
Dali Java Persistence Tools
User Guide

Release 2.1 for Eclipse

December 2008

Dali Java Persistence Tools User Guide

Copyright © 2006, 2008 Oracle. All rights reserved.

The Eclipse Foundation makes available all content in this plug-in ("Content"). Unless otherwise indicated
below, the Content is provided to you under the terms and conditions of the Eclipse Public License Version
1.0 ("EPL"). A copy of the EPL is available at http://www.eclipse.org/legal/epl-v10.html. For purposes of
the EPL, "Program" will mean the Content.

If you did not receive this Content directly from the Eclipse Foundation, the Content is being redistributed
by another party ("Redistributor") and different terms and conditions may apply to your use of any object
code in the Content. Check the Redistributor's license that was provided with the Content. If no such license
exists, contact the Redistributor. Unless otherwise indicated below, the terms and conditions of the EPL still
apply to any source code in the Content.

iii

Contents

1 Getting started

1.1 Requirements and installation .. 1-1
1.2 Dali quick start .. 1-2
1.2.1 Creating a new JPA project .. 1-2
1.2.2 Creating a Java persistent entity with persistent fields.. 1-3

2 Concepts

2.1 Understanding Java persistence .. 2-1
2.2 Understanding OR mappings ... 2-1
2.3 Understanding EJB 3.0 Java Persistence API .. 2-2
2.3.1 The persistence.xml file... 2-2
2.3.2 The orm.xml file ... 2-2

3 Tasks

3.1 Creating a new JPA project.. 3-1
3.2 Creating a JPA Entity ... 3-4
3.3 Managing the persistence.xml file.. 3-7
3.3.1 Using the XML Editor to edit the persistence.xml file ... 3-9
3.3.2 Synchronizing classes... 3-10
3.4 Managing the orm.xml file ... 3-11
3.4.1 Creating an orm.xml file .. 3-11
3.4.2 Working with orm.xml file.. 3-13
3.5 Adding persistence to a class .. 3-13
3.5.1 Entity .. 3-14
3.5.2 Embeddable ... 3-15
3.5.3 Mapped superclass ... 3-16
3.6 Specifying additional tables ... 3-17
3.7 Specifying entity inheritance.. 3-18
3.8 Creating Named Queries .. 3-20
3.9 Mapping an entity ... 3-21
3.9.1 Basic mapping ... 3-21
3.9.2 Embedded mapping... 3-23
3.9.3 Embedded ID mapping ... 3-24
3.9.4 ID mapping.. 3-24
3.9.5 Many-to-many mapping.. 3-26

iv

3.9.6 Many-to-one mapping ... 3-27
3.9.7 One-to-many mapping... 3-28
3.9.8 One-to-one mapping .. 3-30
3.9.9 Transient mapping ... 3-31
3.9.10 Version mapping .. 3-31
3.10 Generating entities from tables ... 3-32
3.11 Generating DDL from Entities ... 3-34
3.12 Validating mappings and reporting problems.. 3-34
3.12.1 Error messages .. 3-34
3.12.2 Warning messages .. 3-36
3.13 Modifying persistent project properties ... 3-37

4 Reference

4.1 Wizards... 4-1
4.1.1 Create New JPA Project wizard... 4-1
4.1.1.1 New JPA Project page .. 4-1
4.1.1.2 JPA Facet page .. 4-2
4.1.2 Create JPA Entity wizard.. 4-3
4.1.2.1 Entity Class page .. 4-3
4.1.2.2 Entity Properties page.. 4-4
4.1.3 Mapping File Wizard .. 4-5
4.1.3.1 Mapping File ... 4-5
4.1.4 Generate DDL from Entities Wizard .. 4-5
4.2 Property pages... 4-5
4.2.1 JPA Details view (for entities).. 4-5
4.2.1.1 General information ... 4-6
4.2.1.2 Attribute overrides ... 4-6
4.2.1.3 Secondary table information... 4-7
4.2.1.4 Inheritance information ... 4-7
4.2.1.5 Queries ... 4-8
4.2.2 JPA Details view (for attributes).. 4-8
4.2.2.1 General information ... 4-8
4.2.2.2 Join Table Information .. 4-11
4.2.2.3 Join Columns Information.. 4-11
4.2.2.4 Primary Key Generation information... 4-12
4.2.3 JPA Details view (for orm.xml)... 4-13
4.2.3.1 General information .. 4-13
4.2.3.2 Persistence Unit information ... 4-14
4.2.3.3 Generators... 4-15
4.2.3.4 Queries .. 4-15
4.2.4 JPA Structure view ... 4-15
4.2.5 persistence.xml Editor.. 4-16
4.2.5.1 General .. 4-16
4.2.5.2 Connection.. 4-17
4.2.5.3 Customization .. 4-18
4.2.5.4 Caching ... 4-20
4.2.5.5 Logging ... 4-21

v

4.2.5.6 Options.. 4-23
4.2.5.7 Schema Generation.. 4-24
4.2.5.8 Properties .. 4-25
4.2.5.9 Source .. 4-25
4.3 Preferences .. 4-25
4.3.1 Project Properties page – JPA Options .. 4-26
4.4 Dialogs ... 4-26
4.4.1 Generate Entities from Tables dialog... 4-26
4.4.2 Edit Join Columns Dialog.. 4-27
4.5 JPA Development perspective .. 4-27
4.6 Icons and buttons... 4-27
4.6.1 Icons.. 4-28
4.6.2 Buttons.. 4-28
4.7 Dali Developer Documentation ... 4-29

5 Tips and tricks

6 What’s new

6.1 EclipseLink Support ... 6-1
6.2 Multiple Mapping Files.. 6-1

7 Legal

7.1 About this content... 7-1

Index

vi

Getting started 1-1

1
Getting started

This section provides information on getting started with the Java Persistence Tools.

■ Requirements and installation

■ Dali quick start

For additional information, please visit the Dali home page at:

http://www.eclipse.org/webtools/dali/main.php.

1.1 Requirements and installation
Before installing Dali, ensure that your environment meets the following minimum
requirements:

■ Eclipse 3.4 (http://www.eclipse.org/downloads)

■ Java Runtime Environment (JRE) 1.5 (http://java.com)

■ Eclipse Web Tools Platform (WTP) 3.0 (http://www.eclipse.org/webtools)

■ Java Persistence API (JPA) for Java EE 5. For example, the EclipseLink
implementation for JPA can be obtained from:
http://www.eclipse.org/eclipselink/

Refer to http://www.eclipse.org/webtools/dali/gettingstarted_
main.html for additional installation information.

Dali is included as part of WTP 2.0. No additional installation or configuration is
required.

Accessibility Features
Dali supports the standard accessibility features in Eclipse, including the following:

■ Navigating the user interface using the keyboard.

■ Specifying general accessibility preferences for the editor.

See Accessibility Features in Eclipse in the Workbench User Guide for details.

Help Accessibility
The documentation and help contains markup to facilitate access by the disabled
community. See Help Accessibility in the Workbench User Guide for details.

When using the help, be aware of the following:

Dali quick start

1-2 Dali Java Persistence Tools User Guide

■ Screen readers may not always correctly read the code examples in this document.
The conventions for writing code require that closing braces should appear on an
otherwise empty line; however, some screen readers may not always read a line of
text that consists solely of a bracket or brace.

■ This documentation may contain links to Web sites of other companies or
organizations that we do not control. We neither evaluate nor make any
representations regarding the accessibility of these Web sites.

1.2 Dali quick start
This section includes information to help you quickly start using Dali to create
relational mappings between Java persistent entities and database tables.

■ Creating a new JPA project

■ Creating a Java persistent entity with persistent fields

Tips and tricks
What’s new

1.2.1 Creating a new JPA project
This quick start shows how to create a new JPA project.

1. Select File > New > Project. The Select a Wizard dialog appears.

2. Select JPA Project and then click Next. The New JPA Project page appears.

3. Enter a Project name (such as QuickStart).

4. If needed, select the Target Runtime (such as Apache Tomcat) and
configuration, such as Utility JPA Project with Java 5.0 and then click Next. The
JPA Facet page appears.

5. On the JPA Facet dialog, select your vendor-specific JPA platform (or select
Generic), database connection (or create a new connection), JPA implementation
library (such as EclipseLink), define how Dali should manage persistent classes,
and then click Finish.

Tip: You can also select the JPA perspective and then select File >
New > JPA Project.

Note: The Target Runtime is not required for Java SE development.

Tip: Select Override the Default Schema for Connection if you
require a schema other than the one that Dali derives from the
connection information, which may be incorrect in some cases. Using
this option, you can select a development time schema for defaults
and validation.

Dali quick start

Getting started 1-3

Eclipse adds the project to the workbench and opens the JPA perspective.

Figure 1–1 Project in Package Explorer

Now that you have created a project with persistence, you can continue with Creating
a Java persistent entity with persistent fields.

1.2.2 Creating a Java persistent entity with persistent fields
This quick start shows how to create a new persistent Java entity. We will create an
entity to associate with a database table. You will also need to add the ADDRESS table
to your database.

1. Select the JPA project in the Navigator or Package Explorer and then click New >
Other. The Select a Wizard dialog appears.

2. Select JPA > Entity and then click Next. The Entity Class page appears.

3. Enter the package name (such as quickstart.demo.model), the class name
(such as Address) and then click Next. The Entity Properties page appears, which
enables you to define the persistence fields, which you will map to the columns of
a database table.

4. Use the Entity Fields dialog (invoked by clicking Add) to add persistence fields to
the Address class:

private Long id;
private String city;
private String country;
private String stateOrProvince;
private String postalCode;
private String street;

Note: You will also need to add the following columns to the
ADDRESS database table:

NUMBER(10,0) ADDRESS_ID (primary key)
VARCHAR2(80) PROVINCE
VARCHAR2(80) COUNTRY
VARCHAR2(20) P_CODE
VARCHAR2(80) STREET
VARCHAR2(80) CITY

Dali quick start

1-4 Dali Java Persistence Tools User Guide

5. Click Finish. With the Create JPA Entity completed, Eclipse displays the Address
entity in the JPA Structure view.

Address.java includes the @Entity annotation, the persistence fields, as well as
getter and setter methods for each of the fields.

Figure 1–2 Address Entity in Address.java

Eclipse also displays the Address entity in the JPA Structure view:

Figure 1–3 Address Entity in the JPA Structure View

1. Select the Address class in the Project Explorer view.

2. In the JPA Details view, notice that Dali has automatically associated the
ADDRESS database table with the entity because they are named identically.

Figure 1–4 JPA Details View for Address Entity

Note: Depending on your database connection type, you may need
to specify the Schema.

Dali quick start

Getting started 1-5

Now we are ready to map each fields in the Address class to a column in the database
table.

1. Select the id field in the JPA Details view.

2. Right click id and then select Map As > id.

3. In the JPA Details view, select ADDRESS_ID in the Name field:

Figure 1–5 JPA Details View for the addressId Field

Eclipse adds the following annotations to the Address entity:

@Id
@Column(name="ADDRESS_ID")

4. Map each of the following fields (as Basic mappings) to the appropriate database
column:

Tip: After associating the entity with the database table, you should
update the persistence.xml file to include this JPA entity.

Right-click the persistence.xml file in the Package Explorer and
select JPA Tools > Synchronize Classes. Dali adds the following to
the persistence.xml file:

<class>quickstart.demo.model.Address</class>

Field Map As Database Column

city Basic CITY

country Basic COUNTRY

Dali quick start

1-6 Dali Java Persistence Tools User Guide

Dali automatically maps some fields to the correct database column (such as the city
field to the City column) if the names are identical.

postalCode Basic P_CODE

provinceOrState Basic PROVINCE

street Basic STREET

Field Map As Database Column

Concepts 2-1

2
Concepts

This section contains an overview of concepts you should be familiar with when using
Dali to create mappings for Java persistent entities.

■ Understanding Java persistence

■ Understanding OR mappings

■ Understanding EJB 3.0 Java Persistence API

In addition to these sections, you should review the following resources for additional
information:

■ Eclipse Dali project: http://www.eclipse.org/webtools/dali

■ Eclipse Web Tools Platform project: http://www.eclipse.org/webtools

■ JSR 220 EJB 3.0 specification: http://www.jcp.org/en/jsr/detail?id=220

2.1 Understanding Java persistence
Persistence refers to the ability to store objects in a database and use those objects with
transactional integrity. In a J2EE application, data is typically stored and persisted in
the data tier, in a relational database.

Entity beans are enterprise beans that contain persistent data and that can be saved in
various persistent data stores. The entity beans represent data from a database; each
entity bean carries its own identity. Entity beans can be deployed using
application-managed persistence or container-managed persistence.

2.2 Understanding OR mappings
The Dali OR (object-relational) Mapping Tool allows you to describe how your entity
objects map to the data source (or other objects). This approach isolates persistence
information from the object model–developers are free to design their ideal object
model, and DBAs are free to design their ideal schema.

These mappings transform an object data member type to a corresponding relational
database data source representation. These OR mappings can also transform object
data members that reference other domain objects stored in other tables in the
database and are related through foreign keys.

You can use these mappings to map simple data types including primitives (such as
int), JDK classes (such as String), and large object (LOB) values. You can also use
them to transform object data members that reference other domain objects by way of
association where data source representations require object identity maintenance
(such as sequencing and back references) and possess various types of multiplicity and

Understanding EJB 3.0 Java Persistence API

2-2 Dali Java Persistence Tools User Guide

navigability. The appropriate mapping class is chosen primarily by the cardinality of
the relationship.

