
 

 

Copyright © 2008 The Open University 

This document is made available under the Creative Commons Attribution - No Derivative 
Works 3.0 Unported Licence (http://creativecommons.org/licenses/by-nd/3.0/) WEB 00713 2 1.1 

T320 E-business technologies: 
foundations and practice 

Block 3 Part 6 Activity 3: Specifying 
WSDL style and encoding using Eclipse 
Prepared for the course team by Neil Simpkins 

Introduction 1 

Initial steps towards a web service 2 

Choosing style and encoding with Eclipse 3 
 

Introduction 
Earlier in this block you developed, deployed and tested the 'Hello' web service. In this 
practical activity you will quickly see that the same service can be created with 
different WSDL style and encoding. 

You saw in Part 2 Activity 5 that the options for style are 'RPC' or 'document' and the 
options for encoding are 'encoded' or 'literal'. There is also one other combination 
called 'document/literal wrapped', giving five possibilities in total: 

1 RPC/encoded 

2 RPC/literal 

3 document/encoded 

4 document/literal 

5 document/literal wrapped 

When you generated the 'Hello' web service earlier, you skipped the step that allows 
the style and encoding to be selected. Here you are simply going to repeat the 
generation of the 'Hello' web service but this time including the choice of a specific 
WSDL style and encoding. 



T320 E-business technologies: foundations and practice 

Block 3 Part 6 Activity 3 | 2 

Initial steps towards a web service 
Return to the practical activity in which you created the 'Hello' web service, 
Implementing a Simple Web Service. You can take either of the following routes: 

• Repeat all the steps in Implementing a Simple Web Service up to the stage where 
you are presented with the dialogue box shown in Figure 18 (reproduced below as 
Figure 1), where you have made the same selections as before (shown in the 
figure). Use another project if you don't want to lose the previous version of the 
service (in the instructions that follow, I have called my project 'HelloNewWSDL'). 

• Alternatively, if you have the old 'Hello' project in your workspace, simply start from 
the section 'Generating a web service and client' in Implementing a Simple Web 
Service and repeat the steps from that position. In this instance some files from the 
old project will have to be overwritten; Eclipse will ask you for permission to do this 
at the appropriate stage and you should allow the overwriting in all cases. Again, 
you should continue through the activity until you reach the position shown in 
Figure 18 (Figure 1 here). 



T320 E-business technologies: foundations and practice 

Block 3 Part 6 Activity 3 | 3 

 

Figure 1 Web service configured (Figure 18 from Implementing a Simple Web 
Service) 

When you arrive at the situation depicted in Figure 1, you should follow the steps 
listed in the rest of this document rather than continue with the original activity. 

Choosing style and encoding with Eclipse 
When you last created the 'Hello' web service and reached the state shown in 
Figure 1, you clicked on the 'Finish' button. However, it's also possible to click 'Next'; 
do this, and you will be presented with the dialogue box shown in Figure 2. 



T320 E-business technologies: foundations and practice 

Block 3 Part 6 Activity 3 | 4 

 

Figure 2 Configuring the Java class as a web service 

Towards the bottom of this dialogue box you will see that 'Style and use' can be 
selected. There are three options available, of which the default option is 
'document/literal (wrapped)'. The other two options, RPC/literal and 
document/encoded, are not offered by Eclipse. 

Document/encoded is a style that is not used, as noted in Part 2 (refer to the article 
Which style of WSDL should I use? if you need to refresh your memory). RPC/literal is 
WS-I compliant and might be useful, but is not supported by Eclipse when creating a 
web service in this fashion. 

In most cases it is appropriate to use the document/literal wrapped approach. If, 
however, you select RPC/encoded then you can experiment with this approach and 
we can also continue on and look at some other facilities in Eclipse. So select 
'RPC/encoded' in the dialogue box and click the 'Next' button. 

You will then be presented with a warning message (Figure 3). This, perhaps not 
unexpectedly, warns you that the web service you are creating may not conform to the 



T320 E-business technologies: foundations and practice 

Block 3 Part 6 Activity 3 | 5 

WS-I basic profile. (Unfortunately, even if you click 'Details' to learn more you will not 
be told exactly why the warning has been issued.) Click the 'Ignore' button to continue. 

