Dali Java Persistence Tools
User Guide

Release 3.2

September 2012

Dali Java Persistence Tools User Guide
Release 3.2
Copyright © 2011, 2012, Oracle and/or its affiliates. All rights reserved.

The Eclipse Foundation makes available all content in this plug-in ("Content"). Unless otherwise indicated
below, the Content is provided to you under the terms and conditions of the Eclipse Public License Version
1.0 ("EPL"). A copy of the EPL is available at http: //www.eclipse.org/legal/epl-v10.html. For purposes
of the EPL, "Program" will mean the Content.

If you did not receive this Content directly from the Eclipse Foundation, the Content is being redistributed
by another party ("Redistributor") and different terms and conditions may apply to your use of any object
code in the Content. Check the Redistributor's license that was provided with the Content. If no such license
exists, contact the Redistributor. Unless otherwise indicated below, the terms and conditions of the EPL still
apply to any source code in the Content.

Contents

1 Getting started

Requirements and installation ... 1-1
Dali QUICK STATcoooiiiiiiiii e 1-2
Creating a New JPA PIOJECE ..ot 1-2
Creating a Java persistent entity with persistent fields ..o 1-3
2 Concepts
Understanding Java persistence ... 2-1
Understanding OR mMappingsccocovvviriiiiiiiiinniiii s 2-1
Understanding Java Persistence APL...............ccccooiiiniii s 2-2
The persistence. XML filecoooiiiiiii s 2-2
The OrmMUXIMI FI1E ...oviiiiii ettt 2-2
Understanding Java Architecture for XML Binding............cccocooooiviiniiinnin 2-2
3 Tasks
Creating a NeW JPA PIoJect........cocoviiiiniiiiiiii e 3-1
Creating a new JAXB Project..........cooooiiiiiiiiiiiccc e 3-5
Creating Database Web Services from Builder XMLccccccooiiiiiniice 3-7
Converting a Java project to a JPA project ..o 3-9
Creating a JPA entity.........ccooiiiii s 3-11
Adding persistence t0 @ Class ..o 3-15
ENEEY ot 3-15
Embeddable ... 3-17
Mapped SUPEICIASSccuviiiiiiiciiiii s 3-18
Adding virtual attributes ... 3-19
Managing the persistence.xml file.............cccocoooiiiiiiiiii 3-20
SYNCRIONIZING CLASSES.........ouimiiiiiiiiiiiiii et 3-28
Managing the orm.xml filecccocoiiiiiiiii 3-28
Creating an orm.Xml fileccoooiiiii 3-29
Working with orm.Xml file ..o 3-30
Specifying additional tables ... 3-31
Specifying entity inheritance...............cccoooiiiiiiii s 3-32
Creating QUETIES...........cooiiiiiii s 3-33
Mapping an entity ... 3-34
Basic MAPPING ..c.cevrieieieiieici s 3-35

Element collection MapPing ...t 3-36

Embedded mapping ... 3-37
Embedded ID MaPPING ...c.covvviviiiiriiiriiiciirieeere et 3-38
ID MAPPING ceovtitiiietetcte et 3-39
Many-to-many MaPPINGccceeeieirieieieieieeteee s 3-40
Many-to-0ne MAPPINE ...c.ceviriiriiiiiiiiiiii s 3-41
One-to-Many MapPPINgcccouoireiiiiiieeectc e 3-42
One-t0-0Ne MAPPING ...cvoviviiiiiieieieieiee s 3-43
Transient MAPPINGcoovviriiiiiiiiiii e 3-44
VETISION MAPPINE ..voviriiititiniieiicicee ettt e b s e a st ae e 3-44
Generating entities from tablescccoooiiiiii 3-45
Generating tables from entities..............ccococooniiiiiiii 3-50
Generating dynamic entities from tables...............cccoooiii 3-52
Modifying persistent project properties............ccccocovviiiiiiiiiii 3-56
Converting JPA metadata to XML ... 3-56
Validating mappings and reporting problemscccccccviiiiiniiiiiiie 3-57
EITOT ME@SSAZES ...vvviiiiiit s 3-58
WaATINING MESSAZEScuviiiiiiiiiiiciiiiic b 3-61

4 Reference

WWIZATAS ...ttt ettt bttt ettt e b e bt e ae s h e b bt e et et et a e at e st eb e bt b b e b e b ee 4-1
Generate Entities from Tables WizZardccoceeiririiiieneieieeeesese et 4-1
SEIECE TADIES ...ttt ettt sttt et ettt be st sae st et eneene 4-2
Table ASSOCIATIONSeveeieeiirieieieieteteiet ettt ettt ettt bt b et b et b et be b e bt e s s enesae e s 4-2
Customize Default Entity Generation ... 4-2
Customize Individual ENtItiesccooieiiiiiiiriiieee ettt 4-3
Generate Dynamic Entities from Tables wizard ... 4-3
SEIECE TADIES ...ttt et ettt sttt st 4-4
Table ASSOCIAtIONS ...euviieieieiieieeeieet ettt ettt ettt et bttt ettt e et et eaeebeebesaesbesbesaentenseneene 4-4
Customize Default Entity GENEration ... 4-4
Customize Individual ENtitiescccceoiiiiiiininiiieeee ettt 4-5
Create JPA Entity WizZard ... 4-5
ENtity Class PAE ..c.cucveueuemeiiieiiieicicicicieeteteteieeeeieee ettt 4-5
Entity Properties Page ... 4-6
Create ORM Mapping File Wizard ... 4-7
Mapping File LOCAtioNccccoiiiiiiiiiiiiiiiiiiic s 4-7
Mapping File OPtions ... 4-7
Create New JPA Project Wizard ... 4-8
New JPA Project PAgeccceiviiiiiiiiiiiciciice s 4-8
JAVA PAZE e 4-9
JPA FaCet PAZE ..eoeeviiiciciiicc s 4-9
Create New JAXB Project Wizardccccccccciiiiiiiiiiceccccceeeeeeeee e 4-10
New JAXB PIOJeCt PAZE «...cveveiieieiciiieeetetcee e 4-10
JAVA PAZE .o 4-11
JAXB FaCet PAGE ...ccvoviviiiiiiiiiiicic e 4-11
New Database Web services from Builder XML wizardccccecvverininineneneniniicnenencnenen 4-11
Web DYNamiC PAGEcovvrmiiiiiiiiiiic s 4-11

Select Builder XML File pagecccccooiiieiiiirieiiicici s 4-11

DIiver FileS PAGEcocueiiiieiieeicc e e 4-12
Generate Tables from Entities Wizardcccccccceviiininniiiiinerree e 4-12
Schema Generation ... s 4-12
Create New Association Wizard ..., 4-12
ASSOCIAtION TADLESovviiiiiciiiicccc e 4-12
JOIN COIUIMNS ettt ettt b bbb bbbttt e et sbe b ebes 4-13
Association Cardinalitycccooioeeioiioiii e 4-13
PrOPerty PAges........ccooiiiiiiiiiiiiiiic s 4-13
JPA Details VIew (fOI @NEILIES) ..co.eeiruiriiriiieieieieieteeet ettt ettt st s 4-13
ENEIEY oo 4-14
EmMDbeddable ..o 4-14
Mapped SUPETICIASSccoviiiiiiiiiiiicc s 4-15
CACNINE ot 4-15
QUEBTIES ..veevvieeiieeieeete et e ettt et et e e vt et e ebe e teesebeessaaesse e baeesseessaesaseesssessseeaseessseasseasseasseanssessseenseeaes 4-17
INNETITANCE ..c.oiiiiiiiic s 4-18
Attribute OVerrides ... 4-19
MUIEENANCY ..ovviiiiiiiicccce et 4-19
Primary Key Generation ... 4-20
Secondary tables ... s 4-21
CONVETTETS ...t 4-21
AdVANCEA ..o s 4-22
JPA Details view (fOr attrIDULES)eoveruiriirieieieieiieceeet ettt ettt sttt 4-22
Basic MapPPING ...cccoviiiiiiiiiiiiiicc s 4-23
Element Collection Mappingcccccccveeiiieiiiiiiiiiiiieieieinieeeeeee s 4-24
Embedded Mapping ... e 4-24
Embedded ID MappPingcccoevrrrrniieiirirnnicre et 4-25

ID MAPPING «ovevevetiiieietiieee ettt 4-25
Many-to-Many Mapping ... 4-25
Many-to-One Mapping ... s 4-26
One-to-Many Mappingcc.ceeiiieieiiicieie i 4-27
One-t0-One MappPingccccceiiriiiiiiiiiiiee s 4-28
Version MappPing ... 4-29
Type information ..o 4-30
VALUE .ot 4-30
CONVETTETS ..ot 4-30
OFdEIING ..ot 4-31
JOININE SLIAtEZY ..coevviiiiiic e 4-32
Derived IAENILYcccciuiiiiiiiiiiicccecc et 4-32
Primary Key Generation information ... 4-33
JPA Details View (fOr OFM.XIMI) ..cccouiviiiriiiriiirieirercere ettt 4-34
Entity MapPingsccceoiiiiiiiiiiiii s 4-34
Persistence Uit ... 4-35
GEINETATOTS ...ttt s 4-35
QIUEBTIES ..eeeuvieeireeieeett et et et et e e vt et e ebe e teesebeesssaesse e baaesseessaesaseesseesseesseeasseasseasseasseenssessseenseeans 4-36
CONVETTETS ..t 4-36
JPA SEIUCEUTE VIEW ..ottt ettt ettt ettt s et e ste s st e tesbeeaseeseeneesseensesaeenes 4-36

persistence. Xml EdItOr ... 4-37

GeNETAL ..o 4-37
CONNECHION ...ttt 4-38
CUSTOMIZALION ..ttt 4-40
CACRINE ettt 4-42
LOGING vt s 4-44
OPLIONS oot 4-47
Schema Generation ... 4-49
PIOPEItIEs ..oooviiiiiiiiicicc s 4-50

SOUICE .ottt 4-50
PreferenCes..........oouiiiiiiiiiiiiii ettt 4-50
Java Persistence Preferences page — JPAccoovviiinnnnnrr e 4-50
Java Persistence Preferences page — Errors/Warnings ..o 4-51
Project Properties page — JPA ... 4-51
Project Properties page — EclipseLink ..., 4-52
Project Properties page — Entity Generation ... 4-52
Project Properties page — Errors/Warningscccccooeeueieiiieieiiicice s 4-53
Project Properties page — JAXB OPtiONScccovivuiiiiiiiiiiiiiiiiccsnns 4-53
Project Properties page — SChemascccccviiiiieiiiiiniiiciciiccc s 4-53
DHALOGS ..o s 4-54
Edit Join Columns dialogcccccceiriiiiiiiieiiiiiceeeceeeeeee e 4-54
Add Join Column dialogcoveueieiiiiiieieiice 4-54
Select Cascade dialogooiruriiiiiiii e 4-55
New EclipseLink Mapping File dialogcccocevviiirrrrniinrccrrneenree e 4-55
Add Converter dialogcoeurieieiiiic 4-55
Mapping Type Selection dialogccoceioiiiiiiiiiiiece e 4-56
JPA Metadata Conversion dialog ..o 4-56
Make Persistent dialog ..o 4-56
Add QUETY dIAlOG ...eviieieie e 4-56
Add Primary Key Join Column dialogccccceuvvirirrririniniirrricrrrcreses e 4-57
Add Schema Location dialogcccceeieiiiiiniiiiiiiiiii 4-57
Select Schema Location dialog ... 4-57
Add Virtual Attribute dialogccocovviiiiiii e 4-57
JPA Development perspective ... 4-57
ICONS ANd DULEONS ...ttt st 4-58
LCOMIS oo 4-58
BUONIS .o 4-59
Dali developer documentation ..o 4-59

5 Tips and tricks

6 What’s new

vi

EclipseLink multitenancy SUPPOTt...........cccccciiiiiiiiiiii s 6-1
EclipseLink static Weaving SUPPOTt ..o 6-2
Generating EclipseLink dynamic entities from tablesccccocoooviiiiiiiiiiii 6-2
Converting JPA metadata to XIMLc.ccccooiiiiiiiiiiii e 6-3
EclipSeLink 2.4 SUPPOTLL.......ccooooiiiiiiiicice et st 6-3

7 Legal
ADOUL IS COMEENE ...ttt e ettt e e e et e s st e e e s eaeeessaeeeessaeessneeesnsseesanaeeeas 7-1

Index

vii

viii

1

Getting started

This section provides information on getting started with the Java Persistence Tools.
= Requirements and installation
= Dali quick start

For additional information, please visit the Dali home page at:
http://www.eclipse.org/webtools/dali/.

Requirements and installation

Before installing Dali, ensure that your environment meets the following minimum
requirements:

m Eclipse 3.7 (http://www.eclipse.org/downloads)
s Java Runtime Environment (JRE) 1.5 (http://java.com)
» Eclipse Web Tools Platform (WTP) 3.3 (http://www.eclipse.org/webtools)

= Java Persistence API (JPA) for Java EE 5. For example, the EclipseLink
implementation for JPA can be obtained from:
http://www.eclipse.org/eclipselink/

Refer to http://www.eclipse.org/webtools/dali/gettingstarted_main.html for
additional installation information.

Dali is included as part of WTP 3.4. No additional installation or configuration is
required.

Accessibility Features
Dali supports the standard accessibility features in Eclipse, including the following:

= Navigating the user interface using the keyboard.
= Specifying general accessibility preferences for the editor.

See Accessibility Features in Eclipse in the Workbench User Guide for details.

Help Accessibility

The documentation and help contains markup to facilitate access by the disabled
community. See Help Accessibility in the Workbench User Guide for details.

When using the help, be aware of the following:

» Screen readers may not always correctly read the code examples in this document.
The conventions for writing code require that closing braces should appear on an

Getting started 1-1

Dali quick start

otherwise empty line; however, some screen readers may not always read a line of
text that consists solely of a bracket or brace.

s This documentation may contain links to Web sites of other companies or
organizations that we do not control. We neither evaluate nor make any
representations regarding the accessibility of these Web sites.

Dali quick start

This section includes information to help you quickly start using Dali to create
relational mappings between Java persistent entities and database tables.

»s Creating a new JPA project

» Creating a Java persistent entity with persistent fields

Creating a new JPA project

This quick start shows how to create a new JPA project.

1. Select File > New > Project. The Select a Wizard dialog appears.

Tip: You can also select the JPA perspective and then select File >
New > JPA Project.
2. Select JPA Project and then click Next. The New JPA Project page appears.
3. Enter a Project name (such as QuickStart).

4. If needed, select the Target Runtime (such as Apache Tomcat) and configuration,
such as Default Configuration for Apache Tomcat and then click Next. The Java
source page appears.

Note: The Target Runtime is not required for Java SE development.

5. If you have existing Java source files, add them to your classpath and then click
Next. The JPA Facet page appears.

6. On the JPA Facet dialog, select your vendor-specific JPA platform (or select
Generic 2.0), JPA implementation library (such as EclipseLink), database
connection (or create a new connection), define how Dali should manage
persistent classes, and then click Finish.

Tip: Select Override the Default Schema for Connection if you
require a schema other than the one that Dali derives from the
connection information, which may be incorrect in some cases. Using
this option, you can select a development time schema for defaults
and validation.

Eclipse adds the project to the workbench and opens the JPA perspective.

1-2 Dali Java Persistence Tools User Guide

Dali quick start

Figure 1-1 JPA Project in Project Explorer

L™ Project Explarer &3 —| <f;> ¥ =0
= Ig‘] QuickStart
=) JPA Content:
=44 persistence.xml
Quickskart
= [src
== META-IMF
+ persistence. sl
+-E8 IRE System Library [jre6]
+-B| EclipseLink 2.4.0 - Juno
I
i

B JavaScripk Resources

= build

Now that you have created a project with persistence, you can continue with Creating
a Java persistent entity with persistent fields.

Creating a Java persistent entity with persistent fields

This quick start shows how to create a new persistent Java entity. We will create an
entity to associate with a database table. You will also need to add the ADDRESS table
to your database.

1. Select the JPA project in the Navigator or Project Explorer and then click New >
Other. The Select a Wizard dialog appears.

2. Select JPA > Entity and then click Next. The Entity Class page appears.

3. Enter the package name (such as quickstart.demo.model), the class name (such as
Address) and then click Next. The Entity Properties page appears, which enables
you to define the persistence fields, which you will map to the columns of a
database table.

4. Use the Entity Fields dialog (invoked by clicking Add) to add persistence fields to
the Address class:

private Long id;

private String city;

private String country;

private String stateOrProvince;
private String postalCode;
private String street;

Note: You will also need to add the following columns to the
ADDRESS database table:

NUMBER (10,0) ADDRESS_ID (primary key)
VARCHAR2 (80) PROVINCE

VARCHAR?2 (80) COUNTRY

VARCHAR2 (20) P_CODE

VARCHAR2 (80) STREET

VARCHAR2 (80) CITY

5. Click Finish. With the Create JPA Entity wizard completed, Eclipse displays the
Address entity in the JPA Structure view.

Getting started 1-3

Dali quick start

Address. java includes the @Entity annotation, the persistence fields, as well as
getter and setter methods for each of the fields.

Figure 1-2 Address Entity in Address.java

[J] Address.java &3

package quickstart.demo.model;
Fimport java.io.Jerializable;[]

R

* Entity implementation class for Entity: Address
*

W {Entity ‘,

public class Address implements Serializakhle |

Eclipse also displays the Address entity in the JPA Structure view.

Figure 1-3 Address Entity in the JPA Structure View

% IPa Structure 53

= Ga quickstart, demo,model, Address
v
g city
Y8 country
48 stateCrProvince
42> postalCode
48 street

After creating the entity, you must associate it with a database table.
1. Select the Address class in the Project Explorer view.

2. In the JPA Details view, notice that Dali has automatically associated the ADDRESS
database table with the entity because they are named identically.

1-4 Dali Java Persistence Tools User Guide

Dali quick start

Figure 1-4 JPA Details View for Address Entity

JPa Details 52 | Bl Console = g

Type 'Address' is mapped as entity,

+ Entity
Table
Mame: Default {Address) "
Catalog: | Default ~
Schema: | Default (APP) w
Marme: Default (Address) w
ACcess: Default (Field) w
IDclass: | <Mone R4
¥ Caching
F Queries

+ Inheritance

b Attribute Overrides

b Multitenancy

¥ Primary Key Generation
b Converters

» Secondary Tables

b Advanced

Note: Depending on your database connection type, you may need
to specify the Schema.

Tip: After associating the entity with the database table, you should
update the persistence.xml file to include this JPA entity.

Right-click the persistence.xml file in the Project Explorer and select
JPA Tools > Synchronize Class List. Dali adds the following to the
persistence.xml file:

<class>quickstart.demo.model .Address</class>

Now we are ready to map each fields in the Address class to a column in the database
table.

1. Select the id field in the JPA Details view.
2. Right-click id and then select Map As > id.
3. In the JPA Details view, select ADDRESS_ID in the Name field:

Getting started 1-5

Dali quick start

Figure 1-5 JPA Details View for the addresslid Field

JPa Details 32 | Bl Console = g

Attribute 'id' is mapped as [D.

«* ID

Column

Mame: | ADDRESS_ID v
Table: | Default (Address) v
~ Details

[ElInsertable (True)
[E] Updatable (True)

[E]Unique (False)

[E]mullable (True)

Length: Defaulk (255) W
Precision: Defaul {0) «
Scale: Default {0 «

Colurmn definition:

[E]Mutable (True)
F Type

} Converters

¥ Primary Key Generation

Eclipse adds the following annotations to the Address entity:

@Id
@Column (name="ADDRESS_ID")

4. Map each of the following fields (as Basic mappings) to the appropriate database

column:
Field Map As Database Column
city Basic CITY
country Basic COUNTRY
postalCode Basic P_CODE
provinceOrState Basic PROVINCE
street Basic STREET

Dali automatically maps some fields to the correct database column (such as the city
field to the City column) if the names are identical.

1-6 Dali Java Persistence Tools User Guide

Dali quick start

Getting started 1-7

Dali quick start

Getting started 1-8

2

Concepts

This section contains an overview of concepts you should be familiar with when using
Dali to create mappings for Java persistent entities.

s Understanding Java persistence
s Understanding OR mappings
s Understanding Java Persistence API

In addition to these sections, you should review the following resources for additional
information:

» Eclipse Dali project: http://www.eclipse.org/webtools/dali
» Eclipse Web Tools Platform project: http://www.eclipse.org/webtools
= JSR 220 EJB 3.0 specification: http://www.jcp.org/en/jsr/detail?id=220

s EclipseLink project: http://www.eclipse.org/eclipselink

Understanding Java persistence

Persistence refers to the ability to store objects in a database and use those objects with
transactional integrity. In a J2EE application, data is typically stored and persisted in
the data tier, in a relational database.

Entity beans are enterprise beans that contain persistent data and that can be saved in
various persistent data stores. The entity beans represent data from a database; each
entity bean carries its own identity. Entity beans can be deployed using
application-managed persistence or container-managed persistence.

Understanding OR mappings

The Dali OR (object-relational) Mapping Tool allows you to describe how your entity
objects map to the data source (or other objects). This approach isolates persistence
information from the object model-developers are free to design their ideal object
model, and DBAs are free to design their ideal schema.

These mappings transform an object data member type to a corresponding relational
database data source representation. These OR mappings can also transform object
data members that reference other domain objects stored in other tables in the
database and are related through foreign keys.

You can use these mappings to map simple data types including primitives (such as
int), JDK classes (such as String), and large object (LOB) values. You can also use
them to transform object data members that reference other domain objects by way of

Concepts 2-1

Understanding Java Persistence API

association where data source representations require object identity maintenance
(such as sequencing and back references) and possess various types of multiplicity and
navigability. The appropriate mapping class is chosen primarily by the cardinality of
the relationship.

Understanding Java Persistence API

The Java Persistence API (JPA) part of the Java EE EJB 3.0 specification, simplifies Java
persistence. It provides an object-relational mapping approach that lets you
declaratively define how to map Java objects to relational database tables in a
standard, portable way. JPA works both inside a Java EE application server and
outside an EJB container in a Java Standard Edition (Java SE) application. An
application written according to the JPA specification is scalable, transactional, and
secure.

The persistence.xml file

The JPA specification requires the use of a persistence.xml file for deployment. This
file defines the database and entity manager options, and may contain more than one
persistence unit.

To enable you to easily edit this information, Dali provides the persistence.xml Editor.
Alternatively, you can use the Eclipse XML Editor to create and maintain this
information. See "Managing the persistence.xml file" on page 3-20 for more
information.

The orm.xml file

Although the JPA specification emphasizes the use of annotations to specify
persistence, you can also use the orm.xml file to store this metadata. Dali enables you
to create a stub orm.xml file for a JPA project using the Create ORM Mapping File
wizard. See "Managing the orm.xml file" on page 3-28 for more information.

Note: The metadata must match the XSD specification of your
selected JPA implementation.

Dali provides comprehensive support for configuring XML mapping files through the
JPA Details view (for orm.xml) that is nearly identical to the annotation-based
configuration in the Java source. Alternatively, you can also use the Eclipse XML
Editor to create and maintain the metadata information in orm.xml.

Understanding Java Architecture for XML Binding

JAXB (Java Architecture for XML Binding — JSR 222) is the standard for XML Binding
in Java. JAXB covers 100% of XML Schema concepts and EclipseLink provides a JAXB
implementation with many extensions. See http://jcp.org/en/jsr/detail?id=222
for complete information on the JAXB specification.

Although XML is a common format for the exchange of data, for many applications
objects are the preferred programmatic representation — not XML. In order to work at

2-2 Dali Java Persistence Tools User Guide

Understanding Java Architecture for XML Binding

the object-level, the XML data needs to be converted to object form. The mismatch
between XML and objects is known as object-xml impedance mismatch.

JAXB allows you to interact with XML data by using domain-like objects. Unlike DOM
objects, the JAXB content model provides insight into the XML document based on the
XML schema. For example, if the XML schema defines XML documents that contain
customer information, your content model will contain objects such as Customer,
Address, and PhoneNumber. Each type in the XML schema will have a corresponding

Java class.

Concepts 2-3

Understanding Java Architecture for XML Binding

2-4 Dali Java Persistence Tools User Guide

Understanding Java Architecture for XML Binding

Concepts 2-5

Understanding Java Architecture for XML Binding

2-6 Dali Java Persistence Tools User Guide

3

Tasks

This section includes detailed step-by-step procedures for accessing the Dali OR
mapping tool functionality.

Creating a new JPA project

Creating a new JAXB project

Creating Database Web Services from Builder XML
Converting a Java project to a JPA project
Creating a JPA entity

Adding persistence to a class

Adding virtual attributes

Managing the persistence.xml file
Synchronizing classes

Managing the orm.xml file

Specifying additional tables

Specifying entity inheritance

Creating queries

Mapping an entity

Generating entities from tables

Generating tables from entities

Generating dynamic entities from tables
Modifying persistent project properties
Converting JPA metadata to XML

Validating mappings and reporting problems

Creating a new JPA project

Use this procedure to create a new JPA project.

1.

From the Navigator or Project Explorer, select File > New > Project. The Select a
wizard dialog appears.

Tip: You can also select the JPA perspective and then select File >
New > JPA Project.

