ty

.

The Open Un

T320 E-business technologies:
foundations and practice

Block 3 Part 2 Activity 2: Generating a
client from WSDL

Prepared for the course team by Neil Simpkins

Introduction

WSDL for client access
Static versus dynamic WSDL
OU demo services

Creating a dynamic web project

o A W W N PP

Adding a simple client

More clients 12

Introduction

In this activity | shall illustrate how you can quickly and easily generate a client so that
you can access a web service.

You have in fact already completed this exercise, at least in the main part, when you
created the 'Hello' web service and generated a client to test that web service at the
same time. However, here there will be a couple of slight differences. Firstly, you will
not be producing a web service and a client, just a client for a web service. Secondly,
you will explicitly use a WSDL description of the web service on which to base the
client. This was also the case 'behind the scenes' when you deployed and tested the
'Hello' service.

The client will be generated within Eclipse, which uses the WSDL description of a
service to determine how a request to the service should be formulated and what
response is expected. The client itself takes the form of a simple set of web pages,
just as before when you tested the 'Hello' web service.

It's important to recognise that the WSDL document that Eclipse uses to generate the
client might be located in an Eclipse project locally on your machine, or it might be
hosted on a machine somewhere on the Internet.

Copyright © 2008 The Open University.
This document is made available under the Creative Commons Attribution - No Derivative
Works 3.0 Unported Licence (http://creativecommons.org/licenses/by-nd/3.0/) WEB 007113 1.1

T320 E-business technologies: foundations and practice

WSDL for client access

A WSDL service description provides all the information that is required to use a web
service. The T320 version of Eclipse incorporates the Web Tools Platform (WTP),
which provides support for generating a client based on the information inside a
WSDL.

The WSDL that describes a service includes a range of crucial information, such as
the required content of a request and also the location of the web service. This
location, called the endpoint reference (EPR), is included in the service description.
The endpoint reference is thus a key item in the service description. If we move the
web service then the EPR in all descriptions of the web service needs to be changed.

In Figure 1 | have depicted the realisation of the 'Hello' web service after completing
the practical activity you carried out in Part 1. The WSDL is held locally in your
workspace and will have a local EPR for the web service implementation, such as
http://1 ocal host: 8080/ Hel | o/ servi ces/ Hel | o.

service deployed
and running on local | HelloService
Tomcat by WTP

! Eclipse

. T project

: parse description

. . and generate client WSDL

| Eclipse ‘

| WTP - EPR =http://localhost/
: services/HelloService
|

! 3 2

! response request

|

Figure 1 Overview of local access to 'Hello' service with Eclipse

When you used Eclipse to deploy the web service and generate a client, it performed
a lot of work behind the scenes. It first deployed the web service to the server, started
the service running and set up a proxy so that it could pass requests to the service
and receive any response. Then it generated the WSDL description of the service and
put this into the 'WebContent/wsdl' directory of the project.

To generate the client web pages, Eclipse parses the WSDL document. Based on
that, it can determine the input requirements for the web service that are used to
create the 'Inputs’' form etc. The WSDL also tells Eclipse to send requests to the local
Tomcat server. This configuration is illustrated by the Eclipse WTP, project and local
service depicted in Figure 1; this is, of course, exactly the setup you employed in
completing the Part 1 practical activity.

If the web service is deployed to a remote server then Eclipse has to be given the
location and will download the WSDL for processing; in this respect the two scenarios
are not much different. The web service itself can also be situated on a remote server,
as specified by the EPR in the service WSDL. This configuration is illustrated in
Figure 2.

Block 3 Part 2 Activity 2 | 2

T320 E-business technologies: foundations and practice

1
download, some server
parse description on Internet

: . : and generate client WSDL

! Eclipse <=

. IDE ! EPR = http://somewhere.com/
| E\ services/HelloService

\ 2
request service running on
somewhere.com server
3
response

HelloService

Figure 2 Overview of remote access to 'Hello' service with Eclipse

Itis, of course, equally possible for a WSDL document held in a local Eclipse project
to specify a remote EPR. Also, rather obviously, the WSDL description of a service
and the service itself may reside on a single remote server. The 'physical distribution’
aspect has no real impact on the mode of operation of the web service.

