

Copyright © 2008 The Open University
This document is made available under the Creative Commons Attribution - No Derivative
Works 3.0 Unported Licence (http://creativecommons.org/licenses/by-nd/3.0/) WEB 00717 2 1.1

T320 E-business technologies:
foundations and practice

Block 3 Part 3 Activity 3: Deploying a
web service
Prepared for the course team by Neil Simpkins

Introduction 1

Creating an archive 2

Deploying an archive to Axis 10

Test the deployed service 14

Introduction
In this activity I shall briefly show you how to use your Axis2 server account at the
University to deploy your 'Hello' web service to the server.

Before you do that, you need to prepare the 'Hello' web service that you created and
tested in Eclipse, ready to be deployed. This takes the form of simply wrapping the
various files of the service up into a single 'archive' file.

Axis itself is a web application on the server side. This means that it is installed where
Tomcat expects to find any web applications. So inside the 'webapps' directory on the
server there is a web application archive file 'axis2.war' that Tomcat will deploy,
creating an 'axis2' directory to hold the application's files. Current versions of Tomcat
can do this without being restarted, which is termed 'hot deployment'.

As the 'Hello' web service is a Java-based application, it would be possible to produce
a web application archive (WAR) file and then drop this into the 'webapps' directory.
This would be appropriate if you had written code to handle all messaging to and from
the service yourself, but you used Axis to handle all these aspects. So, you need to
deploy the 'Hello' service as an Axis web service. Just like Tomcat, Axis has a
directory where it expects to find services that are deployed as Axis archives with an
'aar' file extension (Figure 1).

T320 E-business technologies: foundations and practice

Block 3 Part 3 Activity 3 | 2

Tomcat directory

services directory

 version.aar
 helloService.aar
 another.aar

another webapp

axis2 webapp directory

webapps directory

 axis2.war
 another.war

Figure 1 Directory structure outline of Tomcat and Axis2 containers

Creating an archive
There are a range of approaches that we can take to both packaging up and
deploying the 'Hello' service. The process is remarkably simple but we will use some
tools to help.

The files of the 'Hello' service need to be packaged up into a single archive called,
say, 'helloService.aar'. The structure of the archive, in terms of directories and where
the different files are placed, has to follow some conventions. However, Axis provides
a tool to generate an archive, so you can use this to create an archive of the 'Hello'
web service without any need to know how to structure the archive. This tool is
described by the Apache Foundation at:

http://ws.apache.org/axis2/tools/1_3/eclipse/servicearchiver-plugin.html

Start Eclipse, and ensure that the 'Hello' web service project is within the workspace
and listed in the Package Explorer view. Select File > New > Other… so that the
'Select a wizard' pane appears (Figure 2). Expand the 'Axis2 Wizards' folder, select
the 'Axis2 Service Archiver' and click the 'Next' button.

You will then see the dialogue box shown in Figure 3, which requires you to locate the
compiled Java classes for the web service.

T320 E-business technologies: foundations and practice

Block 3 Part 3 Activity 3 | 3

Figure 2 Axis2 plug-ins listed in Eclipse wizard selection dialogue box

Figure 3 Locating the web service Java classes

T320 E-business technologies: foundations and practice

Block 3 Part 3 Activity 3 | 4

Unless you know the exact location and can type it in, click the 'Browse…' button and
then browse to the location of your workspace (which will be called 'workspaceBlock3'
unless you changed the installation). Inside the workspace, browse to the 'Hello'
project, then open up the 'build' folder and select the 'classes' sub directory (Figure 4).
This is the location in which Eclipse will automatically have put your compiled Java
class files. Click 'OK'.

Figure 4 Location of class files in the 'Hello' project

Take some care to locate the Hello project. When you generate the test client earlier
another project will have been created, usually named ‘HelloClient’ which should not
be used here.

The project includes only a single class file inside the classes directory, so you can
leave the 'Include .class files only' box checked (as shown in Figure 3) and click 'Next'.

The next dialogue box gives you the option of including a WSDL file for the web
service in the archive. If a WSDL file is included then this will be available from the
server later and can be used to access the service. If no WSDL is included then the
service might be described elsewhere, by a WSDL file or in a UDDI perhaps.