Tasks 3-1

Creating a new JPA project

Figure 3—-1 Selecting the Create a JPA Project wizard

Select a wizard

Create a JPA project

WWizards:

= JavaEE

(= Java Emitter Termplates

= JavaScript

= JaxE

- Pa
@.? JPA Entities from Tables
& P Entity
& IPA ORM Mapping File

>

= Plug-in Developrment
= Remote System Explarer

(= Server
175 Sl Nevelanment b

IR IR

-3

2. Select JPA Project and then click Next. The New JPA Project page appears.

Figure 3-2 The JPA Project Page

L3 New JPA Project

JPA Project -
Configure JPA project settings, B

Project name: | QuicksStart |

Project location
Use default location

| | Browse. ..
Targek runtime
|Apache Tomcat 7.0 v| [New Runtime. ..]
JPA version
20 5
Configuration
|Default Configuration for Apache Tomeat v7.0 v| [Modify...]

A good starting point For warking with Apache Tomeat v7.0 runtime. Additional facets can
later be installed to add new Functionality to the project.

EAR membership
[add project ko an EAR

Mew Project ...
‘Working sets
[1add project to working sets
Select...
@ [< Back][Mext =] [Finish l [Caneel]

3. Complete the fields on the New JPA Project page to specify the project name and
location, target runtime, and pre-defined configuration.

3-2 Dali Java Persistence Tools User Guide

Creating a new JPA project

Note: The Target runtime is not required for Java SE development.

4. Click Next. The Java source page appears.

Figure 3-3 The Java Source Page
¥ New JPA Project
Java —
Configure project For building a Java application.
Source folders on build path:
[src Add Folder...
Edit...
Remave
Default output Folder:
| buildiclasses
@ [< Back ” ek] [Finish] [Cancel]

5. Click Add Folder to add existing Java source files to the project.

6. Click Next. JPA Facet page appears.

Tasks 3-3

Creating a new JPA project

Figure 3—4 The JPA Facet Page

£} New JPA Project N(=1[3

JPA Facet L

Configure JPA settings, i
Platfiorm
| EclipseLink. 2.4.x v |

JP& implementation

Type: |User Library v|
B EclipseLink 2.4.0 - Juna =i
Connection
<Mone = w

Add connection. ..

Persistent class management
() Discover annotated classes automatically

() Annotated classes must be listed in persistence, xml

[create mapping file (orm.sxml)

@j [Finish H Cancel]

7. Complete the fields on the JPA Facet page to specify your vender-specific
platform, JPA implementation library, and database connection.

Click Manage libraries to create or update your JPA user libraries. Click
Download libraries to obtain additional JPA implementation libraries.

If Dali derives the incorrect schema, select Override the Default Schema for
Connection. Using this option, you can select a development time schema for
defaults and validation.

If you clear the Create mapping file (orm.xml) option (which is selected by
default), you can later add a mapping file to the project using the Create ORM
Mapping File wizard.

3-4 Dali Java Persistence Tools User Guide

Creating a new JAXB project

Note: If the server runtime does not provide a JPA implementation,
you must explicitly select a JPA implementation library.

To insure the portability of your application, you must explicitly list
the managed persistence classes that are included in the persistence
unit. If the server supports EJB 3.0, the persistent classes will be
discovered automatically.

Depending on your JPA implementation (for example, Generic or
EclipseLink), different options may be available when creating JPA
projects.

8. Click Finish. Dali creates the new JPA project.

You should now open the JPA Development perspective.

Creating a new JAXB project
Use this procedure to create a new JPA project.

1. From the Navigator or Project Explorer, select File > New > Project. The Select a
wizard dialog appears.

Tip: You can also select the JPA perspective and then select File >
New > JAXB Project.

Figure 3-5 Selecting the Create a JAXB Project wizard

Select a wizard

Create a JPA project

‘Wizards:

(= General ~
= vs

(= Edlipse Modeling Framewark

= E®

(= dava

(= JavaEE

(= Javascript

= pa

(= Plug-in Development
(= 2N

(= web

[#-[25. Framnlas

2. Select JAXB Project and then click Next. The New JAXB Project page appears.

Tasks 3-5

Creating a new JAXB project

Figure 3-6 The JAXB Project Page

= New JAXB Project

JAXB Project ;
,'Zonfigure JARE project settings, ﬁ

Project name: | JAXE_QuickStart |

Project location
Use default location

Target runkime

|Apache Tomeat 7.0 w | [New Runtime. ..]

8B version

B -

Configuration

|DeFauIt Configuration for Apache Tomecat v7.0 v| [Modify...]

A good starting point For working with Apache Tomcat 7.0 runtime. Additional Facets can
later be installed to add new Functionality to the project.

‘Working sets

[add project ko working sets

® [< Back][Mext = H Finish H Cancel]

3. Complete the fields on the New JAXB Project page to specify the project name and
location, target runtime, and pre-defined configuration.

Note: The Target runtime is not required for Java SE development.

4. Click Next. The Java source page appears.

Figure 3-7 The Java Source Page

¥ New JPA Project

Java —
Configure project for building a Java application,

Source folders on build path:

[src Add Folder...

Default output Folder:

| buildiclasses

® [< Back ” ek H Finish H Cancel]

5. Click Add Folder to add existing Java source files to the project.
6. Click Next. JAXB Facet page appears.

3-6 Dali Java Persistence Tools User Guide

Creating Database Web Services from Builder XML

Figure 3-8 The JAXB Facet Page

= New JAXB Project

JAXE Facet — b

Configure JAXE settings, i
Flatform
| Generic JaxB 2.1 |

JAXE implementation

Type: |User Library v|
=i EclipseLink 2.4.0 - Juna =i
#

@j [Finish] [Cancel]

7. Complete the fields on the JAXB Facet page to specify your vender-specific
platform, JPA implementation library, and database connection.

Click Manage libraries to create or update your JPA user libraries. Click
Download libraries to obtain additional JPA implementation libraries.

Note: Depending on your JAXB implementation (for example,
Generic or EclipseLink), different options may be available when
creating JAXB projects.

8. Click Finish. Dali creates the new JAXB project.

You should now open the JPA Development perspective.

Creating Database Web Services from Builder XML
Use this procedure to create a new JPA project.

1. From the Navigator or Project Explorer, select File > New > Project. The Select a
wizard dialog appears.

Tasks 3-7

Creating Database Web Services from Builder XML

Figure 3-9 Selecting the Web Services from Builder XML wizard

Select a wizard

—

Generate Web Services from Builder XML

‘Wizards:

@ Class

ﬁ} Interface

@ Java Project

5!? Java Project from Existing Ant Buildfile

‘_{Sﬁ Plug-in Project

(= General

(= Connection Profiles

= cvs

(= Database Web Services
We orm Bu

(= Edlipse Modeling Framewark

= E1B

= it

5 lawa

>

[0 B -

IR RE R

<

©

2. Select Database Web Services > Web Services from Builder XML and then click
Next. The Web Dynamic page appears.

Figure 3-10 The Web Dynamic Project Page

= New Database Web Services from Builder, XML

Web Dynamic Project

Specify project for Database Web Services

Select destination project:

©

3. Select the Dynamic Web Project, and click Next. The Select Builder XML File page
appears.

3-8 Dali Java Persistence Tools User Guide

Converting a Java project to a JPA project

Figure 3-11 The Select Builder XML File Page

= New Database Web Services from Builder, XML

Select Builder XML File

Specify XML file ko generate Database Web Services from

‘Workspace Files =

Import Files, ..
-
@

4. Select the XML file and click Next. The Driver Files page appears

Figure 3—-12 The Driver Files Page

= New Database Web Services from Builder, XML

Driver files
Specify driver JAR files
Driver files:
@j [Finish] [Cancel]

5. Click Add to add additional JAR files to the project.
6. Click Finish. Dali adds the new JAXB project.

You should now open the JPA Development perspective.

Converting a Java project to a JPA project
Use this procedure to convert an existing Java project to a JPA project.

1. From the Navigator or Project explorer, right-click the Java project and then select
Configure > Convert to JPA Project. The Project Facets page of the Modify
Faceted Project wizard appears.

Tasks 3-9

Converting a Java project to a JPA project

Figure 3—-13 Modify Faceted Project Page

& Modify Faceted Project

Project Facets

Select the Facets that should be enabled for khis project,

Configuration: |Default JPa 2.0 Configuration

Projeck Facet

& Java

4 Java Persistence
[=l JavaSeript Toolkit
[¥lesl Utiliey Module

‘ersion
5.0
2.0
1.0

-

 Detail

®@

s | Runtimes

< Java Persistence 2.0

Adds suppork For writing persistent meta-data using Java
Persistence architecture,

Requires the Following Facet:

[I] Java S.00r newer

[Mext = H Finish H Cancel

The JPA Facet page appears.

3-10 Dali Java Persistence Tools User Guide

Change the Configuration to Default JPA Configuration.
Click Next. The Java source page appears (see Figure 3-3).

Click Add Folder to add existing Java source files to the project and click Next.

Creating a JPA entity

Figure 3-14 JPA Facet Page

£} New JPA Project N(=1[3

JPA Facet L

Configure JPA settings, i

Platfiorm

| EclipseLink. 2.4.x v |

JP& implementation

Type: |User Library v|
B EclipseLink 2.4.0 - Juna =i
Connection
<Mone = w

Add connection. ..

Persistent class management
() Discover annotated classes automatically

() Annotated classes must be listed in persistence, xml

[create mapping file (orm.sxml)

@j [Finish H Cancel]

5. Complete the fields on the JPA Facet page to specify your vender-specific
platform, JPA implementation library, and database connection.

Click Manage libraries to create or update your JPA user libraries. Click
Download libraries to obtain additional JPA implementation libraries.

If Dali derives the incorrect schema, select Override the Default Schema for
Connection. Using this option, you can select a development time schema for
defaults and validation.

If you clear the Create mapping file (orm.xml) option (which is selected by
default), you can later add a mapping file to the project using the Create ORM
Mapping File wizard.

6. Click Finish.

The Dali OR Mapping Tool adds the JPA implementation libraries to your project and
creates the necessary orm.xml and perisistence.xml files.

Creating a JPA entity

Use this procedure to create a JPA entity with the Create JPA Entity wizard:

Tasks 3-11

Creating a JPA entity

1. From the Navigator or Project Explorer, select the JPA project and then File > New
> Other. The Select a Wizard dialog appears.

Figure 3—15 Selecting the Create a JPA Entity Wizard

Select a wizard
Create a JPA Entiby |

‘Wizards:

= Java -~
= JavaEE
(= Java Emitter Termplates
= JavaScript
(= AR
SR
@.? JPA Entities from Tables 3
G e
& IPA ORM Mapping File
54 IPA Project
(= EclipseLink
= Plug-in Developrient
(== Remate System Explorer
[Servar —

@

Tip: You can also select the JPA perspective and then select File >
New > JPA Entity.

2. Select JPA > JPA Entity and then click Next. The Entity Class page appears.

3-12 Dali Java Persistence Tools User Guide

Creating a JPA entity

Figure 3-16 The Entity Class Page

£ New JPA Entity (B[]
Entity class _\ﬁ
Specify package, class name, and inheritance properties, .
I
Project: | CuickStart - |
Source Folder: | QuickStartsrc | [Browse...]
Java package: | | [Browse...]
Class name: | |
Superclass: | | [Browse...]
Inheritance
() Entity
() Mapped superclass
[J1nheritance:

ML entity mappings
[add to entity mappings in XML

Browse, .,
®

Complete the fields on the Entity Class page as follows:
= Select the JPA project in the Project field.

= In the Source Folder field, select, or enter, the location of the JPA project’s src
folder.

= Select, or enter, the name of the class package for this entity in the Java
Package field.

» Enter the name of the Java class in the Class name field.
= Ifneeded, enter, or select a superclass.

s If needed, complete the Inheritance section as follows (these properties are
optional):

- Accept the Entity option (the default) to create a Java class with the
@Entity option.

- Alternatively, select Mapped superclass (if you defined a super class).

- Select Inheritance and then select one of the JSR 220 inheritance mapping
strategies (SINGLE_TABLE, TABLE_PER_CLASS, JOINED).

- Select Add to entity mappings in XML to create XML mappings in
orm.xml, rather than annotations.

3. Click Next to proceed to the Entity Properties page where you define the
persistent fields for the entity.

Tasks 3-13

Creating a JPA entity

Figure 3—17 The Entity Properties Page

& New IPA Entity

Entity Properties = 9
- |
Specify package, class name, and inheritance properties, l\k;_

Entity name: | Address |

Table name
Use default

Table name: |
Entity fields

Key | Mame Type Add...

O id lang

O city java.lang, string

|:| counkry java.lang.skring

|:| stateCrProvince java.lang.Skring

O postalCode java.lang.String

|:| street java.lang.string

Access bype

@rield
OProperty
@j [Finish l[Cancel]

Alternatively, click Finish to complete the entity.

4. Complete the page as follows:

1.

If needed, enter a new name for the entity. Doing so results in adding a name
attribute to the @Entity notation (@Entity (name="EntityName")).

Accept Use default (the default setting) to use the default value for the name
of the mapped table. Entering a different name results in adding the @Table
notation with its name attribute defined as the new table

(@Table (name="TableName")).

Note: The Entity Name-related options are not available if you
selected Mapped superclass on the Entity Class page

Add persistence fields to the entity by clicking Add. The Entity Fields dialog
appears.

Figure 3-18 The Entity Fields Dialog

Type | ink v‘ [Brnwsa...]
Name | id |
4. Select a persistence type from the Type list. You can retrieve additional types
using the Browse function.
5. Enter the field name and then click OK. Repeat this procedure for each field.

Dali Java Persistence Tools User Guide

Adding persistence to a class

6. If needed, select Key to designate the field as a primary key.

7. Select either the Field-based access type (the default) or Property-based access
type.
5. Click Finish. Eclipse adds the entity to your project.

Adding persistence to a class

Entity

You can make a Java class into one of the following persistent types:
= Entity

= Embeddable

= Mapped superclass

To add persistence to an existing Java class:

1. Right-click the class in the Project Explorer and select JPA Tools > Make
Persistent. The Make Persistent dialog appears.

Figure 3—-19 Make Persistence Dialog

1} Make Persistent |:|EI g|

Make Persistent =
| i
Make the selected Java classes persistent by selecting Java annotations or mapping file l\&;

@ Annokate in Java
(O add to ZML mapping File

Type Mapping
® address - quickstart.dema.model @3 Entity

List in persistence, xml

@j | Finish |[Cancel]

2. Complete the fields on the Make Persistent dialog, specify the persistence
mapping for each class, and click Finish.

Dali adds the necessary annotation or entry in the XML mapping file for the class.

An Entity is a persistent domain object.
An entity can be:

= Abstract or concrete classes. Entities may also extend non-entity classes as well as
entity classes, and non-entity classes may extend entity classes.

An entity must have:

= A no-arg constructor (public or protected); the entity class may have other
constructors as well.

Tasks 3-15

Adding persistence to a class

Each persistent entity must be mapped to a database table and contain a primary key.
Persistent entities are identified by the @Entity annotation.

Use this procedure to add persistence to an existing entity:
1. Open the Java class in the Project Explorer.
2. Select the class in the JPA Structure view.

3. In the JPA Details view, click the mapping type hyperlink to access the Mapping
Type Selection dialog. In the following figure, clicking entity invokes the dialog
from the JPA Details View.

Figure 3-20 The Mapping Type Hyperlink

P4 Detals 52 | Bl Console = 8
Type '‘Address'is mapp
~ Entity
Table
Mame: Default (Address) w
Catalog: | Default v
schema: | Defaulk (APPY w
Mame: Default {Address) w
Arccess: Default (Field) -
IC dass: | <Mone w
¥ Caching
b Queries

» Inheritance

» Attribute Overrides

¥ Multitenancy

F Primary Key Generation
¥ Converters

b Secondary Tables

¥ Advanced

Tip: You can also change (or add) persistence for an entity by
right-clicking the class in the JPA Structure View and then clicking
Map As > Entity.

4. Select Entity from the Mapping Type Selection dialog and then click OK.

3-16 Dali Java Persistence Tools User Guide

Adding persistence to a class

Figure 3-21 The Mapping Type Selection Dialog

& Mapping Type Selection |Z|@@

Enter mapping type or paktern (*, 7, or camel case): -

Makching items:

® Unmapped

(@ Embeddable

G Entity

@,Mapped Superclass

& Ertity

@ [QK H Cancel]

5. Complete the remaining JPA Details view (for entities).

Embeddable

An Embedded class is a class whose instances are stored as part of an owning entity; it
shares the identity of the owning entity. Each field of the embedded class is mapped to
the database table associated with the owning entity.

To override the mapping information for a specific subclass, use the
@AttributeOverride annotation for that specific class.

An embeddable entity is identified by the @Embeddable annotation.

Use this procedure to add embeddable persistence to an existing entity:

1. Open the Java class in the Project Explorer.

2. Select the class in the JPA Structure view.

3. Click the mapping type hyperlink to open the Mapping Type Selection dialog.
4. Select Embeddable and then click OK.

Tasks 3-17

Adding persistence to a class

Figure 3-22 Mapping Type Selection Dialog (Embeddable)

& Mapping Type Selection |Z|@]E|

Enter mapping type or paktern (*, 7, or camel case): -

Makching items:

® Unmapped
Embeddable
@ Entity
G’.’,Mapped Superclass

(@ Embeddable

@ [QK H Cancel]

5. Complete the remaining JPA Details view (for entities).

Mapped superclass

An entity that extends a Mapped Superclass class inherits the persistent state and
mapping information from a superclass. You should use a mapped superclass to define
mapping information that is common to multiple entity classes.

A mapped superclass can be:

= Abstract or concrete classes

A mapped superclass cannot be:

= Be queried or passed as an argument to Entity-Manager or Query operations
= Be the target of a persistent relationship

A mapped superclass does not have a defined database table. Instead, its mapping
information is derived from its superclass. To override the mapping information for a
specific subclass, use the @AttributeOverride annotation for that specific class.

A mapped superclass is identified by the @MappedSuperclass annotation.

Use this procedure to add Mapped Superclass persistence to an existing entity:
1. Open the Java class in the Project Explorer.

2. Select the class in the JPA Structure view.

3. In the JPA Details view, click the mapping type hyperlink to open the Mapping
Type Selection dialog.

4. Select Mapped Superclass and then OK.

3-18 Dali Java Persistence Tools User Guide

Adding virtual attributes

Figure 3-23 Mapping Type Selection Dialog (Mapped Superclass)

& Mapping Type Selection |Z|@

Enter mapping type or paktern (*, 7, or camel case): -

Makching items:
@ Unmapped
@ Embeddable
@ Entity

Ll Mapped Superclass

@, Mapped Superclass

':':’:' [[8]4 H Cancel]

5.

Complete the remaining JPA Details view (for entities).

Adding virtual attributes

To add a virtual attribute to an entity:

1.
2.

Open the eclipselink-orm.xml mapping file.

In the JPA Structure view, right-click an entity and select Add Virtual Attribute.

The Add Virtual Attribute dialog appears.

Figure 3-24 Add Virtual Attribute Dialog

£} Add Virtual Attribute 53
Mame: | |
Map as: | L3 |
Attribute bype: | | [Browse...]
0

3.

Complete the fields on the Add Virtual Attribute dialog and click OK. Dali adds

the virtual attribute to the entity.

Tasks 3-19

Managing the persistence.xml file

Figure 3-25 Virtual Attribute

% JPa Structure 37 OEOutine = 8

= :‘39 Entity Mappings
= @5 Inventory
2 itemsku
L] price
L] quankity
Y8 wersion

2 @

Managing the persistence.xml file

When you create a project, Eclipse creates the META-INF\persistence.xmnl file in the
project’s directory.

Example 3—-1 Sample persistence.xml File

<?xml version="1.0" encoding="UTF-8"?>
<persistence version="2.0" xmlns="http://java.sun.com/xml/ns/persistence"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://java.sun.com/xml/ns/persistence
http://java.sun.com/xml/ns/persistence/persistence_2_0.xsd">
<persistence-unit name="QuickStart">
<class>quickstart.demo.model .Address</class>
<class>quickstart.demo.model.Item</class>
</persistence-unit>
</persistence>

You can manage this file either through the XML editor or through the persistence.xml
Editor.

3-20 Dali Java Persistence Tools User Guide

Managing the persistence.xml file

Figure 3-26 The persistence.xml Editor

& persistence.xml 52 = 0
General @
General
Mame: | QuickStart |

Persistence provider: | Eclipselink |

Description: | |

+ Managed Classes
Specify the list of classes to be managed in this persistence unit,

%quickstart.demo.model.nddress Add...
@3quickstart.demo.model.ltem
Open
Remave
[E] Exclude detautt EclipseLink XML mapping file (False)
+ XML Mapping Files
Specify the XML mapping files For this persistence unit,
Add...
Remave
[E]Exclude unlisted EclipseLink ML mapping fils (False)
~ JAR Files
Add...
Remave

General | Connection | Customization | Caching | Logging | Options | Schema Generation | Properties | Source

Tasks 3-21

Managing the persistence.xml file

Note: Depending on your JPA implementation (for example,
EclipseLink), the following pages may be available in the
persistence.xml Editor:

= General — Use this page to define the classes, mapping files, and
JAR files for the persistence unit.

= Connection — Use this page to define the datasource (JTA and
non-JTA elements) for the project.

s Customization — Use this page to define change-tracking and
session customizer-related properties.

= Caching - Use this page to define caching properties.
= Logging — Use this page to define logging properties.

= Options — Use this page to define session and target database
properties.

= Schema Generation — Use this page to define DDL-related
properties.

= Properties — Use to add or remove vender-specific properties.

= Source - Use to view or modify the XML source of the
persistence.xml file.

For projects using the EclipseLink JPA implementation, the
Connections page also includes JDBC connection pool properties.

If the project uses the Generic platform, then only the General,
Connection, Properties and Source pages are available.

To use the persistence.xml Editor:
1. Open the peristence.xnl file. The General page of the editor appears.

2. Use the General page to define the persistence.xnl files
<persistent-unit>-related attributes as well as the <provider>, and <class>
elements (described in the following table).

Tip: The persistence.xml Editor’s Source page enables you to view
and edit the raw XML file.

3-22 Dali Java Persistence Tools User Guide

Managing the persistence.xml file

Figure 3-27 General tab of persistence.xml Editor

i persistence.xml 52 = 0
A
General @
General
Mame: QuickStart

Persistence provider: | Eclipselink
Description:

+ Managed Classes
Specify the list of classes to be managed in this persistence unit,

@5quickstart.demo.model.nddress

@5quickstart.demo.model.ltem

[E] Exclude detautt EclipseLink XML mapping file (False)

+ XML Mapping Files
Specify the XML mapping files For this persistence unit,

[E]Exclude unlisted EclipseLink ML mapping fils (False)
~ JAR Files

General | Connection | Customization | Caching | Logging | Options | Schema Generation | Properties | Source

3. Complete each field on the General page.

4. Use the Connection page to define the <jta-data-source> and
<non-jta-data-source> elements as follows:

To configure the JTA (Java Transaction API) source used by the persistence
provider:

1. Select JTA from the Transaction Type list.

2. Enter the global JNDI name of the data source.

To configure a non-JTA data source:

1. Select Resource Local from the Transaction Type list.

2. Enter the global JNDI name of the data source.

Note: Select Default() to use the data source provided by the
container.

For projects using the Generic platform, you can also define the EclipseLink
connection pool driver, connection pool driver, URL, user name and password.

Tasks 3-23

Managing the persistence.xml file

Figure 3-28 Connection tab of persistence.xml Editor

i persistence.xml 52 = 0
. I
Connection @

Persistence Unit Connection
Configure the data source or JDEC connection properties,

Transaction kype: Default {ITA) v

Batch writing: Default {Mone) w

[E] statement caching:
[E] mative 5oL (False)

Database

ITA data source:

EclipseLink connection poal

~ Read Connection ~ Write Connection

Exclusive connections

General | Connection | Customization | Caching | Logging | Options | Schema Generation | Properties | Source

5. Complete each field on the Connection page.

6. Use the table in the Properties page to set the vendor-specific <properties>
element.

To add <property> elements:
1. Click Add.

2. Enter the <name> and <value> attributes for the <property> element using the
table’s Name and Value fields.

To remove a <property> element, select a defined property in the table and then
click Remove.

Note: If the project uses the EclipseLink platform, the connection
page also includes parameters for JDBC connection pooling.