Mapping an entity

2.3 Understanding EJB 3.0 Java Persistence API
The Java 2 Enterprise Edition(J2EE) Enterprise JavaBeans (EJB) are a component
architecture that you use to develop and deploy object-oriented, distributed,
enterprise-scale applications. An application written according to the Enterprise
JavaBeans architecture is scalable, transactional, and secure.

The EJB 3.0 Java Persistence API (JPA) improves the EJB architecture by reducing its
complexity through the use of metadata (annotations) and specifying programmatic
defaults of that metadata.

Mapping an entity

2.3.1 The persistence.xml file
The JPA specification requires the use of a persistence.xml file for deployment.
This file defines the database and entity manager options, and may contain more than
one persistence unit. To enable you to easily edit this information, Dali provides the
persistence.xml Editor. Alternatively, you can use the Eclipse XML Editor to create
and maintain this information. See "Managing the persistence.xml file" on page 3-7 for
more information.

Managing the persistence.xml file
Creating a new JPA project

2.3.2 The orm.xml file
Although the JPA specification emphasizes the use of annotations to specify
persistence, you can also use the orm.xml file to store this metadata. Dali enables you
to create a stub orm.xml file for a JPA project using the Mapping File Wizard. See
"Managing the orm.xml file" on page 3-11 for more information.

Tip: To work with multiple persistence units, comment out all but
one persistence unit in persistence.xml.

Note: The metadata must match the XSD specification of your
selected JPA implementation.

Understanding EJB 3.0 Java Persistence API

Concepts 2-3

Dali provides comprehensive support for configuring XML mapping files through the
JPA Details view (for orm.xml) that is nearly identical to the annotation-based
configuration in the Java source. Alternatively, you can also use the Eclipse XML
Editor to create and maintain the metadata information in orm.xml.

Managing the orm.xml file
Creating a new JPA project

Understanding EJB 3.0 Java Persistence API

2-4 Dali Java Persistence Tools User Guide

Tasks 3-1

3
Tasks

This section includes detailed step-by-step procedures for accessing the Dali OR
mapping tool functionality.

■ Creating a new JPA project

■ Creating a JPA Entity

■ Managing the persistence.xml file

■ Managing the orm.xml file

■ Adding persistence to a class

■ Specifying additional tables

■ Specifying entity inheritance

■ Mapping an entity

■ Generating entities from tables

■ Validating mappings and reporting problems

■ Modifying persistent project properties

3.1 Creating a new JPA project
Use this procedure to create a new JPA project.

1. From the Navigator or Package Explorer, select File > New > Project. The Select a
wizard dialog appears.

Tip: You can also select the JPA perspective and then select File >
New > JPA Project.

Creating a new JPA project

3-2 Dali Java Persistence Tools User Guide

Figure 3–1 Selecting the Create a JPA Project wizard

2. Select JPA Project and then click Next. The New JPA Project page appears.

Figure 3–2 The JPA Project Page

3. Complete the fields on the New JPA Project page to specify the project name and
location, target runtime, and pre-defined configuration.

4. Click Next. JPA Facet page appears.

Note: The Target Runtime is not required for Java SE development.

Creating a new JPA project

Tasks 3-3

Figure 3–3 The JPA Facet Page

5. Complete the fields on the JPA Facet page to specify your vender-specific
platform, database connection, and JPA implementation library.

If Dali derives the incorrect schema, select Override the Default Schema for
Connection. Using this option, you can select a development time schema for
defaults and validation.

If you clear the Create orm.xml option (which is selected by default), you can later
add a mapping file to the project using the Mapping File Wizard.

6. Click Finish. You should now open the JPA Development perspective.

Create New JPA Project wizard
JPA Development perspective

Note: If the server runtime does not provide a JPA implementation,
you must explicitly select a JPA implementation library.

To insure the portability of your application, you must explicitly list
the managed persistence classes that are included in the persistence
unit. If the server supports EJB 3.0, the persistent classes will be
discovered automatically.

Depending on your JPA implementation (for example, Generic or
EclipseLink), different options may be available when creating JPA
projects.

Creating a JPA Entity

3-4 Dali Java Persistence Tools User Guide

Mapping File Wizard

Managing the persistence.xml file
Adding persistence to a class

Understanding Java persistence
The persistence.xml file

3.2 Creating a JPA Entity
Use this procedure to create a JPA entity:

1. From the Navigator or Package Explorer, select the JPA project and then File >
New > Other. The Select a Wizard dialog appears.

Figure 3–4 Selecting the Create a JPA Entity Wizard

2. Select JPA > Entity and then click Next. The Entity Class page appears.

Creating a JPA Entity

Tasks 3-5

Figure 3–5 The Entity Class Page

Complete this page as follows:

■ Select the JPA project in the Project field.

■ In the Source Folder field, select, or enter, the location of the JPA project’s src
folder.

■ Select, or enter, the name of the class package for this entity in the Java
Package field.

■ Enter the name of the Java class in the Class name field.

■ If needed, enter, or select a superclass.

■ If needed, complete the Inheritance section as follows (these properties are
optional):

– Accept the Entity option (the default) to create a Java class with the
@Entity option.

– Alternatively, select Mapped superclass (if you defined a super class).

– Select Inheritance and then select one of the JSR 220 inheritance mapping
strategies (SINGLE_TABLE, TABLE_PER_CLASS, JOINED).

– Select Add to entity mappings in XML to create XML mappings in
orm.xml, rather than annotations.

3. Click Next to proceed to the Entity Properties page where you define the
persistent fields for the entity.

Creating a JPA Entity

3-6 Dali Java Persistence Tools User Guide

Figure 3–6 The Entity Properties Page

Alternatively, click Finish to complete the entity.

4. Complete the page as follows:

1. If needed, enter a new name for the entity. Doing so results in adding a name
attribute to the @Entity notation (@Entity(name="EntityName")).

2. Accept Use default (the default setting) to use the default value for the name
of the mapped table. Entering a different name results in adding the @Table
notation with its name attribute defined as the new table
(@Table(name="TableName")).

3. Add persistence fields to the entity by clicking Add. The Entity Fields dialog
appears.

Figure 3–7 The Entity Fields Dialog

4. Select a persistence type from the Type list. You can retrieve additional types
using the Browse function.

5. Enter the field name and then click OK. Repeat this procedure for each field.

Note: The Entity Name-related options are not available if you
selected Mapped superclass on the Entity Class page

Managing the persistence.xml file

Tasks 3-7

6. If needed, select Key to designate the field as a primary key.

7. Select either the Field-based access type (the default) or Property-based access
type.

Create JPA Entity wizard
Create New JPA Project wizard
JPA Development perspective

Managing the persistence.xml file
Adding persistence to a class

Understanding Java persistence
The persistence.xml file

3.3 Managing the persistence.xml file
When you create a project, Eclipse creates the META-INF\persistence.xml file in
the project’s directory.

You can create a stub persistence.xml file in the META-INF directory when you
create a JPA project (see "Creating a new JPA project"). You can manage this file either
through the XML editor (see "Using the XML Editor to edit the persistence.xml file") or
through the persistence.xml Editor.

To use the persistence.xml Editor:

Note: Depending on your JPA implementation (for example,
EclipseLink), the following additional pages may be available in the
persistence.xml Editor:

■ Customization

Use this page to define change-tracking and session customizer-related
properties.

■ Caching

Use this page to define caching properties.

■ Logging

Use this page to define logging properties.

■ Options

Use this page to define session and target database properties.

■ Schema Generation

Use this page to define DDL-related properties.

For projects using the EclipseLink JPA implementation, the
Connections page also includes JDBC connection pool properties.

If the project uses the Generic platform, then only the General,
Connection, Properties and Source pages are available.

Managing the persistence.xml file

3-8 Dali Java Persistence Tools User Guide

1. Open the peristence.xml file. The General page of the editor appears.

2. Use the General page to define the persistence.xml files
<persistent-unit>-related attributes as well as the <provider>, and
<class> elements (described in the following table).

3. Use the Connection page to define the <jta-data-source> and
<non-jta-data-source> elements as follows:

To configure the JTA (Java Transaction API) source used by the persistence
provider:

1. Select JTA from the Transaction Type list.

2. Enter the global JNDI name of the data source.

To configure a non-JTA data source:

1. Select Resource Local from the Transaction Type list.

2. Enter the global JNDI name of the data source.

For projects using the Generic platform, you can also define the EclipseLink
connection pool driver, connection pool driver, URL, user name and password.

4. Use the table in the Properties page to set the vendor-specific <properties>
element.

To add <property> elements:

Tip: The persistence.xml Editor’s Source page enables you to view
and edit the raw XML file.

Property Description Element Defined

Name Enter the name of the
persistence unit.

<persistence-unit name =
"<Name>">

Persistence Provider Enter the name of the
persistence provider.

<provider>

Description Enter a description for
this persistence unit. This
is an optional property.

<description>

Managed Classes Add or remove the
classes managed through
the persistence unit.

<class>

Exclude Unlisted Classes Select to include all
annotated entity classes
in the root of the
persistence unit.

<exclude-unlisted-classes>

XML Mapping Files Add or remove the
object/relational
mapping XML files
define the classes
managed through the
persistence unit.

<mapping-file>

Note: Select Default() to use the data source provided by the
container.

Managing the persistence.xml file

Tasks 3-9

1. Click Add.

2. Enter the <name> and <value> attributes for the <property> element using
the table’s Name and Value fields.

To remove a <property> element, select a defined property in the table and then
click Remove.

persistence.xml Editor

Using the XML Editor to edit the persistence.xml file

The persistence.xml file

3.3.1 Using the XML Editor to edit the persistence.xml file
You can work with the persistence.xml by using the XML Editor.

Use this procedure to work with the persistence.xml file:

1. Right-click the persistence.xml file in the Package Explorer and select Open
With > XML Editor.

Figure 3–8 Opening the XML Editor

2. Use the XML Editor to edit the persistence.xml file.

Note: If the project uses the EclipseLink platform, the connection
page also includes parameters for JDBC connection pooling.

Managing the persistence.xml file

3-10 Dali Java Persistence Tools User Guide

Figure 3–9 XML Editor

Using the XML Editor to edit the persistence.xml file
Working with XML Files

The persistence.xml file

3.3.2 Synchronizing classes
As you work with the classes in your Java project, you will need to update the
persistence.xml file to reflect the changes.

Use this procedure to synchronize the persistence.xml file:

1. Right-click the persistence.xml file in the Package Explorer and select JPA
Tools > Synchronize Classes.

Figure 3–10 Synchronizing the persistence.xml File

Dali adds the necessary <class> elements to the persistence.xml file.

Note: Use this function if you selected Annotated classes must be
listed in the persistence.xml option in the JPA Facet page. In general,
you do not have to use this function within the container.

Managing the orm.xml file

Tasks 3-11

2. Use the Persistence XML Editor to continue editing the persistence.xml file.

Using the XML Editor to edit the persistence.xml file

The persistence.xml file

3.4 Managing the orm.xml file
When creating a JPA project, (see "Creating a new JPA project") you can also create the
orm.xml file that defines the mapping metadata and defaults.

Eclipse creates the META-INF\orm.xml file in your project’s directory:

<?xml version="1.0" encoding="UTF-8"?>
<persistence version="<PERSISTENCE_VERSION>"

xmlns="http://java.sun.com/xml/ns/persistence"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://java.sun.com/xml/ns/persistence
http://java.sun.com/xml/ns/persistence/persistence_1_0.xsd">

<persistence-unit name="<PERSISTENCE_UNIT_NAME>">
<provider="<PERSISTENCE_PROVIDER>" />

</persistence-unit>
</persistence>

Create New JPA Project wizard

Working with orm.xml file

The orm.xml file

3.4.1 Creating an orm.xml file
If you opt not to create an orm.xml file when you create a JPA project, you can create
one using the Mapping File Wizard.

Use this procedure to create an orm.xml file:

1. From the Navigator or Package Explorer, select File > New > Other. The Select a
Wizard dialog appears.

Managing the orm.xml file

3-12 Dali Java Persistence Tools User Guide

Figure 3–11 The Select a Wizard Dialog

2. Select Mapping File and then click Next. The Mapping File page appears.

If you are using EclipseLink, you can select EclipseLink Mapping File.

Figure 3–12 The Mapping File Page

3. Define the properties in the page and click Finish. The orm.xml file appears in
the src directory of the selected JPA project. You can manage the orm.xml file
using the JPA Details view or through the XML Editor. See also JPA Details view
(for orm.xml).

Adding persistence to a class

Tasks 3-13

3.4.2 Working with orm.xml file
You can work with the orm.xml by using the JPA Details view.

Use this procedure to work with the orm.xml file:

1. Right-click the orm.xml file in the Package Explorer and select Open.

2. In the JPA Structure view, select EntityMappings.

3. Use the JPA Details view to configure the entity mapping and persistence unit
defaults.

Figure 3–13 JPA Details view for EntityMappings (orm.xml)

Working with orm.xml file
Working with XML Files

The orm.xml file

3.5 Adding persistence to a class
You can make a Java class into one of the following persistent types:

■ Entity

■ Embeddable

■ Mapped superclass

Specifying additional tables
Specifying entity inheritance
Mapping an entity

Understanding Java persistence
The orm.xml file
The persistence.xml file

Adding persistence to a class

3-14 Dali Java Persistence Tools User Guide

3.5.1 Entity
An Entity is a persistent domain object.

An entity can be:

■ Abstract or concrete classes. Entities may also extend non-entity classes as well as
entity classes, and non-entity classes may extend entity classes.