Static versus dynamic WSDL

The WSDL file that was generated when you created the 'Hello' web service was
produced by Axis software that is part of the WTP embedded in the T320 version of
Eclipse. This software examines the Java code implementing the web service as a
basis for determining the required input data, likely content returned, etc. and
subsequently creating the WSDL document.

There is also a server-side set of Axis software tools that have the same WSDL
generation capability. So if a web service is hosted on a remote server that is running
this Axis server-side software, the WSDL can be generated 'on demand' by Axis. (Of
course, you have no control over any of the options that you selected when generating
the 'Hello' web service — such as the encoding style, which will be investigated in

Part 6.) This dynamic approach to describing a service is not a general principle
behind web services, but it is useful to appreciate this possibility because it means we
don't have to actually deploy an independent WSDL.

There are various reasons that you might want to have a separate, static WSDL; for
example, so that you can tailor the options you require or so that you can have more
than one WSDL in different locations describing your service.

In the following sections | am going to show you how to use Eclipse to generate just a
simple client for your local 'Hello' web service if you wish, and how to do so for a
remotely hosted version of the same service. In this second case the web service in
question is running on top of the Axis server platform and has a WSDL document that
is generated by an HTTP request. For Eclipse when generating a client there is no
real difference between a local WSDL description, a remote static description or a
remote dynamically generated description.

OU demo services

At the OU there is a small set of toy web services. These can be accessed using a
client in the same way as you tested the ‘Hello' web service using Eclipse. In fact, one
of the web services hosted is a copy of the 'Hello' service.

Block 3 Part 2 Activity 2

T320 E-business technologies: foundations and practice

Here you will use a copy of the 'Hello' web service that is hosted at the OU as the
service to be accessed by the client. You can just as easily access other services on
the Internet or your local implementation of the 'Hello' service in the same way.

When you go to this location, if you do not already have a log-in session running then
you will be redirected to a log-in page and asked to log in to the University network.
Log in with the same username (OUCU) and password that you use to access the
T320 course web site.

Creating a dynamic web project

Start your Block 3 Eclipse and make sure you have a Tomcat server configured for
use (see the guide Configuring an Application Server in Eclipse if you are unsure how
to do this). Then create a new dynamic project using File > New > Project...

(Figure 3).

& lava - Eclipse Platform
File Edit Source Refactor Mavigate Search Project Run Window Help

L S VI (- Java Project =
Open File. .. Wl Froject...

Close [7 Package
Close Al L G Class
G ChrH-S €& Interface
. Save A5, ., @ Enurn
| e Chrl+Shift+5 (@ Annotation
Rewert {8 Source Folder
Move [Folder
e
REmame, .. Fz | File
Refresh F5 =7 Untitled Text File
Converk Line Delimiters To k E‘? JUnik Tesk Case
) 7 Task
il Frint... CErH+R =
=
E I
Switch Waorkspace p L JExample
=
g Import, . [] Other
=7 Export...
Froperties AlE+-Enter
E:xik
(T8} Gveblame 57) Nzmuadn

Figure 3 Selecting a new project

Then, in the New Project dialogue box, expand the 'Web' option and select 'Dynamic
Web Project' (Figure 4) before clicking the 'Next' button.

Then give your project a name, such as 'HelloServiceClient', and click 'Finish'
(Figure 5).

Block 3 Part 2 Activity 2 | 4

T320 E-business technologies: foundations and practice

_ioix

Select a wizard —

Create a Dynamic Web project

Wizards:

|ty|:ue filker bext

[General

(= CYS

[Eclipse Maodeling Frarmework,
= EJB

(= 1ZEE

= Java

= P

-2 Weh

F-ﬁ Dynamic]
- static web Praject
-7 Examples

(7 = Back I Mext = I Firishi Cancel

Figure 4 Dynamic web project selection

& New Dynamic Web Project ;IEIEI

Dynamic Web Project

e
Create a standalone Drnamic Web project or add it to a new or existing Enterprise Application. | o
- =,
Project name: | HelloServiceClient
 Project contents:
v Use default
Directatsy I CTI20eclipseitempiHeloServicelient Browse, .., |