In fact, there is a problem in deploying the WSDL from Eclipse to a web server
elsewhere. The WSDL includes a reference to the location of the service, which will
have the form:

<wsdl:port binding="impl:HelloSoapBinding" name="Hello">
 <wsdlsoap:address location="http://localhost:8080/Hello/services/Hello"/>
</wsdl:port>

This, of course, will not be the correct location once the service is deployed to another
server machine. The WSDL could be edited, but rather than do that select 'Skip
WSDL' and click 'Next'.

Now you can add any external (Java) libraries that were used to support the service to
the archive (Figure 5). It is common practice to use third-party library code whenever
possible, to avoid 'reinventing the wheel'. In the simple 'Hello' service you didn't need
to use any, so just click 'Next'.

This will take you forward to the dialogue box shown in Figure 6. A 'service.xml' file is
used by Axis to determine a range of service properties, such as the name of the
service implementation class and the operations that the service can perform. You
could write the 'service.xml' file by hand but it's simpler to let Axis generate it, so tick
the 'Generate the service xml automatically' box and then click the 'Next' button.

T320 E-business technologies: foundations and practice

Block 3 Part 3 Activity 3 | 5

Figure 5 Adding any external libraries

Figure 6 Selection or generation of service XML file

T320 E-business technologies: foundations and practice

Block 3 Part 3 Activity 3 | 6

The next dialogue box (Figure 7) seeks to identify the code that is being used and
establish what needs to be written into the 'service.xml' file. The default service name
is given as 'MyService', which you should change to something more meaningful,
perhaps 'HelloService'.

Figure 7 Service class selection dialogue box

The class name for the service is 'Hello', but this needs to be qualified with the
package name used when creating the service. Your package name, as I described
earlier, should include your OUCU. Type your package and class name into the
‘Class name’ box, which should be something like:

uk.ac.open.t320.<OUCU>.Hello

where ‘<OUCU>’ is your own OUCU and click on the 'Load' button. You will see that a
list of methods is given (Figure 8). These are the methods that have been 'inherited'
by the code you wrote for the 'Hello' class.

You can ignore the inherited methods and list just the methods that you have coded
by checking the 'Search declared methods only' box (Figure 9)

Leave the 'helloName' method box ticked and click 'Next'.

T320 E-business technologies: foundations and practice

Block 3 Part 3 Activity 3 | 7

Figure 8 Service class selection dialogue box showing potential methods

Figure 9 List of methods implemented directly by 'Hello' class

T320 E-business technologies: foundations and practice

Block 3 Part 3 Activity 3 | 8

The next dialogue box (Figure 10) allows you to specify the output archive's filename
and location. Browse to a suitable output location and name the archive something
like 'helloService' (the .aar file extension will be added automatically). Then click
'Finish'.

Figure 10 Setting the output file name and location

After a short time, you should receive a message confirming that the archive has been
generated (Figure 11).

Figure 11 Confirmation of archive generation

The archive file can be opened using WinZip to reveal what has been included. In this
case the archive contains only three files (Figure 12).

T320 E-business technologies: foundations and practice

Block 3 Part 3 Activity 3 | 9

Figure 12 Files in the archive

The 'Hello.class' file is the Java file compiled and placed in a directory that is named
after the package name you used for the code.

A 'Manifest.mf' file describes an archive and can contain a range of additional
configuration information (see
http://java.sun.com/j2se/1.5.0/docs/guide/jar/jar.html#JAR%20Manifest if you are
interested in the details). The manifest in this case simply contains three lines, which
give some version numbers such as the Java version being used:

Manifest-Version: 1.0
Ant-Version: Apache Ant 1.7.0
Created-By: 1.5.0_06-b05 (Sun Microsystems Inc.)