An entity must have:

■ A no-arg constructor (public or protected); the entity class may have other
constructors as well.

Each persistent entity must be mapped to a database table and contain a primary key.
Persistent entities are identified by the @Entity annotation.

Use this procedure to add persistence to an existing entity:

1. Open the Java class in the Package Explorer.

2. Select the class in the JPA Structure view.

3. In the JPA Details view, click the mapping type hyperlink to access the Mapping
Type Selection dialog. In the following figure, clicking entity invokes the dialog
from the JPA Details View.

Figure 3–14 The Mapping Type Hyperlink

4. Select Entity from the Mapping Type Selection dialog and then click OK.

Tip: You can also change (or add) persistence for an entity by
right-clicking the class in the JPA Structure View and then clicking
Map As > Entity.

Adding persistence to a class

Tasks 3-15

Figure 3–15 The Mapping Type Selection Dialog

5. Complete the remaining JPA Details view (for entities).

Adding persistence to a class
Specifying additional tables
Specifying entity inheritance

3.5.2 Embeddable
An Embedded class is a class whose instances are stored as part of an owning entity; it
shares the identity of the owning entity. Each field of the embedded class is mapped to
the database table associated with the owning entity.

To override the mapping information for a specific subclass, use the
@AttributeOverride annotation for that specific class.

An embeddable entity is identified by the @Embeddable annotation.

Use this procedure to add embeddable persistence to an existing entity:

1. Open the Java class in the Package Explorer.

2. Select the class in the JPA Structure view.

3. Click the mapping type hyperlink to open the Mapping Type Selection dialog.

4. Select Embeddable and then click OK.

Adding persistence to a class

3-16 Dali Java Persistence Tools User Guide

Figure 3–16 Mapping Type Selection Dialog (Embeddable)

5. Complete the remaining JPA Details view (for entities).

Adding persistence to a class
Specifying additional tables
Specifying entity inheritance

3.5.3 Mapped superclass
An entity that extends a Mapped Superclass class inherits the persistent state and
mapping information from a superclass. You should use a mapped superclass to
define mapping information that is common to multiple entity classes.

A mapped superclass can be:

■ Abstract or concrete classes

A mapped superclass cannot be:

■ Be queried or passed as an argument to Entity-Manager or Query operations

■ Be the target of a persistent relationship

A mapped superclass does not have a defined database table. Instead, its mapping
information is derived from its superclass. To override the mapping information for a
specific subclass, use the @AttributeOverride annotation for that specific class.

A mapped superclass is identified by the @MappedSuperclass annotation.

Use this procedure to add Mapped Superclass persistence to an existing entity:

1. Open the Java class in the Package Explorer.

2. Select the class in the JPA Structure view.

3. In the JPA Details view, click the mapping type hyperlink to open the Mapping
Type Selection dialog.

4. Select Mapped Superclass and then OK.

Specifying additional tables

Tasks 3-17

Figure 3–17 Mapping Type Selection Dialog (Mapped Superclass)

5. Complete the remaining JPA Details view (for entities).

Adding persistence to a class
Specifying additional tables
Specifying entity inheritance

3.6 Specifying additional tables
Add a secondary table annotation to an entity if its data is split across more than one
table.

To add a secondary table to the entity,

1. Select the entity in the Package Explorer.

2. In the JPA Details view, select the Secondary Tables information.

Figure 3–18 Specifying Secondary Tables

3. Click Add to associate an additional table with the entity. The Edit Secondary
Table dialog appears

Specifying entity inheritance

3-18 Dali Java Persistence Tools User Guide

4. Select the Name, Catalog, and Schema of the additional table to associate with the
entity.

Eclipse adds the following annotations the entity:

@SecondaryTable(name="NAME", catalog = "CATALOG", schema = "SCHEMA")

To override the default primary key:

1. Enable the Overwrite default option, then click Add to specify a new primary key
join column. The Create New Primary Key Join Column appears.

2. Select the Name, Referenced column name, Table, and Column definition of the
primary key for the entity.

Eclipse adds the following annotations the entity:

@SecondaryTable(name="NAME", catalog = "CATALOG", schema = "SCHEMA",
pkJoinColumns = {@PrimaryKeyJoinColumn(name="id", referencedColumnName =
"id"),@PrimaryKeyJoinColumn(name="NAME", referencedColumnName = "REFERENCED
COLUMN NAME", columnDefinition = "COLUMN DEFINITION")})

Adding persistence to a class

Understanding Java persistence

3.7 Specifying entity inheritance
An entity may inherit properties from other entities. You can specify a specific strategy
to use for inheritance.

Use this procedure to specify inheritance (@Inheritance) for an existing entity
(@Entity):

1. Select the entity in the Package Explorer.

2. In the JPA Details view, select the Inheritance information.

Specifying entity inheritance

Tasks 3-19

Figure 3–19 Specifying Inheritance

3. In the Strategy list, select one of the following the inheritance strategies:

■ A single table (default)

■ Joined table

■ One table per class

4. Use the following table to complete the remaining fields on the tab. See
"Inheritance information" on page 4-7 for additional details.

Eclipse adds the following annotations the entity field:

@Inheritance(strategy=InheritanceType.<INHERITANCE_STRATEGY>)
@DiscriminatorColumn(name="<DISCRIMINATOR_COLUMN>",

discriminatorType=<DISCRIMINATOR_TYPE>)
@DiscriminatorValue(value-"<DISCRIMINATOR_VALUE>")
@PrimaryKeyJoinColumn(name="<JOIN_COLUMN_NAME>",

referencedColumnName = "<REFERENCED_COLUMN_NAME>")

Property Description Default

Discriminator
Column

Name of the discriminator column when using a
Single or Joined inheritance strategy.

This field corresponds to the
@DiscriminatorColumn annotation.

Discriminator Type Set the discriminator type to Char or Integer
(instead of its default: String). The
Discriminator Value must conform to this type.

String

Discriminator Value Specify the discriminator value used to
differentiate an entity in this inheritance
hierarchy. The value must conform to the
specified Discriminator Type.

This field corresponds to the
@DiscriminatorValue annotation.

Override Default Use this field to specify custom primary key join
columns.

This field corresponds to the
@PrimaryKeyJoinClumn annotation.

Creating Named Queries

3-20 Dali Java Persistence Tools User Guide

The following figures illustrates the different inheritance strategies.

Figure 3–20 Single Table Inheritance

Figure 3–21 Joined Table Inheritance

Adding persistence to a class

Understanding Java persistence

3.8 Creating Named Queries
Named queries improve application performance because they are prepared once and
they (and all of their associated supporting objects) can be efficiently reused thereafter,
making them well suited for complex and frequently executed operations. Named
queries use the JPA query language for portable execution on any underlying
database; named native queries use the SQL language native to the underlying
database.

Use this procedure to add @NamedQuery and @NamedNativeQuery annotations to
the entity.

To create a named query:

1. Select the entity in the Package Explorer.

2. In the JPA Details view, expand Queries.

3. Click Add for a named query, or Add Native for a native query.

Mapping an entity

Tasks 3-21

4. In the dialog that appears, enter the name of the query in the Name field and then
click OK.

5. Enter the query in the Query field.

6. To add a Query hint, click Add.

Figure 3–22 Entering a Named Query

3.9 Mapping an entity
Dali supports the following mapping types for Java persistent entities:

■ Basic mapping

■ Embedded mapping

■ Embedded ID mapping

■ ID mapping

■ Many-to-many mapping

■ Many-to-one mapping

■ One-to-many mapping

■ One-to-one mapping

■ Transient mapping

■ Version mapping

Understanding OR mappings

3.9.1 Basic mapping
Use a Basic Mapping to map an attribute directly to a database column. Basic
mappings may be used only with the following attribute types:

■ Java primitive types and wrappers of the primitive types

■ java.lang.String, java.math.BigInteger

■ java.math.BigDecimal

Mapping an entity

3-22 Dali Java Persistence Tools User Guide

■ java.util.Date

■ java.util.Calendar, java.sql.Date

■ java.sql.Time

■ java.sql.Timestamp

■ byte[]

■ Byte[]

■ char[]

■ Character[]

■ enums

■ any other type that implements Serializable

To create a basic mapping:

1. In the JPA Structure view, right-click the field to map. Select Map As > Basic. The
JPA Details view (for attributes) displays the properties for the selected field.

2. Use this table to complete the remaining fields on the JPA Details view.

Eclipse adds the following annotations to the field:

@Column(name="<COLUMN_NAME>", table="<COLUMN_TABLE>",
insertable=<INSERTABLE>, updatable=<UPDATABLE>)

@Basic(fetch=FetchType.<FETCH_TYPE>, optional = <OPTIONAL>)
@Temporal(TemporalType.<TEMPORAL>)

Property Description Default

Entity Map
Hyperlink

Defines this mapping as a Basic
Mapping.

This corresponds to the @Basic
annotation.

Basic

Column The database column mapped to the
entity attribute. See "Column" on
page 4-9 for details.

By default, the Column is assumed
to be named identically to the
attribute and always included in the
INSERT and UPDATE statements.

Table Name of the database table.

Fetch Defines how data is loaded from the
database. See "Fetch Type" on
page 4-9 for details.

■ Eager

■ Lazy

Eager

Optional Specifies if this field is can be null. Yes

Temporal Specifies the type of data. See
"Temporal" on page 4-10 for details.

■ Date

■ Time

■ Timestamp

Lob Specifies if this is a large objects
(BLOB or CLOB). See "Lob" on
page 4-10 for details.

Mapping an entity

Tasks 3-23

Mapping an entity

JPA Structure view
JPA Details view (for attributes)

Understanding OR mappings
Understanding EJB 3.0 Java Persistence API

3.9.2 Embedded mapping
Use an Embedded Mapping to specify a persistent field or property of an entity
whose value is an instance of an embeddable class.

1. In the JPA Structure view, right-click the field to map.

2. Select Map as > Embedded. The JPA Details view (for attributes) displays the
properties for the selected field.

3. Use this table to complete the remaining fields on the JPA Details view.

Eclipse adds the following annotations to the field:

@Embedded
@AttributeOverride(column=@Column(table="<COLUMN_TABLE>", name = "<COLUMN_NAME>"))

Mapping an entity

JPA Structure view
JPA Details view (for attributes)

Understanding OR mappings
Understanding EJB 3.0 Java Persistence API

Property Description Default

Entity Mapping
Hyperlink

Defines this mapping as a Embedded.

This corresponds to the @Embedded
annotation.

Embedded

Attribute
Overrides

Specify to override the default
mapping of an entity’s attribute. Select
Override Default.

Columns The database column (and its table)
mapped to the entity attribute. See
"Column" on page 4-9 for details.

■ Name – Name of the database
column.

■ Table – Name of the database
table.

Mapping an entity

3-24 Dali Java Persistence Tools User Guide

3.9.3 Embedded ID mapping
Use an Embedded ID Mapping to specify the primary key of an embedded ID. These
mappings may be used with a Embeddable entities.

1. In the JPA Structure view, select the field to map.

2. Right-click the field and then select Map As > Embedded Id. The JPA Details view
(for attributes) displays the properties for the selected field.

3. Use this table to complete the remaining fields on the JPA Details view.

Eclipse adds the following annotations to the field:

@EmbeddedId

Mapping an entity

JPA Structure view
JPA Details view (for attributes)

Understanding OR mappings
Understanding EJB 3.0 Java Persistence API

3.9.4 ID mapping
Use an ID Mapping to specify the primary key of an entity. ID mappings may be used
with a Entity or Mapped superclass. Each Entity must have an ID mapping.

1. In the JPA Structure view, select the field to map.

2. Right click the filed and then select Map as > ID. The JPA Details view (for
attributes) displays the properties for the selected.

3. Use this table to complete the General information fields in the JPA Details view.

Property Description Default

Entity Mapping
Hyperlink

Defines this mapping as a Embedded
Id.

This corresponds to the @EmbeddedId
annotation.

Embedded Id

Property Description Default

Entity Mapping
Hyperlink

Defines this mapping as an ID
Mapping.

This field corresponds to the @Id
annotation.

ID

Column The database column mapped to the
entity attribute. See "Column" on
page 4-9 for details.

By default, the Column is
assumed to be named
identically to the attribute.

Table The database table mapped to the
entity attribute.

By default, the Table is
assumed to be identical to the
table associated with the entity.

Mapping an entity

Tasks 3-25

4. Use this table to complete the fields in Primary Key Generation information area
in the JPA Details view.

Additional fields will appear in the Primary Key Generation information area,
depending on the selected Strategy. See "JPA Details view (for attributes)" on page 4-8
for additional information.

Eclipse adds the following annotations to the field:

@Id
@Column(name="<COLUMN_NAME>", table="<TABLE_NAME>", insertable=<INSERTABLE>,

updatable=<UPDATABLE>)
@Temporal(<TEMPORAL>)
@GeneratedValue(strategy=GeneratorType.<STRATEGY>, generator="<GENERATOR_NAME>")
@TableGenerator(name="<TABLE_GENERATOR_NAME>", table = "<TABLE_GENERATOR_TABLE>",

pkColumnName = "<TABLE_GENERATOR_PK>",
valueColumnName = "<TABLE_GENERATOR_VALUE_COLUMN>",
pkColumnValue = "<TABLE_GENERATOR_PK_COLUMN_VALUE>")

@SequenceGenerator(name="<SEQUENCE_GENERATOR_NAME>",
sequenceName="<SEQUENCE_GENERATOR_SEQUENCE>")

Mapping an entity

JPA Structure view
JPA Details view (for attributes)

Understanding OR mappings
Understanding EJB 3.0 Java Persistence API

Temporal Specifies the type of data. See
"Temporal" on page 4-10 for details.

