) do skip;
forall C below models("uml"), A below models("uml") with

apply attr2columnR(C, A) do skip;
forall A below models("uml") with apply attr0fStringTypeR(A) do skip;
forall A below models("uml") with apply attrOfIntTypeR(A) do skip;
forall A below models("uml") with apply assoc2tableR(A) do skip;

initModels (in UMLStr, in RefStr, in DBStr) =
let UMLModel = undef in
let DBModel = undef in
let RefModel = undef in seq
{
call modelManagement.lookupAndCreate ("uml2", UMLStr,
"LOOKUP_NO_CLEAN", UMLModel);
update models("uml") = UMLModel;
call modelManagement.lookupAndCreate ("uml2reldb.models", RefStr,
"CLEAN_OR_CREATE", RefModel);
update models("ref") = RefModel;
call modelManagement.lookupAndCreate ("reldb.models", DBStr,
"CLEAN_OR_CREATE", DBModel);
update models("db") = DBModel;
}

gtrule class2tableR(in Cls) = {

precondition pattern 1lhs (Cls, ClsNM) = {
Class (Cls) below models ("uml");
NamedElement .name (N1, Cls, ClsNM);
String (C1sNM) below models("uml");

}

action {

let T = undef in
let R = undef in
let RS = undef in
let RT = undef in seq {

call createNewTable(value(ClsNM), T);
call createPrimaryKeyInTable(T);

new (class2table(R) in models("ref"));
new (class2table.srcRef (RS, R, Cls));
new (class2table.trgRef(RT, R, T));
print ("Class "+ fqn(Cls)+ "-> Table" + fqn(T) +"\n");



Appendix A Object-Relational Transformation Source Code Listings

108

gtrule attr2columnR(in Cls, in Attr) = {
precondition pattern 1lhs (Cls, Attr, NMAttr, Tab) = {
Class (Cls) below models ("uml");
StructuredClassifier.ownedAttribute(F, Cls, Attr);
Property (Attr) below models("uml");
NamedElement .name (N1, Attr, NMAttr);
String (NMAttr) below models ("uml");
class2table.srcRef (RS, R, Cls);
class2table(R) below models("ref");
class2table.trgRef (RT, R, Tab);
Table (Tab) below models("db");
neg pattern assocProperty(Attr) = {
Property (Attr) below models("uml");
Association.memberEnd (ME, Asc, Attr);
Association(Asc) below models ("uml");
3}
action {
let Col = undef in
let R = undef in
let RS = undef in
let RT = undef in seq {
call createNewColumn (value (NMAttr), Tab, Col);
new (attr2column(R) in models("ref"));
new (attr2column.srcRef (RS, R, Attr));
new (attr2column.trgRef (RT, R, Col));

print ("Attribute: "+ fqn(Attr)+ "-> Column: " + fqn(Col)

gtrule attrOfStringTypeR(in Attr) = {
precondition pattern 1lhs (Attr, Col) = {
Property (Attr) below models("uml");
TypedElement . type (TP, Attr, DTType);
PrimitiveType (DTType) below models ("uml");
attr2column.srcRef (RS, R, Attr);
attr2column (R) below models("ref");
attr2column.trgRef (RT, R, Col);
Column (Col) below models("db");
check (name(DTType) == "String")
}
action {
call createNewColumnType (Col, "VARCHAR (50)");
}
}

gtrule attr0fIntTypeR(in Attr) = {
precondition pattern 1lhs (Attr, Col) = {
Property (Attr) below models("uml");
TypedElement .type (TP, Attr, DTType);
PrimitiveType (DTType) below models ("uml");
attr2column.srcRef (RS, R, Attr);
attr2column(R) below models("ref");
attr2column.trgRef (RT, R, Col);
Column (Col) below models("db");
check (name(DTType) == "int")
}
action {
call createNewColumnType (Col, "INTEGER");
}
}



Appendix A Object-Relational Transformation Source Code Listings 109

gtrule assoc2tableR(in Assoc) = {
precondition pattern 1lhs (Assoc, AE1l, AE2, SrcC, TrgC, SrcTab, TrgTab) = {
Association(Assoc) below models ("uml");
Association.memberEnd (Cl1, Assoc, AE1l);
Property (AE1) below models ("uml");
TypedElement .type(T1, AE1, SrcC);
Class (SrcC) below models ("uml");
class2table.srcRef (RS1, R1, SrcC);
class2table(R1) below models("ref");
class2table.trgRef (RT1, R1, SrcTab);
Table (SrcTab) below models("db");
Association.memberEnd (C2, Assoc, AE2);
Property (AE2) below models ("uml");
TypedElement .type (T2, AE2, TrgC);
Class (TrgC) below models("uml");
class2table.srcRef (RS2, R2, TrgC);
class2table (R2) below models("ref");
class2table.trgRef (RT2, R2, TrgTab);
Table (TrgTab) below models("db");
}
action {
let T = undef in
let myIdCol = undef in
let SrcCol = undef in
let PK1 = undef in
let FKSrc = undef in
let TrgCol = undef in
let FKTrg = undef in
let R = undef in
let RS = undef in
let RT = undef in seq {