3-24 Dali Java Persistence Tools User Guide

Managing the persistence.xml file

Figure 3-29 Customization tab of persistence.xml Editor

i persistence.xml 52 = 0
. A i~
Customization (&)
Persistence Unit Customization
Set default or entity specific EclipseLink customization and validation properties,
Weaving
Weaving: Default {Weave Dynamically) w
[E]Lazy (True)
[E]Fetch groups (True)
[E]Internal (True)
[E]Eager (False)
[E] change tracking (True)
[E] validation only (True)
[E]Mapping files schema validation (False)
[E] Throw exceptions (True)
Exception handler:

Session custonizers

Profiler: Default {MoProfiler) w

General | Connection | Customization | Caching | Logging | Options | Schema Generation | Properties | Source

7. Complete each field on the Customization page.

Additional pages may be available for the persistence.xml editor, depending on your
JPA provider. See "persistence.xml Editor" on page 4-37 for more information.

s Caching page

Figure 3-30 Caching tab of persistence.xml Editor

i persistence.xml 52 = 0
. =
Caching @

Persistence Unit Caching
Configure the session or entity specific EclipseLink caching properties,

Shared cache mode: | Default {Disable Selective) w
Default cache bype: | Default {Weak with Soft Subcache) w
Default cache size: Default {100)

Flush clear cache: Default {Drop Invalidate) w

General | Connection | Customization | Caching | Logging | Options | Schema Generation | Properties | Source

s Logging page

Tasks 3-25

Managing the persistence.xml file

Figure 3-31 Logging tab of persistence.xml Editor

i persistence.xml 52 = 0
. i~
Logging @
Persistence Unit Logging
Configure the Eclipselink logging properties,
Logging lewvel: Default (Info) v
[=] Timestamp (True)
[E] Thread (True)
[E] 5ession {True)

[E]Exceptions (False)
[E] Connection {True)

Log file: Default {stdout) w
Logget: Default (DefaultLogger) v

¥ Logging Categories

General | Connection | Customization | Caching | Logging | Options | Schema Generation | Properties | Source
= Options page

Figure 3-32 Options tab of persistence.xml Editor

i persistence.xml 52 = 0
. =
Options @

EclipseLink Session Options
Configure the Eclipselink session options,

Session name:; Default) v
Sessions XML Default) v
Target database: Default {auto) v
Target server: Default {Mone) v

Event listener:

[E]Include descriptor queries (True)

Miscellaneous Options
Configure the miscellaneous options,
[E] Temporal mutable (False)

Lock timeout: Default (51
Query timeout: Default (51
Walidation mode: Default {Auta)

Walidate pre-persist group:

Walidate pre-update group:

Validate pre-remove group:

General | Connection | Customization | Caching |Logging | Options | Schema Generation | Properties | Source

= Schema Generation page

3-26 Dali Java Persistence Tools User Guide

Managing the persistence.xml file

Figure 3-33 Schema Generation tab of persistence.xml Editor

i persistence.xml 52 = 0
. N
Schema Generation @

Persistence Unit Schema Generation
Configure the Eclipselink schema generation properties,

DOL generation bype: Default {Mone) w
Output mode: w
DOL generation location: | Default) w
Create DOL file name: Default {createDOL.sql) w
Drop DOL file name: Default {dropDDL.sql} w

General | Connection | Customization | Caching |Logging | Options | Schema Generation | Properties | Source
»s Properties page

Figure 3-34 Properties tab of persistence.xml Editor

i persistence.xml 52 = 0
. /-\.
Properties @

This kable lists all properties that are defined For this persistence unit,

Mame Yalue
eclipselink. cache. type. default Softweak
eclipselink.logging. level ALL
eclipselink.logging. timestamp true
eclipselink.logging. exceptions true
eclipselink.logging. session true
eclipselink.logging. thread true

General | Connection | Customization | Caching |Logging | Options | Schema Generation | Properties | Source
= Source page

Figure 3-35 Source tab of persistence.xml Editor

i persistence.xml 52 = 0

<?xml wersion="1.0" encoding="UTF-"7:> b
<persistence version="Z2.0" xmlns="http: //iava.sun.com xmls
<persistence-unit name="QuickStart"s
<provider>Eclipselink</providers
<mwapping-£ile>META-INF/orm. xml</mapping-£files>
<mwapping-£ile>META-INF/eclipselink-orm. xml</mappin
<zlassrquickstart.demo.model. Address</clasas
i <zlassrquickstart.demo.model, Item</classs>
<properties>
<property name="eclipselink.cache. tyvpe.default
<property name="eclipselink.logging. levrel™ wval
<property name="eclipselink.logging. timestamp'
<property name="eclipselink.logging. exceptions
<property name="eclipselink.logging.session™ v
<property name="eclipselink.logging. thread™ vs

</properties>
</persistence-unit:
</persistences
v
£ >

General | Connection | Customization | Caching |Logging | Options | Schema Generation | Properties | Source

Tasks 3-27

Synchronizing classes

Synchronizing classes

As you work with the classes in your Java project, you will need to update the
persistence.xml file to reflect the changes.

Use this procedure to synchronize the persistence.xnl file:

1. Right-click the persistence.xml file in the Project Explorer and select JPA Tools >
Synchronize Class List.

Note: Use this function if you selected Annotated classes must be
listed in the persistence.xml option in the JPA Facet page. In general,
you do not have to use this function within the container.

Figure 3-36 Synchronizing the persistence.xml File

L™ Project Explorer i3 —| Q:p =0

=122 QuickStart
[=<H+ IPA Conkent
[=-44 persistence. xml

CuickStart
=2 sre
== META-INF
=) IRE System Libe] "% '
= Eclipselink 2.4.0 Show In Alt+shift+w 4
B Javascript Reso Open F3
(& buid Open with 4

LN e L

Replace With 4

JPA Tools Synchronize Class List
Source 4

Properties Alt+Enter

Dali adds the necessary <class> elements to the persistence.xml file.

2. Use the persistence.xml Editor to continue editing the persistence.xml file.

Managing the orm.xml file

When creating a JPA project, (see "Creating a new JPA project”) you can also create the
orm.xml file that defines the mapping metadata and defaults.

Eclipse creates the META-INF\orm.xml file in your project’s directory:

Example 3—-2 Sample orm.xml File

<?xml version="1.0" encoding="UTF-8"?>
<persistence version="<PERSISTENCE_VERSION>"
xmlns="http://java.sun.com/xml/ns/persistence"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://java.sun.com/xml/ns/persistence
http://java.sun.com/xml/ns/persistence/persistence_1_0.xsd">
<persistence-unit name="<PERSISTENCE_UNIT NAME>">
<provider="<PERSISTENCE_PROVIDER>" />
</persistence-unit>
</persistence>

3-28 Dali Java Persistence Tools User Guide

Managing the orm.xml file

Creating an orm.xml file

If you opt not to create an orm.xml file when you create a JPA project, you can create
one using the Create ORM Mapping File wizard.

Use this procedure to create an orm.xml file:

1. From the Navigator or Project Explorer, select File > New > Other. The Select a
Wizard dialog appears.

Figure 3-37 The Select a Wizard Dialog

- B

Create a JPA ORM Mapping File |

Select a wizard

Wizards:

(= 4% ”
(= Ipa
G’é IPA Entities from Tables
G JPa Entity
g 05, ORM Mapping Fils
G IPa Project
== EdlipseLink
& Dynamic Entities From Tables
GSE,? EclipseLink Dynaric Enkity
ﬁ? EclipseLink ORM Mapping File
== Plug-in Development
(= Remote System Explorer
= Server

-3 Sl Newelnnment A
N
@

2. Select JPA ORM Mapping File and then click Next. The Mapping File page of the
Create ORM Mapping File wizard appears.

If you are using EclipseLink, you can select EclipseLink > EclipseLink ORM
Mapping File.

Tasks 3-29

Managing the orm.xml file

Figure 3-38 New Mapping File Location Page

12 New Mapping File |:|E

Mapping file

Specify mapping File name and lacation

1

Enter or select the parent folder:

| Quickstart/src/MET A-INF |

1= Dali User Guide Test
= 'bd QuickStart
(= .settings
(= build
== sre
&

(= quickstart

File narne: | arrn. il

® [< Back][Mext = H Finish H Cancel]

3. Select the name and location of your mapping file and click Next. The Mapping
File Options page appears.

Figure 3-39 New Mapping File Options Page

INEW Mapping E
Mapping file \
Specify mapping file options 4 F
L
Default access: | <Mone > v |

Add ko persistence unit

| QuickStart w |

@ Mexk = [Finish H Cancel]

4. Define the properties in the Mapping File Options page and click Finish. The
orm.xml file appears in the src directory of the selected JPA project. You can
manage the orm.xml file using the JPA Details view or through the XML Editor.
See also JPA Details view (for orm.xml).

Working with orm.xml file
You can work with the orm.xml by using the JPA Details view.
Use this procedure to work with the orm. xm1 file:
1. Right-click the orm.xnl file in the Project Explorer and select Open.
2. In the JPA Structure view, select EntityMappings.

3. Use the JPA Details view to configure the entity mapping and persistence unit
defaults.

3-30 Dali Java Persistence Tools User Guide

Specifying additional tables

Figure 3—40 JPA Details view for EntityMappings (orm.xml)

IPs Detals 52 Bl Console = 5
+ Entity Mappings
Package:
Schema: Default (APP) -
Catalog: | Default w
Access: A

+ Persistence Unit

[1#ML mapping metadata complete

[cascade persist

Schema: | Defaulk (APF) v
Catalog: | Default 2
Access: v

[pelimited identifiers

~ Generators

* Queries

4. Complete the fields on the .

Specifying additional tables

Add a secondary table annotation to an entity if its data is split across more than one
table.

To add a secondary table to the entity,
1. Select the entity in the Project Explorer.

2. In the JPA Details view, select the Secondary Tables information.

Figure 3—41 Specifying Secondary Tables

+ Secondary Tables

Primary ke join columns

3. Click Add to associate an additional table with the entity. The Edit Secondary
Table dialog appears

Tasks 3-31

Specifying entity inheritance

4. Select the Name, Catalog, and Schema of the additional table to associate with the
entity.

Eclipse adds the following annotations the entity:

@SecondaryTable (name="NAME", catalog = "CATALOG", schema = "SCHEMA")

To override the default primary key:

1. Enable the Overwrite default option, then click Add to specify a new primary key
join column. The Create New Primary Key Join Column appears.

2. Select the Name, Referenced column name, Table, and Column definition of the
primary key for the entity.

Eclipse adds the following annotations the entity:

@SecondaryTable (name="NAME", catalog = "CATALOG", schema = "SCHEMA",
pkJoinColumns = {@PrimaryKeyJoinColumn (name="1id", referencedColumnName =
"id"),@PrimaryKeyJoinColumn (name="NAME", referencedColumnName = "REFERENCED
COLUMN NAME", columnDefinition = "COLUMN DEFINITION")})

Specifying entity inheritance

An entity may inherit properties from other entities. You can specify a specific strategy
to use for inheritance.

Use this procedure to specify inheritance (@Inheritance) for an existing entity
(@Entity):

1. Select the entity in the Project Explorer.

2. In the JPA Details view, select the Inheritance information.

Figure 3-42 Specifying Inheritance

+ Inheritance

Strategy: Default (Single Table) -
Discriminator valug: |Default (Address) w
Discriminator colurnn

Marme: Default (DTYPE) -
Type: Default {String) oy
+ Details

Primary key join columns

[override default

3. In the Strategy list, select one of the following the inheritance strategies:
= A single table (default)
= Joined table
= One table per class

4. Complete the fields in the Inheritance area.

3-32 Dali Java Persistence Tools User Guide

Creating queries

Use the following table to complete the remaining fields on the tab. See
"Inheritance” on page 4-18 for additional details.

Eclipse adds the following annotations the entity field:

@Inheritance (strategy=InheritanceType.<INHERITANCE STRATEGY>)
@DiscriminatorColumn (name="<DISCRIMINATOR_COLUMN>",
discriminatorType=<DISCRIMINATOR_TYPE>)
@DiscriminatorValue (value-"<DISCRIMINATOR_VALUE>")
@PrimaryKeyJoinColumn (name="<JOIN_ COLUMN_NAME>",
referencedColumnName = "<REFERENCED COLUMN_NAME>")

The following figures illustrates the different inheritance strategies.

Figure 3—-43 Single Table Inheritance

E wEHICLE
ID|PASS_CAP |WHCL TYPE |FUEL_CAP | FUEL_TYPE |CAR_DESC | BICYCLE_DES
101 B Mountain Bike
2|3 5
38 F 20 Dieseal
45 c 15 Unleaded Sedan
Figure 3—44 Joined Table Inheritance
FE vEHICLE
1D PASS_CAPWHCL TYPE
11 B
203 ﬂ
38 s
4 15 T —l
[F FUELED VEHCLE B BicYcLE
1D FUEL_CAP| FLUEL TYPE 1D DESCRIFTION
/3 20 Digsel 1 Mountain Bike
\DT Unleaded
E car
10| DESCRIFTION
4 | Sedan

Creating queries

Named queries improve application performance because they are prepared once and
they (and all of their associated supporting objects) can be efficiently reused thereafter,
making them well suited for complex and frequently executed operations. Named
queries use the JPA query language for portable execution on any underlying

database; named native queries use the SQL language native to the underlying
database.

Use this procedure to add @NamedQuery and @NamedNativeQuery annotations to the
entity.

To create a named query:
1. Select the entity in the Project Explorer.

2. In the JPA Details view, expand the Queries area.

Tasks 3-33

Mapping an entity

Figure 3—-45 JPA Details, Queries Tab

* [ueries

Add...

Remave

3. Click Add to add a new query. The Add Query dialog appears

Figure 346 Add Query Dialog

1 Add Query rz|
Create new query

Create a new query setting both the ‘name’ and the 'type’
Mame: |
Type: L3

Mamed Query
@‘J Mamed Mative Quer
o AT

4. Enter the name of the query, select the query type (Named Query or Named
Native Query), and click OK. The Queries area expands to show additional fields.

Figure 3—-47 JPA Details, Queries Tab

* [ueries

myMamedQuery add...

myMativeMamedQuery

Remave

Mame: | myMamedQuery |
Query:
Lock mode: | Default {Mone) w |

Query hinks

Mame Yalue Add...

5. Enter the query in the Query field.
6. Complete the rest of the field on the Queries page.
7. To add a Query hint, click Add. Enter the Name and Value of the hint.

Mapping an entity
Dali supports the following mapping types for Java persistent entities:
= Basic mapping
= Element collection mapping
» Embedded mapping
= Embedded ID mapping
s ID mapping
= Many-to-many mapping

3-34 Dali Java Persistence Tools User Guide

Mapping an entity

= Many-to-one mapping
= One-to-many mapping
= One-to-one mapping

s Transient mapping

s Version mapping

Note: Additional mapping types (such as Basic Collection mappings)
may be available when using Dali with EclipseLink.

Basic mapping
Use a Basic Mapping to map an attribute directly to a database column. Basic
mappings may be used only with the following attribute types:

= Java primitive types and wrappers of the primitive types
s Jjava.lang.String, java.math.BigInteger

s Jjava.math.BigDecimal

m Jjava.util.Date

m Jjava.util.Calendar, java.sgl.Date

m Jjava.sqgl.Time

m Jjava.sqgl.Timestamp

s bytel]
n Bytel]
s char[]

s Character/(]

= enums

= any other type that implements Serializable
To create a basic mapping:

1. In the JPA Structure view, right-click the field to map. Select Map As > Basic. The
JPA Details view (for attributes) displays the properties for the selected field.

Tasks 3-35

Mapping an entity

Figure 3—-48 JPA Details, Basic mapping

Jpa Details 52 Console =8
Attribute 'city' is mapped as basic,

~ Basic
Colurnn

Mame: | Defaulk {gity) w
Table: | Default {address) w
» Details

Fetch: |Default (Eager) w

[E] optional { True)

[E] Mutable (True)

b Type

b Converters

2. Complete each field in the Basic Mapping area.
3. Complete the remaining areas in the JPA Details view (for attributes).
Eclipse adds the following annotations to the field:

@Column (name="<COLUMN_NAME>", table="<COLUMN_TABLE>",
insertable=<INSERTABLE>, updatable=<UPDATABLE>)

@Basic (fetch=FetchType.<FETCH_TYPE>, optional = <OPTIONAL>)

@Temporal (TemporalType.<TEMPORAL>)

Element collection mapping

Use an Element Collection to define a collection of Basic objects. The Basic values are
stored in a separate collection table. Because the target is a Basic value (instead of an

Entity), you can easily define collections of simple values without having to define a
class for the value.

To create an element collection mapping:

1. In the JPA Structure view, right-click the field to map. Select Map As > Element

Collection. The JPA Details view (for attributes) displays the properties for the
selected field.

3-36 Dali Java Persistence Tools User Guide

Mapping an entity

Figure 3—49 JPA Details, Element collection mapping

s)P4 Detals 53 | B Consale = A
Attribute 'city' is mapped as element collection.

* Element Collection

Target class: | Default A
Fetch: Default {Lazy) w
Join fetch: <Mone > v

Collection Table

Mame: Default (Address_city) 7
Schema: | Default (APP) 3
Catalog: | Default 3
Join columnns
[[Jowerride default

» VYalue

b Converters

» Ordering

2. Complete each field in the Element Collection Mapping area.
3. Complete the remaining areas in the JPA Details view (for attributes).
Eclipse adds the following annotations to the field:

@ElementCollection
@CollectionTable (
name="<TABLE_NAME>",
joinColumns=@JoinColumn (name="<COLUMN_TABLE>")

)
@Column (name="<COLUMN_TABLE>")

Embedded mapping

Use an Embedded Mapping to specify a persistent field or property of an entity
whose value is an instance of an embeddable class.

1. In the JPA Structure view, right-click the field to map.

2. Select Map as > Embedded. The JPA Details view (for attributes) displays the
properties for the selected field.

Tasks 3-37

Mapping an entity

Figure 3-50 JPA Details, Embedded mapping

= Ipa Detalls 52 Console =8

Attribute 'city' is mapped as embedded.

* Embedded
Attribute overtides

3. Complete each field in the Embedded Mapping area.
Eclipse adds the following annotations to the field:

@Embedded
@AttributeOverride (
column=@Column (
table="<COLUMN_TABLE>",
name = "<COLUMN_NAME>"

Embedded ID mapping

Use an Embedded ID Mapping to specify the primary key of an embedded ID. These
mappings may be used with a Embeddable entities.

1. In the JPA Structure view, select the field to map.

2. Right-click the field and then select Map As > Embedded Id. The JPA Details view
(for attributes) displays the properties for the selected field.

Figure 3-51 JPA Details, Embedded ID mapping

= Ipa Detalls 52 Console =8

Attribute 'city' is mapped as embedded.

* Embedded
Attribute overtides

3. Complete each field in the Embedded ID Mapping area.
Eclipse adds the following annotations to the field:
@EmbeddedId

3-38 Dali Java Persistence Tools User Guide

Mapping an entity

ID mapping

Use an ID Mapping to specify the primary key of an entity. ID mappings may be used
with a Entity or Mapped superclass. Each Entity must have an ID mapping.

1. In the JPA Structure view, select the field to map.

2. Right click the filed and then select Map as > ID. The JPA Details view (for
attributes) displays the properties for the selected.

Figure 3-52 JPA Details, ID mapping

s)P4 Detals 53 | B Consale = 8
Attribute id' is mapped as [0,
- ID

Colurnn

Mame: | 1D v

Table: | Default {address) -
» Details

[E] Mutable (True)
b Type
b Converters

¥ Primary Key Generation

3. Complete each field in the ID Mapping area.

4. Use the Primary Key Generation area to specify the strategy to use for generating
primary keys.

Figure 3-53 JPA Details, Primary key generation

= Ipa Detalls 52 Console =8
Attribute id' is mapped as [0,

» ID

b Type

b Converters

* Primary Key Generation

|:| Primary key generation
Strateqgy: L3

Generator name: A4
» Table Generator

¥ Sequence Generator

5. Complete each field in the Primary Key Generation information area.
6. Complete the remaining areas in the JPA Details view (for attributes).

Additional fields will appear in the Primary Key Generation information area,
depending on the selected Strategy. See "JPA Details view (for attributes)" on page 4-22
for additional information.

Eclipse adds the following annotations to the field:

@Id
@Column (

Tasks 3-39

Mapping an entity

name="<COLUMN_NAME>",
table="<TABLE NAME>",
insertable=<INSERTABLE>,
updatable=<UPDATABLE>
)
@Temporal (<TEMPORAL>)
@GeneratedvValue (
strategy=GeneratorType.<STRATEGY>,
generator="<GENERATOR NAME>"
)
@TableGenerator (
name="<TABLE_GENERATOR_NAME>",
table = "<TABLE GENERATOR TABLE>",
pkColumnName = "<TABLE_GENERATOR_PK>",
valueColumnName = "<TABLE_GENERATOR_VALUE_COLUMN>",
pkColumnValue = "<TABLE_GENERATOR_PK_COLUMN_VALUE>"
)
@SequenceGenerator (name="<SEQUENCE_GENERATOR_NAME>",
sequenceName="<SEQUENCE_GENERATOR_SEQUENCE>")

Many-to-many mapping

Use a Many-to-Many Mapping to define a many-valued association with
many-to-many multiplicity. A many-to-many mapping has two sides: the owning side
and non-owning side. You must specify the join table on the owning side. For
bidirectional mappings, either side may be the owning side.

1. In the JPA Structure view, select the field to map.

2. Right-click the field and then select Map As > Many-to-Many. The JPA Details
view (for attributes) displays the properties for the selected field.

Figure 3-54 JPA Details, Many to many mapping

P& Detals 2 El Consale = 8
Attribute id' is mapped as many ko many,

+ Many to Many

Target entity: | Default v
Fetch: Default {Lazy) w
Join fetch: <Mone > v

Cascade

Jal [Jrersist [Iterge [Iremove [Refresh []Detach
» Joining Strategy

b Converters

» Ordering

3. Complete each field in the Many-to-Many Mapping area.
4. Use the Joining Strategy area to specify the join strategy (or table) for the mapping.

3-40 Dali Java Persistence Tools User Guide

Mapping an entity

Figure 3-55 JPA Details, Joining Strategy

P& Detals 52 Cansale = "
Attribute id' is mapped as many ko many,
» Many to Many

+ Joining Strategy

() Mapped by

(%) Join table
Mame: Default 3
Schema: | Default (APP) v
Catalog: | Default w

Join columnns

[owverride default

Inverse join columns

[owverride default

b Converters

» Ordering

5. Complete each field in the Joining Strategy area.
6. Complete the remaining areas in the JPA Details view (for attributes).
Eclipse adds the following annotations to the field:

@JoinTable (
joinColumns=@JoinColumn (name="<JOIN_COLUMN>"),
name = "<JOIN_TABLE_NAME>"
)
@ManyToMany (=Type.<_TYPE>, fetch=FetchType.<FETCH_TYPE>,
targetEntity=<TARGET ENTITY>, mappedBy = "<MAPPED BY>")
@OrderBy ("<ORDER_BY>")

Many-to-one mapping

Use a Many-to-One mapping to defines a single-valued association to another entity
class that has many-to-one multiplicity.

1. In the JPA Structure view, select the field to map.

2. Right click the field and then select Map As > Many-to-One. The JPA Details view
(for attributes) displays the properties for the selected.

Tasks 3-41

Mapping an entity

Figure 3-56 JPA Details, Many-to-one mapping

P& Detals 2 El Consale = 8
Attribute 'id' is mapped as many ko one,

+ Many to One

Target entity: | Default (java.lang.Long) v
Fetch: Default (Eager) w
Join fetch: <Mone > v

[E] optional { True)

Cascade
Jal [Jrersist [Iterge [Iremove [Refresh []Detach
b Derived Identity

» Joining Strategy

3. Complete each field in the Many-to-Many Mapping area.
4. Complete the remaining areas in the JPA Details view (for attributes).
Eclipse adds the following annotations to the field:

@JoinTable (joinColumns=@JoinColumn (name="<JOIN_ COLUMN>"),
name = "<JOIN_TABLE NAME>")
@ManyToOne (
targetEntity=<TARGET ENTITY>,
fetch=<FETCH_TYPE>,
=<_TYPE>

One-to-many mapping
Use a One-to-Many Mapping to define a relationship with one-to-many multiplicity.
1. In the JPA Structure view, select the field to map.

2. Right-click the field and then select Map As > One-to-many. The JPA Details view
(for attributes) displays the properties for the selected.

Figure 3-57 JPA Details, One-to-many Mapping

P& Detals 2 El Consale = 8
Attribute 'id' is mapped as one to many,

* One to Many

Target entity: | Default v
Fetch: Default {Lazy) w
Join fetch: <Mone > v

[Jrrivate owned
[E] Grphan removal (False)

Cascade
Jal [Jrersist [Iterge [Iremove [Refresh []Detach

» Joining Strategy
b Converters

» Ordering

3. Complete each field in the One-to-Many Mapping area.

Tasks 3-42

Mapping an entity

4. Complete the remaining areas in the JPA Details view (for attributes):

= Joining Strategy
s Converters

s Ordering

Eclipse adds the following annotations to the field:

@OneToMany (targetEntity=<TARGET ENTITY>)
@Column (name="<COLUMN>")

@OneToMany (targetEntity=<TARGET ENTITY>.class,

)

=Type.<_TYPE>,
fetch = FetchType.<FETCH_TYPE>,
mappedBy = "<MAPPED_BY>"

@OrderBy (" <ORDER_BY>")

@JoinTable (name="<JOIN_ TABLE_NAME>",

joinColumns=@JoinColumn (name=

"<JOIN_COLUMN_NAME>", referencedColumnName="<JOIN_COLUMN_REFERENCED_COLUMN>"),

inverseJoinColumns=@JoinColumn (name="<INVERSE JOIN_COLUMN_NAME>",
referencedColumnName="<INVERSE_JOIN_COLUMN_REFERENCED COLUMN>"))

One-to-one mapping
Use a One-to-One Mapping to define a relationship with one-to-many multiplicity.