■ Date

■ Time

■ Timestamp

Property Description Default

Primary Key
Generation

These fields define how the primary
key is generated.

Strategy See "Primary Key Generation" on
page 4-12 for details.

■ Auto

■ Sequence

■ Identity

■ Table

Auto

Generator Name Name of the primary key generator
specified in the Strategy

Property Description Default

Mapping an entity

3-26 Dali Java Persistence Tools User Guide

3.9.5 Many-to-many mapping
Use a Many-to-Many Mapping to define a many-valued association with
many-to-many multiplicity. A many-to-many mapping has two sides: the owning side
and non-owning side. You must specify the join table on the owning side. For
bidirectional mappings, either side may be the owning side.

1. In the JPA Structure view, select the field to map.

2. Right-click the field and then select Map As > Many-to-Many. The JPA Details
view (for attributes) displays the properties for the selected field.

3. Use this table to complete the General information fields of the JPA Details view.

4. Use this table to complete the fields in the Join Table Information area in the JPA
Details view.

Property Description Default

Mapping Entity
Hyperlink

Defines this mapping as a Many to
Many Mapping.

This field corresponds to the
@ManyToMany annotation.

Many to Many

Target Entity The entity to which this attribute is
mapped.

null

You do not need to explicitly specify
the target entity, since it can be
inferred from the type of object
being referenced.

Fetch Defines how data is loaded from the
database. See "Fetch Type" on
page 4-9 for details.

■ Eager

■ Lazy

Lazy

Mapped By The database field that owns the
relationship.

Order By Specify the default order for objects
returned from a query. See "Order
By" on page 4-10 for details.

■ No ordering

■ Primary key

■ Custom

No ordering

Property Description Default

Name Name of the join table that contains the
foreign key column.

You must specify the join table on
the owning side.

By default, the name is assumed to
be the primary tables associated
with the entities concatenated with
an underscore.

Join Columns Select Override Default, then Add,
Edit, or Remove the join columns.

By default, the name is assumed to
be the primary tables associated
with the entities concatenated with
an underscore.

Mapping an entity

Tasks 3-27

5. To add a new Join or Inverse Join Column, click Add.

To edit an existing Join or Inverse Join Column, select the field to and click Edit.

Eclipse adds the following annotations to the field:

@JoinTable(joinColumns=@JoinColumn(name="<JOIN_COLUMN>"),
name = "<JOIN_TABLE_NAME>")

@ManyToMany(cascade=CascadeType.<CASCADE_TYPE>, fetch=FetchType.<FETCH_TYPE>,
targetEntity=<TARGET_ENTITY>, mappedBy = "<MAPPED_BY>")

@OrderBy("<ORDER_BY>")

Mapping an entity

JPA Structure view
JPA Details view (for attributes)

Understanding OR mappings
Understanding EJB 3.0 Java Persistence API

3.9.6 Many-to-one mapping
Use a Many-to-One mapping to defines a single-valued association to another entity
class that has many-to-one multiplicity.

1. In the JPA Structure view, select the field to map.

2. Right click the field and then select Map As > Many-to-One. The JPA Details view
(for attributes) displays the properties for the selected.

3. Use this table to complete the General information fields JPA Details view.

Inverse Join
Columns

Select Override Default, then Add,
Edit, or Remove the join columns.

By default, the mapping is
assumed to have a single join.

Property Description Default

Mapping Entity
Hyperlink

Defines mapping as Many-to-One.
This corresponds to the
@ManyToOne annotation.

Many-to-One

Target Entity The entity to which this attribute is
mapped.

null

You do not need to explicitly specify
the target entity, since it can be
inferred from the type of object
being referenced.

Fetch Defines how data is loaded from the
database. See "Fetch Type" on
page 4-9 for details.

■ Eager

■ Lazy

Eager

Property Description Default

Mapping an entity

3-28 Dali Java Persistence Tools User Guide

4. Use this table to complete the fields on the Join Columns Information tab in the
JPA Details view.

Eclipse adds the following annotations to the field:

@JoinTable(joinColumns=@JoinColumn(name="<JOIN_COLUMN>"),
name = "<JOIN_TABLE_NAME>")

@ManyToOne(targetEntity=<TARGET_ENTITY>, fetch=<FETCH_TYPE>,
cascade=<CASCADE_TYPE>)

Mapping an entity

JPA Structure view
JPA Details view (for attributes)

Understanding OR mappings
Understanding EJB 3.0 Java Persistence API

3.9.7 One-to-many mapping
Use a One-to-Many Mapping to define a relationship with one-to-many multiplicity.

1. In the JPA Structure view, select the field to map.

2. Right-click the field and then select Map As > One-to-many. The JPA Details view
(for attributes) displays the properties for the selected.

3. Use this table to complete the General information fields JPA Details view.

Cascade See "Cascade Type" on page 4-10 for
details.

■ Default

■ All

■ Persist

■ Merge

■ Remove

Default

Optional Specifies if this field is can be null. Yes

Property Description Default

Join Column Specify a mapped column for joining
an entity association. This field
corresponds to the @JoinColum
attribute.

Select Override Default, then Add,
Edit, or Remove the join columns.

By default, the mapping is assumed
to have a single join.

Property Description Default

Mapping an entity

Tasks 3-29

4. Use this table to complete the Join Table Information fields in the JPA Details
view.

Eclipse adds the following annotations to the field:

@OneToMany(targetEntity=<TARGET_ENTITY>)
@Column(name="<COLUMN>")

@OneToMany(targetEntity=<TARGET_ENTITY>.class, cascade=CascadeType.<CASCADE_TYPE>,
fetch = FetchType.<FETCH_TYPE>, mappedBy = "<MAPPED_BY>")

@OrderBy("<ORDER_BY>")
@JoinTable(name="<JOIN_TABLE_NAME>", joinColumns=@JoinColumn(name=

Property Description Default

Mapping Entity
Type Hyperlink

Defines mapping as One-to-Many.
This corresponds to the @OneToMany
annotation.

One-to-Many

Target Entity The entity to which this attribute is
mapped.

Cascade See "Cascade Type" on page 4-10 for
details.

■ Default

■ All

■ Persist

■ Merge

■ Remove

Fetch Defines how data is loaded from the
database. See "Fetch Type" on page 4-9
for details.

■ Eager

■ Lazy

Eager

Mapped By The database field that owns the
relationship.

Order By Specify the default order for objects
returned from a query. See "Order By"
on page 4-10 for details.

■ No ordering

■ Primary key

■ Custom

No ordering

Property Description Default

Name Name of the join table By default, the name is assumed to
be the primary tables associated
with the entities concatenated with
an underscore.

Join Columns Specify two or more join columns (that
is, a primary key).

Inverse Join
Columns

The join column on the owned (or
inverse) side of the association: the
owned entity’s primary key column.

Mapping an entity

3-30 Dali Java Persistence Tools User Guide

"<JOIN_COLUMN_NAME>", referencedColumnName="<JOIN_COLUMN_REFERENCED_COLUMN>"),
inverseJoinColumns=@JoinColumn(name="<INVERSE_JOIN_COLUMN_NAME>",
referencedColumnName="<INVERSE_JOIN_COLUMN_REFERENCED_COLUMN>"))

Mapping an entity

JPA Structure view
JPA Details view (for attributes)

Understanding OR mappings
Understanding EJB 3.0 Java Persistence API

3.9.8 One-to-one mapping
Use a One-to-One Mapping to define a relationship with one-to-many multiplicity.

1. In the JPA Structure view, select the field to map.

2. Right-click the field and then select Map As > One-to-One. The JPA Details view
(for attributes) displays the properties for the selected.

3. Use this table to complete the General information fields in the JPA Details view.

4. Use this table to complete the Join Columns Information fields in the JPA Details
view.

Property Description Default

Mapped Entity
Hyperlink

Defines mapping as One-to-One.
This corresponds to the @OneToOne
annotation.

One-to-One

Target Entity The entity to which this attribute is
mapped.

null

You do not need to explicitly specify
the target entity, since it can be
inferred from the type of object
being referenced.

Fetch Type Defines how data is loaded from the
database. See "Fetch Type" on
page 4-9 for details.

■ Eager

■ Lazy

Eager

Mapped By The database field that owns the
relationship.

Property Description Default

Join Column Specify a mapped column for joining
an entity association. This field
corresponds to the @JoinColum
attribute.

Select Override Default, then Add,
Edit, or Remove the join columns.

By default, the mapping is assumed
to have a single join.

Mapping an entity

Tasks 3-31

Eclipse adds the following annotations to the field:

@OneToOne(targetEntity=<TARGET_ENTITY>, cascade=CascadeType.<CASCADE_TYPE>,
fetch = FetchType.<FETCH_TYPE>, mappedBy = "<MAPPED_BY>")

@JoinColumn(name="<JOIN_COLUMN_NAME>", referencedColumnName=
"<JOIN_COLUMN_REFERENCED_COLUMN>", insertable = <INSERTABLE>,
updatable = <UPDATABLE>)

Mapping an entity

JPA Structure view
JPA Details view (for attributes)

Understanding OR mappings
Understanding EJB 3.0 Java Persistence API

3.9.9 Transient mapping
Use the Transient Mapping to specify a field of the entity class that is not persistent.

To create a transient mapping:

1. In the JPA Structure view, select the field to map.

2. Right-click the field and then select Map As Transient. The JPA Details view (for
attributes) displays the properties for the selected.

Eclipse adds the following annotation to the field:

@Transient

Mapping an entity

JPA Structure view
JPA Details view (for attributes)

Understanding OR mappings
Understanding EJB 3.0 Java Persistence API

3.9.10 Version mapping
Use a Version Mapping to specify the field used for optimistic locking. If the entity is
associated with multiple tables, you should use a version mapping only with the
primary table. You should have only a single version mapping per persistent entity.
Version mappings may be used only with the following attribute types:

■ int

■ Integer

■ short, Short

■ long, Long

Generating entities from tables

3-32 Dali Java Persistence Tools User Guide

■ Timestamp

To create a version mapping:

1. In the JPA Structure view, select the field to map.

2. Right-click the field and then select Map As > Version. The JPA Details view (for
attributes) displays the properties for the selected.

3. Use this table to complete the remaining fields in the JPA Details view.

Eclipse adds the following annotations to the field:

@Version
@Column(table="<COLUMN_TABLE>", name="<COLUMN_NAME>")

Mapping an entity

JPA Structure view
JPA Details view (for attributes)

Understanding OR mappings
Understanding EJB 3.0 Java Persistence API

3.10 Generating entities from tables
Use this procedure to generate Java persistent entities from database tables. You must
create a JPA project and establish a database connection before generating persistent
entities. See "Creating a new JPA project" on page 3-1 for more information.

1. Right-click the JPA project in the Package Explorer and select JPA Tools >
Generate Entities.

Property Description Default

Mapped Entity
Hyperlink

Defines the mapping as Version. This
corresponds to the @Version
annotation.

Version

Column The database column mapped to the
entity attribute. See "Column" on
page 4-9 for details.

By default, the Column is assumed
to be named identically to the
attribute and always included in
the INSERT and UPDATE
statements.

Table Name of the database table. This must
be the primary table associated with
the attribute’s entity.

Temporal Specifies the type of data. See
"Temporal" on page 4-10 for details.

■ Date

■ Time

■ Timestamp

Generating entities from tables

Tasks 3-33

Figure 3–23 Generating Entities

2. If you are not currently connected to the database, the Database Connection page
appears. Select your database connection and schema, and click Reconnect.

To create a new database connection, click Add connection.

After connecting to the database, click Next.

3. On the Generate Entities from Tables dialog dialog, select the tables from which to
generate Java persistent entities and click Finish.

Eclipse creates a Java persistent entity for each database table. Each entity contains
fields based on the table’s columns. Eclipse will also generate entity relationships
(such as one-to-one) based on the table constraints. Figure 3–24 illustrates how Eclipse
generates entities from tables.

Figure 3–24 Generating Entities from Tables

Creating a new JPA project

Project Properties page – JPA Options

Generating DDL from Entities

3-34 Dali Java Persistence Tools User Guide

3.11 Generating DDL from Entities
When using a vendor-specific platform, you can create a DDL script from your
persistent entities.

To generate a DDL script:

Right-click the JPA project in the Package Explorer and select JPA Tools > Generate
DDL.

Creating a JPA Entity

Project Properties page – JPA Options

3.12 Validating mappings and reporting problems
Errors and warnings on persistent entities and mappings are indicated with a red error
or yellow warning next to the resource with the error, as well as the parent containers
up to the project.

Figure 3–25 Sample Errors and Warnings

This section contains information on the following:

■ Error messages

■ Warning messages

Problems view

3.12.1 Error messages
This section contains information on error messages (including how to resolve the
issue) you may encounter while working with Dali.

Validating mappings and reporting problems

Tasks 3-35

Attribute "<ATTRIBUTE__NAME>" has invalid mapping type in this context
The mapped attribute is invalid. Either change the mapping type or change the entity
type.

See "Mapping an entity" on page 3-21 for more information.