call createNewTable (name(AE1) + "_"+ name(SrcC) + "_" + name (AE2)+ "_"+
name (TrgC), T);

call createNewColumn("id", T, MyIdCol);
call createNewColumnType (MyIdCol, "INTEGER");
new (’Table’.pkey(PK1, T, MyIdCol));

call createNewColumn (name (SrcC)+ "_id", T, SrcCol);
call createNewColumnType (SrcCol, "INTEGER");
call createNewFKey (T, SrcCol, SrcTab, FKSrc);

call createNewColumn (name (TrgC)+ "_id", T, TrgCol);
call createNewColumnType (TrgCol, "INTEGER");
call createNewFKey (T, TrgCol, TrgTab, FKTrg);

new (assoc2table(R) in models("ref"));
new (assoc2table.srcRef (RS, R, Assoc));
new (assoc2table.trgRef(RT, R, T));

}



Appendix A Object-Relational Transformation Source Code Listings 110

rule createNewTable(in TabName, out T) =
let N1 = "undef" in
let Str = "undef" in seq {
new (’Table’(T) in models("db"));
new (datatypes.’String’(Str) in models ("db"));
setValue (Str, TabName);
new (’Table’.tbl_name(N1, T, Str));

rule createPrimaryKeyInTable(in T) =
let PKCol = undef in
let PK1 = undef in seq {
print (£qn(T) + "\n");
call createNewColumn("id", T, PKCol);
call createNewColumnType (PKCol, "INTEGER");
new (’Table’.pkey(PK1, T, PKCol));

}

rule createNewColumn(in ColName, in Tab, out Col) = seq {
new (’Column’(Col) in models ("db"));
new (datatypes.’String’(StrNM) in models("db"));
setValue (StrNM, ColName);
new (’Column’.col_name (N3, Col, StrNM) );
new (’Table’.tab_cols(TC1, Tab, Col) );

}

rule createNewColumnType (in Col, in ColType) = seq {
new (datatypes.’String’(StrNM) in models("db"));
setValue (StrNM, ColType);
new (’Column’.col_type(N1, Col, StrNM) );

rule createNewFKey(in Tab, in Col, in RefTab, out FK) = seq {
new (’FKey’(FK) in models("db"));
new (’Table’.’fkeys’(FK1, Tab, FK) );
new (’FKey’.’references’(RF1, FK, RefTab) );
new (’FKey’.’fkey_cols’(FKC1, FK, Col) );



Appendix A Object-Relational Transformation Source Code Listings 111




Appendix A Object-Relational Transformation Source Code Listings

112

A.6 ordering0fCols.vtcl

namespace reldb.transformations;
import reldb.metamodel;
import datatypes;

machine

codegen

pattern
{

pattern
{

pattern

pattern

pattern

{
isTable (Table ,Name) =

>Table’ (Table) ;
’String’ (Name) ;
Table.tbl_name (TN1,Table,Name) ;

lastColumn (Table,C,Coln,Colt) =

’Table ’ (Table) ;

Table.tab_cols (TC,Table,C);

’Column’ (C);

Column.col_name (CN,C,Coln);

’String’ (Colmn);
Column.col_type(CT,C,Colt);

’String’ (Colt);

neg find hasNextColumn (Table, TC, C)

notLastColumn (Table, C, Coln, Colt) =

’Table ’ (Table);
Table.tab_cols (TC, Table,C);
’Column’ (C);

Column.col_name (CN,C,Coln);
’String’ (Coln);
Column.col_type(CT,C,Colt);
’String’ (Colt);

find hasNextColumn (Table, TC, C)

hasNextColumn (Table, TC1, C1) = {
’Table ’ (Table);

Table.tab_cols (TC1,Table,C1);
>Column’ (C1);

Table.tab_cols (TC2,Table,C2);
’Column’ (C2);
Table.tab_cols.next (N1, TC1, TC2);

isPrimKey (Table ,C) =

’Table’ (Table) ;
’Column ’ (C);
Table.pkey (TC,Table,C);



Appendix A Object-Relational Transformation Source Code Listings

113

pattern isFKey(Table,FK,Tname,b Table2) =
’Table ’ (Table);

’Table’ (Table?2);

’FKey ’ (FK) ;
Table.fkeys (TC, Table ,FK);
FKey.references (FKR,FK, Table2) ;
’String’ (Tname) ;

Table.tbl_name (TN1,Table2,Tname);

pattern isFKeycolumn (FK,Col,CName) =
>FKey ’ (FK) ;

>Column ’ (Col);

FKey.fkey_cols (FC,FK,Col) ;
’String’ (CName) ;
Column.col_name (CN,Col,CName) ;

pattern isPKeycolumn(Table,bCol,CName) =
>Table’ (Table);

>Column ’ (Col);
Table.tab_cols (TC, Table,Col);
Table.pkey (PK,Table,Col);
datatypes.’String’ (CName) ;
Column.col_name (CN,Col,CName) ;