The more important file is the 'services.xml' file, which contains an XML description of
the 'Hello' service:

<service name="HelloService">
 <description>Please Type your service description here</description>
 <messageReceivers>
 <messageReceiver mep="http://www.w3.org/2004/08/wsdl/in-only"
 class="org.apache.axis2.rpc.receivers.RPCInOnlyMessageReceiver" />
 <messageReceiver mep=http://www.w3.org/2004/08/wsdl/in-out
 class="org.apache.axis2.rpc.receivers.RPCMessageReceiver" />
 </messageReceivers>
 <parameter name="ServiceClass">uk.ac.open.t320.Hello</parameter>
</service>

The service description names the service as 'HelloService', contains a placeholder
for a textual description of the service and specifies the 'ServiceClass' to be the 'Hello'
Java class that you wrote, qualified with its package name.

The remaining chief elements are of the kind <messageReceiver>, which specify
what Java class will handle messages to the service. You could write your own, but
here Axis has suggested using some classes it provides for you. The first handles
requests that have no response, the second handles request–response type
messages. Both of these classes implement a message exchange pattern (MEP).
MEPs are part of the WSDL specification (see http://www.w3.org/TR/2004/WD-
wsdl20-extensions-20040803/).

There are many other configurations and options that can be placed in the
'services.xml' file, such as engaging a security module and other supporting facilities. I
shall not cover these in any detail here.

The next step you will take is to upload the archive onto an OU server machine and
then to place the archive in the correct position within a Tomcat and Axis installation.

T320 E-business technologies: foundations and practice

Block 3 Part 3 Activity 3 | 10

Deploying an archive to Axis
Using a web browser go to the Axis2 home page (Figure 13).

Figure 13 Axis2 home page

To upload a web service archive, you need to go to the administration console. Click
on the 'Administration' link and you will be taken to the console page (Figure 14). Log
in here with the Axis username and password, which by default are ‘Username’ of
‘admin’ and ‘Password’ of ‘axis2’. These values are found in the axis2.xml file of the
installation.

Figure 14 Axis2 administration console log-in page

You will then be shown the main administration page (Figure 15). This has many links
for managing services and 'modules'. A module is a component that provides
functions, such as security, for web services.

T320 E-business technologies: foundations and practice

Block 3 Part 3 Activity 3 | 11

Figure 15 Axis2 administration page

First click on the 'Available Services' link (second from the top on the left-hand side).
You will then see a list of the web services that are currently available, together with
their status (Figure 16).

Figure 16 Available web services

Currently, the only web service that you will see in the list is 'Version'. As explained
previously, the 'Version' web service is provided as an example web service and
simply returns the version of Axis2 being used.

Now click on the 'Upload Service' link (the top link on the left-hand side), which will
take you to the web page shown in Figure 17.

T320 E-business technologies: foundations and practice

Block 3 Part 3 Activity 3 | 12

Figure 17 Upload service page

Click on the 'Browse…' button and navigate to the location you specified for the
archive file earlier. Select the 'helloService.aar' file and then click 'Open'. Then, on the
Axis2 upload page, click the 'Upload' button. You should see a green 'success'
message appear above the 'Service archive' box (Figure 18).

Figure 18 Archive file successfully uploaded

Now revisit the 'Available Services' link. You should find that 'HelloService' is now
listed along with 'Version', although you may need to scroll down to see the
'HelloService' listing (Figure 19).

T320 E-business technologies: foundations and practice

Block 3 Part 3 Activity 3 | 13

Figure 19 'HelloService' listed in services list

Now click on the 'HelloService' link on the 'Available Services' page. This will present
you with a WSDL description of the web service (Figure 20).

Figure 20 'HelloService' WSDL

This WSDL has been generated by Axis2 on the server and contains the correct
address locations for the server (Figure 21).

T320 E-business technologies: foundations and practice

Block 3 Part 3 Activity 3 | 14

Figure 21 WSDL port and address descriptions

Now the service is deployed and the WSDL is being generated (you could have
deployed a WSDL description as a static XML page instead).

Test the deployed service
Eclipse can be used to test the service. To do this, follow the steps in Part 2 Activity 2
(Generating a client from WSDL), which you used earlier to access a web service.

This should be very straightforward, but you might want to note the URL of your
WSDL documents on the OU server now. In the example shown here it would be:

http://t320webservices.open.ac.uk/axise_nks34_axis2_A11581/
services/HelloService?wsdl