Attribute "<ATTRIBUTE_NAME>" cannot be resolved.
Dali cannot map the attribute to a database table and column. Verify that you database
connection information is correct.

See "Creating a new JPA project" on page 3-1 for more information.

Class "<CLASS_NAME>" is not annotated as a persistent class.
The class has not been identified as a persistent class. Configure the class as an Entity,
Mapped Superclass, or Embeddable persistent entity.

See "Adding persistence to a class" on page 3-13.

Column "<COLUMN_NAME>" cannot be resolved.
You mapped an entity’s field to an incorrect or invalid column in the database table.
By default, Dali will attempt to map each field in the entity with an identically named
row in the database table. If the field’s name differs from the row’s name, you must
explicitly create the mapping.

Map the field to a valid row in the database table as shown in "Mapping an entity" on
page 3-21.

Duplicate class "<CLASS_NAME>".
You created to persistence classes with the same name. Each Java class must have a
unique name. See "Adding persistence to a class" on page 3-13 for more information.

Entity does not have an Id or Embedded Id.
You created a persistent entity without identifying its primary key. A persistent entity
must have a primary key field designated with an @Id or @EmbeddedId annotation.

Add an ID mapping to the entity as shown in "ID mapping" on page 3-24 or
"Embedded ID mapping" on page 3-24.

Multiple persistence.xml files in project.
You created a JPA project with more than one persistence.xml file. Each JPA
project must contain a single persistence.xml file.

See "Managing the persistence.xml file" on page 3-7 for more information.

No persistence unit defined.
There is no persistence unit defined in the persistence.xml file. Use the
<persistence-unit name="<PERSISTENCE_UNIT_NAME>" tag to define the persistent
unit.

See "Managing the orm.xml file" on page 3-11 for more information.

No persistence.xml file in project.
You created a JPA project without a persistence.xml file. Each JPA project must
contain a single persistence.xml file.

See "Managing the persistence.xml file" on page 3-7 for more information.

Validating mappings and reporting problems

3-36 Dali Java Persistence Tools User Guide

Referenced column "<COLUMN_NAME>" in join column "<COLUMN_NAME>"
cannot be resolved.
The column that you selected to join a relationship mapping does not exist on the
database table. Either select a different column on the Join Table Information or create
the necessary column on the database table.

See "JPA Details view (for attributes)" on page 4-8 for more information.

Schema "<SCHEMA_NAME>" cannot be resolved for table/join table "<TABLE_
NAME>".
Define the default database schema information in the persistence unit.

See "Managing the orm.xml file" on page 3-11 for more information.

Table "<TABLE_NAME>" cannot be resolved.
You associated a persistent entity to an incorrect or invalid database table. By default,
Dali will attempt to associate each persistent entity with an identically named
database table. If the entity’s name differs from the table’s name, you must explicitly
create the association.

Associate the entity with a valid database table as shown in "Adding persistence to a
class" on page 3-13.

Unresolved generator "<GENERATOR_NAME>" is defined in persistence unit.
You created a persistence entity that uses sequencing or a table generator, but did not
define the generator in the persistence unit. Either define the generator by using an
annotation or including it in the XML mapping file.

Problems view

3.12.2 Warning messages
This section contains information on warning messages (including how to resolve the
issue) you may encounter while working with Dali.

Connection "<CONNECTION_NAME>" is not active. No validation will be done
against the data source.
The database connection you specified to use with the JPA project is not active. The
JPA project requires an active connection.

No connection specified for the project. No data-specific validation will be
performed.
You created a JPA project without specifying a database connection. The JPA project
requires an active connection.

See "Creating a new JPA project" on page 3-1 or "Modifying persistent project
properties" on page 3-37 for information on specifying a database connection.

Problems view

Modifying persistent project properties

Tasks 3-37

3.13 Modifying persistent project properties
Each persistent project must be associated with a database connection. To create a new
database connection, click Database Connection use the New Connection wizard.

Use this procedure to modify the vender-specific platform and database connection
associated with your JPA project.

1. Right-click the project in the Explorer view and select Properties. The Properties
page appears.

Figure 3–26 The Properties Page

2. Use this table to complete the remaining fields on the Properties – JPA page and
click OK.

To create a new connection, click Add connections.

Property Description

Platform Select the vendor-specific platform for the JPA
implementation.

Database Connection Database connection to use to store the persistent entities. To
create a new connection, click Add Connection.

Override default schema
from connection

Select a schema other than the default one derived from the
connection information. Use this option if the default schema
cannot be used. For example, use this option in cases where
the deployment login differs from the design-time login.

Modifying persistent project properties

3-38 Dali Java Persistence Tools User Guide

Creating a new JPA project

Project Properties page – JPA Options

Understanding Java persistence

Reference 4-1

4
Reference

This section includes detailed help information for each of the following elements in
the Dali OR Mapping Tool:

■ Wizards

■ Property pages

■ Preferences

■ Dialogs

■ JPA Development perspective

■ Icons and buttons

■ Dali Developer Documentation

4.1 Wizards
This section includes information on the following wizards:

■ Create New JPA Project wizard

■ Create JPA Entity wizard

4.1.1 Create New JPA Project wizard
The Create New JPA Project wizard allows you to create a new Java project using JPA.
The wizard consists of the following pages:

■ New JPA Project page

■ JPA Facet page

4.1.1.1 New JPA Project page
This table lists the properties available on the New JPA Project page of the Create New
JPA Project wizard.

Property Description Default

Project name Name of the Eclipse JPA project.

Project contents Location of the workspace in which to save the
project.

Unselect The Use Default option and click
Browse to select a new location.

Current workspace

Wizards

4-2 Dali Java Persistence Tools User Guide

4.1.1.2 JPA Facet page
This table lists the properties available on the JPA Facet page of the Create New JPA
Project wizard.

Target runtime Select a pre-defined target for the project.

Click New to create a new environment with
the New Server Runtime wizard.

Configurations Select a project configuration with pre-defined
facets.

Select <custom> to manually select the facets
for this project.

Utility JPA project
with Java 5.0

EAR membership Specify if this project should be included in an
EAR file for deployment.

Select the EAR Project Name, or click New to
create a new EAR project.

Property Description Default

Platform Vendor-specific JPA implementation. EclipseLink

Connection Select the database connection to use with the
project. Dali requires an active database
connection to use and validate the persistent
entities and mappings.

Click Add connection to create a new database
connection.

Override default
schema from
connection

Select a schema other than the default one that
is derived from the connection information.
Use this option if the default schema cannot be
used. For example, use this option when the
deployment login differs from the design-time
login.

The value calculated
by Dali.

JPA Implementation Select to use the JPA implementation
provided by the server at runtime, or select a
specific implementation library that contain
the Java Persistence API (JPA) and entities to
be added to the project’s Java Build Path.

Click Configure default JPA implementation
library to create a default library for the project
or click Configure user libraries to define
additional libraries.

Depending on your JPA implementation (for
example, Generic or EclipseLink), different
options may be available when working with
JPA projects.

Determined by
server.

Persistent class
management

Specify if Dali will discover annotated classes
automatically, or if the annotated classes must
be listed in the persistence.xml file.

Note: To insure application portability, you
should explicitly list the managed persistence
classes that are included in the persistence unit.

Determined by
server.

Property Description Default

Wizards

Reference 4-3

4.1.2 Create JPA Entity wizard
The Create JPA wizard enables you to quickly add an entity and also add persistence
fields to that entity. In addition, this wizard adds the accessor methods (getter and
setter) in the class file. The wizard consists of the following pages:

■ Entity Class page

■ Entity Properties page

4.1.2.1 Entity Class page
This table lists the properties of the Entity Class page of the Create JPA Entity wizard.

Create orm.xml Specify if Dali should create a default orm.xml
file for your entity mappings and persistence
unit defaults.

Selected

Table 4–1

Property Description Default

Project The name of t he JPA project.

Source Folder The location of the JPA project’s src folder.

Java Package The name of the class package.

Class name The name of the Java class.

Superclass Select the superclass.

Inheritance Because the wizard creates a Java class with an
@Entity notation, the Entity option is selected
by default.

Select Mapped Superclass if you defined a
superclass.

To add an @Inheritance notation to the
entity, select Inheritance and then select one of
the inheritance mapping strategies (described
in JSR 220):

■ SINGLE_TABLE -- All classes in a
hierarchy as mapped to a single table. This
annotation is without an attribute for the
inheritance strategy.

■ TABLE_PER_CLASS -- Each class is
mapped to a separate table.

■ JOINED -- The root of the class hierarchy is
represented by a single table. Each subclass
is represented by a separate table that
contains those fields that are specific to the
subclass (not inherited from its superclass),
as well as the column(s) that represent its
primary key. The primary key column(s) of
the subclass table serves as a foreign key to
the primary key of the superclass table.

Entity

Property Description Default

Wizards

4-4 Dali Java Persistence Tools User Guide

4.1.2.2 Entity Properties page
This table lists the properties of the Entity Properties page of the Create JPA Entity
wizard.

Creating a JPA Entity
Adding persistence to a class

JPA Details view (for entities)

XML Entity
Mappings

Select Add to entity mappings in XML to
create XML mappings in orm.xml, rather than
annotations.

Table 4–2

Property Description Default

Entity Name The name of the entity. By default, this value is
the same as the one entered as the class name.
If the entity name differs from the class name,
then the entity name is added as an attribute.
For example:
@Entity(name="EntityName").

Determined by
server.

Table Name Select Use default to match the name of the
mapped table name to the entity name.
Otherwise, clear the Use default option and
enter the name in the Table Name field. These
options result in the addition of the @Table
option to the Java class file.

Use default.

Entity Fields Click the Add button to add persistence fields
using the Entity Fields dialog. This dialog
enable you to build a field by entering a field
name and selecting among persistence types.
The Key option enables you to mark a field as a
primary key. The dialog’s Browse function
enables you to add other persistence types
described in the JPA specification. The Edit
button enables you to change the name or type
set for a persistent field.

Access Type Select whether the entity’s access to instance
variables is field-based or property-based, as
defined in the JPA specification.

■ Field-based – Instance variables are
accessed directly. All non-transient
instance variables are persistent.

■ Property-based – Persistent state accessed
through the property accessor methods.
The property accessor methods must be
public or private.

Field-based

Table 4–1 (Cont.)

Property Description Default

Property pages

Reference 4-5

4.1.3 Mapping File Wizard
The Mapping File wizard enables you to add an orm.xml file to a JPA project if no
object map exists at the location specified. For example, if you cleared the Create
orm.xml option on the JPA Facet page, you can later add the orm.xml file to the src
file of the project using this wizard.

The Mapping File Wizard consists of the Mapping File page.

4.1.3.1 Mapping File
This table lists the properties of the Mapping File Wizard.

4.1.4 Generate DDL from Entities Wizard
The Generate DDL from Entities Wizard to quickly create DDL scripts from your
persistent entities. Dali automatically creates the necessary primary and foreign keys,
based on the entity mappings.

4.2 Property pages
This section includes information on the following:

■ JPA Details view (for entities)

■ JPA Details view (for attributes)

■ JPA Details view (for orm.xml)

■ JPA Structure view

4.2.1 JPA Details view (for entities)
The JPA Details view displays the persistence information for the currently selected
entity and contains the following tabs:

Table 4–3 Mapping File Wizard Properties

Property Description Default

Project The name of the JPA project. Selected.

Source folder The location of the project’s src folder. If
needed, click Browse to point the wizard to the
src file’s location.

Selected.

File Path The location for the new orm.xml file. Selected.

Default Access Select whether the access to the entity is
field-based or property-based, as defined in
JPA specification.

■ None – No access type specified.

■ Property-based – Persistent state accessed
through the property accessor methods.
The property accessor methods must be
public or private.

■ Field-based – Instance variables are
accessed directly. All non-transient
instance variables are persistent.

None

Add to persistence
unit

Designates the persistence unit for this object
map file.

Selected.

Property pages

4-6 Dali Java Persistence Tools User Guide

■ General information

■ Attribute overrides

■ Secondary table information

■ Inheritance information

4.2.1.1 General information
This table lists the General information fields available in the JPA Details view for each
entity type.

Adding persistence to a class

JPA Details view (for entities)

4.2.1.2 Attribute overrides
Use the Attribute Overrides area in the JPA Details view to override the default
settings specified in the General information area of an attribute. Attribute overrides
generally override/configure attributes that are inherited or embedded.

This table lists the Attribute override fields available in the JPA Details view for each
entity type.

Property Description Default Available for Entity Type

Mapping Type
Hyperlink

Clicking the name of the mapping type, which
is represented as a hyperlink, invokes the
Mapping Type Selection dialog. Use this dialog
to specify the type of entity: Mapped
Superclass, Embeddable or the default
mapping type.

Entity Entity, Embeddable, and
Mapped superclass

Name The name of this entity. By default, the class
name is used as the entity name.

Entity

Table The default database table information for this
entity. These fields can be overridden by the
information in the Attribute overrides area.

Entity

Name The name of the primary database table
associated with the entity.

Entity

Catalog The database catalog that contains the Table. As defined in
orm.xml.

Entity

Schema The database schema that contains the Table. As defined in
orm.xml.

Entity

Property Description Default Available for Entity Type

Attribute
Overrides

Specify a property or field to be overridden
(from the default mappings). Select Override
Default.

Entity

Join Columns Entity

Property pages

Reference 4-7

General information
Adding persistence to a class

JPA Details view (for entities)

4.2.1.3 Secondary table information
Use the Secondary Tables area in the JPA Details view to associate additional tables
with an entity. Use this area if the data associated with an entity is spread across
multiple tables.