1.
2.

Figure 3-58 JPA Details, One-to-one Mapping

3.

P& Detals 2 El Consale
Attribute id' is mapped as one to one,
~ One to One
Target entity: | Default (java.lang.Long)
Fetch: Default (Eager)
Join fetch: <Mone >

[E] optional { True)
[Jrrivate owned
[E] Grphan removal (False)

Cascade
Jal [Jrersist [Iterge [Iremove [Refresh []Detach
b Derived Identity

» Joining Strategy

In the JPA Structure view, select the field to map.

Right-click the field and then select Map As > One-to-One. The JPA Details view
(for attributes) displays the properties for the selected.

¥ | | Browse. ..

v

v

Complete each field in the One-to-One Mapping area.

4. Complete the remaining areas in the JPA Details view (for attributes):

= Joining Strategy
»s Derived Identity

Tasks 3-43

Mapping an entity

Eclipse adds the following annotations to the field:

@OneToOne (targetEntity=<TARGET ENTITY>, =Type.<_TYPE>,
fetch = FetchType.<FETCH_TYPE>, mappedBy = "<MAPPED BY>")
@JoinColumn (name="<JOIN_ COLUMN_NAME>", referencedColumnName=
"<JOIN_COLUMN_REFERENCED COLUMN>", insertable = <INSERTABLE>,
updatable = <UPDATABLE>)

Transient mapping
Use the Transient Mapping to specify a field of the entity class that is not persistent.
To create a transient mapping:
1. In the JPA Structure view, select the field to map.

2. Right-click the field and then select Map As Transient. The JPA Details view (for
attributes) displays the properties for the selected.

Figure 3-59 JPA Details, Transient Mapping

s)P4 Detals 53 | B Consale = 8

Attribute ‘street’ is mapped as transient,

There are no additional options for Transient mappings. Eclipse adds the following
annotation to the field:

@Transient

Version mapping

Use a Version Mapping to specify the field used for optimistic locking. If the entity is
associated with multiple tables, you should use a version mapping only with the
primary table. You should have only a single version mapping per persistent entity.
Version mappings may be used only with the following attribute types:

= int

n Integer

s short, Short

s long, Long

s Timestamp

To create a version mapping;:

1. In the JPA Structure view, select the field to map.

2. Right-click the field and then select Map As > Version. The JPA Details view (for
attributes) displays the properties for the selected.

Tasks 3-44

Generating entities from tables

Figure 3-60 JPA Details, Version Mapping

s)P4 Detals 53 | B Consale = 8

bittribute 'id' is mapped as version,

~ ¥ersion
Colurnn

Mame: | Default {id) w |

Table: | Default {address) w |

» Details

[E] Mutable (True)
b Type

b Converters

3. Complete each field in the Version Mapping area.

4. Complete the remaining areas in the JPA Details view (for attributes):
s Type information
s Converters

Eclipse adds the following annotations to the field:

@Version
@Column (table="<COLUMN_TABLE>", name="<COLUMN_NAME>")

Generating entities from tables

Use this procedure to generate Java persistent entities from database tables. You must
create a JPA project and establish a database connection before generating persistent
entities. See "Creating a new JPA project” on page 3-1 for more information.

To use the Generate Tables from Entities wizard:

1. Right-click the JPA project in the Project Explorer and select JPA Tools > Generate
Entities from Tables.

Figure 3-61 Generating Entities from Tables

[Project Explarer 52 = g:p ¥ =0
Tew 4
Go Inta
Shaw In Ale+Shift+w 4
R L hela e
=L F
B E NG G 1 LU ,
= 1 Team
Configure Generate Tables from Entities. ..

Generate Entities from Tables...

- -

Source
Generate Dynamic Entities from Tables. ..
Properties Alt+Enter

2. On the Select Tables page of the Generate Entities from Tables wizard, select your
database connection and schema.

Tasks 3-45

Generating entities from tables

To create a new database connection, click Add connection.

If you are not currently connected to the database, the Database Connection page
appears. Select your database connection and schema, and click Reconnect.

Figure 3-62 Select Tables

& Generate Custom Entities

Select Tables

Select kables bo generate entities from,

Conneckion: | Mew Derby

({Mote: You must have an active conneckion to seleck schema,)

Schema: |DEMO - |

Tables: TMVENTORY
ITEM
ORDER_TABLE
SEQUENCE

Update class list in persistence. xml

Restore Defaults

@ [we> |[Ensh J[cancel |

3. After selecting a schema, select the tables from which to generate Java persistent
entities and click Next.

4. On the Table Associations page, select the associations to generate. You can specify
to generate specific references for each association.

To create a new association, click Add Association. Use the Create New
Association wizard wizard to define the association.

Tasks 3-46

Generating entities from tables

Figure 3-63 Table Associations

& Generate Custom Entities E]

Table Associations

Edit a table association by selecting it and modifying the contrals in the editing panel.

Table associations

[y mvENTORY]4;4 B ITEM |

There iz one INVEMTORY per ITEM.

* 1
| Gy ORDER_TABLE | —— LI |
Each ITEM has many ORDER_TABLE.

Generate this association

Cardinality:

Table jain: IMVENTORY ITEM_SKU=ITEM.SKL

Generate a reference to ITEM in INYENTORY
Property: | item

|
Cascade: | |

[v¥] Gererate a reference to IMVENTORY in ITEM

Praperty: | inventory

|
Cascade: | |

@j [< Back][Mexk = H Finish H Cancel

5. After editing the table associations, click Next.

6. On the Customize Default Entity Generation page, customize the mapping and
class information for each generated entity.

Tasks 3-47

Generating entities from tables

Figure 3-64 Customize Default Entity Generation

{2 Generate Custom Entities

Customize Defaults

Flease specify a sequence name (t_
L1

IMapping defaults

Key generataor: |sequence L |

Sequence name: | ORDER_SEQUENCE |

‘fou can use the patterns $table andfor $pk in the sequence name,
These patterns will be replaced by the table name and the primary key
column name when a table mapping is generated,

Entity access: @ Field) Property
Associations Fetch: (@) Defaut (O Eager () Lazy

Collection properties bype: (&) java.util. Set () java.util.List

[Always generate optional JP& annatations and DOL parameters

Domain java class

Source Folder: | Quickskarkfsrc | [Browse. ..]
Package: | model | [Erawse. ..]
Superclass: | | [Erawse. ..]
Interfaces: add...
Remove

® [< Back][et = H Finish H Cancel

7. After customizing the mappings, click Next.

8. On the Customize Individual Entities page, review the mapping and class
information for each entity that will be generated, then click Finish.

Tasks 3-48

Generating entities from tables

Figure 3-65 Customize Individual Entities

& Generate Custom Entities

Customize Individual Entities

Tables and columns

[£0 MvENTORY
[£0 1TEM

[£0 ORDER_TABLE
[£2 SEQUENCE

& Table Mapping

Class name: | Inventary |

Kew generator: |sequence w |

Sequence name: | ORDER_SEQUENCE | Appears for tables
‘You can use the patterns $table andfor $pk in the sequence name.
These patterns will be replaced by the table name and the primary key
column name when a table mapping is generated.

Entity access: (&) Field) Property A

Domain Java Class

Superclass: | java.lang.Object |[Erowse...]

Interfaces: add...

Remove

. J

F -
Generate this property

Column mapping

Property name: | cakegory |

Mepping e [stng] Appears for columns
Mapping kind: |basic i |
Column is updatable

Colurnn is insertable J

Domain Java Class

Getter scope: (%) public O protected O private

Setter scope: (%) public O protected O private

Texk = [Finish H Cancel]

Eclipse creates a Java persistent entity for each database table. Each entity contains
fields based on the table’s columns. Eclipse will also generate entity relationships
(such as one-to-one) based on the table constraints. Figure 3—66 illustrates how Eclipse
generates entities from tables.

Tasks 3-49

Generating tables from entities

Figure 3-66 Generating Entities from Tables

Database Tables Persistent Entities
— o
EMP_ID | F_NAME [L_namE L ADDR_ID S VERSION i1 Employee

addr_id : Address
emp_id : BigDecimal
f_name : String
I_name : String
wversion : BigDecimal

EMPLOYEE Tahle

FK Reference

= Address

=

5DRESS g PRONVIMCE | COUMTRY | STREET | P_CODE | CITY address_id : BigDecimal
city : String

country : String
p_code : String
province : String

street : String

ADDRESS Table

Generating tables from entities

When using a vendor-specific platform, you can create a DDL script from your
persistent entities.

Note: The DDL script will DROP existing tables on the database and
CREATE new tables, based on the entities in your project.

To generate a DDL script:

1. Right-click the JPA project in the Project Explorer and select JPA Tools > Generate
Tables from Entities.

L™ Project Explorer 53 = <fg> ¥ =0

Bt Go Into
E-# s | Showln Alt+Shift+w 4
=&
L el
=L F
= E I G L ,
= 3 Team
&h ove to 1. »
Configure 3 Generate Tab om Entities. ..
Source »| Generate Entities from Tables...
Generate Dynamic Entities from Tables. ..
Properties Alt+Enter

2. On the Schema Generation page, select the generation output mode.

Tasks 3-50

Generating tables from entities

Figure 3-67 Schema Generation

1} Generate Tables from Entities

Schema Generation

Select DOL generation action

Generation Cutput Mode
(%) Database

() 5ql-script

(O Both

@j [Finish H Caniel]

3. Click Finish. Dali generates the selected DDL for the entities, as shown in
Example 3-3.

If you are not currently connected to the database, the Database Connection page
appears. Select your database connection and schema, and click Reconnect.

Example 3-3 Sample Generated Output

[EL Config]: metadata: The access type for the persistent class [class
quickstart.demo.model .Address] is set to [FIELD].
[EL Config]: metadata: The alias name for the entity class [class quickstart.demo.model.Address] is
being defaulted to: Address.
[EL Config]: metadata: The table name for entity [class quickstart.demo.model.Address] is being
defaulted to: ADDRESS.
[EL Config]: metadata: The column name for element [street] is being defaulted to: STREET.
[EL Config]: metadata: The column name for element [city] is being defaulted to: CITY.
[EL Config]: metadata: The column name for element [country] is being defaulted to: COUNTRY.
[EL Info]: EclipseLink, version: Eclipse Persistence Services - 2.4.0.vXXXX
[EL Fine]: connection: Detected database platform:
org.eclipse.persistence.platform.database.JavaDBPlatform
[EL Config]: connection: Connection(7896086)--connecting(DatabaseLogin (
platform=>JavaDBPlatform
user name=> ""
datasource URL=> "jdbc:derby:C:\MyDB;create=true"

[EL Config]: connection: Connection(28523022)--Connected: jdbc:derby:C:\MyDB
User: APP
Database: Apache Derby Version: 10.9.1.0 - (XXXX)
Driver: Apache Derby Embedded JDBC Driver Version: 10.9.1.0 - (XXXX)
[EL Config]: connection: Connection(27817788)--connecting(DatabaseLogin (
platform=>JavaDBPlatform
user name=> ""
datasource URL=> "jdbc:derby:C:\MyDB;create=true"

[EL Config]: connection: Connection(11557581)--Connected: jdbc:derby:C:\MyDB
User: APP
Database: Apache Derby Version: 10.9.1.0 - (XXXX)
Driver: Apache Derby Embedded JDBC Driver Version: 10.9.1.0 - (XXXX)

Tasks 3-51

Generating dynamic entities from tables

[EL Info]: connection: file:/C:/workspace/runtime-EclipseApplication/QuickStart/build/classes/_
QuickStart_url=jdbc:derby:C:\MyDB;create=true login successful

[EL Fine]: sqgl: Connection(28523022)--DROP TABLE ADDRESS

[EL Fine]: sqgl: Connection(28523022)--CREATE TABLE ADDRESS (ADDRESS_ID BIGINT NOT NULL, CITY
VARCHAR (255), COUNTRY VARCHAR(255), P_CODE VARCHAR(255), PROVINCE VARCHAR(255), STREET

VARCHAR (255), PRIMARY KEY (ADDRESS_ID))

[EL Config]: connection: Connection(28523022)--disconnect

[EL Infol]: connection: file:/C://workspace/runtime-EclipseApplication/QuickStart/build/classes/_
QuickStart_url=jdbc:derby:C:\MyDB;create=true logout successful

[EL Config]: connection: Connection(7896086)--disconnect

[EL Config]: connection: Connection(11557581)--disconnect

Generating dynamic entities from tables

When using EclipseLink JPA, you can create dynamic entities from your database
tables. This dynamic persistence provides access to a relational database with all the
benefits of JPA without coding or maintaining Java classes.

Dali dynamically creates the classes at runtime, as needed.
To generate dynamic entities:

1. Right-click the JPA project in the Project Explorer and select JPA Tools > Generate
Dynamic Entities from Tables.

L™ Project Explorer 53 = <fg> ¥ =0
SR ickstart
= g ¥ Mew 4
= Go Into
EE# s showIn AlE+Shift+ 4
2-E
=N AR e el
=3
= E GILLH G 11U LU | SO ¥ s
= Team 4
g poreto »
Configure Generate Tables from Entities. ..

- v

Source Generate Entities from Tables...

ke Dynarmic Enti

Properties Alt+Enter

The Select Tables page of the Generate Dynamic Entities from Tables wizard
appears.

Tasks 3-52

Generating dynamic entities from tables

Figure 3-68 Select Tables

4 Generate Dynamic Entities

Select Tables

Select kables to generate entities from,

Connection: |Derby Internal 10.9.1.0

{Mote: You must have an active connection to select schema,)

Schema: | DEMO
TNYENTORY

Tables:

ORDER_TABLE
SEQUENCE

Restore Defaults

@

2. On the Select Tables page, select the tables from which to generate the entities and
click Next.

The Table Associations page appears.

Figure 3-69 Table Associations

4 Generate Dynamic Entities

Table Associations '_'\
|
Edit a table association by selecting it and modifying the contrals in the editing panel, k;—
g

Table associations

—

[INVENTORY l—————»| [ITEM
There is one INVEMTORY per [TEM.
*

1
(i ORDER_TABLE | [ITEM

Each ITEM has many ORDER_TABLE.

Generate this association
Cardinality:
Tatle join: INVENTORY, ITEM_SKU=ITEM.SKU

Generate a reference to ITEM in INVENTORY

Property: | jrem

|
Cascade: | |

Generate a reference to INVENTORY in ITEM

Property: | inventary

|
Cascade: | |

® < Back][Mext = H Finish H Cancel

Tasks 3-53

Generating dynamic entities from tables

3. On the Table Associations page, specify which table associations should be
generated. Use the Create New Association wizard to create additional
relationships.

Click Next. The Customize Default Entity Generation page appears.

Figure 3-70 Customize Defaults

4 Generate Dynamic Entities

Customize Defaults (3
- |
Optionally customize aspects of entities that will be generated by default from database l\ ~
tables, & Java package should be specified. o
¥ML Mapping File: | META-INFeclipselink-orm, xml | [Browse...]
Drynamic class defaulks
Package: | quickstart,dema.model | [Browse, ..]
Mapping defaults
Key generatar: |sequence L3 |
Sequence name: | oRDER_sEQUENCE |
‘fou can use the patterns $table andfor $pkin the sequence name.
These patterns will be replaced by the table name and the primary key
column name when a table mapping is generated,
Associations fetch: @ Default O Eager O Lazy
Collection properties bype: (&) java.util, Set () java. kil List
® [< Back][Mexk =] [Finish] [Cancel]

4. On the Customize Default Entity Generation page, specify the default information
to use when generating the entities, and click Next.

The Customize Individual Entities page appears.

3-54 Dali Java Persistence Tools User Guide

Generating dynamic entities from tables

Figure 3-71 Customize Individual Entities

4 Generate Dynamic Entities |:|®
Customize Individual Entities (_}
L1

Tables and columns

[£0 vENTORY
[E2 1TEM

[L2 ORDER_TAELE
[£2 SEQUENCE

Mapping defaults

Class name: | Inventory |

/ Appears for entities

Key generatar: | sequence L3 |

Sequence name: | ORDER_SEQUENCE

‘fou can use the patterns $table andfor $pkin the sequence name.
These patterns will be replaced by the table name and the primary key
column name when a table mapping is generated.

e 7

Appears for attributes

r Generate this property

Colurmn mapping

Property name: | description | v

Mapping type: | Skring L3 |

Mapping kind: |basic w |
Column is updatable
Column is insertable

®

Mext = [Finish H Cancel]

5. Use the Customize Individual Entities page to customize specific generated
entities.

6. Click Finish to complete the wizard and generate the entities.

Dali generates the dynamic entities, using the VIRTUAL access type, as shown in
Example 3-4.

Example 3—-4 Sample eclipselink-orm.xml File with Dynamic Entities

<?xml version="1.0" encoding="UTF-8"?>
<entity-mappings version="2.4"
xmlns="http://www.eclipse.org/eclipselink/xsds/persistence/orm"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://www.eclipse.org/eclipselink/xsds/persistence/orm
http://www.eclipse.org/eclipselink/xsds/eclipselink_orm 2_4.xsd">
<entity class="quickstart.demo.model.Inventory" access="VIRTUAL">
<attributes>
<id name="itemSku" attribute-type="long">

</id>
</attributes>
</entity>
<entity ...">
</entity>
</entity-mappings>

Tasks 3-55

Modifying persistent project properties

Modifying persistent project properties

Each persistent project must be associated with a database connection. To create a new
database connection, click Database Connection use the New Connection wizard.

Use this procedure to modify the vender-specific platform and database connection
associated with your JPA project.

1. Right-click the project in the Explorer view and select Properties. The Properties
page appears.
2. Select JPA.

Figure 3-72 The Properties Page

(6] Properties for QuickStart

IPA fe=10 -
[+ R
= e.source Platform
Builders
Java Build Path Eclipselink 2.4.x v
Java Code Style Change JPA wersion. ..
Java Compiler
Java Editor IPA implement ation
Javadoc Lacation Type: |User Library w
s ipk
El B EclipseLink 2.4.0 - Juna =
Pselink .
Entity Generation %J
Errors/'arnings
Project Facets
Project References
RunDebug Settings
Targeted Runtimes Connection
Task Repository
Task Tags Derby Internal 10,2,1.0 A
Walidation Add connection...
WikiText
#Doclet [override default catalog from connection
Owerride default schema from connection
Schema: |APP v
Persistent class management
() Discover annatated classes automatically
() Annotated classes must be listed in persistence, xml
Canonical metamodel (P 2,00
Source Folder: | <Mone: v
[Revert] [Apply]
3y
\3) [Ok] [Cancel]

3. Complete each field on the Project Properties page — JPA click OK.

Converting JPA metadata to XML

Starting in Release 3.2, Dali can convert metadata (such as converters, queries, and
generators) into an XML mapping file. This allows you to maintain the global
metadata for a persistence unit (such as queries and generators) in an XML mapping
file.

1. Right-click the project in the Explorer view and select JPA Tools > Move to XML >
specific metadata (such as Java Converters, Java Queries, or Java Generators).

3-56 Dali Java Persistence Tools User Guide

Validating mappings and reporting problems

Figure 3-73 Moving Metadata to XML

[Project Explorer 52 = <fg> ¥ =08
= JF Hew N
Bt Go Into
E-# s | Showln Alt+Shift+w 4
=&
=N AR e Thela e
=L F e
E& Ei L UL
=i Team d
Configure 3 Generate Tables from Entities. .. Java Queries...
Source »| Generate Entities from Tables... Java Generators...
Generate Dynamic Entities from Tables. ..
Properties Alt+Enter

The JPA Metadata Conversion dialog page appears.
2. Enter the filename and location of the XML mapping file, and click Finish.
Dali generates the XML file.

Validating mappings and reporting problems

Errors and warnings on persistent entities and mappings are indicated with a red error
or yellow warning next to the resource with the error, as well as the parent containers
up to the project.

Tip: Use the Project Properties page — Errors/Warnings and Java

Persistence Preferences page — Errors/Warnings to specify which
problems Dali will report.

Figure 3-74 Sample Errors and Warnings

Eror

Wyarning

= o gamguickstart. model

W Address.java
m Employee.java
1] PhoneMumber.java
(= META-INF
B IRE System Library [jrel.5.0_10]
B Apache Tomcak 5.5 [Apache Tomcat
B TopLink Essentials

This section contains information on the following:
»s Error messages

= Warning messages

Tasks 3-57

Validating mappings and reporting problems

Error messages

This section contains information on error messages (including how to resolve the
issue) you may encounter while working with Dali.

An exception handler class should be specified.

When using a custom exception handler, you must select (or create) a Java class to
handle exceptions. See "Customization" on page 4-40.

Attribute "<ATTRIBUTE__NAME>" has invalid mapping type in this context
The mapped attribute is invalid. Either change the mapping type or change the entity
type.

See "Mapping an entity" on page 3-34 for more information.

Attribute "<ATTRIBUTE_NAME>" cannot be resolved.

Dali cannot map the attribute to a database table and column. Verify that you database
connection information is correct.

See "Creating a new JPA project” on page 3-1 for more information.

Class "<CLASS_NAME>" is not annotated as a persistent class.

The class has not been identified as a persistent class. Configure the class as an Entity,
Mapped Superclass, or Embeddable persistent entity.

See "Adding persistence to a class" on page 3-15.

Column "<COLUMN_NAME>" cannot be resolved.

You mapped an entity’s field to an incorrect or invalid column in the database table.
By default, Dali will attempt to map each field in the entity with an identically named
row in the database table. If the field’s name differs from the row’s name, you must
explicitly create the mapping.

Map the field to a valid row in the database table as shown in "Mapping an entity" on

page 3-34.

Converter is unnamed. All converters require a name.
When creating a converter, you must specify its name. See "Converters" on page 4-21.

Converter name must not be a reserved converter name.
When creating a converter, you must cannot use the following reserved names:

m serialized
m class-instance

] none

Duplicate class "<CLASS_NAME>".

You created to persistence classes with the same name. Each Java class must have a
unique name. See "Adding persistence to a class" on page 3-15 for more information.

Entity does not have an Id or Embedded Id.

You created a persistent entity without identifying its primary key. A persistent entity
must have a primary key field designated with an @Id or @EmbeddedId annotation.

3-58 Dali Java Persistence Tools User Guide

Validating mappings and reporting problems

Add an ID mapping to the entity as shown in "ID mapping" on page 3-39 or
"Embedded ID mapping" on page 3-38.

Multiple generators named "<GENERATOR_NAME>" defined in this persistence
unit.

When creating generators, the converter Name must be unique within the persistence
unit. See "Primary Key Generation" on page 4-20.

Multiple persistence.xml files in project.
You created a JPA project with more than one persistence.xml file. Each JPA project
must contain a single persistence.xnl file.

See "Managing the persistence.xml file" on page 3-20 for more information.

Multiple converters named "<CONVERTER_NAME>" defined in this persistence
unit

When creating converters, the converter Name must be unique within the persistence
unit. See "Add Converter dialog" on page 4-55.

No persistence unit defined.

There is no persistence unit defined in the persistence.xnl file. Use the
<persistence-unit name="<PERSISTENCE_UNIT_NAME>" tag to define the persistent
unit.

See "Managing the orm.xml file" on page 3-28 for more information.

No persistence.xml file in project.
You created a JPA project without a persistence.xml file. Each JPA project must
contain a single persistence.xml file.

See "Managing the persistence.xml file" on page 3-20 for more information.

Property "<PROPERTY_NAME>" will be ighored as shared-cache-mode is set to
NONE.

Because the Shared cache mode option is set to NONE, Dali will ignore the property.
See "Caching" on page 4-42.

Referenced column "<COLUMN_NAME>" in join column "<COLUMN_NAME>"
cannot be resolved.

The column that you selected to join a relationship mapping does not exist on the
database table. Either select a different column on the Joining Strategy or create the
necessary column on the database table.

See "JPA Details view (for attributes)" on page 4-22 for more information.

Schema "<SCHEMA_NAME>" cannot be resolved for table/join table "<TABLE _
NAME>".

Define the default database schema information in the persistence unit.

See "Managing the orm.xml file" on page 3-28 for more information.

Tasks 3-59

Validating mappings and reporting problems

Table "<TABLE_NAME>" cannot be resolved.

You associated a persistent entity to an incorrect or invalid database table. By default,
Dali will attempt to associate each persistent entity with an identically named
database table. If the entity’s name differs from the table’s name, you must explicitly
create the association.

Associate the entity with a valid database table as shown in "Adding persistence to a
class" on page 3-15.

The @Cache annotation on entity <ENTITY_NAME> has both expiry() and
expiryTimeOfDay() specified.

You attempted to include both expiry and expiryTimeOfDay in the @Cache annotation.
You may use only one. See"Caching" on page 4-15.

The converter class "<CLASS_NAME>" does not exist on the project classpath.

You defined a convert class but did not include the class within the project.
See"Converters" on page 4-21.

The converter class "<CLASS_NAME>" does not implement the
org.eclipse.persistence.mappings.converters.Converter interface

When creating a converter, its class must implement the
org.eclipse.persistence.mappings.converters.Converter interface.
See"Converters" on page 4-21.

The converter class must be defined.

You attempted to use a converter without defining the class. See"Converters" on
page 4-21.