}

rule printTableColumn(in T,
if (find isPrimKey(T,C))
print (" " + value(Cn) + " " +

else
print (" "

in C,

+ value(Cn) + " "
rule printLastTableColumn(in T, in C,
if (find isPrimKey(T,C))
print (" " + value(Cn) + " " +
else
print (" " + value(Cn) + " " +
rule printFKeyColumn(in F, in C, in Cn,
print (" " + value(Cn) + " " +

rule printLastFKeyColumn(in F, in C, in
print (" " + value(Cn) + " " +

in Cn,

in Cn,

in Ct) =

value (Ct)+

+ value(Ct) +

in Ct)
value (Ct)+
value (Ct));

in Ct) =
value (Ct)+

Cn, in Ct)
value (Ct)+

" primary
n,u);

" primary

" primary

" primary

key ,\n");

key\n");

key ,\n");

key\n") ;



Appendix A Object-Relational Transformation Source Code Listings 114

rule main (in A) = seq
{
let DBModel = ref(A) in
forall T below DBModel, TName with find isTable(T,TName) do seq
{
print ("create table "+value(TName)+" (");
forall C below DBModel, Cn, Ct with
find notLastColumn(T,C,Cn,Ct) do
call printTableColumn(T,C,Cn,Ct);
choose C below DBModel, Cn, Ct with
find lastColumn(T,C,Cn,Ct) do
call printLastTableColumn(T,C,Cn,Ct);
print (")\n");

let TRefName = undef in
let RefTable = undef in
forall Fk below DBModel with find isFKey(T,Fk,TRefName ,RefTable) do
forall FC below DBModel, Col, ColNm with
find isFKeycolumn (Fk,Col,ColNm) do
choose PC below DBModel, Col2, ColNm2 with
find isPKeycolumn (RefTable,Col2,ColNm2) do
print ("alter table "+value (TName)+
" add foreign key (" + value(ColNm) +
") on "+value (TRefName)+" (" +
value (ColNm2)+ ");\n");



Bibliography

1]

E. Borger and R. Stark. Abstract State Machines. A method for
High-Level System Design and Analysis. Springer-Verlag, 2003.

Object Management Group. Object Constraint Language Specifi-
cation (Version 2.0), May 2006. http://wuw.omng.org.

Grzegorz Rozenberg, editor. Handbook of Graph Grammars and
Computing by Graph Transformations: Foundations. World Sci-
entific, 1997.

Déniel Varré and Andras Pataricza. VPM: A visual, precise and
multilevel metamodeling framework for describing mathematical
domains and UML. Journal of Software and Systems Modeling,
2(3):187-210, October 2003.

115


http://www.omg.org

	Introduction
	The VIATRA Model Transformation Framework
	Mission statement
	Target application domains
	The approach

	The Current Release
	Product features
	The Development Team


	Graphical User Interface of VIATRA
	Initial Steps with Using VIATRA
	Installation
	Setting up the VIATRA environment in Eclipse
	Creating a new project
	Creating a model space
	Opening and saving a model space
	Creating a metamodel or transformation
	Parsing a metamodel or transformation
	Executing a transformation

	Syntax for Format String in the Tree Editor
	Supported property names
	Examples


	Writing Import Modules
	Creating a meta model
	Handling concrete syntax
	Building up models
	Structure of an import plugin
	Installing a new importer

	Writing New Native Functions for VIATRA
	Implementing a New Function
	Data Type Mapping
	Deployment

	String Manipulation Library
	Requirements and Installation
	Native functions of the library
	Usage

	Writing Code Formatters
	Introduction
	Requirements and Installation
	Requirements
	Installation

	Basic functionality
	Settings
	Runtime settings
	Manual code separation related settings

	Usage

	VIATRA Transformations by Example
	Definition of Metamodels and Models
	Definition of metamodels
	Definition of (instance) models
	Views of the model space

	Basic ASM Constructs
	ASM Machines (Hello World)
	ASM Rules: Seq rule, Random rule, Log rule
	ASM Variables, Let rule, Update rule
	ASM Expressions and Functions
	Rules calling other rules
	Advanced ASM control structures
	Model manipulation rules

	Graph patterns and pattern matching
	Definition of simple graph patterns
	Graph pattern matching
	Scope of pattern matching
	Negative, Recursive and OR-patterns

	Graph Transformation Rules
	Definition of graph transformation rules
	Calling GT rules from ASM programs


	Sample Transformation: The Object-Relational Mapping
	Scope of the Chapter
	Theoretical Considerations
	Metamodels
	The Relational Database Metamodel
	The Trace Metamodel

	Transformations
	The Object-Relational Mapping
	Code Generation
	The Auxiliary Transformations


	Object-Relational Transformation Source Code Listings
	reldb_meta.vtml
	ref_uml2reldb_meta.vtml
	orderingOfCols.vtcl
	modelManagement.vtcl
	uml2reldb_xform.vtcl
	orderingOfCols.vtcl