Refer to "Specifying additional tables" on page 3-18 for additional information.

Specifying additional tables
Adding persistence to a class

JPA Details view (for entities)

4.2.1.4 Inheritance information
This table lists the fields available on the Inheritance area in the JPA Details view for
each entity type.

Property Description Default

Strategy Specify the strategy to use when mapping a
class or class hierarchy:

■ Single table – All classes in the hierarchy
are mapped to a single table.

■ Joined – The root of the hierarchy is
mapped to a single table; each child maps
to its own table.

■ Table per class – Each class is mapped to a
separate table.

Single table

Discriminator
Column

Use to specify the name of the discriminator
column when using a Single or Joined
inheritance strategy.

Discriminator Type Set this field to set the discriminator type to
Char or Integer (instead of its default:
String). The Discriminator Value must
conform to this type.

String

Discriminator Value Specify the discriminator value used to
differentiate an entity in this inheritance
hierarchy. The value must conform to the
specified Discriminator Type.

Property pages

4-8 Dali Java Persistence Tools User Guide

Refer to "Specifying entity inheritance" on page 3-18 for additional information.

Specifying entity inheritance
Adding persistence to a class

JPA Details view (for entities)

4.2.1.5 Queries
Use the queries area of the JPA Details view to create named queries and named
native queries. Refer to "Creating Named Queries" on page 3-20 for additional
information.

Creating Named Queries

JPA Details view (for entities)

4.2.2 JPA Details view (for attributes)
The JPA Details view displays the persistence information for the currently selected
mapped attribute and contains the following areas:

■ General information

■ Join Table Information

■ Join Columns Information

■ Primary Key Generation information

See "Mapping an entity" on page 3-21 for more information.

4.2.2.1 General information
This table lists the General properties available in the Java Details view for each
mapping type.

Primary Key Join
Columns

Use to override the default primary key join
columns. Select Override Default, then click
Add to select new Join Column.

This field corresponds with
@PrimaryKeyJoinColumn annotation.

Property Description Default

Property pages

Reference 4-9

Property Description Default
Available for
Mapping Type

Mapping Type
Hyperlink

Clicking the name of the mapping
type, which is represented as a
hyperlink, invokes the Mapping
Type Selection dialog. Use this
dialog to specify the type of
attribute.

Basic All mapping types

Column The database column that
contains the value for the
attribute. This field corresponds
to the @Column annotation.

By default, the Column is
assumed to be named
identically to the attribute.

Basic mapping,
Embedded mapping,
ID mapping, Version
mapping

Name Name of the database column.

This field corresponds to the
@Column annotation.

Basic mapping,
Embedded mapping,
ID mapping

Table Name of the database table that
contains the selected column.

Basic mapping,
Embedded mapping,
ID mapping

Insertable Specifies if the column is always
included in SQL INSERT
statements.

True Basic mapping,
Embedded mapping,
ID mapping

Updatable Specifies if this column is always
included in SQL UPDATE
statements.

True Basic mapping,
Embedded mapping,
ID mapping

Unique Sets the UNIQUE constraint for the
column.

False Basic mapping,
Embedded mapping,
ID mapping

Nullable Specifies if the column allows null
values.

True Basic mapping,
Embedded mapping,
ID mapping

Length Sets the column length. 255 Basic mapping,
Embedded mapping,
ID mapping

Precision Sets the precision for the column
values.

0 Basic mapping,
Embedded mapping,
ID mapping

Scale Sets the number of digits that
appear to the right of the decimal
point.

0 Basic mapping,
Embedded mapping,
ID mapping

Column Definition Define the DDL for a column.
This is used when a table is being
generated.

Basic mapping,
Embedded mapping,
ID mapping

Fetch Type Defines how data is loaded from
the database:

■ Eager – Data is loaded in
before it is actually needed.

■ Lazy – Data is loaded only
when required by the
transaction.

Eager Basic mapping,
One-to-one mapping,
Many-to-many
mapping,
Many-to-one mapping

Optional Specifies if this field is can be
null.

Yes Basic mapping,
One-to-one mapping,
Many-to-one mapping

Property pages

4-10 Dali Java Persistence Tools User Guide

Lob Specify if the field is mapped to
java.sql.Clob or
java.sql.Blob.

This field corresponds to the
@Lob annotation.

Basic mapping

Temporal Specifies if this field is one of the
following:

■ Date – java.sql.Date

■ Time – java.sql.Time

■ Timestamp –
java.sql.Timestamp

This field corresponds to the
@Temporal annotation.

Basic mapping, ID
mapping

Enumerated Specify how to persist
enumerated constraints if the
String value suits your
application requirements or to
match an existing database
schema.

■ ordinal

■ String

This field corresponds to the
@Enumerated annotation.

Ordinal

Target Entity The persistent entity to which the
attribute is mapped.

One-to-one mapping,
One-to-many
mapping
Many-to-many
mapping,
Many-to-one mapping

Cascade Type Specify which operations are
propagated throughout the entity.

■ All – All operations

■ Persist

■ Merge

■ Move

■ Remove

■ Refresh

One-to-one mapping,
One-to-many
mapping,
Many-to-many
mapping,
Many-to-one mapping

Mapped By The field in the database table
that "owns" the relationship. This
field is required only on the
non-owning side of the
relationship.

One-to-one mapping,
One-to-many
mapping

Order By Specify the default order for
objects returned from a query:

■ No ordering

■ Primary key

■ Custom ordering

This field corresponds to the
@OrderBy annotation.

Primary key One-to-many
mapping.
Many-to-many
mapping,
Many-to-one mapping

Property Description Default
Available for
Mapping Type

Property pages

Reference 4-11

Mapping an entity

4.2.2.2 Join Table Information
Use area to specify a mapped column for joining an entity association. By default, the
mapping is assumed to have a single join.

This table lists the fields available on the Join Table area in the JPA Details view for
One-to-many mapping and Many-to-many mapping mapping types.

Mapping an entity

Edit Join Columns Dialog

4.2.2.3 Join Columns Information
This table lists the fields available in the Join Table area in JPA Details view for
Many-to-one mapping and One-to-one mapping mapping types.

Attribute Overrides Overrides Basic mappings of a
mapped superclass (for example,
if the inherited column name is
incompatible with a pre-existing
data model, or invalid as a
column name in your database).

Embedded mapping

Embedded mapping

Property Description Default

Name Name of the join table that contains
the foreign key column.

By default, the name is
assumed to be the primary
tables associated with the
entities concatenated with an
underscore.

Join Columns Specify a mapped column for
joining an entity association. This
field corresponds to the
@JoinColum attribute.

Select Override Default, then Add,
Edit, or Remove the join columns.

By default, the mapping is
assumed to have a single join.

Inverse Join Columns Select Override Default, then Add,
Edit, or Remove the join columns.

Property Description Default
Available for
Mapping Type

Property pages

4-12 Dali Java Persistence Tools User Guide

Mapping an entity

Edit Join Columns Dialog

4.2.2.4 Primary Key Generation information
This table lists the fields available in the Primary Key Generation area in JPA Details
view for ID mapping types.

Property Description Default

Join Column Specify a mapped column for
joining an entity association. This
field corresponds to the
@JoinColum attribute.

Select Override Default, then Add,
Edit, or Remove the join columns.

By default, the mapping is
assumed to have a single join.

Property Description Default

Primary Key
Generation

These fields define how the
primary key is generated. These
fields correspond to the
@GeneratedValue annotation.

Generated Value

Strategy ■ Auto

■ Identity – Values are assigned
by the database’s Identity
column.

■ Sequence – Values are assigned
by a sequence table (see
Sequence Generator).

■ Table – Values are assigned by
a database table (see Table
Generator).

Auto

Generator Name Unique name of the generated
value.

Table Generator These fields define the database
table used for generating the
primary key and correspond to the
@TableGenerator annotation.

These fields apply only when
Strategy = Table.

Name Unique name of the generator.

Table Database table that stores the
generated ID values.

Primary Key Column The column in the table generator’s
Table that contains the primary
key.

Value Column The column that stores the
generated ID values.

Property pages

Reference 4-13

ID mapping

JPA Details view (for attributes)

4.2.3 JPA Details view (for orm.xml)
The JPA Details view displays the default mapping and persistence information for
the project and contains the following areas:

■ General information

■ Persistence Unit information

■ Generators

■ Queries

These defaults can be overridden by the settings on a specific entity or mapping.

4.2.3.1 General information
This table lists the General information fields available in the JPA Details view for each
entity type.

Primary Key Column
Value

The value for the Primary Key
Column in the generator table.

Sequence Generator These fields define the specific
sequence used for generating the
primary key and correspond to the
@SequenceGenerator
annotation.

These fields apply only when
Strategy = Sequence.

Name Name of the sequence table to use
for defining primary key values.

Sequence Unique name of the sequence.

Property Description Default

Package The Java package that contains the persistent
entities. Click Browse and select the package

Schema The database schema that contains the Table.

This field corresponds to the <schema> element in
the orm.xml file.

Catalog The database catalog that contains the Table.

This field corresponds to the <catalog> element in
the orm.xml file.

Property Description Default

Property pages

4-14 Dali Java Persistence Tools User Guide

Adding persistence to a class

JPA Details view (for entities)

4.2.3.2 Persistence Unit information
This table lists the Persistence Unit information fields available in the JPA Details view
for each entity type. These fields are contained in the
<persistence-unit-metadata> element in the orm.xml file.

Adding persistence to a class

JPA Details view (for entities)

Access Specify the default access method for the variables in
the project:

■ Property

■ Field

This field corresponds to the <access> element in
the orm.xml file.

Property Description Default

XML Mapping
Data Complete

Specifies that the Java classes in this persistence unit
are fully specified by their metadata. Any
annotations will be ignored.

This field corresponds to the
<xml-mapping-metadata-complete> element
in the orm.xml file.

Schema The database schema that contains the Table.

This field corresponds to the <schema> element in
the orm.xml file.

Catalog The database catalog that contains the Table.

This field corresponds to the <catalog> element in
the orm.xml file.

Access Type Specify how the entity its access instance variables.

■ Property – Persistent state accessed through the
property accessor methods. The property
accessor methods must be public or private.

■ Field – Instance variables are accessed directly.
All non-transient instance variables are
persistent.

Property

Cascade Persist Adds cascade-persist to the set of cascade options in
entity relationships of the persistence unit.

This field corresponds to the <cascade-persist>
element in the orm.xml file.

Property Description Default

Property pages

Reference 4-15

4.2.3.3 Generators
This table lists the Generator information fields available in the JPA Details view for
the orm.xml file.

Adding persistence to a class

JPA Details view (for orm.xml)

4.2.3.4 Queries
This table lists the Query information fields available in the JPA Details view for the
orm.xml file.

Creating Named Queries

JPA Details view (for orm.xml)

4.2.4 JPA Structure view
The JPA Structure view displays an outline of the structure (its attributes and
mappings) of the entity that is currently selected or opened in the editor. The
structural elements shown in the outline are the entity and its fields.

Property Description

Generator Displays the existing Sequence and Table generators.

Click Add Sequence or Add Table to add a new
generator.

Property Description

Queries Displays the existing Named and Native queries.

Click Add to add a named query, or Add Native for
a native query.

Property pages

4-16 Dali Java Persistence Tools User Guide

Figure 4–1 Sample JPA Structure View

JPA Development perspective

4.2.5 persistence.xml Editor
The persistence.xml Editor provides an interface that enables you to update the
persistence.xml file. For projects using the EclipseLink platform, the perisistence.xml
Editor consists of the following pages:

■ General

■ Connection

■ Customization

■ Caching

■ Logging

■ Options

■ Schema Generation

■ Properties

■ Source

For projects using the Generic platform, the following subset of these pages is
available:

■ General

■ Connection

■ Properties

■ Source

4.2.5.1 General
The following table lists properties available in the General page of the persistence.xml
Editor.

Table 4–4 Properties of the General Page

Property Description Default

Name Enter the name of the persistence unit. The project name.

Property pages

Reference 4-17

4.2.5.2 Connection
The following table lists the properties available in the Connection page of the
persistence.xml Editor.

Persistence Provider Enter the name of the persistence provider. Determined by the
server.

Description Enter a description for this persistence unit.
This is an optional property.

Managed Classes Add or remove the classes managed through
the persistence unit.

Exclude Unlisted
Classes

Select to include all annotated entity classes in
the root of the persistence unit.

False

XML Mapping Files Add or remove the object/relational mapping
XML files that define the classes to be managed
by the persistence unit.

Meta-INF\orm.xml

Table 4–5 Properties of the Connection Page

Property Description Default

Transaction Type Specify if the connection for this persistence
unit uses one of the following transaction types:

■ Default -- Select to use the container used
by the container.

■ JTA (Java Transaction API) -- Transactions
of the Java EE server.

■ Resource Local -- Native actions of a JDBC
driver that are referenced by a persistence
unit.

Batch Writing

Specify the use of batch writing to optimize
transactions with multiple write operations.

Set the value of this property into the session at
deployment time.

Note: This property applies when used both in
a Java SE and Java EE environment.

The following are the valid values for
oracle.toplink.config.BatchWriting:

■ JDBC–Use JDBC batch writing.

■ Buffered–Do not use either JDBC batch
writing nor native platform batch writing.

■ OracleJDBC–Use both JDBC batch writing
and Oracle native platform batch writing.