 Targek Runtirme

I.ﬂpache Tomcat v5.5 j T, .. |

— Configurations

IDeFault Canfiguration For Apache Tomcat +5.5 j

A good starting For working with Apache Tomcat %5, 5 runtime, Additional Facets can later be installed to add new
functionality ko the project,

—EAR. Membership
I™ | add project b an E&R

EAR Frojeck Mame; | EAR j TEW, .. |

(7) = Back Mext = | Finish I Cancel

Figure 5 Naming the new project

Block 3 Part 2 Activity 2 | 5

T320 E-business technologies: foundations and practice

As Eclipse builds the new project, you will most likely be asked if you wish to open the

project in the Java EE perspective (Figure 6). You should click on 'Yes' when this is
offered.

& Dpen Associated Perspective? ﬂ

This kind of project is associated with the Java EE perspective, Do wou wank
L ko open this perspeckive now?

™ Remember my decision

Figure 6 Dialogue option to open Java EE perspective
After a time, the newly created project will be displayed in Eclipse (Figure 7).

& lava EE - Eclipse Platform
File Edit Mavigate Search Projeck Rum Window Help

| 5 = |%-0-%- |EE |G|

i My
L?_ﬁ Froject Explarer 23 = 8

SR HelloServiceClient
. |§] Deployment Descripkor: HelloServiceCli
"15 Jawa Resources: src
(= build
H-(= WebContent
=% Servers

Figure 7 Newly created project in the Project Explorer

Adding a simple client

Next you need to add a web service client to the project. To do this, select the project

in the Project Explorer and right-click on it. Then select New > Other... as shown in
Figure 8.

You should then be presented with the dialogue box shown in Figure 9; here, you

should open the 'Web Services' folder and select the 'Web Service Client' option
before clicking on the 'Next' button.

Block 3 Part 2 Activity 2 | 6

T320 E-business technologies: foundations and practice

& Java EE - Eclipse Platform

File Edit Mavigate 3Search Project Run Window Help
= = 3 E i= = 2}
| - |#-0-@- | |Glsi|eg |8 | &9 |
[Project Explorer &2 =0 ||
EE|e~ H
. e » 1 Project...
fr— = [Projec
2 JavaF showIn Alk4-Shift44 b Fle
= build =
- (= WebCi L= CopY CtrlC [Folder
B2 servers | I Copy Qualified ame (& Annotation
—
2| Paste Chrl+Y @ Class
Delete Dielete & Enum
Build Path L & Interface
Refactor Alt+Shift+T 4 H¥ Package
Impartt b 5% Source Folder
Export 4
(. Dynamic \Web Project
£ | Refresh F3 |=é> Enterprise Application Project
Close Project .
Close Unrelated Projects # HTML
_ &7 5P
Yalidate 'E? S
1] Mark as Landmark e+ Alt+ShifE+Lip
5 Remove from Conbext Ctrl+Alt+Shife+Down] Example...
= Update EAR Libraries
Run As

Figure 8 Selecting New > Other... to add a client to the project

Select a wizard

fccess an existing 5ML web service

=10l x|

Wizards:

Itype filker bext

- Java

(= Java Emitter Templates
Bl JavaServer Faces
B IPA

B2 Mylyn

[E!v SErver

[Eb a0L Developraent
B2 Web

El-(Z= Web Services
] ant Files

Unit Test UDDI
A web Service

':':’:' < Back I Mexk = I

Firish Cancel

Figure 9 Selecting a wizard to generate a web service client

Block 3 Part 2 Activity 2 | 7

T320 E-business technologies: foundations and practice

You will then be presented with the dialogue box shown in Figure 10. You may well
recognise this as including much of the lower section of the dialogue box shown in
Figure 16 of the Implementing a simple web service activity that you completed in
Part 1 of the block. There are a few differences, the most significant being that here
there is a need to specify a 'Service definition'.