The entity customizer class "<CLASS_NAME>" does not implement the
org.eclipse.persistence.config.DescriptorCustomizer interface.

When using a customer class for an entity, the class must implement the
org.eclipse.persistence.config.DescriptorCustomizer interface. See "Advanced"
on page 4-22

The exception handler class "<CLASS_NAME>" does not implement the
org.eclipse.persistence.exceptions.ExceptionHandler interface.

When using a custom exception handler, you must select (or create) a Java class that
implements the org.eclipse.persistence.exceptions.ExceptionHandler class. See
"Customization" on page 4-40.

The persistent field or property for a Version mapping must be of type int,
Integer, short, Short, long, Long, or Timestamp.

Version mappings may be used only with the following attribute types:
= int

n Integer

s short, Short

s long, Long

s Timestamp

3-60 Dali Java Persistence Tools User Guide

Validating mappings and reporting problems

See "Version mapping" on page 3-44.

The struct converter class "<CLASS_NAME>" does not implement the
org.eclipse.persistence.platform.database.converters.StructConverter interface.

When creating a Struct converter (to enable custom processing of java.sgl.Struct
types), its class must implement the
org.eclipse.persistence.mappings.converters.StructConverter interface.
See"Converters" on page 4-21.

Unresolved generator "<GENERATOR_NAME>" is defined in persistence unit.

You created a persistence entity that uses sequencing or a table generator, but did not
define the generator in the persistence unit. Either define the generator by using an
annotation or including it in the XML mapping file.

Warning messages

This section contains information on warning messages (including how to resolve the
issue) you may encounter while working with Dali.

Connection "<CONNECTION_NAME>" is not active. No validation will be done
against the data source.

The database connection you specified to use with the JPA project is not active. The
JPA project requires an active connection.

No connection specified for the project. No data-specific validation will be
performed.

You created a JPA project without specifying a database connection. The JPA project
requires an active connection.

See "Creating a new JPA project” on page 3-1 or "Modifying persistent project
properties” on page 3-56 for information on specifying a database connection.

Tasks 3-61

Validating mappings and reporting problems

3-62 Dali Java Persistence Tools User Guide

4

Reference

This section includes detailed help information for each of the following elements in
the Dali OR Mapping Tool:

Wizards

Wizards

Property pages

Preferences

Dialogs

JPA Development perspective
Icons and buttons

Dali developer documentation

This section includes information on the following wizards:

Generate Entities from Tables wizard

Generate Dynamic Entities from Tables wizard

Create JPA Entity wizard

Create ORM Mapping File wizard

Create New JPA Project wizard

Create New JAXB Project wizard

New Database Web services from Builder XML wizard
Generate Tables from Entities wizard

Create New Association wizard

Generate Entities from Tables wizard

Use the Generate Custom Entities Wizard to create JPA entities from your database
tables.

The wizard consists of the following pages:

Select Tables
Table Associations

Customize Default Entity Generation

Reference 4-1

Wizards

s Customize Individual Entities

Select Tables

Use the Select Tables dialog to specify the database connection and tables from which
to create entities.

Property Description

Connection Select a database connection or click Add Connection to create a
new connection.

Schema Select the database schema from which to select tables.

Tables Select the tables from which to create Java persistent entities.
The tables shown are determined by the database connection
and schema selections.

Update class list in Specify if Dali should update the persistence.xml file to
persistence.xml include the generated classes.

Table Associations
Use this page to create or edit the association between the database table and entity.

Property Description

Table associations Select an association to modify or click New Association to
create a new table association with the Create New Association
wizard wizard.

Generate this association Specify if Dali should create the selected association. If enabled,
you can specify the Cardinality and Table join for the table
association.

Generate a reference to Specify if the entity should contain a reference to the specified

<ROW> in <TABLE> table.

If enabled, you can also enter the Property name and select the
Cascade method (all, persist, merge, remove, or refresh) for the
reference.

Customize Default Entity Generation

Use this page to specify the default information Dali will use when generating the
entities from the database tables. You will be able to override this information for
specific entities.

Property Description

Mapping defaults Use these options to define the table mapping information for
the entity.

Key generator Select the generator used for this mapping.

Sequence name Enter a name for the sequence.

You can use $table and $pk as variables in the name. These will
be replaced by the table name and primary key column name
(respectively) when Dali generates a table mapping.

Entity access Specify the default entity access method: Field (default) or
Property.
Associations fetch Specify the default fetch mode for associations: Default, as

defined by the application (default), or Lazy.

4-2 Dali Java Persistence Tools User Guide

Wizards

Property

Description

Collection properties type

Specify if the collection properties are a Set or List.

Always generate optional
JPA annotations and DDL
parameters

Specify if Dali should include this information in the entity.

Domain Java class

Use these options to define the Source folder and class
information (Package, Superclass, and Interfaces) for the entity.

Customize Individual Entities

Use this page to customize each generated entity. Select an item in the Table and
columns area, then complete the following fields for each item.

Property Description

Mapping defaults Use these options to define the table mapping information for
the entity.

Class name Name of the entity class

Key generator

Select the generator used for this mapping.

Sequence name

Enter a name for the sequence.

You can use $table and $pk as variables in the name. These will
be replaced by the table name and primary key column name
(respectively) when Dali generates a table mapping.

Entity access

Specify the default entity access method: Field (default) or
Property.

Domain Java Class

Use these options to define the class information (Superclass
and Interfaces) for the entity.

Generate this property

Enable this option to generate the following properties for the
selected column.

Column mapping

Property name

The name of the property derived from the column

Mapping type

The attribute type

Mapping kind

The type of mapping for the attribute

Column is updatable

Specify if the column is included in SQL UPDATE statements.

Column is insertable

Specify if the column is included in SQL INSERT statements.

Domain Java Class

Use these options to define the getter and setter scope for the
entity.

Generate Dynamic Entities from Tables wizard

Use the Generate Dynamic Custom Entities wizard to create dynamic EclipseLink JPA
entities from your database tables.

The wizard consists of the following pages:

s Select Tables

m Table Associations

» Customize Default Entity Generation

s Customize Individual Entities

Reference 4-3

Wizards

Select Tables

Use the Select Tables dialog to specify the database connection and tables from which

to create entities.

Property Description

Connection Select a database connection or click Add Connection to create a
new connection.

Schema Select the database schema from which to select tables.

Tables Select the tables from which to create Java persistent entities.

The tables shown are determined by the database connection
and schema selections.

Update class list in
persistence.xml

Specify if Dali should update the persistence.xml file to
include the generated classes.

Table Associations

Use this page to create or edit the association between the database table and entity.

Property

Description

Table associations

Select an association to modify or click New Association to
create a new table association with the Create New Association
wizard wizard.

Generate this association

Specify if Dali should create the selected association. If enabled,
you can specify the Cardinality and Table join for the table
association.

Generate a reference to
<ROWs> in <TABLE>

Specify if the entity should contain a reference to the specified
table.

If enabled, you can also enter the Property name and select the
Cascade method (all, persist, merge, remove, or refresh) for the
reference.

Customize Default Entity Generation

Use this page to specify the default information Dali will use when generating the
entities from the database tables. You will be able to override this information for

specific entities.

Property

Description Default

XML Mapping File

The name and location of the mapping file. ~META-INF/eclipse
link-orm.xml

Dynamic Class Defaults

Package

Default package name for dynamic classes ~ model

Mapping defaults

Key generator

Default generation strategy for primary None
keys:

= Auto

= Identity

= Sequence

= Table

= None

4-4 Dali Java Persistence Tools User Guide

Wizards

Property Description Default
Sequence name When using a Key generator, specify its
name.

Note: You can use the variables $table and
$pk in the Sequence name. Dali will replace
them with the table name and primary key
column name, respectively, when generating
a mapping table.

Associations fetch Specify the default fetch strategy for Default
generated entities:

= Default
= Eager
= Lazy

Collection properties type Specify the default collection type, for java.util.List
generated entities:

n java.util.Set

s Jjava.util.List

Customize Individual Entities

Use this page to customize each generated entity. Select an item in the Table and
columns area, then complete the following fields for each item.

Property Description

Mapping defaults Use these options to define the table mapping information for
the entity.

Class name

Key generator Select the generator used for this mapping.

Sequence name Enter a name for the sequence.

You can use $table and $pk as variables in the name. These will
be replaced by the table name and primary key column name
(respectively) when Dali generates a table mapping.

Entity access Specify the default entity access method: Field (default) or
Property.
Domain Java Class Use these options to define the class information (Superclass

and Interfaces) for the entity.

Create JPA Entity wizard

The Create JPA wizard enables you to quickly add an entity and also add persistence
fields to that entity. In addition, this wizard adds the accessor methods (getter and
setter) in the class file. The wizard consists of the following pages:

= Entity Class page
= Entity Properties page

Entity Class page
This table lists the properties of the Entity Class page of the Create JPA Entity wizard.

Reference 4-5

Wizards

Property

Description

Default

Project

The name of the JPA project.

Source Folder

The location of the JPA project’s src folder.

src

Java Package

The name of the class package.

Class name

The name of the Java class.

Superclass

Select the superclass.

Inheritance

Because the wizard creates a Java class with an @Entity
notation, the Entity option is selected by default.

Select Mapped Superclass if you defined a superclass.

To add an @Inheritance notation to the entity, select
Inheritance and then select one of the inheritance
mapping strategies (described in JSR 220):

= SINGLE_TABLE -- All classes in a hierarchy as
mapped to a single table. This annotation is without
an attribute for the inheritance strategy.

= TABLE PER _CLASS -- Each class is mapped to a
separate table.

= JOINED -- The root of the class hierarchy is
represented by a single table. Each subclass is
represented by a separate table that contains those
fields that are specific to the subclass (not inherited
from its superclass), as well as the column(s) that
represent its primary key. The primary key
columny(s) of the subclass table serves as a foreign
key to the primary key of the superclass table.

Entity

XML Entity
Mappings

Select Add to entity mappings in XML to create XML
mappings in orm.xml, rather than annotations.

Use the Mapping file field to specify the file to use. By
default, mappings are stored in the META-INF/orm.xml
file.

Entity Properties page
This table lists the properties of the Entity Properties page of the Create JPA Entity

wizard.

Property

Description Default

Entity name

The name of the entity. By default, this valueis Determined by

the same as the one entered as the class name. server.

If the entity name differs from the class name,
then the entity name is added as an attribute.
For example: @Entity (name="EntityName").

Table name

Select Use default to match the name of the Use default.

mapped table name to the entity name.
Otherwise, clear the Use default option and
enter the name in the Table Name field. These
options result in the addition of the @Table
option to the Java class file.

4-6 Dali Java Persistence Tools User Guide

Wizards

Property

Description Default

Entity fields

Click the Add button to add persistence fields
using the Entity Fields dialog. This dialog
enable you to build a field by entering a field
name and selecting among persistence types.
The Key option enables you to mark a field as a
primary key. The dialog’s Browse function
enables you to add other persistence types
described in the JPA specification. The Edit
button enables you to change the name or type
set for a persistent field.

Access type

Select whether the entity’s access to instance Field
variables is field-based or property-based, as
defined in the JPA specification.

s Field - Instance variables are accessed
directly. All non-transient instance
variables are persistent.

= Property — Persistent state accessed
through the property accessor methods.
The property accessor methods must be
public or private.

Create ORM Mapping File wizard

The New Mapping File wizard enables you to add an orm.xml file to a JPA project if no
object map exists at the location specified. For example, if you cleared the Create

orm.xml option on the JPA Facet page, you can later add the orm.xm1 file to the src file
of the project using this wizard.

The Create ORM Mapping File wizard consists of the following pages:

= Mapping File Location

= Mapping File Options

Mapping File Location
Use this page of the Create ORM Mapping File wizard to specify the location of the

ORM mapping file.
Property Description Default
Project The name of the JPA project. Selected.
Source folder The location of the project’s src folder. If needed, Selected.
click Browse to point the wizard to the src file’s
location.
File Path The location for the new orm.xml file. Selected.
File name Name of the OR mapping file. orm.xml

Mapping File Options
Use this page of the Create ORM Mapping File wizard to specify additional options
for the ORM mapping file.

Reference 4-7

Wizards

Property Description Default

Default Access Select whether the access to the entity is None
field-based or property-based, as defined in JPA
specification.

= None - No access type specified.

= Property-based — Persistent state accessed
through the property accessor methods. The
property accessor methods must be public
or private.

= Field-based — Instance variables are
accessed directly. All non-transient instance
variables are persistent.

Add to persistence Designates the persistence unit for this object Current project’s
unit map file. default persistence
unit

Create New JPA Project wizard

The Create New JPA Project wizard allows you to create a new Java project using JPA.
The wizard consists of the following pages:

= New JPA Project page
= JavaPage

n JPA Facet page

New JPA Project page

This table lists the properties available on the New JPA Project page of the Create New

JPA Project wizard.

Property Description Default

Project name Name of the Eclipse JPA project.

Project location Location of the workspace in which to save the ~ Current workspace
project.

Unselect the Use default location option and
click Browse to select a new location.

Target runtime Select a pre-defined target for the project. <None>

Click New Runtime to create a new
environment with the New Server Runtime

wizard.

JPA Version Select the Java Persistence API version for the 2.0
project.

Configurations Select a project configuration with pre-defined
facets.

Select Modify to manually select the facets for
this project.

EAR membership Specify if this project should be included in an
EAR file for deployment.

Select the EAR Project Name, or click New
Project to create a new EAR project.

4-8 Dali Java Persistence Tools User Guide

Wizards

Property Description Default

Working sets Specify if this project should be included in an
existing working set. The drop down field
shows a list of previous selected working sets.

Select Add project to working sets, then select
a Working set in which to add this project.

Java Page

This table lists the properties available on the Java page of the Create New JPA Project
wizard.

Property Description Default

Source folders on Click Add Folder to select an existing Java src

build path source folder to add to this project.

Default output Specify the location of the .class files. build\classes
folder

JPA Facet page

This table lists the properties available on the JPA Facet page of the Create New JPA
Project wizard.

Property Description Default

Platform Vendor-specific JPA implementation. Generic

JPA Implementation Select a specific JPA library configuration.

Click Manage libraries to create or update a
user library.

Click Download libraries to download a
specific library configuration.

Depending on your JPA implementation (for
example, Generic or EclipseLink), different
options may be available when working with
JPA projects

Type Select User Library to select from the available ~User Library
user-defined or downloaded libraries.

If you select Disable, you must manually
include the JPA implementation library on the
project classpath.

Include libraries Specify if the selected libraries are included Selected
with this application when deploying the application.

Connection Select the database connection to use with the
project. Dali requires an active database
connection to use and validate the persistent
entities and mappings.

Click Add connection to create a new database
connection.

Add driver library to ~ Specify if the connection driver libraries are
build path included when deploying the application.

Reference 4-9

Wizards

Property

Description Default

Override default
schema from
connection

Select a schema other than the default one that The value calculated
is derived from the connection information. Use by Dali.

this option if the default schema cannot be

used. For example, use this option when the

deployment login differs from the design-time

login.

Persistent class
management

Specify if Dali will discover annotated classes Determined by server.
automatically, or if the annotated classes must
be listed in the persistence.xml file.

Note: To insure application portability, you
should explicitly list the managed persistence
classes that are included in the persistence unit.

Create mapping file

(orm.xml)

Specify if Dali should create a default orm.xml Selected
file for your entity mappings and persistence
unit defaults.

Create New JAXB Project wizard

The Create New JAXB Project wizard allows you to create a new Java project using
JAXB. The wizard consists of the following pages:

= New JAXB Project page

= JavaPage

= JAXB Facet page

New JAXB Project page

This table lists the properties available on the New JPA Project page of the Create New
JPA Project wizard.

Property Description Default

Project name Name of the Eclipse JPA project.

Project location

Location of the workspace in which to save the =~ Current workspace
project.

Unselect the Use default location option and
click Browse to select a new location.

Target runtime

Select a pre-defined target for the project. <None>

Click New Runtime to create a new
environment with the New Server Runtime
wizard.

JAXB Version

Select the Java Architecture for XML Binding 2.2
(JAXB) version for the project.

Configurations

Select a project configuration with pre-defined
facets.

Select Modify to manually select the facets for
this project.

Working sets

Specity if this project should be included in an
existing working set. The drop down field
shows a list of previous selected working sets.

Select Add project to working sets, then select
a Working set in which to add this project.

4-10 Dali Java Persistence Tools User Guide

Wizards

Java Page

This table lists the properties available on the Java page of the Create New JAXB
Project wizard.

Property Description Default

Source folders on Click Add Folder to select an existing Java src

build path source folder to add to this project.

Default output Specify the location of the .class files. build\classes
folder

JAXB Facet page

This table lists the properties available on the JPA Facet page of the Create New JAXB
Project wizard.

Property Description Default
Platform Vendor-specific JPA implementation. Generic
JAXB Select a specific JPA library configuration.
Implementation

Click Manage libraries to create or update a
user library.

Click Download libraries to download a
specific library configuration.

Depending on your JPA implementation (for
example, Generic or EclipseLink), different
options may be available when working with
JPA projects

Type Select User Library to select from the available User Library
user-defined or downloaded libraries.

If you select Disable, you must manually
include the JPA implementation library on the
project classpath.

Include libraries Specify if the selected libraries are included Selected
with this application when deploying the application.

New Database Web services from Builder XML wizard

The New Database Web services from Builder XML wizard allows you to add database
web services (DBWS) to an existing dynamic web services project, from an XML
source. The wizard consists of the following pages:

= Web Dynamic page
= Select Builder XML File page

s Driver Files page

Web Dynamic page
Use this page to select the dynamic web services project in which to add the Database
Web Services.

Select Builder XML File page

Use this page to select the XML files from which to generate the database web
services.

Reference 4-11

Wizards

Click Import to use the Import Wizard to import an existing XML file.

Driver Files page
Use this page to add JAR files that contain driver information.

Generate Tables from Entities wizard

Use the Generate Tables from Entities Wizard to quickly create DDL scripts from your
persistent entities. Dali automatically creates the necessary primary and foreign keys,
based on the entity mappings.

WARNING: Generating tables will DROP any existing tables and
CREATE new tables, based on the entities in your project.

The Generate Tables from Entities wizard consists of the Schema Generation page.

Schema Generation

This table lists the properties of the Schema Generation page of the Generate Tables
from Entities wizard.

Property Description Default
Generation Output ~ Specify how Dali should generate the DDL: Database
Mode

= Database — DDL will be generated and
written to the database only.

s SQL-script - DDL will be generated and
written to a file only.

= Both - DDL will be generated and written to
both the database and a file.

Create New Association wizard

Use the Create New Association wizard to specify association tables when generating
an entity.

The wizard consists of the following pages:
= Association Tables
s Join Columns

= Association Cardinality

Association Tables
Use this page to specify the association tables for an entity.

Property Description

Association kind Specify if the association is Simple (1:M) or Many to Many
M:M).

Association tables Click Table Selection, then select the two tables to associate.

When creating a Many to Many association, you can select a
Join Table for the association.

4-12 Dali Java Persistence Tools User Guide

Property pages

Join Columns
Use this dialog to specify the join columns of an association table.

Click Add to specify the join columns between the two tables.

Association Cardinality

Use this dialog to specify cardinality of an association table. Depending on the
Association Kind and Join Columns that you selected previously, some associations
may not be available.

= Many to one
= One to many
= Onetoone

= Many to many

Property pages
This section includes information each property page in the following views:
» JPA Details view (for entities)
» JPA Details view (for attributes)
n JPA Details view (for orm.xml)
» JPA Structure view

= persistence.xml Editor

JPA Details view (for entities)

The JPA Details view displays the persistence information for the currently selected
entity and contains the following tabs:

Entity Type

Clicking the name of the mapping type, which is represented as a hyperlink, invokes
the Mapping Type Selection dialog. Use this dialog to specify the type of entity:
Mapped Superclass, Embeddable or the default mapping type.

= Entity
= Embeddable
= Mapped Superclass

Additional Information
Depending on the entity type, the following additional areas will be available:

s Caching

s Queries

s Inheritance

» Attribute Overrides
= Multitenancy

s Primary Key Generation

Reference 4-13

Property pages

s Converters

= Secondary tables

= Advanced
Entity
This table lists the Entity information fields available in the JPA Details view for an
Entity.
Property Description Default
Table The default database table information for this
entity. These fields can be overridden by the
information in the Attribute Overrides area.
Name The name of the primary database table associated
with the entity.
Catalog The database catalog that contains the Table. As defined in
orm.xml.
Schema The database schema that contains the Table. As defined in
orm.xml.
Name The name of this entity. By default, the class name is
used as the entity name.
Access Specify how the entity its access instance variables. Field
= Property — Persistent state accessed through the
property accessor methods. The property
accessor methods must be public or private.
= Field - Instance variables are accessed directly.
All non-transient instance variables are
persistent.
Note: This field is for display only, based on the
properties in the orm.xml: If only the methods of the
class are annotated, property access type is used. In
all other cases, field access type is used.
ID class Click Browse and select the primary key for the
entity. Clicking the field name, which is represented
as a hyperlink, allows you to create a new class.
Embeddable
This table lists the Embeddable information fields available in the JPA Details view for
Embeddable entity type.
Property Description Default
Access Specify how the entity its access instance variables. Field

ms Property — Persistent state accessed through the
property accessor methods. The property accessor
methods must be public or private.

= Field - Instance variables are accessed directly. All
non-transient instance variables are persistent.

Note: This field is for display only, based on the properties
in the orm.xml: If only the methods of the class are
annotated, property access type is used. In all other cases,
field access type is used.

4-14 Dali Java Persistence Tools User Guide

Property pages

Mapped Superclass
This table lists the Embeddable information fields available in the JPA Details view for
Mapped superclass entity type.

Property Description Default

Access Specify how the entity its access instance variables. Field

= Property — Persistent state accessed through the
property accessor methods. The property accessor
methods must be public or private.

= Field - Instance variables are accessed directly. All
non-transient instance variables are persistent.

Note: This field is for display only, based on the properties
in the orm.xm1: If only the methods of the class are
annotated, property access type is used. In all other cases,
field access type is used.

ID class Click Browse and select the primary key for the entity.
Clicking the field name, which is represented as a
hyperlink, allows you to create a new class.

Caching
This table lists the Caching information fields available in the JPA Details view for
each entity type.

Property

Available for
Description Default Entity Type

Cachable

Specifies if the entity is cachable. True Entity and Mapped

This field corresponds to the @Cachable annotation. superclass

Reference 4-15

Property pages

Property Description Default

Available for
Entity Type

Type Select one of the following as the Default Cache Type: = Weak with Soft

= Weak with Soft Subcache-This option is similar to Subcache

Weak with Hard Subcache except that it maintains
a most frequently used subcache that uses soft
references. The size of the subcache is proportional
to the size of the identity map. The subcache uses
soft references to ensure that these objects are
garbage-collected only if the system is low on
memory.

Use this identity map in most circumstances as a
means to control memory used by the cache.

= Weak with Hard Subcache-This option is similar
to Soft with Weak subcache except that it
maintains a most frequently used subcache that
uses hard references. Use this identity map if soft
references are not suitable for your platform.

= Weak-This option is similar to Full, except that
objects are referenced using weak references. This
option uses less memory than Full, allows
complete garbage collection and provides full
caching and guaranteed identity.

Use this identity map for transactions that, once
started, stay on the server side.

= Soft-This option is similar to Weak except that the
map holds the objects using soft references. This
identity map enables full garbage collection when
memory is low. It provides full caching and
guaranteed identity.

= Full-This option provides full caching and
guaranteed identity: all objects are cached and not
removed.

Note: This process may be memory-intensive when
many objects are read.

= None-This option does not preserve object identity
and does not cache objects.This option is not
recommended.

Entity and Mapped
superclass

Size Defines the size of cache to use (number of objects). 100

Entity and Mapped
superclass

Advanced

Entity and Mapped
superclass

Expiry Enables the expiration of the cached instance after a No expiry
fixed period of time (milliseconds). Queries executed
against the cache after this will be forced back to the
database for a refreshed copy.

Entity and Mapped
superclass

Always refresh Specifies if all queries that go to the database should False
always refresh the cache.

Entity and Mapped
superclass

4-16 Dali Java Persistence Tools User Guide

Property pages

Property

Description

Default

Available for
Entity Type

Refresh only if
newer

Specifies if all queries that go to the database should
refresh the cache only if the data received from the
database by a query is newer than the data in the cache
(as determined by the optimistic locking field).

Notes:

= This option only applies if one of the other
refreshing options, such as alwaysRefresh, is
already enabled.

= A version field is necessary to apply this feature.

False

Entity and Mapped
superclass

Disable hits

Specifies if all queries should bypass the cache for hits,
but still resolve against the cache for identity. This
forces all queries to hit the database.

False

Entity and Mapped
superclass

Coordination
type

Specify the cache coordination mode:
= Send Object Changes

= Invalidate Changed Objects

= Send New Objects with Changes

= None

Send Object
Changes

Entity and Mapped
superclass

Existence
checking

Specify how Dali should check to determine if an entity
is new or exists.

s Check Cache - If the object’s primary key does not
include null and it is in the cache, then it must
exist.

s Check Cache then Database — Perform a "does exist
check" on the database.