■ None–Do not use batch writing (turn it
off).

None

JTA Data Source
Name

If you selected JTA as the transaction type, then
enter the name of the default JTA data source
for the persistence unit.

Table 4–4 (Cont.) Properties of the General Page

Property Description Default

Property pages

4-18 Dali Java Persistence Tools User Guide

4.2.5.3 Customization
The following table lists the properties available in the Customization page of the
persistence.xml Editor.

Non-JTA Data Source
Name

If you selected Resource Local as the
transaction type, then enter the name of the
non-JTA data source.

This property is not available for projects using
the Generic platform.

Bind Parameters Control whether or not the query uses
parameter binding.

Note: This property applies when used in a
Java SE environment.

This property is not available for projects using
the Generic platform.

EclipseLink
Connection Pool

Define the connection pool driver, URL, user
name and password.

These properties are note available for projects
using the Generic platform.

Read Connection The maximum and minimum number of
connections allowed in the JDBC read
connection pool.

Note: These property apply when used in a
Java SE environment.

These properties are not available for projects
using the Generic platform

Write Connection The maximum and minimum number of
connections allowed in the JDBC read
connection pool.

Note: These property apply when used in a
Java SE environment.

These properties are not available for projects
using the Generic platform

Table 4–5 (Cont.) Properties of the Connection Page

Property Description Default

Property pages

Reference 4-19

The following table lists the properties of the persistence.xml Editor.

Table 4–6 Properties of the Customization Page

Property Description Default

Weaving Specifies if weaving of the entity classes is
performed. The EclipseLink JPA persistence
provider uses weaving to enhance JPA entities
for such properties as lazy loading, change
tracking, fetch groups, and internal
optimizations. Select from the following options:

■ No Weaving

■ Weave Dynamically

■ Weave Statically -- Use this option if you
plan to execute your application outside of a
Java EE 5 container in an environment that
does not permit the use of
-javaagent:eclipselink.jar on the
JVM command line. This assumes that
classes have already been statically woven.
Run the static weaver on the classes before
deploying them.

Weave Dynamically

Weaving Lazy Select this option to enable lazy weaving.

Weaving Fetch
Groups

Select this option to enable fetch groups through
weaving. Set this option to false if:

■ There is no weaving.

■ Classes should not be changed during
weaving (for example, when debugging).

Set this property to false for platforms where it is
not supported.

Weaving Change
Tracking

Select this option to use weaving to detect which
fields or properties of the object change.

Throw Exceptions Select this option to set EclipseLink to throw an
exception or log a warning when it encounters a
problem with any of the files listed in a
persistence.xml file <mapping-file> element.

Session Customizer Select a session customizer class: a Java class that
implements the
eclipselink.tools.sessionconfigurati
on.SessionCustomizer interface and
provides a default (zero-argument) constructor.
Use this class’ customize method, which takes
an eclipselink.sessions.Session, to
programmatically access advanced EclipseLink
session API.

Descriptor
Customizer

Select an EclipseLink descriptor customizer
class–a Java class that implements the
eclipselink.tools.sessionconfigurati
on.DescriptorCustomizer interface and
provides a default (zero-argument) constructor.
Use this class’s customize method, which takes
an
eclipselink.descriptors.ClassDescrip
tor, to programmatically access advanced
EclipseLink descriptor and mapping API for the
descriptor associated with the JPA entity named
<ENTITY>.

Property pages

4-20 Dali Java Persistence Tools User Guide

4.2.5.4 Caching
This table lists the properties of the Caching page of the persistence.xml Editor.

Note: This page is not available for projects using the Generic
platform.

Table 4–7 Properties of the Caching Page

Property Description Default

Default Cache Type Select one of the following as the Default Cache
Type:

■ Soft with Weak Subcache–This option is
similar to Weak with Hard Subcache
except that it maintains a most frequently
used subcache that uses soft references.
The size of the subcache is proportional to
the size of the identity map. The subcache
uses soft references to ensure that these
objects are garbage-collected only if the
system is low on memory.

Use this identity map in most
circumstances as a means to control
memory used by the cache.

■ Week with Hard Subcache–This option is
similar to Soft with Weak subcache except
that it maintains a most frequently used
subcache that uses hard references. Use
this identity map if soft references are not
suitable for your platform.

■ Weak–This option is similar to Full, except
that objects are referenced using weak
references. This option uses less memory
than Full, allows complete garbage
collection and provides full caching and
guaranteed identity.

Use this identity map for transactions that,
once started, stay on the server side.

■ Soft–This option is similar to Weak except
that the map holds the objects using soft
references. This identity map enables full
garbage collection when memory is low. It
provides full caching and guaranteed
identity.

■ Full–This option provides full caching and
guaranteed identity: all objects are cached
and not removed.

Note: This process may be
memory-intensive when many objects are
read.

■ None–This option does not preserve object
identity and does not cache objects.This
option is not recommended.

Weak with hard
subcache

Default Cache Size Set the size of the cache. 100

Default Shared Cache Specifies if cached instances should be in the
shared cache or in a client isolated cache.

True

Property pages

Reference 4-21

4.2.5.5 Logging
This table lists the properties of the Logging page of the persistence.xml Editor.

Entity Caching Specify the entity.

Cache Type Select a cache type. See Default Cache

Cache Size Set the size of the cache.

Shared Cache See Default Shared Cache.

Note: This page is not available for projects using the Generic
platform.

Note: This page is not available for projects using the Generic
platform.

Table 4–8 Properties of the Logging Page

Property Description Default

Logging Level Specifies the amount and detail of log output
by selecting the log level (in ascending order of
information):

The following are the valid values for the
java.util.logging.Level:

■ OFF–disables logging

■ SEVERE–logs exceptions indicating
TopLink cannot continue, as well as any
exceptions generated during login. This
includes a stack trace.

■ WARNING–logs exceptions that do not
force TopLink to stop, including all
exceptions not logged with severe level.
This does not include a stack trace.

■ INFO–logs the login/logout per sever
session, including the user name. After
acquiring the session, detailed information
is logged.

■ CONFIG–logs only login, JDBC
connection, and database information.

■ FINE–logs SQL.

■ FINER–similar to warning. Includes stack
trace.

■ FINEST–includes additional low level
information.

Example: persistence.xml file

<property
name="eclipselink.logging.level"
value="INFO"/>

Info

Table 4–7 (Cont.) Properties of the Caching Page

Property Description Default

Property pages

4-22 Dali Java Persistence Tools User Guide

TimeStamp Control whether the timestamp is logged in
each log entry.

The following are the valid values:

■ true–log a timestamp.

■ false–do not log a timestamp.

Example: persistence.xml file

<property
name="eclipselink.logging.timestamp"
value="false"/>

true

Thread Control whether a thread identifier is logged in
each log entry.

The following are the valid values:

■ true–log a thread identifier.

■ false–do not log a thread identifier.

true

Session Control whether an EclipseLink session
identifier is logged in each log entry.

The following are the valid values:

■ true–log a EclipseLink session identifier.

■ false–do not log a EclipseLink session
identifier.

Example: persistence.xml file

<property
name="eclipselink.logging.session"
value="false"/>

true

Exceptions Control whether the exceptions thrown from
within the EclipseLink code are logged prior to
returning the exception to the calling
application. Ensures that all exceptions are
logged and not masked by the application
code.

The following are the valid values:

■ true–log all exceptions.

■ false–do not log exceptions.

Example: persistence.xml file

<property
name="eclipselink.logging.exceptions"
value="true"/>

false

Table 4–8 (Cont.) Properties of the Logging Page

Property Description Default

Property pages

Reference 4-23

4.2.5.6 Options
This table lists the properties of the Options page of the persistence.xml Editor.

Logger Select the type of logger to use:

The following are the valid values:

■ DefaultLogger–the EclipseLink native
logger
eclipselink.logging.DefaultSess
ionLog.

■ JavaLogger–the java.util.logging
logger
eclipselink.logging.JavaLog.

■ ServerLogger–the java.util.logging
logger
eclipselink.platform.server.Ser
verLog. Integrates with the application
server's logging as define in the
eclipselink.platform.server.Ser
verPlatform.

■ Fully qualified class name of a custom
logger. The custom logger must implement
the
eclipselink.logging.SessionLog
interface.

Example: persistence.xml file

<property
name="eclipselink.logging.logger"
value="acme.loggers.MyCustomLogger" />

DefaultLogger

Note: This page is not available for projects using the Generic
platform.

Table 4–9 Properties of the Options Page

Property Description Default

Session Name

Specify the name by which the EclipseLink
session is stored in the static session manager.
Use this option if you need to access the
EclipseLink shared session outside of the
context of the JPA or to use a pre-existing
EclipseLink session configured through a
EclipseLink sessions.xml file

Valid values: a valid EclipseLink session name
that is unique in a server deployment.

Example: persistence.xml file

<property name="eclipselink.session-name"
value="MySession"/>

Table 4–8 (Cont.) Properties of the Logging Page

Property Description Default

Property pages

4-24 Dali Java Persistence Tools User Guide

4.2.5.7 Schema Generation
This table lists the properties of the Schema Generation page of the persistence.xml
Editor.

Sessions XML Specify persistence information loaded from
the EclipseLink session configuration file
(sessions.xml).

You can use this option as an alternative to
annotations and deployment XML. If you
specify this property, EclipseLink will override
all class annotation and the object relational
mapping from the persistence.xml, as well
as ORM.xml and other mapping files, if present.

Indicate the session by setting the
eclipselink.session-name property.

Note: If you do not specify the value for this
property, sessions.xml file will not be used.

Valid values: the resource name of the sessions
XML file.

Example: persistence.xml file

<property name="toplink.session-xml"
value="mysession.xml"/>

Target Database Select the target database. Auto

Target Server Select the target server. None

Event Listener Specify a descriptor event listener to be added
during bootstrapping.

Valid values: qualified class name for a class
that implements the
eclipselink.sessions.SessionEventLi
stener interface.

Example: persistence.xml file

<property
name="eclipselink.session-event-listener"
value="mypackage.MyClass.class"/>

Include Descriptor
Queries

Enable or disable the default copying of all
named queries from the descriptors to the
session. These queries include the ones defined
using EclipseLink API, descriptor amendment
methods, and so on.

Note: This page is not available for projects using the Generic
platform.

Table 4–9 (Cont.) Properties of the Options Page

Property Description Default

Preferences

Reference 4-25

4.2.5.8 Properties
This page enables you to add or remove the vendor-specific <properties> elements
of persistence.xml.

4.2.5.9 Source
Using this page, you can manually edit the persistence.xml file.

See "Managing the persistence.xml file" on page 3-7 for additional information.

Managing the persistence.xml file

4.3 Preferences
This section includes information on the following preference pages:

■ Project Properties page – JPA Options

Table 4–10

Property Description Default

DDL Generation
Type

Select the type of DDL generation:

■ None -- Do not generate DDL; no schema
is generated.

■ Create Tables -- Create DDL for
non-existent tables; leave existing tables
unchanged.

■ Drop and Create Tables -- Create DDL for
all tables; drop all existing tables.

None

Output Mode Select the DDL generation target:

■ Both -- Generate SQL files and execute
them on the database.

■ Database -- Execute SQL on the database
only (do not generate SQL files).

■ SQL Script -- Generate SQL files only (do
not execute them on the database).

DDL Generation
Location

Specify where EclipseLink writes DDL output.
Specify a file specification to a directory in
which you have write access. The file
specification may be relative to your current
working directory or absolute. If it does not
end in a file separator, then EclipseLink
appends one that is valid for your operating
system.

Create DDL File
Name

Specify the file name of the DDL file that
EclipseLink generates that contains SQL
statements for creating tables for JPA entities.
Specify a file name valid for your operating
system.

createDDL.jdbc

Drop DDL File Name Specify the file name of the DDL file that
EclipseLink generates that contains SQL
statements for dropping tables for JPA entities.

dropDDL.jdbc

Dialogs

4-26 Dali Java Persistence Tools User Guide

4.3.1 Project Properties page – JPA Options
Use the JPA options on the Properties page to select the database connection to use
with the project.

This table lists the properties available in the JPA Details page.

See "Modifying persistent project properties" on page 3-37 for additional information.

Modifying persistent project properties

4.4 Dialogs
This section includes information on the following preference pages:

■ Generate Entities from Tables dialog

■ Edit Join Columns Dialog

4.4.1 Generate Entities from Tables dialog
Use the Generate Entities dialog to create Java persistent entities from your database
tables and columns.

This table lists the properties available in the Generate Entities dialog.

Property Description

Platform Select the vendor-specific platform.

Connection The database connection used to map the persistent entities.

■ To create a new connection, click Add Connections.

■ To reconnect to an existing connection, click Reconnect.

Override default schema
from connection

Select a schema other than the default one derived from the
connection information. Use this option if the default schema is
incorrect or cannot be used. For example, use this option when
the deployment login differs from the design-time login.

Persistent Class
Management

Specify if Dali will discover annotated classes automatically,
or if the annotated classes must be listed in the
persistence.xml file.

Note: To insure application portability, you should explicitly
list the managed persistence classes that are included in the
persistence unit.

Property Description

Source Folder Enter a project folder name in which to generate the Java
persistent entities, or click Browse to select an existing folder.

Package Enter a package name in which to generate the Java persistent
entities, or click Browse to select an existing package.

Synchronize Classes in
persistence.xml

Specify if Dali should update the persistence.xml file to include
the generated classes.