 

Figure 3 Warning that web service may not comply with WS-I profile 

At this stage, if Tomcat is not already running then you will be asked to start it 
(Figure 4). Click on the 'Start server' button; when Eclipse has started Tomcat, the 
'Next' button will become available and you should click on it. 

 

Figure 4 Start Server dialogue box 

The next dialogue box is used to select a 'test facility'. Other facilities for testing can 
be added to Eclipse, but the default course version will offer to use the 'Web Services 
Explorer' (Figure 5). This is intended, as you have seen, to access a service via UDDI; 
however, we will not be using UDDI here, so this option is irrelevant. 



T320 E-business technologies: foundations and practice 

Block 3 Part 6 Activity 3 | 6 

 

Figure 5 Dialogue box to select a test facility 

Clicking 'Next' will move you to the next dialogue box (Figure 6). Here you can specify 
where the proxy code will be placed, or simply accept the default location. 

 

Figure 6 Dialogue box to select a web proxy output location 



T320 E-business technologies: foundations and practice 

Block 3 Part 6 Activity 3 | 7 

When you are ready, click 'Next' to continue to the next dialogue box, which is shown 
in Figure 7. 

 

Figure 7 Configuring the web service client 

Here, amongst other things, you can see that the client will by default be a set of Java 
Server Pages (the client web pages that you used earlier in the block to call the 'Hello' 
web service), and that four methods are listed and will be made accessible. You can 
decide which methods to expose in the test client's pages by deselecting those you 
are not interested in. In Figure 8, all but the method that was explicitly written as the 
service 'helloName' are deselected. 



T320 E-business technologies: foundations and practice 

Block 3 Part 6 Activity 3 | 8 

 

Figure 8 Configuring the web service client: methods deselected 

The only remaining dialogue box after Figure 8 allows you to specify a UDDI directory 
for publication. Unless you want to do that, simply click 'Finish' at this point; after a 
short time you will be presented with the test client in Eclipse (Figure 9). You can see 
that the 'HelloNewWSDL' project that I created to hold this new service's components 
is listed in the Project Explorer on the left. 

You could test the service out now, of course, but what about the WSDL that the 
process has generated as a by-product in the project's 'WebContent' folder? This 
should be different to the previous WSDL. 

If you expand your project folders out, you will see that there is a small warning sign 
on the icon for the 'WebContent' folder, which is repeated on the WSDL file's icon 
(Figure 10). 



T320 E-business technologies: foundations and practice 

Block 3 Part 6 Activity 3 | 9 

 

Figure 9 Client web pages in Eclipse 

 

Figure 10 Project folders expanded to show warning icons 



T320 E-business technologies: foundations and practice 

Block 3 Part 6 Activity 3 | 10 

The warning concerns the WSDL file. If you start the WSDL editor (by double-clicking 
on the WSDL file and then switching to the Source view), you will see that there is a 
yellow marker on the right-hand edge of the file's Editor window in Eclipse (Figure 11). 
If you hover with the mouse over the yellow marker then you will see a pop-up 
message that describes the nature of the warning (Figure 12). 

The pop-up message lists a WS-I basic profile requirement, BP2406. You should be 
able to find this requirement in the basic profile specification on the WS-I web site. 
The description given there can hardly surprise you. What might surprise you is how 
tightly the profile specifies such areas as encoding. 

Compare the WSDL that you have just generated with the WSDL that you generated 
in the earlier activity and identify the significant differences. The Source view will 
provide some details of the WSDL that may not be so apparent in the graphical 
Design view. 

You should find that the key differences centre around the use attribute and local 
schemas. If you return to the paper Which style of WSDL should I use? you should be 
able to correlate the WSDLs you have produced for the 'Hello' web service with 
Listing 2, which illustrates the RPC encoded style of WSDL, and Listing 8, which 
illustrates the document literal wrapped style. You can also examine the entire WSDL 
for the 'Hello' service, including the bindings that are not given in the paper. 

 

Figure 11 WSDL editor operating on WSDL with warnings 



T320 E-business technologies: foundations and practice 

Block 3 Part 6 Activity 3 | 11 

 

Figure 12 Pop-up warning message in WSDL editor 