= Assume Existence - If the object’s primary key
does not include null then it must exist. You may
use this option if the application guarantees or
does not care about the existence check.

= Assume Non-existence — Assume that the object
does not exist. You may use this option if the
application guarantees or does not care about the
existence check. This will always force an INSERT
operation.

Check Cache
then Database

Entity and Mapped
superclass

Queries

Use the queries area of the JPA Details view to create named queries and named native
queries. Refer to "Creating queries”" on page 3-33 for additional information.

Property

Description

Default

Available for
Entity Type

Queries

Displays the existing Named and Native queries.

Click Add to add a named or named native query by
using the Add Query dialog.

Entity and Mapped
superclass

Named Queries

Name

Name of the query.

Entity and Mapped
superclass

Query

The query SQL.

Entity and Mapped
superclass

Reference 4-17

Property pages

Available for

Property Description Default Entity Type
Lock mode Specify the JPA locking policy. None Entity and Mapped
« None superclass
= Optimistic
= Optimistic Force Increment
» Pessimistic Force Increment
= Pessimistic Read
m Pessimistic Write
= Read
n Write
Native Queries
Name Name of the query. Entity and Mapped
superclass
Result class The class of the result. Entity and Mapped
Note: This field appears for Native Named Queries superclass
only.
Query The query SQL. Entity and Mapped
superclass
Query hints Displays the existing query hints (Name and Value). Entity and Mapped
Click Add to add a new query hint. superclass
Inheritance
This table lists the fields available on the Inheritance area in the JPA Details view for
each entity type.
Available for Entity
Property Description Default Type
Strategy Specify the strategy to use when mapping a class or Single table Entity
class hierarchy:
= Single table — All classes in the hierarchy are
mapped to a single table.
= Joined - The root of the hierarchy is mapped to a
single table; each child maps to its own table.
= Table per class — Each class is mapped to a
separate table.
This field corresponds to the @Inheritance annotation.
Discriminator Specify the discriminator value used to differentiate an Entity
Value entity in this inheritance hierarchy. The value must
conform to the specified Discriminator Type.
Discriminator ~ These fields are available when using a Single or
Column Joined inheritance strategy.
This field corresponds to the @DiscriminatorColumn
annotation.
Use the Details area to define the Length and Column
definition of this Discriminator Column.
Name Name of the discriminator column Entity

4-18 Dali Java Persistence Tools User Guide

Property pages

Available for Entity

Property Description Default Type

Type Set this field to set the discriminator type to Char or String Entity
Integer (instead of its default: String). The
Discriminator Value must conform to this type.

Length The column length for String-based discriminator 0 Entity
types.

Column The SQL fragment that is used when generating the Entity

definition DDL for the discriminator column.

Primary Key Use to override the default primary key join columns. Entity

Join Columns

Select Override Default, then click Add to select new
Join Column with the Add Primary Key Join Column
dialog.

This field corresponds with @PrimaryKeyJoinColumn
annotation.

Refer to "Specifying entity inheritance" on page 3-32 for additional information.

Attribute Overrides

Use the Attribute Overrides area in the JPA Details view to override the default
settings specified in the Entity area of an attribute. Attribute overrides generally
override/configure attributes that are inherited or embedded.

This table lists the Attribute override fields available in the JPA Details view for each
entity type.

Property Description Default Available for Entity Type
Attribute Specify a property or field to be overridden Entity
Overrides (from the default mappings). Select Override
Default.
Join Columns Entity

Multitenancy

Use the Multitenancy area in the JPA Details view to specify that a given entity is
shared among multiple tenants of an application.

Property Description Default Available for Entity Type
Multitenancy Specify the multitenant strategy to use: Single table Entity and Mapped
strategy = Single table superclass
s Table per tenant
= VPD
Include criteria Specify if the database requires the tenant True Entity and Mapped
criteria to be added to the SELECT, UPDATE, and superclass
DELETE queries.
Tenant Use to limit what a persistence context can Entity and Mapped
descriptor access in single-table mulitenancy superclass
columns
Override
default

Reference 4-19

Property pages

Property Description Default Available for Entity Type
Name The name of column to be used for the tenant eclipselink.tenant
discriminator. -id
Table The name of the table that contains the column.
Context The name of the context property to apply to the
property tenant discriminator column.
Discriminator ~ The type of object/column to use as a class String
type discriminator:
s Character
= Integer
= String
Length The column length for String-based
discriminator types.
Column The SQL fragment that is used when generating
definition the DDL for the discriminator column.
Primary key Specifies that the tenant discriminator column is False
part of the primary key of the tables.
Primary Key Generation
Use the Primary Key Generation area in the JPA Details view to specify how to
generate a primary key for a given entity.
Property Description Default Available for Entity Type
Table These fields define the database table used for Entity
Generator generating the primary key and correspond to
the @TableGenerator annotation.
Name Unique name of the generator. Entity
Table Database table that stores the generated ID Entity
values.
Schema Database schema of the Table. Entity
Catalog Database catalog of the Table. Entity
Primary key The column in the table generator’s Table that Entity
column contains the primary key.
Value column The column that stores the generated ID values. Entity
Allocation size ~ The value for the Primary Key Column in the 50 Entity
generator table.
Initial value The starting value of the generated primary key. 0 Entity
Sequence These fields define the specific sequence used Entity
Generator for generating the primary key and correspond
to the @SequenceGenerator annotation.
These fields apply only when Strategy =
Sequence.
Name Name of the sequence table to use for defining Entity
primary key values.
Sequence Unique name of the sequence. Entity

4-20 Dali Java Persistence Tools User Guide

Property pages

Property Description Default Available for Entity Type
Schema Database schema of the Sequence. Entity
Catalog Database catalog of the Sequence. Entity
Allocation size These fields define the specific sequence used 50 Entity
for generating the primary key and correspond
to the @SequenceGenerator annotation.
These fields apply only when Strategy =
Sequence.
Initial value The starting value of the generated primary key. 1 Entity

Secondary tables

Use the Secondary Tables area in the JPA Details view to associate additional tables
with an entity. Use this area if the data associated with an entity is spread across

multiple tables.

Refer to "Specifying additional tables" on page 3-32 for additional information.

Converters

Use the Converter area in the JPA Details view to specify a way to modify data
value(s) during the reading and writing of a mapped attribute.

Property Description Default Available for Entity Type
Converters Click Add and use the Add Converter dialog to Entity, Embeddable, and
create a new converter. Mapped superclass
= Object Type — converts a fixed number of
database data value(s) to Java object
value(s)
s Type - modifies data values
» Struct — Enable custom processing of
java.sqgl.Struct types
= Custom
Name The String name for your converter, must be Entity, Embeddable, and
unique across the persistence unit Mapped superclass
Class The class of your converter. This class must Entity, Embeddable, and
implement the Mapped superclass
org.eclipse.persistence.mappings.converte
rs.Converter interface.
Appears for Custom and Struct converters only.
Data type The type stored in the database. Entity, Embeddable, and
Appears for Object Type and Type converters Mapped superclass
only.
Object type The type stored on the entity. Entity, Embeddable, and
Appears for Object Type and Type converters Mapped superclass
only.
Conversion The array of conversion values (instances of Entity, Embeddable, and
values ConversionValue: String objectValue and Mapped superclass

String dataValue).
Appears for Object Type converters only.

Reference 4-21

Property pages

Property Description Available for Entity Type
Default object Set the value of this attribute to the default Entity, Embeddable, and
value object value. Note that this argument is for Mapped superclass
dealing with legacy data if the data value is
missing.
Appears for Object Type converters only.
Advanced
Use the Advanced area in the JPA Details view to configure additional settings for an
entity.
Property Description Available for Entity Type
Read-only Specifies if a class is read-only. Entity and Mapped
superclass
Customizer Specifies a class that implements Entity, Embeddable, and
class DescriptorCustomizer and is to run against an Mapped superclass

entity's class descriptor after all metadata
processing has been completed.

Change tracking Specifies the ObjectChangePolicy to use:

Attribute — Objects with changed attributes
will be processed in the commit process to
include any changes in the results of the
commit. Unchanged objects will be
ignored.

Object — Changed objects will be processed
in the commit process to include any
changes in the results of the commit.
Unchanged objects will be ignored.

Deferred — Defers all change detection to

the UnitOfWork's change detection process.

Auto - Does not set any change tracking
policy; change tracking will be determined
at runtime.

Entity, Embeddable, and
Mapped superclass

JPA Details view (for attributes)

The JPA Details view displays the persistence information for the currently selected

mapped attribute and contains the following areas:

Mapping Type

Basic Mapping

Element Collection Mapping
Embedded Mapping
Embedded ID Mapping

ID Mapping

Many-to-Many Mapping
Many-to-One Mapping
One-to-Many Mapping
One-to-One Mapping

4-22 Dali Java Persistence Tools User Guide

Property pages

s Version Mapping

Additional Information
Depending on the mapping type, the following additional areas will be available:

s Value

s Type information

s Converters

s Ordering

= Joining Strategy

»s Derived Identity

» Primary Key Generation information

Basic Mapping
Property Description Default
Column The database column that contains the By default, the Column is
value for the attribute. This field assumed to be named
corresponds to the @Column annotation. identically to the attribute
and always included in the
INSERT and UPDATE
statements.
Name The database column that contains the
value for the attribute.
Table Name of the database table that contains
the selected column.
Details
Insertable Specifies if the column is always included True
in SQL INSERT statements.
Updatable Specifies if this column is always included True
in SQL. UPDATE statements.
Unique Sets the UNIQUE constraint for the column. False
Nullable Specifies if the column allows null values. True
Length Sets the column length. 255
Precision Sets the precision for the column values. 0
Scale Sets the number of digits that appear to the 0
right of the decimal point.
Column definition The SQL fragment that is used when
generating the DDL for the column.
Fetch Defines how data is loaded from the Eager
database:
= Eager — Data is loaded in before it is
actually needed.
= Lazy - Data is loaded only when
required by the transaction.
Optional Specifies if this field is can be null. True

Reference 4-23

Property pages

Property Description Default
Mutable Specify if the value of a complex field type True
can be changed (or not changed) instead of
being replaced.

Basic mappings also include the following areas:
s Type information

s Converters

Element Collection Mapping

Property Description Default
Target class The class (basic or embeddable) that is the
element type of the collection.
Fetch Defines how data is loaded from the Lazy
database:

= Eager — Data is loaded in before it is
actually needed.

= Lazy - Data is loaded only when
required by the transaction.

Join fetch The type of fetch to use: None

= Inner —Provides the inner join fetching
of the related object.

Note: Inner joining does not allow for
null or empty values

= Outer — Provides the outer join fetching
of the related object

Note: Outer joining allows for null or
empty values.

Collection Table

Name Name. of the database table used for the
mapping.

Schema Database schema of the Collection Table.

Catalog Database Catalog of the Collection Table.

Join Columns

Override default Click Add to create a new join column, by 0

using the Add Join Column dialog.

Element collection mappings also include the following areas:
= Value
s Converters

s Ordering

Embedded Mapping

4-24 Dali Java Persistence Tools User Guide

Property pages

Embedded ID Mapping

ID Mapping
Property Description Default
Column The database column that contains the value By default, the
for the attribute. This field corresponds to Column is assumed
the @Column annotation. to be named
identically to the
attribute.
Name The database column that contains the value
for the attribute.
Table Name of the database table that contains the
selected column.
Details
Insertable Specifies if the column is always included in True
SQL INSERT statements.
Updatable Specifies if this column is always included ~ True
in SQL UPDATE statements.
Unique Sets the UNIQUE constraint for the column. False
Nullable Specifies if the column allows null values. True
Length Sets the column length. 255
Precision Sets the precision for the column values. 0
Scale Sets the number of digits that appear to the 0
right of the decimal point.
Column definition The SQL fragment that is used when
generating the DDL for the column.
Mutable Specify if the value of a complex field type ~ True
can be changed (or not changed) instead of
being replaced.
ID mappings also include the following areas:
s Type information
s Converters
» Primary Key Generation information
Many-to-Many Mapping
Property Description Default
Target entity The persistent entity to which the attribute

is mapped.

Reference

4-25

Property pages

Property Description Default
Fetch Defines how data is loaded from the Lazy
database:

= Eager - Data is loaded in before it is
actually needed.

s Lazy - Data is loaded only when
required by the transaction.

Join fetch The type of fetch to use: None

= Inner — Provides the inner join fetching
of the related object.

Note: Inner joining does not allow for
null or empty values

= Outer — Provides the outer join fetching
of the related object

Note: Outer joining allows for null or
empty values.

Cascade Specify which operations are propagated True
throughout the entity.

= All - All operations

n Persist
s Merge
s Move

n Remove

s Refresh

One-to-many mappings also include the following areas:
= Joining Strategy
s Converters

s Ordering

Many-to-One Mapping

Property Description Default
Target entity The persistent entity to which the attribute null
is mapped.

You do not need to explicitly specify the
target entity, since it can be inferred from the
type of object being referenced.

Fetch Defines how data is loaded from the Lazy
database:

= Eager - Data is loaded in before it is
actually needed.

= Lazy - Data is loaded only when
required by the transaction.

4-26 Dali Java Persistence Tools User Guide

Property pages

Property Description Default

Join fetch The type of fetch to use:

= Inner — Provides the inner join fetching
of the related object.

Note: Inner joining does not allow for
null or empty values

= Outer — Provides the outer join fetching
of the related object

Note: Outer joining allows for null or
empty values.

Optional Specifies if this field is can be null. True
Cascade Specify which operations are propagated True
throughout the entity.
= All - All operations
n Persist
= Merge
= Move

n Remove

s Refresh

Many-to-one mappings also include the following areas:
= Joining Strategy
»s Derived Identity

One-to-Many Mapping
Property Description Default
Target entity The persistent entity to which the attribute
is mapped.
Fetch Defines how data is loaded from the Lazy
database:
= Eager — Data is loaded in before it is
actually needed.
s Lazy - Data is loaded only when
required by the transaction.
Join fetch The type of fetch to use:

» Inner — Provides the inner join fetching
of the related object.

Note: Inner joining does not allow for
null or empty values

= Outer — Provides the outer join fetching
of the related object

Note: Outer joining allows for null or
empty values.

Reference

4-27

Property pages

Property

Description

Default

Private owned

Specify that a relationship is privately
owned; target object is a dependent part of
the source object and is not referenced by

any other object and cannot exist on its own.

Orphan removal

False

Cascade

Specify which operations are propagated
throughout the entity.

= All - All operations
n Persist

s Merge

= Move

= Remove

= Refresh

True

One-to-many mappings also include the following areas:

= Joining Strategy
s Converters

s Ordering

One-to-One Mapping

Property

Description

Default

Target entity

The persistent entity to which the attribute
is mapped.

Fetch

Defines how data is loaded from the
database:

= Eager — Data is loaded in before it is
actually needed.

= Lazy - Data is loaded only when
required by the transaction.

Eager

Join fetch

The type of fetch to use:

= Inner —Provides the inner join fetching
of the related object.

Note: Inner joining does not allow for
null or empty values

= Outer — Provides the outer join fetching
of the related object

Note: Outer joining allows for null or
empty values.

Optional

Specifies if this field is can be null.

True

Private owned

Specify that a relationship is privately
owned; target object is a dependent part of
the source object and is not referenced by

any other object and cannot exist on its own.

False

Orphan removal

False

4-28 Dali Java Persistence Tools User Guide

Property pages

Property Description Default
Cascade Specify which operations are propagated True
throughout the entity.
= All - All operations
m Persist
» Merge
s Move
= Remove
s Refresh
One-to-one mappings also include the following areas:
s Derived Identity
= Joining Strategy
Version Mapping
Property Description Default
Column The database column that contains the value By default, the
for the attribute. This field corresponds to ~ Column is assumed
the @Column annotation. to be named
identically to the
attribute.
Name The database column mapped to the entity
attribute.
By default, the Column is assumed to be
named identically to the attribute and
always included in the INSERT and UPDATE
statements.
Table Name of the database table that contains the
selected column.
Details
Insertable Specifies if the column is always included in True
SQL INSERT statements.
Updatable Specifies if this column is always included True
in SQL UPDATE statements.
Unique Sets the UNIQUE constraint for the column. False
Nullable Specifies if the column allows null values. True
Length Sets the column length. 255
Precision Sets the precision for the column values. 0
Scale Sets the number of digits that appear to the 0
right of the decimal point.
Column definition The SQL fragment that is used when
generating the DDL for the column.
Mutable Specify if the value of a complex field type True

can be changed (or not changed) instead of
being replaced.

Reference 4-29

Property pages

Version mappings also include the following areas:
= Type information

s Converters

Type information

Available for

Property Description Mapping Type
Default Basic mapping, ID
mapping, and

Version mapping

LOB Specify if the field is mapped to Basic mapping
java.sqgl.Clob or java.sgl.Blob.

This field corresponds to the @Lob
annotation.

Temporal Specifies if this field is one of the following: Basic mapping, ID
mapping, and

s Date - java.sql.Date ! .
Version mapping

s Time - java.sql.Time
s Timestamp — java.sql.Timestamp

This field corresponds to the @Temporal
annotation.

Enumerated Specify how to persist enumerated Basic mapping
constraints if the String value suits your
application requirements or to match an
existing database schema.

n ordinal
n String

This field corresponds to the @Enumerated
annotation.

Converted Basic mapping, ID
mapping, and

Converter name: ! .
Version mapping

s None (default) -
s class-instance —

s serialized —

Value

Converters

Use this area to specify a custom converter for modification of the data value(s) during
the reading and writing of a mapped attribute.

4-30 Dali Java Persistence Tools User Guide

Property pages

Property Description Default Available for Entity Type
Converters Click Add and use the Add Converter dialog to Basic mapping, Element
create a new converter. collection mapping, ID
. mapping, Many-to-many
= ObjectType mapping, One-to-many
= Type mapping, and Version
s Struct mapping
s Custom
Name Name of the converter.
Class
Appears for Custom and Struct converters only.
Data type
Appears for Object Type and Type converters
only.
Object type
Appears for Object Type and Type converters
only.
Conversion
values Appears for Object Type converters only.
Default object
value Appears for Object Type converters only.
Ordering
Specify the default order for objects returned from a query. These options correspond
to the @0rderBy annotation.
Property Description Default Available for Entity Type
Name Element collection
mapping, Many-to-many
mapping, and
One-to-many mapping
Primary key
Custom

Order column

Insertable Specify if the column is included in SQL INSERT True
statements
Updatable Specify if the column is included in SQL UPDATE = True
statements
Nullable Specify if the database column is nullable True
Column The SQL fragment that used to generate the Generated SQL to
definition DDL for the column create a column

of the inferred

type

Reference 4-31

Property pages

4-32 Dali Java Persistence Tools User Guide

Joining Strategy

Use this area to specify a mapped column for joining an entity association. By default,
the mapping is assumed to have a single join.

Available for

Property Description Mapping Type
Mapped by The field in the database table that "owns" Many-to-many
the relationship. This field is required only =~ mapping,
on the non-owning side of the relationship. ~ One-to-many
mapping, and
One-to-one mapping
Attribute
Primary key join One-to-one mapping
columns

Join columns

By default, the name is assumed to be the
primary tables associated with the entities
concatenated with an underscore.

Select Override Default, then Add, Edit, or
Remove the join columns.

Many-to-one
mapping,
One-to-many
mapping, and
One-to-one mapping

Join table Many-to-many
mapping,
Many-to-one
mapping,
One-to-many
mapping, and
One-to-one mapping
Name Name of the join table that contains the
foreign key column.You must specify the
join table on the owning side.
By default, the name is assumed to be the
primary tables associated with the entities
concatenated with an underscore.
Schema Schema of the table
Catalog Catalog of the table

Join columns

The foreign key columns of the join table
which reference the primary table of the
entity owning the association. (that is, the
owning side of the association).

Inverse join columns

The foreign key columns of the join table
which reference the primary table of the

entity that does not own the association. (that

is, the inverse side of the association).

Derived Identity

Available for

Property Description Mapping Type
None Many-to-one
mapping and

One-to-one mapping

Property pages

Available for

Property Description Mapping Type

ID Many-to-one
mapping and
One-to-one mapping

Maps ID Many-to-one
mapping and

One-to-one mapping

Primary Key Generation information

This table lists the fields available in the Primary Key Generation area in JPA Details
view for ID mapping types.

Property Description Default
Primary Key These fields define how the primary Generated Value
Generation key is generated. These fields
correspond to the @Generatedvalue
annotation.
Strategy = Auto Auto

= Identity — Values are assigned
by the database’s Identity
column.

= Sequence — Values are assigned
by a sequence table (see
Sequence Generator).

= Table - Values are assigned by a
database table (see Table

Generator).
Generator Name Unique name of the generated
value.
Table Generator These fields define the database

table used for generating the
primary key and correspond to the
@TableGenerator annotation.

These fields apply only when
Strategy = Table.

Name Unique name of the generator.

Table Database table that stores the
generated ID values.

Schema Schema of the table

Catalog Catalog of the table

Primary Key Column The column in the table generator’s
Table that contains the primary key.

Value Column The column that stores the
generated ID values.

Primary Key Column The value for the Primary Key
Value Column in the generator table.

Allocation size

Reference 4-33

Property pages

Property Description Default

Initial value

Sequence Generator These fields define the specific
sequence used for generating the
primary key and correspond to the
@SequenceGenerator annotation.

These fields apply only when
Strategy = Sequence.

Name Name of the sequence table to use
for defining primary key values.

Sequence Unique name of the sequence.

Schema

Catalog

Allocation size

Initial value

JPA Details view (for orm.xml)

The JPA Details view displays the default mapping and persistence information for the
project and contains the following areas:

= Entity Mappings

»n Persistence Unit

s Generators

s Queries

= Converters (when using EclipseLink)

These defaults can be overridden by the settings on a specific entity or mapping.

Entity Mappings

This table lists the Entity Mappings fields available in the JPA Details view for each
entity type.

Property Description Default

Package The Java package that contains the persistent entities.

Click Browse and select the package

Schema The database schema that contains the Table.

This field corresponds to the <schema> element in the
orm.xml file.

Catalog The database catalog that contains the Table.

This field corresponds to the <catalog> element in
the orm.xml file.

Access Specify the default access method for the variables in
the project:

= Property
[] Field

This field corresponds to the <access> element in the
orm.xml file.

4-34 Dali Java Persistence Tools User Guide

Property pages

Persistence Unit

This table lists the Persistence Unit information fields available in the JPA Details view
for each entity type. These fields are contained in the <persistence-unit-metadata>
element in the orm.xml file.

Property Description Default

XML Mapping Specifies that the Java classes in this persistence unit
Data Complete are fully specified by their metadata. Any
annotations will be ignored.

This field corresponds to the
<xml-mapping-metadata-complete> element in the
orm.xm] file.

Cascade Persist Adds cascade-persist to the set of cascade options in
entity relationships of the persistence unit.

This field corresponds to the <cascade-persist>
element in the orm.xml file.

Schema The database schema that contains the Table.

This field corresponds to the <schema> element in the
orm.xml file.

Catalog The database catalog that contains the Table.

This field corresponds to the <catalog> element in
the orm.xml file.

Access Specify how the entity its access instance variables.

= Property — Persistent state accessed through the
property accessor methods. The property
accessor methods must be public or private.

= Field - Instance variables are accessed directly.
All non-transient instance variables are
persistent.

Deliminated
identifiers

Generators

This table lists the Generator fields available in the JPA Details view for the orm.xml
file.

Property Description Default

Generators Click Add to create a new table or sequence
generator, or select an existing generator and click
Remove, to add or remove a generator.

Sequence
Generators

Name

Sequence

Schema

Catalog

Allocation size 50

Initial value 1

Reference 4-35

Property pages

Property

Description

Default

Table Generators

Name

Table

Schema

Catalog

Primary key
column value

Allocation size

50

Initial value

Queries

This table lists the Query information fields available in the JPA Details view for the

orm.xml file.

Property Description Default
Queries Displays the existing Named and Native queries.
Click Add to add a named query, or Add Native for
anative query.
For named queries, enter the query in the Query
field.
For native queries, select a result class, then enter
the query in the Query field.
Named Queries
Name
Query
Lock mode None

Native Queries

Name

Result class

Query

Query Hints

Displays the existing query hints (Name and Value).
Click Add to add a new query hint.

Converters

The Converters information in the JPA Details view applies only when using

EclipseLink.

Click Add to create a new converter, using the Add Converter dialog.

JPA Structure view

The JPA Structure view displays an outline of the structure (its attributes and
mappings) of the entity that is currently selected or opened in the editor. The
structural elements shown in the outline are the entity and its fields.

Reference 4-36

Property pages

Figure 4-1 Sample JPA Structure View

Persistent entity

Mapped attributes
| _—

persistence.xml Editor

The persistence.xml Editor provides an interface that enables you to update the
persistence.xnl file. For projects using the EclipseLink platform, the

perisistence.xml Editor consists of the following pages:
s General
s Connection

s Customization

s Caching
= Logging
= Options

» Schema Generation
m Properties

s Source

For projects using the Generic platform, the following subset of these pages is

available:

= General

s Connection
» Properties

s Source

General

The following table lists properties available in the General page of the persistence.xml

Editor.

Property Description

Default

General

Name Enter the name of the persistence unit.