Icons and buttons

Reference 4-27

See "Generating entities from tables" on page 3-32 for more information.

Generating entities from tables

4.4.2 Edit Join Columns Dialog
Use the Join Columns dialog to create or modify the join tables and columns in
relationship mappings.

This table lists the properties available in the Join Columns dialog.

Join Table Information
Join Columns Information

4.5 JPA Development perspective
The JPA Development perspective defines the initial set and layout of views in the
Workbench window when using Dali. By default, the JPA Development perspective
includes the following views:

■ JPA Structure view

■ JPA Details view (for entities)

■ JPA Details view (for attributes)

■ JPA Details view (for orm.xml)

Perspectives

4.6 Icons and buttons
This section includes information on each of the icons and buttons used in the Dali OR
Mapping Tool.

■ Icons

Tables Select the tables from which to create Java persistent entities.
The tables shown are determined by the database connection
that you defined in the Project Properties page – JPA Options.

Property Description

Name Name of the joint table column that contains the foreign key
column.

Referenced Column Name Name of the database column that contains the foreign key
reference for the entity relationship.

Property Description

Icons and buttons

4-28 Dali Java Persistence Tools User Guide

■ Buttons

4.6.1 Icons
The following icons are used throughout the Dali OR Mapping Tool.

Icons and buttons

4.6.2 Buttons
The following buttons are used throughout the Dali OR Mapping Tool.

Icons and buttons

Icon Description

Entity

Embeddable entity

Mapped superclass

Basic mapping

Embedded mapping

Embedded ID mapping

ID mapping

Many-to-many mapping

Many-to-one mapping

One-to-many mapping

One-to-one mapping

Transient mapping

Version mapping

Icon Description

JPA Development perspective

Dali Developer Documentation

Reference 4-29

4.7 Dali Developer Documentation
Additional Dali documentation is available online at:

http://wiki.eclipse.org/index.php/Dali_Developer_Documentation

This developer documentation includes information about:

■ Dali architecture

■ Plugins that comprise the Dali JPA Eclipse feature

■ Extension points

Dali Developer Documentation

4-30 Dali Java Persistence Tools User Guide

Tips and tricks 5-1

5
Tips and tricks

The following tips and tricks give some helpful ideas for increasing your productivity.

■ Database Connections

■ Schema-based persistence.xml

Tip Description

Database Connections When starting a new workbench session, be sure to reconnect to
your database (if you are working online). This allows Dali to
provide database-related mapping assistance and validation.

Schema-based
persistence.xml

If you are behind a firewall, you may need to configure your Eclipse
workspace proxy in the Preferences dialog (Preferences > Internet >
Proxy Settings) to properly validate a schema-based
persistence.xml file.

5-2 Dali Java Persistence Tools User Guide

What’s new 6-1

6
What’s new

This section contains descriptions of the following new features and significant
changes made to the Dali OR Mapping Tool for Release 2.1:

■ EclipseLink Support

■ Multiple Mapping Files

6.1 EclipseLink Support
Release 2.1 provides support of the following EclipseLink features.

■ EclipseLink caching

■ EclipseLink entity and attribute mapping options

The Dali OR Mapping Tool can now configure Entities as Read-only, specify a
customizer class, and configure change tracking.

■ EclipseLink converters

EclipseLink (the Eclipse Persistence Services Project) is a complete persistence frame
work. Refer to http://www.eclipse.org/eclipselink/ for more information.

6.2 Multiple Mapping Files
The Dali OR Mapping Tool now supports configurations with multiple mapping
(orm.xml) files. You can also create custom named mapping files.

Multiple Mapping Files

6-2 Dali Java Persistence Tools User Guide

Legal 7-1

7
Legal

Copyright © 2006, 2008, Oracle. All rights reserved.

This program and the accompanying materials are made available under the terms of
the Eclipse Public License v1.0 which accompanies this distribution, and is available
at:

http://www.eclipse.org/legal/epl-v10.html

Terms and conditions regarding the use of this guide.

7.1 About this content
Terms and conditions regarding the use of this guide.

December, 2008

License
The Eclipse Foundation makes available all content in this plug-in ("Content"). Unless
otherwise indicated below, the Content is provided to you under the terms and
conditions of the Eclipse Public License Version 1.0 ("EPL"). A copy of the EPL is
available at http://www.eclipse.org/legal/epl-v10.html. For purposes of
the EPL, "Program" will mean the Content.

If you did not receive this Content directly from the Eclipse Foundation, the Content is
being redistributed by another party ("Redistributor") and different terms and
conditions may apply to your use of any object code in the Content. Check the
Redistributor’s license that was provided with the Content. If no such license exists,
contact the Redistributor. Unless otherwise indicated below, the terms and conditions
of the EPL still apply to any source code in the Content and such source code may be
obtained at http://www.eclipse.org.

About this content

7-2 Dali Java Persistence Tools User Guide

Index-1

Index

Annotations
@Basic, 3-21
@Column, 4-9
@DiscriminatorColumn, 3-19
@DiscriminatorValue, 3-19
@Embeddable, 3-15
@Embedded, 3-23
@EmbeddedId, 3-24
@Entity, 3-14
@Enumerated, 4-10
@GeneratedValue, 4-12
@Id, 3-24
@Inheritance, 3-18
@JoinColumn, 3-28, 3-30, 4-11, 4-12
@Lob, 4-10
@ManyToMany, 3-26
@ManyToOne, 3-27
@MappedSuperclass, 3-16
@NamedQuery, 3-20
@OneToMany, 3-28
@OneToOne, 3-30
@OrderBy, 4-10
@SequenceGenerator, 4-13
@Temporal, 4-10
@Transient, 3-31
@Version, 3-31

A
annotations. See specific annotation.
architecture of Dali feature, 4-29
attribute overrides, 4-6
Attribute Overrides, in Java Details view, 4-6
attributes

JPA Details view, 4-8
mapping, 2-1

B
basic mapping

@Basic, 3-21
about, 3-21
See also mappings

C
caching, 4-20
classes

adding persistence to, 3-13
embeddable, 3-15
entity, 3-14
mapped superclass, 3-16
synchronizing, 3-10

columns
discriminator, 3-19
join, 3-28, 3-30, 4-11, 4-12
mapping to, 4-9
value, 3-19

connection pool, 3-8

D
database tables

generating entities from, 3-33
database, persistence

connection, 4-26
schema, 4-26

developer documentation, Dali, 4-29

E
eager fetch, 4-9
EJB. see persistent entities
embeddable class

@Embeddable, 3-15
about, 3-15

embedded ID mapping
@EmbeddedId, 3-24
about, 3-24

embedded mapping
@Embedded, 3-23
about, 3-23

entities
@Entity annotation, 3-14
about, 2-1
creating, 3-4
embeddable, 3-15
from tables, 3-32, 4-26
JPA Details view, 4-5
mapped superclass, 3-16

Index-2

mapping, 1-3
persistence, 1-3
persistent, 3-14
secondary tables, 4-7

@Enumerated, 4-10
enumerated, 4-10
error messages, Dali, 3-34
extension points, Dali feature, 4-29

F
fetch type, 4-9

G
Generate Entities from Tables dialog, 3-33, 4-26
generated values

ID mappings, 4-12
sequence, 4-13

I
ID mapping

@Id, 3-24
about, 3-24

inheritance
entity, 3-18, 4-7
joined tables, 3-20
single table, 3-20

Inheritance, in Java Details view, 4-7
installation, Dali, 1-1

J
joined tables, inheritance, 3-20
JPA Details view

attributes, 4-8
entities, 4-5

JPA Development perspective, 4-27
JPA project

creating new, 3-1
platform, 4-26

JPA Structure view, 4-15

L
lazy fetch, 4-9

M
many-to-many mapping

@ManyToMany, 3-26
about, 3-26

many-to-one mapping
@ManyToOne, 3-27
about, 3-27

mapped superclass
@MappedSuperclass, 3-16
about, 3-16

mapping entities, 1-3
mapping file, 3-11

mappings
about, 2-1
basic, 3-21
embedded, 3-23
embedded ID, 3-24
ID, 3-24
many-to-many, 3-26
many-to-one, 3-27
one-to-many, 3-28
one-to-one, 3-30
problems, 3-34
transient, 3-31
version, 3-31

N
named queries

entity, 3-20
nonpersistent

classes, 3-13
fields. See transient

O
one-to-many mapping

@OneToMany, 3-28
about, 3-28

one-to-one mapping
@OneToOne, 3-30
about, 3-30

OR (object-relational) mappings. See mappings
ordering, 4-10
orm.xml file

about, 2-2
managing, 3-11
sample, 3-11

outline, persistence. See JPA Structure view
overrides, JPA attributes, 4-6

P
persistence

about, 2-1
database connection, 4-26
database schema, 4-26
entity class, 3-13
options, 4-26

Persistence XML Editor, 3-9
persistence.xml file

about, 2-2
editor, 3-9
managing, 3-7, 3-9, 3-13
sample, 3-7
synchronizing with classes, 3-10

persistent entity, 3-14
perspective, JPA Development, 4-27
platform, JPA, 4-26
problems, 3-34
projects, JPA

creating new, 1-2, 3-1
options, 4-26

Index-3

Q
quick start, Dali, 1-2

R
requirements

Dali Java Persistence Tools, 1-1
persistent entities, 3-14

S
schema, database, 4-26
secondary tables, 4-7
Secondary Tables, in Java Details view, 4-7
single table inheritance, 3-20
superclass, 3-16

T
tables

creating entities from, 3-32, 4-26
inheritance, 3-20
secondary, 4-7

@Temporal, 4-10
temporal, 4-10
transient mapping

@Transient, 3-31
about, 3-31

V
version mapping

@Version, 3-31
about, 3-31

views
JPA Details view, 4-5, 4-8
JPA Structure view, 4-15

W
warning messages, Dali, 3-34

X
XML editor, 3-9, 3-13

Index-4

	Contents
	1 Getting started
	1.1 Requirements and installation
	1.2 Dali quick start
	1.2.1 Creating a new JPA project
	1.2.2 Creating a Java persistent entity with persistent fields

	2 Concepts
	2.1 Understanding Java persistence
	2.2 Understanding OR mappings
	2.3 Understanding EJB 3.0 Java Persistence API
	2.3.1 The persistence.xml file
	2.3.2 The orm.xml file

	3 Tasks
	3.1 Creating a new JPA project
	3.2 Creating a JPA Entity
	3.3 Managing the persistence.xml file
	3.3.1 Using the XML Editor to edit the persistence.xml file
	3.3.2 Synchronizing classes

	3.4 Managing the orm.xml file
	3.4.1 Creating an orm.xml file
	3.4.2 Working with orm.xml file

	3.5 Adding persistence to a class
	3.5.1 Entity
	3.5.2 Embeddable
	3.5.3 Mapped superclass

	3.6 Specifying additional tables
	3.7 Specifying entity inheritance
	3.8 Creating Named Queries
	3.9 Mapping an entity
	3.9.1 Basic mapping
	3.9.2 Embedded mapping
	3.9.3 Embedded ID mapping
	3.9.4 ID mapping
	3.9.5 Many-to-many mapping
	3.9.6 Many-to-one mapping
	3.9.7 One-to-many mapping
	3.9.8 One-to-one mapping
	3.9.9 Transient mapping
	3.9.10 Version mapping

	3.10 Generating entities from tables
	3.11 Generating DDL from Entities
	3.12 Validating mappings and reporting problems
	3.12.1 Error messages
	3.12.2 Warning messages

	3.13 Modifying persistent project properties

	4 Reference
	4.1 Wizards
	4.1.1 Create New JPA Project wizard
	4.1.1.1 New JPA Project page
	4.1.1.2 JPA Facet page

	4.1.2 Create JPA Entity wizard
	4.1.2.1 Entity Class page
	4.1.2.2 Entity Properties page

	4.1.3 Mapping File Wizard
	4.1.3.1 Mapping File

	4.1.4 Generate DDL from Entities Wizard

	4.2 Property pages
	4.2.1 JPA Details view (for entities)
	4.2.1.1 General information
	4.2.1.2 Attribute overrides
	4.2.1.3 Secondary table information
	4.2.1.4 Inheritance information
	4.2.1.5 Queries

	4.2.2 JPA Details view (for attributes)
	4.2.2.1 General information
	4.2.2.2 Join Table Information
	4.2.2.3 Join Columns Information
	4.2.2.4 Primary Key Generation information

	4.2.3 JPA Details view (for orm.xml)
	4.2.3.1 General information
	4.2.3.2 Persistence Unit information
	4.2.3.3 Generators
	4.2.3.4 Queries

	4.2.4 JPA Structure view
	4.2.5 persistence.xml Editor
	4.2.5.1 General
	4.2.5.2 Connection
	4.2.5.3 Customization
	4.2.5.4 Caching
	4.2.5.5 Logging
	4.2.5.6 Options
	4.2.5.7 Schema Generation
	4.2.5.8 Properties
	4.2.5.9 Source

	4.3 Preferences
	4.3.1 Project Properties page - JPA Options

	4.4 Dialogs
	4.4.1 Generate Entities from Tables dialog
	4.4.2 Edit Join Columns Dialog

	4.5 JPA Development perspective
	4.6 Icons and buttons
	4.6.1 Icons
	4.6.2 Buttons

	4.7 Dali Developer Documentation

	5 Tips and tricks
	6 What’s new
	6.1 EclipseLink Support
	6.2 Multiple Mapping Files

	7 Legal
	7.1 About this content

	Index