=10lx]

web Servicess ==

@ Select a service definition, _ :
Service definition; | Browse, |

Client bype: IJava Prozy j
_ _| Deploy client
. Configuration:
-
-1 - L SErver:
-1 g Web service runtime: Apache Axis
= Client project: HelloServiceClient
= &

™ Monitar the Web service

(7) < Back I Mext = Finish Cancel

Figure 10 Initial client configuration dialogue

Click on the 'Browse' button at the top of the box. This will take you to the dialogue
box shown in Figure 11. Here the topmost text box has the label 'Enter a URI to a
WSDL, WSIL' or HTML document'. A URI can be entered, which might be the location
of a file on your machine or, for example, an HTTP URL. So there is the flexibility to
use a WSDL document that resides on your machine or one that can be acquired from
the Internet over HTTP (or FTP etc.).

When you created the 'Hello' web service, there was at this stage a slightly different
text box to complete that requested a 'service implementation'. This you filled with the
name of the Java class that implemented the web service logic. Eclipse (and the WTP)
then used that code to create the WSDL, which it placed inside your project and then
used to generate the client. If you have the 'Hello' project handy (and deployed to your
local Tomcat server) then you could point this new client at that local 'Hello' web service.

! Web Services Inspection Language (WSIL), a joint effort by Microsoft and IBM, is a different approach to
describing web services; see, for example,
http://www.ibm.com/developerworks/library/specification/ws-wsilspec/.

The chief difference between WSDL and WSIL appears to be that WSIL lists groups of web services and
their endpoints in an XML format rather than describing a single service.

Block 3 Part 2 Activity 2

T320 E-business technologies: foundations and practice

Instead of that, here | am going to create a client that uses a remote implementation of
the 'Hello' web service over the Internet.

& Select Service Implementation x|

Enter a URI ko a ‘W3DL, WSIL or HTML docurment:

I Browse, .. |

Select a WSDL

WSDL validation messages:

Severity | Line | Colurmn | Message |

Shop validation |

Ireealid Web service URI, Enter a URI to a WSDL, WWSIL or HTML dacument,

(] 4 I Cancel

Figure 11 Select Service Implementation dialogue box

I shall look at the sample web service hosted at the University at the end of this
booklet. For now, you should note that the URL for the EPR of the 'Hello' web service
at the OU is:

http://t320webservices.open.ac.uk/t320/services/HelloService

Axis will generate the WSDL document describing a web service if we postfix the EPR
with a parameter 'wsdl'. So using a '?' to append this to the URL, we can acquire the
WSDL for the 'Hello' service using:

http://t320webservices.open.ac.uk/t320/services/HelloService?wsdl
You can view the WSDL document by copying this URL into a web browser
(Figure 12).
Now enter the URL for the WSDL in the Eclipse Select Service Implementation

dialogue box. When you have done this, you should see the URL listed in the list of
WSDLs under the text 'Select a WSDL' (Figure 13).

Block 3 Part 2 Activity 2 | 9

T320 E-business technologies: foundations and practice

,.‘"_:'-' http://t320webservices.open.ac.uk /t320/services/HelloService?wsdl - Microsoft Internet Explorer provided by The Open Univers
@3 - |g, http:)t 3z0mebservices, open. ac.uk/t3200 services HelloService twsdl
| Y7 -1 @~ |web Search | 1Y anti-spy [45 Bookmarks=] Mail + 8 My ¥ahoo! =

ﬂ? "{R? ghttp:,I',I'tSZUWEhSEWiEES.DDEI‘I.EIC.UHtSZDJ’SEWiEESIHEL.. | |

@ Answers

<?xml version="1.0" encoding="UTF-8" 7>
- «<wsdl:definitions xmins:wsdl="http://schemas.xmlsoap.org/wsdl/" xmins:mime="http:/ /schemas.xmls

xmins:ns0="http:/ ft320.ict.open.ac.uk" xmins:soapl2="http:/ fschemas.xmlsoap.orgfwsdlfs0ap12,
xmins:http="http:/ fschemas.xmlsoap.org/wsdl/http/" xmiIns:ns1="http:/ /org.apache.axis2/xsd"
xmins:wsaw="http:/ /www.w3.0rg/2006/05/addressing/wsdl" xmins:xs="http:/ /www.w3.0org/2001
xmins:soap="http:/ /schemas.xmlsoap.org/wsdl/soap/" targetNamespace="http:/ /t320.ict.open.ac
<wsdl:documentation=HelloService </wsdl: documentationz-