Defines the <persistence-unit name>
element.

The project name

Persistence provider Enter the name of the persistence provider.

Defines the <provider> element.

Determined by the
server

Reference 4-37

Property pages

Property Description Default
Description Enter a description for this persistence unit.
This is an optional property.
Defines the <description> element.
Managed Classes
Classes Click Add to add a new class, or select an
existing class and click Remove, to add or
remove the classes managed through the
persistence unit.
Defines the <class> element.
Select a class and click Open to modify the
class in the editor.
Exclude Unlisted Select to include all annotated entity classes in ~ False
Classes the root of the persistence unit.
Defines the <exclude-unlisted-classes>
element.
XML Mapping Files
Files Click Add to select an XML mapping file, or Meta-INF\orm.xml
select an existing file and click Remove, to add
or remove an object/relational mapping XML
files that define the classes to be managed by
the persistence unit.
Defines the <mapping-file> element.
Exclude default Select to include all annotated EclipseLink False
EclipseLink XML mapping files.
mapping file Defines the
eclipselink.exclude-eclipselink-orm
property element.Note: This field applies only
when using EclipseLink JPA implementation
JAR Files
Files Click Add to select a JAR file, or select an
existing file and click Remove, to add or
remove JAR files and libraries in the
persistence unit.
Connection

The following table lists the properties available in the Connection page of the
persistence.xml Editor.

Property

Description Default

Transaction type

Specify if the connection for this persistence JTA
unit uses one of the following transaction types:

s Default -- Select to use the container used
by the container.

» JTA (Java Transaction API) -- Transactions
of the Java EE server.

= Resource Local -- Native actions of a JDBC
driver that are referenced by a persistence
unit.

Reference 4-38

Property pages

Property Description Default

Batch writing Specify the use of batch writing to optimize None
transactions with multiple write operations.

Set the value of this property into the session at
deployment time.

Note: This property applies when used both in
a Java SE and Java EE environment.

The following are the valid values for
oracle.toplink.config.BatchWriting:

= JDBC-Use JDBC batch writing.

s Buffered—Do not use either JDBC batch
writing nor native platform batch writing.

s Oracle]DBC-Use both JDBC batch writing
and Oracle native platform batch writing.

= None-Do not use batch writing (turn it
off).

Statement caching Specify if the query caches its JDBC statement. 50
If enabled, you can also set the number of
statements to cache.

Native SQL Specify if Dali includes platform-specific (that ~ False
is, "native") SQL statements. If false, Dali uses
generic SLQ.

Database

JTA Data Source If you selected JTA as the transaction type, then

Name enter the name of the default JTA data source

for the persistence unit.

Non-JTA Data Source If you selected Resource Local as the
Name transaction type, then enter the name of the
non-JTA data source.

This property is not available for projects using
the Generic platform.

EclipseLink Define the connection pool driver, URL, user
connection pool name and password.

These properties are note available for projects
using the Generic platform.

Bind parameters Control whether or not the query uses True
parameter binding.

Note: This property applies when used in a
Java SE environment.

This property is not available for projects using
the Generic platform.

Read Connection The maximum and minimum number of Minimum: 2
connections allowed in the JDBC read

. Maximum 2
connection pool.

Note: These property apply when used in a
Java SE environment.

These properties are not available for projects
using the Generic platform

Reference 4-39

Property pages

Property

Description Default

Write Connection

The maximum and minimum number of Minimum: 5
connections allowed in the JDBC read

. Maximum 10
connection pool.

Note: These property apply when used in a
Java SE environment.

These properties are not available for projects
using the Generic platform

Exclusive
connections

These fields are available only when
Transaction Type is Local Resource.

Exclusive connection
mode

Specify when Dali performs reads through the = Transactional
write connection.

= Always — Create an exclusive isolated
client session if reading an isolated entity,
otherwise create an exclusive client session.

s Isolated — Create an exclusive isolated
client session if reading an isolated entity,
otherwise raise an error.

s Transactional — Create an isolated client
session if some or all entities require
isolated cache, otherwise create a client
session.

Lazy connection
acquisition

Specify if Dali acquires write connections lazily. True

Customization

The following table lists the properties available in the Customization page of the
persistence.xml Editor.

Property

Description Default

Weaving

Specifies if weaving of the entity classes is Weave Dynamically
performed. The EclipseLink JPA persistence

provider uses weaving to enhance JPA entities

for such properties as lazy loading, change

tracking, fetch groups, and internal

optimizations. Select from the following

options:

= No Weaving
= Weave Dynamically

= Weave Statically -- Use this option if you
plan to execute your application outside of
a Java EE 5 container in an environment
that does not permit the use of
-javaagent:eclipselink.jar on the JVM
command line. This assumes that classes
have already been statically woven. Run
the static weaver on the classes before
deploying them.

Lazy

Select this option to enable lazy weaving. True

Reference 4-40

Property pages

Property Description Default

Fetch Groups Select this option to enable fetch groups True
through weaving. Set this option to false if:

s There is no weaving.

= Classes should not be changed during
weaving (for example, when debugging).

Set this property to false for platforms where it
is not supported.

Internal Specify if Dali uses internal optimizations True
through weaving.

If enabled, enables lazy one-to-one and
many-to-one mappings through weaving.

Eager Specify if Dali uses indirection on eager False
relationships.
Change Tracking Select this option to use weaving to detect True

which fields or properties of the object change.

Validation only Specify if Dali should validate deployments by True
initializing descriptors but not connecting to
the data source.

Mapping files False
schema validation

Throw exceptions Select this option to set EclipseLink to throw an True
exception or log a warning when it encounters
a problem with any of the files listed in a
persistence.xml file <mapping-£file> element.

Exception handler Select (or create) a Java class (that implements
the
org.eclipse.persistence.exceptions.Excep
tionHandler interface) to handle exceptions.

Session Customizer Select a session customizer class: a Java class
that implements the
eclipselink.tools.sessionconfiguration.S
essionCustomizer interface and provides a
default (zero-argument) constructor. Use this
class’ customize method, which takes an
eclipselink.sessions.Session, to
programmatically access advanced EclipseLink
session API.

Profiler Specify which performance profiler to use in NoProfiler
order to capture runtime statistics.

= No Profiler — Do not use a performance
profiler.

= Performance Profiler — Use EclipseLink
performance profiler
(org.eclipse.persistence.tools.profil
er.PerformanceProfiler class).

= Query Monitor — Monitor query
executions and cache hits
(org.eclipse.persistence.tools.profil
er.QueryMonitor class).

Reference 4-41

Property pages

Note: This page is not available for projects using the Generic

platform.

Caching

This table lists the properties of the Caching page of the persistence.xml Editor.

Property Description Default

Shared cache mode Select one of the following as the shared cache = Disable selective
mode:
= All-.
= None-

s Enable Selective —
s Disable Selective —

= Unspecified -

Reference 4-42

Property pages

Property

Description Default

Default Cache Type

Select one of the following as the Default Cache = Weak with soft
Type: subcache

= Weak with Soft Subcache-This option is
similar to Weak with Hard Subcache
except that it maintains a most frequently
used subcache that uses soft references. The
size of the subcache is proportional to the
size of the identity map. The subcache uses
soft references to ensure that these objects
are garbage-collected only if the system is
low on memory.

Use this identity map in most circumstances
as a means to control memory used by the
cache.

= Weak with Hard Subcache-This option is
similar to Soft with Weak subcache except
that it maintains a most frequently used
subcache that uses hard references. Use this
identity map if soft references are not
suitable for your platform.

= Weak-This option is similar to Full, except
that objects are referenced using weak
references. This option uses less memory
than Full, allows complete garbage
collection and provides full caching and
guaranteed identity.

Use this identity map for transactions that,
once started, stay on the server side.

= Soft-This option is similar to Weak except
that the map holds the objects using soft
references. This identity map enables full
garbage collection when memory is low. It
provides full caching and guaranteed
identity.

= Full-This option provides full caching and
guaranteed identity: all objects are cached
and not removed.

Note: This process may be
memory-intensive when many objects are
read.

= None-This option does not preserve object
identity and does not cache objects.This
option is not recommended.

Default Cache Size

Set the size (maximum number of objects) of the 100
cache.

Reference 4-43

Property pages

Property Description
Flush clear cache Select one of the following as the Default Cache Drop Invalidate
Type:

Drop — This mode is the fastest and uses the
least memory. However, after commit the
shared cache might potentially contain stale
data.

Drop Invalidate — Classes that have at least
one object updated or deleted are
invalidated in the shared cache at commit
time. This mode is slower than Drop, but as
efficient memory usage-wise, and prevents
stale data.

Merge — Drop classes from the
EntityManager’s cache of objects that have
not been flushed. This mode leaves the
shared cache in a perfect state after commit.
However, it is the least memory-efficient
mode; the memory might even run out in a
very large transaction.

Note: This page is not available for projects using the Generic

platform.

Logging

This table lists the properties of the Logging page of the persistence.xml Editor.

Note: This page is not available for projects using the Generic

platform.

4-44 Dali Java Persistence Tools User Guide

Property pages

Property Description Default
Logging Level Specifies the amount and detail of log output by Info
selecting the log level (in ascending order of
information):

The following are the valid values for the
java.util.logging.Level:

= OFF-disables logging

= SEVERE-logs exceptions indicating
TopLink cannot continue, as well as any
exceptions generated during login. This
includes a stack trace.

= WARNING-logs exceptions that do not
force TopLink to stop, including all
exceptions not logged with severe level.
This does not include a stack trace.

= INFO-logs the login/logout per sever
session, including the user name. After
acquiring the session, detailed information
is logged.

= CONFIG-logs only login, JDBC connection,
and database information.

= FINE-logs SQL.

= FINER-similar to warning. Includes stack
trace.

s FINEST-includes additional low level
information.

Example: persistence.xml file

<property name="eclipselink.logging.level"
value="INFO"/>

Timestamp Control whether the timestamp is logged in each True
log entry.

The following are the valid values:
s True-log a timestamp.

= False-donotlog a timestamp.
Example: persistence.xml file

<property
name="eclipselink.logging.timestamp"
value="false"/>

Thread Control whether a thread identifier is logged in ~ True
each log entry.

The following are the valid values:
= true-log a thread identifier.

= false-do not log a thread identifier.

Reference 4-45

Property pages

Property

Description

Default

Session

Control whether an EclipseLink session
identifier is logged in each log entry.

The following are the valid values:
= true-log a EclipseLink session identifier.

= false-do not log a EclipseLink session
identifier.

Example: persistence.xml file

<property
name="eclipselink.logging.session"
value="false"/>

true

Exceptions

Control whether the exceptions thrown from
within the EclipseLink code are logged prior to
returning the exception to the calling
application. Ensures that all exceptions are
logged and not masked by the application code.

The following are the valid values:
= true-log all exceptions.

= false-do not log exceptions.
Example: persistence.xnl file

<property
name="eclipselink.logging.exceptions"
value="true"/>

false

Log file

Specify a file location for the log output (instead
of the standard out).

Example: persistence.xml file

<property name="eclipselink.logging.file"
value="C:\myout\" />

stdout

Logger

Select the type of logger to use:
The following are the valid values:

= DefaultLogger—the EclipseLink native
logger

eclipselink.logging.DefaultSessionLog.

= JavaLogger—the java.util.logging logger
eclipselink.logging.JavaLog.

= ServerLogger-the java.util.logging
logger
eclipselink.platform.server.ServerLog.
Integrates with the application server's
logging as define in the
eclipselink.platform.server.ServerPlat
form.

= Fully qualified class name of a custom
logger. The custom logger must implement
the eclipselink.logging.SessionLog
interface.

Example: persistence.xml file

<property
name="eclipselink.logging.logger"
value="acme.loggers.MyCustomLogger" />

DefaultLogger

4-46 Dali Java Persistence Tools User Guide

Property pages

Property Description Default
Logging Categories ~ You can also specify the logging level for the Info
following specific categories:
= SQL
s Connection
= Event
= Query
» Cache
= Propagation
= EJB
= DMS
= EJB or metatdata
» JPA metadata
= Weaving
= Properties
= Server
Options

This table lists the properties of the Options page of the persistence.xml Editor.

Note:
platform.

This page is not available for projects using the Generic

Property

Description Default

Session Options

Session Name

Specify the name by which the EclipseLink
session is stored in the static session manager.
Use this option if you need to access the
EclipseLink shared session outside of the
context of the JPA or to use a pre-existing
EclipseLink session configured through a
EclipseLink sessions.xml file

Valid values: a valid EclipseLink session name
that is unique in a server deployment.

Example: persistence.xml file

<property
name="eclipselink.session-name"
value="MySession"/>

Reference

4-47

Property pages

Property Description Default

Sessions XML Specify persistence information loaded from
the EclipseLink session configuration file
(sessions.xml).
You can use this option as an alternative to
annotations and deployment XML. If you
specify this property, EclipseLink will override
all class annotation and the object relational
mapping from the persistence.xml, as well as
ORM.xml and other mapping files, if present.
Indicate the session by setting the
eclipselink.session-name property.
Note: If you do not specify the value for this
property, sessions.xml file will not be used.
Valid values: the resource name of the sessions
XML file.
Example: persistence.xml file
<property name="toplink.session-xml"
value="mysession.xml"/>

Target Database Select the target database. You can also set the ~ Auto
value to the fully qualified class name of a
subclass of the
org.eclipse.persistence.platform.Databas
ePlatform class.
Example: persistence.xml file
<property
name="eclipselink.target-database"
value="Oracle"/>

Target Server Select the target server for your JPA None
application.
Example: persistence.xml file
<property
name="eclipselink.target-server"
value="0C4J_10_1 3"/>

Event Listener Specify a descriptor event listener to be added
during bootstrapping.
Valid values: qualified class name for a class
that implements the
eclipselink.sessions.SessionEventListene
r interface.
Example: persistence.xml file
<property
name="eclipselink.session-event-listener
" value="mypackage.MyClass.class"/>

Include Descriptor Enable or disable the default copying of all True

Queries

named queries from the descriptors to the
session. These queries include the ones defined
using EclipseLink API, descriptor amendment
methods, and so on.

Miscellaneous
Options

4-48 Dali Java Persistence Tools User Guide

Property pages

Property Description Default

Temporal mutable Specify if all Date and Calendar persistent False
fields should be handled as mutable objects.

Example: persistence.xml file

<property
name="eclipselink.temporal .mutable"
value="true"/>

Lock timeout 5
Query timeout 5
Validation mode Auto

Validate pre-persist
group
Validate pre-update
group

Validate pre-remove

group

Schema Generation

This table lists the properties of the Schema Generation page of the persistence.xml
Editor.

Note: This page is not available for projects using the Generic

platform.
Property Description Default
DDL Generation Select the type of DDL generation: None
Type = None -- Do not generate DDL; no schema is
generated.
» Create Tables -- Create DDL for
non-existent tables; leave existing tables
unchanged.
= Drop and Create Tables -- Create DDL for
all tables; drop all existing tables.
Output Mode Select the DDL generation target:
= Both -- Generate SQL files and execute them
on the database.
s Database -- Execute SQL on the database
only (do not generate SQL files).
= SOQL Script -- Generate SQL files only (do
not execute them on the database).
DDL Generation Specify where EclipseLink writes DDL output.
Location Specify a file specification to a directory in

which you have write access. The file
specification may be relative to your current
working directory or absolute. If it does not end
in a file separator, then EclipseLink appends one
that is valid for your operating system.

Reference 4-49

Preferences

Property Description Default
Create DDL File Specify the file name of the DDL file that createDDL. jdbc
Name EclipseLink generates that contains SQL

statements for creating tables for JPA entities.
Specify a file name valid for your operating
system.

Drop DDL File Name Specify the file name of the DDL file that dropDDL. jdbc

EclipseLink generates that contains SQL
statements for dropping tables for JPA entities.

Properties

This page enables you to add or remove the vendor-specific <properties> elements of

persistence.xml.

To add a property, click Add then enter the property Name and Value.

Source
Using this page, you can manually edit the persistence.xnl file.

See "Managing the persistence.xml file" on page 3-20 for additional information.

Preferences
This section includes information on the following preference pages:
= Java Persistence Preferences page — JPA

= Java Persistence Preferences page — Errors/Warnings

This section also includes information on the following project property pages:

m Project Properties page — JPA

m Project Properties page — EclipseLink

m Project Properties page — Entity Generation
= Project Properties page — Errors/Warnings

s Project Properties page — JAXB Options

Java Persistence Preferences page — JPA

Use the JPA options on the Java Persistence Preferences page to select the general

settings for JPA development.

Property Description

Entity generation from

tables

Default package Specify the default package name for generated entities.
JPQL Editing

Specify the case ... Specify the case for JPQL identifiers when editing JPQL with

content assist,
s Lowercase

= Uppercase

4-50 Dali Java Persistence Tools User Guide

Preferences

Property Description

Match case of first character If enabled, Dali will match the case with the first character.

Java Persistence Preferences page - Errors/Warnings

Property Description
Enable project specific Select the severity level for reporting validation problem for
settings each category:

= Project

s Persistence unit

s Type

= Attribute

= Database

= Inheritance

= Queries and generators

You can expand each category to display the possible error and
warning messages.

Project Properties page — JPA

Use the JPA options on the Properties page to select the database connection to use
with the project.

Note: Connection must be active to get data source specific help and
validation.

This table lists the properties available in the JPA options preferences page.

Property Description

Platform Select the vendor-specific platform.

JPA Implementation

Type Select User Library to select from the available user-defined or
downloaded libraries.

If you select Disable, you must manually include the JPA
implementation library on the project classpath.

Library Select a specific JPA library configuration.
Click Manage libraries to create or update a user library.

Click Download libraries to download a specific library
configuration.

Include libraries with this ap Specify if the selected libraries are included when deploying the
plication application.

Reference 4-51

Preferences

Property Description

Connection The database connection used to map the persistent entities.
s To create a new connection, click Add Connections.

= To reconnect to an existing connection, click Reconnect.

Override default catalog Select a catalog other than the default one derived from the

from connection connection information. Use this option if the default catalog is
incorrect or cannot be used.

Override default schema Select a schema other than the default one derived from the

from connection connection information. Use this option if the default schema is

incorrect or cannot be used. For example, use this option when
the deployment login differs from the design-time login.

Persistent Class Specify if Dali will discover annotated classes automatically, or
Management if the annotated classes must be listed in the persistence.xml
file.

Note: To insure application portability, you should explicitly list
the managed persistence classes that are included in the
persistence unit.

Canonical Metamodel Select the location of the metamodel source.

Project Properties page — EclipseLink

Use the EclipseLink options on the Properties page to select the EclipseLink-specific
options to use with the project.

This table lists the properties available in the EclipseLink page.

Property Description

Static weaving

Weave classes on build If enabled, Dali will weave all applicable class files at build time
so that you can deliver pre-woven class files.

Source classes Specifies the location of the Java source files to weave: either a
directory or a JAR file.

Target classes Specifies the output location: either a directory or a JAR file.

Log level Specifies the amount and detail of log output. See "Logging" on

page 4-44 for information on the different logging levels.

Persistence XML root Specifies the location of the persistence.xml file if it is not in the
same location as the source.

Project Properties page - Entity Generation

Use the Entity Generation options on the Properties page to configure the defaults Dali
uses when generating entities

This table lists the properties available in the Entity Generation page.

Property Description

Entity generation from

tables

Default package Specify the default package name used for generated entities.

4-52 Dali Java Persistence Tools User Guide

Preferences

Project Properties page - Errors/Warnings

Use the Errors/Warnings options on the Properties page to specify if Dali should
report errors and warnings for the project.

This table lists the properties available in the Errors/Warnings page.

Property Description
Enable project specific Specify if Dali reports errors and warning for the following
settings features:

= Project

» Persistence unit

= Type

= Attribute

= Database

= Inheritance

= Queries and generators

You can expand each category to display the possible error and
warning messages.

Project Properties page — JAXB Options

Use the JAXB options on the Properties page to select the specific JAXB
implementation use with the JAXB project.

This table lists the properties available in the JAXB project properties page.

Property Description

Platform Select the vendor-specific platform.

JAXB Implementation

Type Select User Library to select from the available user-defined or

downloaded libraries.

If you select Disable, you must manually include the JPA
implementation library on the project classpath.

Library Select a specific JPA library configuration.
Click Manage libraries to create or update a user library.

Click Download libraries to download a specific library
configuration.

Include libraries with this ap Specify if the selected libraries are included when deploying the
plication application.

Project Properties page - Schemas

Use the Schemas options on the Properties page to configure the JAXB schemas to use
for validation and content assistance.

Click Add to
This table lists the properties available in the Schemas properties page.

Property Description

Namespace

Reference 4-53

Dialogs

Dialogs

Property Description

Location

This section includes information on the following dialogs:
» Edit Join Columns dialog

= Add Join Column dialog

» Select Cascade dialog

= New EclipseLink Mapping File dialog
= Add Converter dialog

= Mapping Type Selection dialog

= JPA Metadata Conversion dialog

= Make Persistent dialog

= Add Query dialog

= Add Primary Key Join Column dialog
= Add Schema Location dialog

= Select Schema Location dialog

Edit Join Columns dialog

Use the Join Columns dialog to create or modify the join tables and columns in
relationship mappings.

This table lists the properties available in the Join Columns dialog.

Property Description
Name Name of the joint table column that contains the foreign key
column.

Referenced Column Name Name of the database column that contains the foreign key
reference for the entity relationship.

Add Join Column dialog

Use the Join Columns dialog to create or modify the join tables and columns in
relationship mappings.

This table lists the properties available in the Add Join Column dialog.

Property Description
Name Name of the joint table column that contains the foreign key
column.

4-54 Dali Java Persistence Tools User Guide

Dialogs

Property

Description

Referenced Column Name Name of the database column that contains the foreign key

reference for the entity relationship.

Table

Column definition

Insertable

Updatable

Unique

Mutable

Select Cascade dialog

Specify which operations are propagated throughout the association: All, Persist,
Merge, Remove, or Refresh.

New EclipseLink Mapping File dialog

Specify the location and properties of the EclipseLink mapping file
(eclipselink-orm.xml).

Property

Description

Project

Select the project in which to add the mapping file.

Source folder

Click Browse and select the source file in which to add the mapping
file. The default is . ./<PROJECT>/src.

File path

Enter the filename and path of the mapping file. The default is
META-INF/eclipselink-orm.xml.

Default access

Select whether the entity’s access to instance variables is field-based or
property-based, as defined in the JPA specification.

Add to persistence
unit

Specify if this mapping file should be added to the persistence unit
(persistence.xml).

Persistence Unit

Select the persistence unit in which to add the mapping file.

Add Converter dialog

Use this dialog to create a new EclipseLink converter.

Property

Description

Name

Enter the name for this converter. Converter names must be unique
within the persistence unit.

Type

Select the converter type:
s Custom
= Object type

s Struct

n Type

Reference 4-55

Dialogs

Mapping Type Selection dialog

Use this dialog to select a specific mapping type for the attribute or entity.

Property Description

Enter mapping type Enter the name (or part of a name) of a mapping type.

or pattern Leave blank to show all available options.

Matched items Dali displays the mapping types that match your search pattern.

JPA Metadata Conversion dialog

Use this dialog to export your JPA metadata (converters, queries, and generators) to an

XML mapping file.

Duplicated or overridden annotations will not be included in the generated mapping
file.

Property Description

Mapping file Name and location of the XML file in which to save the JPA metadata

WARNING: Malformed metadata will result in a non-functional
mapping file

Make Persistent dialog

Use this dialog to add persistence to a Java class.

Property Description
Annotate in Java Specify if Dali should use annotations. If disabled, Dali will add
persistence information in the XML mapping file.
Add to XML Specify if Dali should add persistence information in the XML mapping
mapping file file. If disabled, Dali will use annotations.
Java classes For each Java class, select the Mapping type:
= Entity

= Embeddable
= Mapped superclass

List in Specify if Dali should add persistence properties to the persistence.xml
persistence.xml file.
Add Query dialog
Use this dialog to add a new named query or native named query .
Property Description
Name Name of the query
Type Select the type of query to create:

4-56

= Named query

= Native named query

Dali Java Persistence Tools User Guide

JPA Development perspective

Add Primary Key Join Column dialog

Property Description

Name

Referenced column
name

Table

Column definitions

Add Schema Location dialog

Use this dialog to configure a new schema namespace and the location where it can be

found.

Property Description

Location Click Browse and use the Select Schema Location dialog to specify
the location of the schema.

Namespace

Select Schema Location dialog

Property Description

Select file from
Workspace

Select XML catalog
entry

Workspace files

Add Virtual Attribute dialog

Use this dialog to add a new virtual attribute to the JPA entity.

Property Description

Name Name of the virtual attribute

Map As Select the mapping for the attribute

Attribute type Click Browse and select the Java type of the attribute.