- =wsdl:types>
- =xs:schema xmins:ns="http://t320.ict.open.ac.uk" attributeFormDefault="qualified" elementFormCefa

targetNamespace="http:/ /t320.ict.open.ac.uk">
- <xs:element name="helloName":

Figure 12 Hello service WSDL listed in a web browser

& Select Service Implementation x|

Enter a URI ko & WSDL, WSIL or HTML docurment:
| htkp:ffE320mebservices, open, ac, ukt 320/ services/HelloService wsd| Browse, ., |

Select a WsDL

------ A2 http:it3E0webservices, open. ac.ukft320/services/HelloService fwsdl

WSDL validation messages:

Severity | Line | Calumn | Message |

Wizard WSDL walidation is disabled.

Stop Yalidation |
Ok I Cancel

Figure 13 'Hello' service WSDL listed in dialogue box

Block 3 Part 2 Activity 2 | 10

T320 E-business technologies: foundations and practice

At this point it is possible that you will receive a message in a pop-up dialogue box
telling you that the WSDL cannot be retrieved. This generally means that the web
service is not available. If this is the case, you should raise the matter in the course
forums so that the services can be fixed by University staff.

If the WSDL is listed then click on the 'OK' button. This will take you back to the client
configuration dialogue box (Figure 10).

Next raise the slider on the left of the dialogue box so that 'Test client' is displayed (i.e.
you want to create a test client), and tick the 'Monitor the Web service' box if you wish
to observe messages sent to and received from the web service (Figure 14). Then
click the 'Finish' button.

=10lx]

web Servicess ==

Review vour Web service options and make any necessary changes before
proceeding ko the next page, F. }—

Service definition; Ihttp:J'J'tSEDWEbSEWiEES.DpEI‘l.aE.LIk,I'tSEU,I'SEWiEES,I'HE||I:|SEWi|: Browse, .. |

Client bype: IJava Prozy j
=k Test client . .
Configuration:
#p I:E‘- Server: Tomcat v5.5 Server
9o (] Web service runtime: Apache Axis
o Client project: HelloServiceClient
= @&

¥ Monitar the Web service

(7) < Back Mext = | Finish I Cancel

Figure 14 Completed client configuration dialogue box

After a time, the client will be generated and you will see that the now familiar web
pages of the client are shown in Eclipse (Figure 15).

As before, you can use the web service by first clicking on the 'HelloName' method in
the Methods panel, then entering a name in the text box that appears in the Inputs
panel, and finally clicking the 'Invoke' button (Figure 16).

Everything in the client appears as it was when you created and tested the 'Hello' web
service locally in Part 1. Of course, there is a real difference behind the scenes. The
SOAP request to the web service is being sent across the Internet to the OU server
't320webservices.open.ac.uk’, and the response is being sent back in the same way
from the remote machine.

Block 3 Part 2 Activity 2 | 11

T320 E-business technologies: foundations and practice

© ~y
@ Web Services Test Client &7 = 0O

| Rl
Methods = Inputs =

s getEndpoint() Select a method to test.
setEndpoint(java. lang. String)
getHelloServicePortTvpel)
helloName(java.lang. String))

Result
result: N/A
= =

Figure 15 Initial client web pages in Eclipse

-

-
i wWeb Services Test Client £3 = O

! Rl
Methods = Inputs =

» getEndpoint nama:lniu::k
setEndpoint(java.lang. String)
getHelloServicePort Tvpel)
helloName(java lang String)

Invoke | Clear |

4] | _rlll
Result

Hello there nicke
id id

Figure 16 Client after invoking the 'Hello' service

More clients

You will find the 'Hello' service and others listed on the OU T320 Axis site at:

http://t320webservices.open.ac.uk/t320/services/listServices

You will find that you can access any of these services using the associated WSDL
document that is generated by appending "?wsdl' to the EPR for the service.

Try out at least one other service to see how this works.

Block 3 Part 2 Activity 2 | 12