JPA Development perspective

The JPA Development perspective defines the initial set and layout of views in the
Workbench window when using Dali. By default, the JPA Development perspective
includes the following views:

» JPA Structure view

» JPA Details view (for entities)

Reference 4-57

Icons and buttons

s JPA Details view (for attributes)

s JPA Details view (for orm.xml)

Figure 4-2 Sample JPA Development Perspective

persistence xml JPA Perspective

Editor

orm.xml Editor JPA Structure View

JPA Details View

©F oA - QuickStartisrc/quickstart/demodme. VAddress. java - Eclipse

s #import jave.ic.Serializable:
- 1 ety
“ courtry
0 staeOebrvines
0 postaiCode
0 street
8
4 AcbisctTypeconvesterineme = “myObjectTypecomveter~ 1
]
e = l
(o] .00, ApAChe hoe L, AnTernal, generis DRIV class)
public class [EEEEE] implements Serislisable |
a AConverTer (name = “myCustomConverter®)
1 Cuta Source Explorer 1 [£ Problems
B i B gty -
5 Database Connections Baviwes | O e
6 ety treernal 10.9.1.0 .
25 00 Data Sources
(= Fist Fle Dt Source. Norac | Defok (Advess) -
2 Wb Sarvicms Data Scarce Catsog: | Dotk &
(10 Dt Source
Schesa: | Defukt (AFF) -
Mami | Dafmik (Ackiess) -
) -
My | hone> [rowme
« 3 »
e Smatinest 3121

Icons and buttons

Icons

This section includes information on each of the icons and buttons used in the Dali OR
Mapping Tool.
s Icons

s Buttons

The following icons are used throughout the Dali OR Mapping Tool.

Icon Description

Entity icons

@ Entity

[’é Embeddable entity
a Mapped superclass
Mapping icons

FTN Array mapping

4-58 Dali Java Persistence Tools User Guide

Dali developer documentation

Icon Description

b Basic mapping

H Basic collection mapping
H Basic map mapping

[aag] Element collection mapping
E'-s Embedded mapping

B Embedded ID mapping
Ll.:,-ﬁ ID mapping

Ez: Many-to-many mapping
E;U Many-to-one mapping
sl One-to-many mapping
a-0 One-to-one mapping

Transformation mappings

H
4 Transient mapping
H

Variable one-to-one mappings

Version mapping

=5

=

Buttons
The following buttons are used throughout the Dali OR Mapping Tool.

Icon Description

H IPA

JPA Development perspective

Dali developer documentation
Additional Dali documentation is available online at:
http://wiki.eclipse.org/index.php/Dali_Developer_Documentation
This developer documentation includes information about:
= Dali architecture
= Plugins that comprise the Dali JPA Eclipse feature

= Extension points

Reference 4-59

Dali developer documentation

4-60 Dali Java Persistence Tools User Guide

Tips and tricks

The following tips and tricks give some helpful ideas for increasing your productivity.

Database connections

When starting a new workbench session, be sure to reconnect to your database (if you
are working online). This allows Dali to provide database-related mapping assistance

and validation.

Schema-based
persistence.xml file

If you are behind a firewall, you may need to configure your Eclipse workspace proxy
in the Preferences dialog (Preferences > Internet > Proxy Settings) to properly
validate a schema-based persistence.xml file.

@XmlPath content assist
and validation

Dali supports @xmlPath content assist and validation. You can now easily traverse
deeply nested XML structures specifying xm1Path values.

@XmlPath(“address/")

protected String g
protected int empI
protected Employee
[@Xm1Element(nillab|
protected List<Emp|
[@XmlSchemaType (nam
protected XMLGregol
[@XmlSchemaType (nam
protected XMLGregol
protected String g
“

PA Details | €] Error Log | .0 B

ninated> C:\Program Files\Ja
sing a schema...
1iling a schema...

"address/addressld"
"address/city”
"address/country”
"address/employees”
"address/PCode”
"address/province”
"address_f'streetk
"address/text()"

T

Press 'Ctrl+Space’ to show JAXE Proposals

alvaddrezs dawa

Tips and tricks 5-1

Making persistent
entities

can quickly create many entities at once.

: src
8 model
» | 4] Address.jaua
. [J] CarrierFod
> [J] Ddltest.jay
> [J] Employee|
» [J] Feejava
. [J] Lproject.j
» [J] Owner.jay
- [J] Person.jay
- [1] Petjava

» [J] Phonejav B2

- Web Services Dat]
- XML Data Source)

New

Open Type Hierarchy
Show In

Open

Open With

Copy

Copy Qualified Name
Compare With

Replace With

Restore from Local History...

Web Services

JPA Tools

Properties

3

F4
Alt+Shift+W »
=

Ctrl+C

Alt+Enter

Description

-

With the Make Persistent dialog, you can easily transform Java classes into persistent
entities via Java annotation or entry in an XML mapping file. With multi-select, you

public class Address implements Serializable {
private static final long seriglVersionUID = 1L;

Vi

(5tring country) {
ntry;

Make Persistent...

Resource

5-2 Dali Java Persistence Tools User Guide

6

What’s nhew

This section contains descriptions of the following new features and significant
changes made to the Dali OR Mapping Tool for Release 3.2 (Web Tools Platform 3.4):

EclipseLink multitenancy support

EclipseLink static weaving support

Generating EclipseLink dynamic entities from tables
Converting JPA metadata to XML

EclipseLink 2.4 support

EclipseLink multitenancy support

Dali Release 3.2 supports configuration of EclipseLink's multitenancy feature.
Multitenancy allows multiple application tenants to share the same schema using
tenant descriptor columns. Dali supports the following multitenant strategies:

Single table
Table per tenant
VPD

+ Multitenancy

Multitenant strategy: v

[E] tnclude criteria (True)
Tenant discriminator columnd Table Per Tenant
WPD

[owverride default

For more information, see:

"Multitenancy” on page 4-19

"Multitenant" in the Java Persistence API (JPA) Extensions Reference for EclipseLink
http://www.eclipse.org/eclipselink/documentation/2.4/jpa/extensions/a_
multitenant.htm

What's new 6-1

EclipseLink static weaving support

EclipseLink static weaving support

Dali Release 3.2 allows the configuration of EclipseLink's weaving support at the
project properties level. Static weaving allows you to use EclipseLink's weaving
support in cases where dynamic weaving is not available or is not an option. Dali
configures and executes the byte code weaving of compiled Java classes

e Properties for QuickStart

Resource
Builders

Java Build Path
Java Code Skyle
Java Compiler
Java Editor
Javadoc Location
JawvaScripk

P4

ERE R

-

Ex 3
Entity Generation
Errorsfiarnings

Project Facets
Project References
Refactoring History
RunfDebug Settings
Targeted Runtimes

Task Repositary
Task Tags

Yalidation
WikiText

HDoclet

EclipseLink

Configure EclipseLink specific preferences for the project:

Skatic weaving
Weave classes on build

Source classes:

Target classes:

Log lavel: |seveRe

Persistence XML Root {optional): |

L= -
| buildiclasses | [Browse...]
| buildiclasses | [Browse...]
o
| [Browse...]
Ok] [Cancel

For more information, see:

= "Project Properties page — EclipseLink" on page 4-52

= "Static Weaving" in the EclipseLink documentation

http://wiki.eclipse.org/EclipseLink/UserGuide/JPA/Advanced_JPA_

Development/Performance/Weaving/Static_Weaving

Generating EclipseLink dynamic entities from tables

When using EclipseLink JPA, you can create dynamic entities from your database
tables. This dynamic persistence provides access to a relational database with all the

benefits of JPA without coding or maintaining Java classes.

[Project Explorer 52 = <fg> ¥ =08
= g ¥ Mew L4
= Go Into
EE# s showIn AlE+Shift+ 4
=&
=N AR e el
=3 T
= E s ro
= T2am +
Eh Move to AL
Configure 4
Source L4
Properties Alt+Enter

6-2 Dali Java Persistence Tools User Guide

Generate Tables from Entities. ..

EclipseLink 2.4 support

For more information, see:

s "Generating dynamic entities from tables" on page 3-52

Converting JPA metadata to XML

Dali can convert JPA metadata (such as converters, queries, and generators) into an
XML mapping file. This allows you to maintain the global metadata for a persistence
unit (such as queries and generators) in an XML mapping file.

[Project Explorer 52 = <fg> ¥ =08
= JF Hew N
Bt Go Into
E-# s | Showln Alt+Shift+w 4
=&
=N AR e Thela e
=L F
E‘ Ei L UL
= Team L4
= Hove to L Java Converters...
Configure 3 Generate Tables from Entities. .. Java Queries...
Source »| Generate Entities from Tables... Java Generators...
Generate Dynamic Entities from Tables. ..
Properties Alt+Enter

For more information, see:

s "Converting JPA metadata to XML" on page 3-56

EclipseLink 2.4 support

Release 3.2 provides support for EclipseLink 2.4.x.

L} New JPA Project =03
JPA Facet :
Configure JPA settings, B

PlatFarm

| Eclipselink 2.4.x L |

JPA implementation

Type: | User Library A |

=) EclipseLink 2.4.0 - Juno

®

annackion

EclipseLink (the Eclipse Persistence Services Project) is a complete persistence frame
work. Refer to http://www.eclipse.org/eclipselink/ for more information.

What's new 6-3

EclipseLink 2.4 support

6-4 Dali Java Persistence Tools User Guide

7

Legal

Copyright © 2011, 2012, Oracle. All rights reserved.

This program and the accompanying materials are made available under the terms of
the Eclipse Public License v1.0 which accompanies this distribution, and is available
at:

http://www.eclipse.org/legal/epl-v10.html

About this content
August, 2012

License

The Eclipse Foundation makes available all content in this plug-in ("Content"). Unless
otherwise indicated below, the Content is provided to you under the terms and
conditions of the Eclipse Public License Version 1.0 ("EPL"). A copy of the EPL is
available at http://www.eclipse.org/legal/epl-v10.html. For purposes of the EPL,
"Program"” will mean the Content.

If you did not receive this Content directly from the Eclipse Foundation, the Content is
being redistributed by another party ("Redistributor") and different terms and
conditions may apply to your use of any object code in the Content. Check the
Redistributor’s license that was provided with the Content. If no such license exists,
contact the Redistributor. Unless otherwise indicated below, the terms and conditions
of the EPL still apply to any source code in the Content and such source code may be
obtained at http://www.eclipse.org.

Legal 7-1

About this content

7-2 Dali Java Persistence Tools User Guide

Symbols

@Basic, 3-35,4-23
@Column, 4-23,4-25,4-29
@DiscriminatorColumn, 4-18
@DiscriminatorValue, 4-18
@Embeddable, 3-17
@Embedded, 3-37
@Embeddedld, 3-38
@Entity, 3-16
@Enumerated, 4-30
@GeneratedValue, 4-33
@Id, 3-39,4-25
@Inheritance, 3-32
@JoinColumn, 4-32

@Lob, 4-30
@ManyToMany, 3-40,4-25
@ManyToOne, 3-41,4-26
@MappedSuperclass, 3-18
@NamedQuery, 3-33
@ObjectTypeConverter, 4-21
@OneToMany, 3-42,4-27
@OneToOne, 3-43,4-28
@OrderBy, 4-31
@SecondaryTable, 3-31
@SequenceGenerator, 4-20, 4-21, 4-34
@StructConverter, 4-21
@Temporal, 4-30
@Transient, 3-44
@TypeConverter, 4-21
@Version, 3-44,4-29
@XMLPath, 5-1

A

Add Converter dialog, 4-55

Add Join Column dialog, 4-54

Add Primary Key Join Column dialog, 4-57
Add Query dialog, 4-56

Add Schema Location dialog, 4-57

Add Virtual Attribute dialog, 4-57
Advanced, in Java Details view, 4-22
annotations. See specific annotation.
architecture of Dali feature, 4-59
association tables, 4-12

Attribute Overrides, in Java Details view, 4-19

Index

attributes
JPA Details view, 4-22
mapping, 2-1
overrides, 4-19
virtual, 3-19
attributes, virtual, 4-57

basic mapping
@Basic, 3-35
about, 3-35,4-23
See also mappings
batch writing, persistence unit, 4-39

Cc

caching, 4-15,4-42
Caching, in persistence.xml editor, 4-42
canonical metamodel, 4-52
cardinality, association tables, 4-13
change tracking, 4-22
classes
adding persistence to, 3-15
embeddable, 3-17
entity, 3-15
managed, 4-38
managing persistent classes, 4-10
mapped superclass, 3-18
synchronizing, 3-28
collection mappings, 3-36

columns
discriminator, 4-18
join, 4-32
mapping to, 4-23,4-25,4-29
value, 4-18

connection pool, 3-23
Connection, in persistence.xml Editor, 4-38
connections, database, 5-1
converters, 4-30
Converters, in JPA Details view, 4-21, 4-30, 4-36
converting

Java project to JPA, 3-9

JPA metadata to XML, 3-56
Create a JPA Project Wizard, 3-2,3-5,3-8
Create JPA Entity wizard, 4-5

Index-i

Create New Association wizard, 4-12

Create New JAXB Project wizard, 4-10

Create New JPA Project wizard, 4-8

Create ORM Mapping File wizard, 4-7
Customization, in persistence.xml editor, 4-40
customizer class, for entities, 4-22

D

database tables, generating entities from, 3-45
Database Web Services. see DBWS
database, persistence
connection, 4-51, 4-53
schema, 4-52
DBWS project, creating, 3-7,4-11
DDL script, generating, 3-50
DDL, generating, 4-12
Derived Identity, in JPA Details view, 4-32
developer documentation, Dali, 4-59
Driver Files page, 3-9
dynamic entities, from tables, 3-52

E

eager fetch, 4-23
EclipseLink XML mapping file, 4-38
eclipselink-orm.xml file, with dynamic entities, 3-55
Edit Join Columns dialog, 4-54
EJB. see persistent entities
element collection mapping
about, 4-24
creating, 3-36
embeddable class
@Embeddable, 3-17
about, 3-17
JPA Details view, 4-14
embedded ID mapping
@Embeddedld, 3-38
about, 3-38
embedded mapping
@Embedded, 3-37
about, 3-37
entities
@Entity annotation, 3-16
about, 2-1
creating, 3-11,4-5
creating tables from, 3-50, 4-12
customer class, 4-22
customizing, 4-3,4-5
embeddable, 3-17
from tables, 3-45,3-52,4-2,4-4
generating, 4-2,4-4
JPA Details view, 4-13
mapped superclass, 3-18
mapping, 1-3,3-34
persistent, 1-3, 3-15, 3-16
read-only, 4-22
secondary tables, 4-21
tracking changes, 4-22
Entity Class page, 3-13

Index-ii

Entity Properties page, 3-14
enumerated, 4-30

error messages, Dali, 3-57, 3-58
extension points, Dali feature, 4-59

F

fetch type, 4-23
firewall, 5-1

G

General, in persistence.xml Editor, 4-37
Generate Dynamic Entities from Tables wizard, 4-3
Generate Entities from Tables dialog, 3-45, 4-2, 4-4
Generate Entities from Tables wizard, 4-1
Generate Tables from Entities wizard, 4-12
generated values

entities, preferences, 4-52

ID mappings, 4-33

sequence, 4-20,4-21,4-34
generating DDL, 4-12
Generators, in JPA Detail view, 4-35

H

hints, query, 3-34,4-36

ID mapping
@Id, 3-39
about, 3-39,4-25
identity, derived, 4-32
inheritance
entity, 3-32,4-6,4-18
joined tables, 3-33
single table, 3-33
Inheritance, in Java Details view, 4-18
installation, Dali, 1-1

J

Java Persistence API (JPA)
about, 2-2
Java project, converting to JPA, 3-9
JAXB
about, 2-2
options, 4-53
schema, adding, 4-57
JAXB project
creating, 3-5,4-10
implementation, 4-11
JAXB schema, adding, 4-57
join columns, 4-13, 4-54
joined tables, inheritance, 3-33
joining, 4-32
Joining Strategy, in JPA Details view, 4-32
JPA Details view
attributes, 4-22
entities, 4-13

Mappings tab, 4-22
orm.xml file, 4-34
JPA Development perspective, 4-57
JPA entity, creating, 3-11
JPA Facet page, 3-4,3-7
JPA Metadata Conversion dialog, 4-56
JPA project
converting from Java, 3-9
converting metadata to XML, 3-56
creating, 3-1,4-8
implementation, 4-9
page, 3-2,3-6
platform, 4-51,4-53
JPA Structure view, 4-36

K

key, primary, 4-20

L

lazy fetch, 4-23
library
JAXB, 4-11
JPA, 49
Logging, in persistence.xml editor, 4-44

Make Persistent dialog, 4-56
many-to-many mapping
@ManyToMany, 3-40
about, 3-40, 4-25
many-to-one mapping
@ManyToOne, 3-41
about, 3-41,4-26
mapped superclass
@MappedSuperclass, 3-18
about, 3-18
JPA Details view, 4-15
mapping entities, 1-3
mapping file, 3-29,4-6,4-7
Mapping Type Selection dialog, 4-56
mappings
about, 2-1,3-34,4-22
basic, 3-35,4-23
element collection, 3-36, 4-24
embedded, 3-37
embedded ID, 3-38
ID, 3-39,4-25
many-to-many, 3-40, 4-25
many-to-one, 3-41,4-26
one-to-many, 3-42,4-27
one-to-one, 3-43,4-28
problems, 3-57
transient, 3-44
version, 3-44,4-29
metadata, converting to XML, 3-56
metamodel, canonical, 4-52
multitenancy, 4-19

N

named queries, 4-36
entity, 3-33
hints, 3-34
JPA Detail view, 4-17
native queries, 3-34,4-17,4-36
New Database Web services from Builder XML
wizard, 4-11
New EclipseLink Mapping File dialog, 4-55
nonpersistent
classes, 3-15
fields. See transient

(o)

object type converter, 4-21
ObjectChangePolicy, 4-22
one-to-many mapping

@OneToMany, 3-42

about, 3-42,4-27
one-to-one mapping

@OneToOne, 3-43

about, 3-43,4-28
Options, in persistence.xml editor, 4-47
OR (object-relational) mappings. See mappings
ordering, 4-31
Ordering, in JPA Details view, 4-31
orm.xml file

about, 2-2

creating, 4-7,4-10

generators, 4-35

JPA Details view, 4-34

managing, 3-28

queries, 4-36

sample, 3-28
outline, persistence. See JPA Structure view
overrides, JPA attributes, 4-19

P

persistence

about, 2-1

database connection, 4-51,4-53

database schema, 4-52

entity class, 3-15

options, 4-51

provider, 4-37

unit, 4-35
Persistence Unit, in JPA Details, 4-35
persistence.xml Editor, 3-20 to 3-27, 4-37
persistence.xml file

about, 2-2

managing, 3-20 to 3-27, 3-30

sample, 3-20

schema based, 5-1

synchronizing with classes, 3-28
persistent entity, 3-15
perspective, JPA Development, 4-57
platform, JPA, 4-51,4-53
preferences

Index-iii

Dali, 4-50
errors and warnings, 4-51
JPA, 4-50
project, EclipseLink, 4-52
project, Entity Generation, 4-52
project, errors and warnings, 4-53
project, JAXB, 4-53
project, JPA, 4-51
Primary Key Generation, in JPA Details view, 4-20,
4-33
problems, 3-57
projects
DBWS, 4-11
projects, DBWS
creating new, 3-7
projects, JAXB
creating new, 3-5,4-10
options, 4-53
projects, JPA
creating new, 1-2,3-1,4-8
options, 4-51
properties, 3-56
properties
project, 3-56
<properties> element, 4-50
Properties, in persistence.xml editor, 4-50
property pages, 4-13

Q

queries, 4-17, 4-36

query hints, 3-34, 4-36

Query, in JPA Details view, 4-36
quick start, Dali, 1-2

R

read-only entities, 4-22
requirements
Dali Java Persistence Tools, 1-1
persistent entities, 3-15

S

schema
database, 4-52
JAXB, 4-57

Schema Generation, in persistence.xml editor, 4-49
schema, JAXB, 4-57

secondary tables, 3-31,4-21

Secondary Tables, in Java Details view, 4-21
Select Cascade dialog, 4-55

Select Schema Location dialog, 4-57

single table inheritance, 3-33

Source, in persistence.xml editor, 4-50
Specify, 4-55

struct converter, 4-21

superclass, 3-18

synchronizing classes with persistence.xml file, 3-28

Index-iv

T

tables
associations, 4-2,4-4,4-12
creating dynamic entities from, 3-52
creating entities from, 3-45,4-2,4-4
creating from entities, 4-12
from entities, 3-50
inheritance, 3-33
secondary, 3-31,4-21
temporal, 4-30
thread identifier, in logging, 4-45
timestamp, in logging, 4-45
tracking changes, 4-22
transaction type, persistence unit, 4-38
transient mapping
@Transient, 3-44
about, 3-44
type converter, 4-21
Type Information, in JPA Details view, 4-30

\'}

vendor-specific properties, 4-50
version mapping
@Version, 3-44
about, 3-44,4-29
views
JPA Details view, 4-13,4-22
JPA Structure view, 4-36
virtual access type, 3-52
virtual attributes, adding, 3-19, 4-57

w

warning messages, Dali, 3-57
weaving

EclipseLink, 4-52
Web Dynamic Project page, 3-8
Web Tools Platform (WTP), 1-1
wizards, 4-1

X

XML editor, 3-30
XML, project metatdata, 3-56
XMLPath, 5-1

	Contents
	1 Getting started
	Requirements and installation
	Dali quick start
	Creating a new JPA project
	Creating a Java persistent entity with persistent fields

	2 Concepts
	Understanding Java persistence
	Understanding OR mappings
	Understanding Java Persistence API
	The persistence.xml file
	The orm.xml file

	Understanding Java Architecture for XML Binding

	3 Tasks
	Creating a new JPA project
	Creating a new JAXB project
	Creating Database Web Services from Builder XML
	Converting a Java project to a JPA project
	Creating a JPA entity
	Adding persistence to a class
	Entity
	Embeddable
	Mapped superclass

	Adding virtual attributes
	Managing the persistence.xml file
	Synchronizing classes
	Managing the orm.xml file
	Creating an orm.xml file
	Working with orm.xml file

	Specifying additional tables
	Specifying entity inheritance
	Creating queries
	Mapping an entity
	Basic mapping
	Element collection mapping
	Embedded mapping
	Embedded ID mapping
	ID mapping
	Many-to-many mapping
	Many-to-one mapping
	One-to-many mapping
	One-to-one mapping
	Transient mapping
	Version mapping

	Generating entities from tables
	Generating tables from entities
	Generating dynamic entities from tables
	Modifying persistent project properties
	Converting JPA metadata to XML
	Validating mappings and reporting problems
	Error messages
	Warning messages

	4 Reference
	Wizards
	Generate Entities from Tables wizard
	Select Tables
	Table Associations
	Customize Default Entity Generation
	Customize Individual Entities

	Generate Dynamic Entities from Tables wizard
	Select Tables
	Table Associations
	Customize Default Entity Generation
	Customize Individual Entities

	Create JPA Entity wizard
	Entity Class page
	Entity Properties page

	Create ORM Mapping File wizard
	Mapping File Location
	Mapping File Options

	Create New JPA Project wizard
	New JPA Project page
	Java Page
	JPA Facet page

	Create New JAXB Project wizard
	New JAXB Project page
	Java Page
	JAXB Facet page

	New Database Web services from Builder XML wizard
	Web Dynamic page
	Select Builder XML File page
	Driver Files page

	Generate Tables from Entities wizard
	Schema Generation

	Create New Association wizard
	Association Tables
	Join Columns
	Association Cardinality

	Property pages
	JPA Details view (for entities)
	Entity
	Embeddable
	Mapped Superclass
	Caching
	Queries
	Inheritance
	Attribute Overrides
	Multitenancy
	Primary Key Generation
	Secondary tables
	Converters
	Advanced

	JPA Details view (for attributes)
	Basic Mapping
	Element Collection Mapping
	Embedded Mapping
	Embedded ID Mapping
	ID Mapping
	Many-to-Many Mapping
	Many-to-One Mapping
	One-to-Many Mapping
	One-to-One Mapping
	Version Mapping
	Type information
	Value
	Converters
	Ordering
	Joining Strategy
	Derived Identity
	Primary Key Generation information

	JPA Details view (for orm.xml)
	Entity Mappings
	Persistence Unit
	Generators
	Queries
	Converters

	JPA Structure view
	persistence.xml Editor
	General
	Connection
	Customization
	Caching
	Logging
	Options
	Schema Generation
	Properties
	Source

	Preferences
	Java Persistence Preferences page - JPA
	Java Persistence Preferences page - Errors/Warnings
	Project Properties page - JPA
	Project Properties page - EclipseLink
	Project Properties page - Entity Generation
	Project Properties page - Errors/Warnings
	Project Properties page - JAXB Options
	Project Properties page - Schemas

	Dialogs
	Edit Join Columns dialog
	Add Join Column dialog
	Select Cascade dialog
	New EclipseLink Mapping File dialog
	Add Converter dialog
	Mapping Type Selection dialog
	JPA Metadata Conversion dialog
	Make Persistent dialog
	Add Query dialog
	Add Primary Key Join Column dialog
	Add Schema Location dialog
	Select Schema Location dialog
	Add Virtual Attribute dialog

	JPA Development perspective
	Icons and buttons
	Icons
	Buttons

	Dali developer documentation

	5 Tips and tricks
	6 What’s new
	EclipseLink multitenancy support
	EclipseLink static weaving support
	Generating EclipseLink dynamic entities from tables
	Converting JPA metadata to XML
	EclipseLink 2.4 support

	7 Legal
	About this content

	Index
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	V
	W
	X

